The Second Law of Thermodynamics

Note:

for a reversible process, on p-v diagram

and If the volume is constant, $P \begin{bmatrix} 2 \\ -w = 0 \\ v_1 = v_2 \end{bmatrix} \int_{1}^{2} P dv = 0$ • Similarly, for any reversible adiabatic process, Q=0 $T \uparrow S_2 \uparrow$

$$Q_{rev} = \int T ds = 0$$

$$S_1 = S_2$$

$$Q = 0$$

$$S_1 = S_2$$

• For any other reversible process

• Clausius Inequality:

$$\oint \frac{\delta Q}{T} \le 0$$

• Clausius inequality is valid for all thermodynamic cycles, reversible or irreversible.

$$\oint \left(\frac{\delta Q}{T}\right)_{rev} = 0$$

for internally reversible cycle

$$\oint \left(\frac{\delta Q}{T}\right) < 0$$

for irreversible cycle

• Consider a cycle composed of a reversible and an irreversible process:

- The quantity $\Delta s = s_2 s_1$ represents the entropy change of the system.
- For a reversible process, entropy transfer with heat

$$\Delta s_{sys} = \int_{1}^{2} \frac{\delta Q}{T} + s_{gen}$$

$$\Delta s = \int_{1}^{2} \frac{\delta Q}{T}$$

• Some entropy is generated during an irreversible process and is always positive quantity. Its value depends on the process, and thus it is not a property of the system.

Entropy Change for Pure Substances

• The entropy of a pure substance is determined from the tables, just as for any other property.

$$s = s_f + x s_{fg}$$
$$\Delta S = m (s_2 - s_1)$$

• T-s diagram of properties:

- Entropy of a fixed mass can be changed by:
 - 1) Heat transfer
 - 2) Irreversibilities

- The entropy of a fixed mass will not change during a process that is internally reversible and adiabatic.
- For a reversible, adiabatic process (called Isentropic process)

$$\Delta s = 0 \Longrightarrow s_1 = s_2$$

• If a steam turbine is reversible, and the turbine is insulated (thus the process is reversible and adiabatic)

• The Tds relations: differential form of the first law: $\delta Q_{rev} - \delta W_{rev} = dU$ $\delta Q_{rev} = Tds$ second law: TdS = PdV + dUTds = Pdv + duFirst Tds relation Tds = du + Pdvh = u + Pvdh = du + Pdv + vdPSecond Tds relation Tds = dh - vdP

• Entropy changes for Liquids and solids: Tds=du+pdv

$$ds = \frac{du}{T} + \frac{pdv}{T}$$

• Liquids and solids are incompressible substances

$$dv \cong 0$$

$$ds = \frac{du}{T} = \frac{cdT}{T} \qquad (c_p = c_v = c)$$
$$s_2 - s_1 = \int_1^2 c \frac{dT}{T} = c \ln \frac{T_2}{T_1} \qquad \frac{kJ}{kgK}$$

Isentropic process for liquids and solids:

$$s_2 - s_1 = 0 = c \ln \frac{T_2}{T_1} \Longrightarrow T_2 = T_1$$

the isentropic process of an incompressible substance is also isothermal.

Note: *Tds equations are derived by considering an internally reversible process. An entropy change obtained by integrating these equations is the change for any process.*

"Entropy is a property and the change in entropy between any two states is independent of the details of the process linking the states."

Entropy change of an Ideal gas

Tds equations are used to evaluate the entropy change between two states of an ideal gas.

$$ds = \frac{du}{T} + \frac{P}{T} dv$$
$$ds = \frac{dh}{T} - \frac{v}{T} dv$$

For an ideal gas:

$$du = c_v dT$$

$$dh = c_p dT$$

$$Pv = RT, \quad c_p = c_v + R$$

$$ds = c_v \frac{dT}{T} + R \frac{dv}{v}$$

$$ds = c_p \frac{dT}{T} - R \frac{dP}{P}$$

Now integrating

$$s_{2} - s_{1} = \int_{T_{1}}^{T_{2}} c_{v} \frac{dT}{T} + R \ln \frac{v_{2}}{v_{1}}$$
$$s_{2} - s_{1} = \int_{T_{1}}^{T_{2}} c_{P} \frac{dT}{T} - R \ln \frac{P_{2}}{P_{1}}$$

To integrate these relations, we must know the temperature dependence of the specific heats.

