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Figure 2-4 | One-dimensional heat flow through multiple cylindrical sections
and electrical analog.
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with the boundary conditions

T=T atr =r;
T=T, atr =r,

The solution to Equation (2-7) is

2nkL(T; — T,)
T= o/ 281
and the thermal resistance in this case is
In(r,/r;)
" TrkL

The thermal-resistance concept may be used for multiple-layer cylindrical walls just as it
was used for plane walls. For the three-layer system shown in Figure 2-4 the solution is

B 2n L(T; — Ty)
In(ra/r1)/ka+1n(rs/r2)/kp +1n(ra/r3)/ ke
The thermal circuit is shown in Figure 2-4b.

[2-9]

Spheres

Spherical systems may also be treated as one-dimensional when the temperature is a function
of radius only. The heat flow is then

_ 4nk (T, —T,)
- UYri=1/r,
The derivation of Equation (2-10) is left as an exercise.

[2-10]

Multilayer Conduction

An exterior wall of a house may be approximated by a 4-in layer of common brick [k = 0.7
W/m-°C] followed by a 1.5-in layer of gypsum plaster [k = 0.48 W/m-°C]. What thickness
of loosely packed rock-wool insulation [k = 0.065 W/m.°C] should be added to reduoe the
heat loss (or gain) through the wall by 80 percent?
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Figure Example 2-2

Stainless steel
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A thick-walled tube of stainless steel [18% Cr, 8% Ni, k = 19 W/m-°C] with 2-cm inner diam-
eter (ID) and 4-cm outer diameter (OD) is covered with a 3-cm layer of asbestos insulation
[k=0.2W/m-°C]. If the inside wall temperature of the pipe is maintained at 600°C, calculate
the heat loss per meter of length. Also calculate the tube-insulation interface temperature

lSolutlon Eay
Figure Example 2-2 shows the thermal network: for this problem The heat flow is ngen
by

q._ 2n(Ti—Tp) _ 27 (600 = 100) e

Lo Inlra/ri)/ks +Inra/ra)/ Fay _ (n2)/19%(n%) /02

 This heat flow may be used 1o calculate the interface temperature between the outside

* tube wall-and the insulation. We have
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Convection Boundary Conditions

We have already seen in Chapter 1 that convection heat transfer can be calculated from
Gconv = hA(T, — Tx)

An electric-resistance analogy can also be drawn for the convection process by rewriting

the equation as

To — T

conv — 2-11
q 1/hA [2-11]

where now the 1/h A term becomes the convection resistance.

2-51 THE OVERALL HEAT-TRANSFER
COEFFICIENT

Consider the plane wall shown in Figure 2-5 exposed to a hot fluid A on one side and a
cooler fluid B on the other side. The heat transfer is expressed by

kA
q=hA(Ty-T)= Z;(Tl — D) =hA(T, - Tg)

The heat-transfer proceéé may be represented by the resistance network in Figure 2-5b, and
the overall heat transfer is calculated as the ratio of the overall temperature difference to the
sum of the thermal resistances:

_ Ta—Ts

1/ hA+Ax/kA+1/hA

q [2-12]

Observe that the value 1/hA is used to represent the convection resistance. The overall
heat transfer by combined conduction and convection is frequently expressed in terms of

Figure 2-5 | Overall heat transfer through a plane wall.
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Overall Heat-Transfer Coefficient for a Tube

water flows at 50°C inside a 2.5-cm-inside-diameter tube such that h; = 3500 W/m2.°C.
The tube has a wall thickness of 0.8 mm with a thermal conductivity of 16 W/m?2.°C. The
outside of the tube loses heat by free convection with i, = 7.6 W/m?.°C. Calculate the
overall heat-transfer coefficient and heat loss per unit length to surrounding air at 20°C.

m:Solution
There: are three resrstances in series for this problem as {llustrated in Equation (2- 14)
With L = 1;0 m, d,;=0.025m, and 0o =0.025+(2)(0. 0008) =0 0266 m, the resrstances
may be‘c‘a!cutated as Ry : @
CRi= e =0. 00364°C
hiA; ~ {B5003 0. Z5Y(1.0) A

TRkl : :
,1n(o ozee/o 025)
e 622 W :

~ a0 ,°°°° o

g 1 Lo o

B = = 1575°CIW

haAo = {7.6)2(0. 0266)(1 0

Cleatly, the ‘outside: convection resistance-is the large§ and overwhelm/ngly so ThlS i
means that rt is the contro!hng resistance for the total heat transfer because the other .
resrstanoes (|n series) are negligible in comparison. We shall base the overall heat-
transfer coeffrment on the outside tube area.and. write ‘

L UAAT AO Mpo‘f\m* # [8]

ZR
{ 1o 1
wHe o EH [n(o 0266)(1 0)](0 00364 +0: 00062+1 575)
-
= 7577 Wim?.

or a.value very close to the value of hs = 7:6for the outsrde convectton coeffrcrent Tbe"%
heat transfer is obtarned from Equatron (a); with i .

UA AT (7 577) (0 0266)(1 0)(80 = 20)=19 W(for10miength)
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2-6 | CRITICAL THICKNESS OF INSULATION

Let us consider a layer of insulation which might be installed around a circular pipe, as
shown in Figure 2-7. The inner temperature of the insulation is fixed at T;, and the outer




2-6 Critical Thickness of Insulation

Figure 2-7 | Critical insulation thickness.
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surface is exposed to a convection environment at T,. From the thermal network the heat
transfer is

2n L(T; — T,
q= _(;"’) [2-17
In(ry/r:) + 1
k roh

Now let us manipulate this expression to determine the outer radius of insulation r, which 2-71H
will maximize the heat transfer. The maximization condition is A number
1 systems in
dq 2w L(Ti — Too) kro  hr? ' electrical «

_ == 0 - 9
ar, mery 1T confine ou
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k roh
which gives the result Plane W
ry = K [2-18] Consider t
h thickness ¢
Equation (2-18) expresses the critical-radius-of-insulation concept. If the outer radius is less directions
than the value given by this equation, then the heat transfer will be increased by adding more ‘ The heat §
insulation. For outer radii greater than the critical value an increase in insulation thickness : does not v
will cause a decrease in heat transfer. The central concept is that for sufficiently small values by passing
of k the convection heat loss may actually increase with the addition of insulation because ; differentia
of increased surface area.
. . . i
Mcmlcal Insulation Thickness o wealaciad b

Calculate the critical radius of insulation for asbeste® [k = 0. 17 W/m-°C] surrounding a
pipe and exposed to room air at 20°C with h = 3.0 W/m?2.°C. Calculate the heat loss from
a 200°C, 5.0-cm-diameter pipe when covered with the critical radius of insulation and
without insulation.
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2-7 | HEAT-SOURCE SYSTEMS

A number of interesting applications of the principles of heat transfer are concerned with
systems in which heat may be generated internally. Nuclear reactors are one example;
electrical conductors and chemically reacting systems are others. At this point we shall
confine our discussion to one-dimensional systems, or, more specifically, systems where
the temperature is a function of only one space coordinate.

Plane Wall with Heat Sources

Consider the plane wall with uniformly distributed heat sources shown in Figure 2-8. The
thickness of the wall in the x direction is 2L, and it is assumed that the dimensions in the other
directions are sufficiently large that the heat flow may be considered as one-dimensional.
The heat generated per unit volume is ¢, and we assume that the thermal conductivity
does not vary with temperature. This situation might be produced in a practical situation
by passing a current through an electrically conducting material. From Chapter 1, the
differential equation which governs the heat flow is
T g

FHi=0 [2-19]

Figure 2-8 | Sketch illustrating
one-dimensional
conduction problem with
heat generation.




2-8 Cylinder with Heat Sources

or, in dimensionless form,

T—-T, r\2
il A DY 2-25b
h—T, (R) [ ]
where T is the temperature at r = 0 and is given by
qR?
To=—+T, 2-26
0 4k + 71, [ ]

It is left as an exercise to show that the temperature gradient at r = 0 is zero.
For a hollow cylinder with uniformly distributed heat sources the appropriate boundary
conditions would be

T=T; at r = r; (inside surface)

T=1T, at r = r, (outside surface)

The general solution is still

T ar? +Cilnr+C
=—— nr
4 ! 2
Application of the new boundary conditions yields
q r
T—To=@(r3—r2)+cllnz [2-27]

where the constant C is given by
T —T,+q(r}—r2) /4

In(r:/7,) [2-28]

1

Heat Source with Convection

A current of 200 A is passed through a stainless-steel wire [k =19 W/m.°C]3 mmin diameter.
The resistivity of the steel may be taken as 70 uQ2-cm, and the length of the wire is 1 m.
The wire is submerged in a liquid at 110 °C and experiences a convection heat-transfer
coefficient of 4 kW/m?.°C. Calculate the center temperature of the wire.
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2-25b]

[2-26]
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2-9 | CONDUCTION-CONVECTION SYSTEMS

The heat that is conducted through a body must frequently be removed (or delivered)
by some convection process. For example, the heat lost by conduction through a furnace
wall must be dissipated to the surroundings through convection. In heat-exchanger appli-
cations a finned-tube arrangement might be used to remove heat from a hot liquid. The
heat transfer from the liquid to the finned tube is by convection. The heat is conducted
through the material and finally dissipated to the surroundings by convection. Obviously,

; an analysis of combined conduction-convection systems is very important from a practical
[2-27] , standpoint.

' We shall defer part of our analysis of conduction-convection systems to Chapter 10
on heat exchangers. For the present we wish to examine some simple extended-surface
; problems. Consider the one-dimensional fin exposed to a surrounding fluid at a temperature
[2-28] T as shown in Figure 2-9. The temperature of the base of the fin is Tp. We approach the
‘ problem by making an energy balance on an element of the fin of thickness dx as shown in
the figure. Thus

—_— Energy in left face = energy out right face 4 energy lost by convection
iameter.

ris1tm. ‘ The defining equation for the convection heat-transfer coefficient is recalled as

-transfer g =hA (T, — Tx) [2-29]

Figure 2-9 | Sketch illustrating one-dimensional
conduction and convection through a
rectangular fin.

( dqeony = h Pdx (T-T,)

s

t

Base