Using Ideal gas Tables:

Define
$$s^{o}(T) = \int_{0}^{T} \frac{c_{p}(T)}{T} dT$$

Where $s^{o}(T)$ is the specific entropy at a temperature T and a pressure of 1 atm.

Note: The specific entropy is set to zero at the state where the temperature is 0 K and the pressure is 1 atm.

Note: Because S^o depends only on the temperature, it can be tabulated versus temperature, like h and u.

Also,

$$\int_{T_1}^{T_2} c_p \frac{dT}{T} = \int_{0}^{T_2} c_p \frac{dT}{T} - \int_{0}^{T_1} c_p \frac{dT}{T} = s_2^o - s_1^o$$

then;

$$s_{2} - s_{1} = (s_{2}^{o} - s_{1}^{o}) - R \ln \frac{P_{2}}{P_{1}} \qquad \frac{\text{KJ}}{\text{Kg.K}}$$

or $\overline{s}_{2} - \overline{s}_{1} = (\overline{s}_{2}^{o} - \overline{s}_{1}^{o}) - R_{u} \ln \frac{P_{2}}{P_{1}} \qquad \frac{\text{KJ}}{\text{Kmole.K}}$

Entropy change of an Incompressible substance: for incompressible substance, specific heat depends solely on temperature, and

$$du = C(T)dT$$

$$ds = \frac{du}{T} + \frac{P}{T}dv$$

$$ds = \frac{C(T)dT}{T} + \frac{P}{T}dv = C(T)\frac{dT}{T}$$

$$S_2 - S_1 = \int_{T_1}^{T_2} C(T)\frac{dT}{T} \leftarrow \text{incompressible}$$

When the specific heat is constant:

$$s_2 - s_1 = C \ln \frac{T_2}{T_1} \leftarrow \text{incompressible, constant C}$$

For internally reversible process:

$$s_{2} - s_{1} = \int_{1}^{2} c_{p}(T) \frac{dT}{T} - R \ln \frac{P_{2}}{P_{1}}$$
$$s_{2} - s_{1} = \int_{1}^{2} c_{v}(T) \frac{dT}{T} - R \ln \frac{V_{2}}{V_{1}}$$

For Isentropic process(Reversible, adiabatic process):

$$s_{2} - s_{1} = 0 \qquad 0 = \int_{1}^{2} c_{p}(T) \frac{dT}{T} - R \ln \frac{P_{2}}{P_{1}}$$
$$0 = \int_{1}^{2} c_{v}(T) \frac{dT}{T} - R \ln \frac{V_{2}}{V_{1}}$$

$$\begin{split} 0 &= c_{p} \ln \frac{T_{2}}{T_{1}} - R \ln \frac{P_{2}}{P_{1}} \\ 0 &= c_{v} \ln \frac{T_{2}}{T_{1}} + R \ln \frac{V_{2}}{V_{1}} \\ \Rightarrow &\ln \frac{T_{2}}{T_{1}} = -\frac{R}{c_{v}} \ln \frac{V_{2}}{V_{1}} = \ln \left(\frac{V_{1}}{V_{2}}\right)^{\frac{R}{c_{v}}} \\ &\ln \frac{T_{2}}{T_{1}} = \ln \left(\frac{V_{1}}{V_{2}}\right)^{k-1} \qquad similarly, \\ &\left(\frac{T_{2}}{T_{1}}\right)_{s=\text{constant}} = \left(\frac{V_{1}}{V_{2}}\right)^{k-1} \qquad \left(\frac{T_{2}}{T_{1}}\right)_{s=\text{constant}} = \left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}} \end{split}$$

$$Tds = du + Pdv$$
 Ideal gas, Isentropic Process

$$ds = \frac{du}{T} + P\frac{dv}{T}$$

$$0 = c_v \frac{dT}{T} + R\frac{dv}{v}$$

Integrate:

Constant $= c_v \ln T + R \ln v$ $use \ P = RT \implies \ln \frac{Pv}{R} + \frac{R}{c_v} \ln v = \text{Constant}$ $\ln Pv + \ln v^{k-1} = \text{Constant} - \ln R = \text{Constant}$ $\ln(Pv \times v^{k-1}) = \text{Constant}$ $\implies Pv^k = \text{Constant} \leftarrow \text{Isentropic process ideal gas,}$ with constant specific heats

$$s_{2} - s_{1} = \int_{T_{1}}^{T_{2}} c_{p} \frac{dT}{T} - R \ln \frac{P_{2}}{P_{1}}$$

$$s_{2} - s_{1} = s_{2}^{o} - s_{1}^{o} - R \ln \frac{P_{2}}{P_{1}}$$
Isentropic process: $s_{2} - s_{1} = 0$

$$s_{2}^{o} - s_{1}^{o} = R \ln \frac{P_{2}}{P_{1}}$$

$$\ln \frac{P_{2}}{P_{1}} = \left(\frac{s_{2}^{o} - s_{1}^{o}}{R}\right)$$

$$\frac{P_{2}}{P_{1}} = \exp \frac{s_{2}^{o} - s_{1}^{o}}{R}$$

Relative pressure and relative volume:

$$\frac{P_2}{P_1} = \frac{\exp(s_2^o / R)}{\exp(s_1^o / R)}$$

The quantity $\exp(s^{\circ} / R)$ is a function of temperature only and is given the symbol P_r, define as the relative pressure, and is tabulated for air and other ideal gases

$$\frac{P_2}{P_1} = \frac{P_{r_2}}{P_{r_1}} \longleftarrow \qquad \begin{array}{c} \text{Isentropic Process} \\ (s_1 = s_2) \text{ Ideal gas} \\ \text{variable specific heats} \end{array}$$

where $P_{r_1} = P_r(T_1)$ and $P_{r_2} = P_r(T_2)$

Note: P_r is not truly pressure, and also P_r should not be confused with the reduced pressure of compressibility chart.

Similarly a relation between specific volumes and temperatures and for two states having the same entropy can also be developed

In general Isentropic process for ideal gas: $(s_2=s_1)$

$$Pv^k = C \leftarrow \text{constant specific heat}$$

Polytropic process on P-v and T-s diagrams

Isentropic Efficiencies of Steady-Flow Devices

- The Isentropic process involves no irreversibilities and serves as the ideal process for adiabatic devices.
- The actual process is irreversible and the actual device performance is less than the ideal case.
- The more closely the actual process approximates the idealized isentropic process, the better the device will perform.
- We define the efficiency (isentropic efficiency) of these devices as a measure of deviation of actual processes from the idealized one.

1) Isentropic efficiency of Turbines

$$\dot{w} = h_1 - h_2$$

2) Isentropic efficiency of Compressors and Pumps

$$\eta_{c} \text{ or } \eta_{p} = \frac{W_{s}}{W_{a}}$$
$$\eta_{c} \text{ or } \eta_{p} = \frac{h_{2s} - h_{1}}{h_{2a} - h_{1}}$$

3) Isentropic efficiency of Nozzles

Actual K. E. at Nozzle exit Isentropic K.E. at Nozzle exit η_N $=\frac{V_{2a}^2}{V^2}$ $\eta_{\rm N}$ Note : $h_1 = h_{2a} + \frac{V_{2a}^2}{2}$ P_2 2_s S $\eta_{\rm N} \cong \frac{h_1 - h_{2a}}{h_1 - h_2}$