
PROBLEM 2.1

KNOWN:  Steady-state, one-dimensional heat conduction through an axisymmetric shape.

FIND:  Sketch temperature distribution and explain shape of curve.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3) No
internal heat generation.

ANALYSIS:  Performing an energy balance on the object according to Eq. 1.11a, � � ,E Ein out− = 0  it
follows that

� �E E qin out x− =

and that q q xx x≠ � �.   That is, the heat rate within the object is everywhere constant.  From Fourier’s

law,

q kA
dT

dxx x= − ,

and since qx and k are both constants, it follows that

A
dT

dx
Constant.x =

That is, the product of the cross-sectional area normal to the heat rate and temperature gradient

remains a constant and independent of distance x.  It follows that since Ax increases with x, then
dT/dx must decrease with increasing x.  Hence, the temperature distribution appears as shown above.

COMMENTS:  (1) Be sure to recognize that dT/dx is the slope of the temperature distribution.  (2)

What would the distribution be when T2 > T1?  (3) How does the heat flux, ′′qx ,  vary with distance?



PROBLEM 2.5

KNOWN:  End-face temperatures and temperature dependence of k for a truncated cone.

FIND:  Variation with axial distance along the cone of q  q  k,  and dT / dx.x x, ,′′

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in x (negligible temperature gradients along y),
(2) Steady-state conditions, (3) Adiabatic sides, (4) No internal heat generation.

ANALYSIS:  For the prescribed conditions, it follows from conservation of energy, Eq. 1.11a, that

for a differential control volume, � � .E E  or q qin out x x+dx= =   Hence

qx is independent of x.

Since A(x) increases with increasing x, it follows that ′′ =q q A xx x / � �  decreases with increasing x.

Since T decreases with increasing x, k increases with increasing x.  Hence, from Fourier’s law, Eq.
2.2,

′′ = −q k 
dT

dxx ,

it follows that | dT/dx | decreases with increasing x.



PROBLEM 2.7
KNOWN:  Thermal conductivity and thickness of a one-dimensional system with no internal heat
generation and steady-state conditions.

FIND:  Unknown surface temperatures, temperature gradient or heat flux.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional heat flow, (2) No internal heat generation, (3) Steady-state
conditions, (4) Constant properties.

ANALYSIS:  The rate equation and temperature gradient for this system are

1 2
x

dT dT T T
q k           and          .

dx dx L

−′′ = − = (1,2)

Using Eqs. (1) and (2), the unknown quantities can be determined.
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PROBLEM 2.17

KNOWN:  Electrical heater sandwiched between two identical cylindrical (30 mm dia. × 60 mm

length) samples whose opposite ends contact plates maintained at To.

FIND:  (a) Thermal conductivity of SS316 samples for the prescribed conditions (A) and their
average temperature, (b) Thermal conductivity of Armco iron sample for the prescribed conditions
(B), (c) Comment on advantages of experimental arrangement, lateral heat losses, and conditions for

which  ∆T1 ≠ ∆T2.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional heat transfer in samples, (2) Steady-state conditions, (3)
Negligible contact resistance between materials.

PROPERTIES:  Table A.2, Stainless steel 316 T = 400 K  k  W / m K;ss� �: .= ⋅152  Armco iron

T = 380 K  k  W / m K.iron� �: .= ⋅716

ANALYSIS:  (a) For Case A recognize that half the heater power will pass through each of the
samples which are presumed identical.  Apply Fourier’s law to a sample

q = kA
T

xc
∆
∆

k =
q x

A T
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 W / m K.

c
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The total temperature drop across the length of the sample is ∆T1(L/∆x) = 25°C (60 mm/15 mm) =

100°C.  Hence, the heater temperature is Th = 177°C.  Thus the average temperature of the sample is

T = T T C = 400 K

.
o h+ = °� � / 2 127 <

We compare the calculated value of k with the tabulated value (see above) at 400 K and note the good
agreement.

(b) For Case B,  we assume that the thermal conductivity of the SS316 sample is the same as that
found in Part (a).  The heat rate through the Armco iron sample is

Continued …..



PROBLEM 2.17 (CONT.)
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where

q k A T xss ss c 2 2= ∆ ∆/ .

Applying Fourier’s law to the iron sample,
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The total drop across the iron sample is 15°C(60/15) = 60°C; the heater temperature is (77 + 60)°C =
137°C.  Hence the average temperature of the iron sample is

T = 137 +  77 C / 2 = 107 C = 380 K.� �° ° <

We compare the computed value of k with the tabulated value (see above) at 380 K and note the good
agreement.

(c) The principal advantage of having two identical samples is the assurance that all the electrical
power dissipated in the heater will appear as equivalent heat flows through the samples.  With only
one sample, heat can flow from the backside of the heater even though insulated.

Heat leakage out the lateral surfaces of the cylindrically shaped samples will become significant when
the sample thermal conductivity is comparable to that of the insulating material.  Hence, the method is
suitable for metallics, but must be used with caution on nonmetallic materials.

For any combination of materials in the upper and lower position, we expect ∆T1 = ∆T2.  However, if
the insulation were improperly applied along the lateral surfaces, it is possible that heat leakage will

occur, causing ∆T1 ≠ ∆T2.



PROBLEM 2.24

KNOWN:  Wall thickness, thermal conductivity, temperature distribution, and fluid temperature.

FIND:  (a) Surface heat rates and rate of change of wall energy storage per unit area, and (b)
Convection coefficient.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in x, (2) Constant k.

ANALYSIS:  (a) From Fourier’s law,

′′ = − = − ⋅q k
 T
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x kx

∂
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Applying an energy balance to a control volume about the wall, Eq. 1.11a,

� � �′′ − ′′ = ′′E E Ein out st

� .′′ = ′′ − ′′ =E q q  W / mst in out
218 <

(b)  Applying a surface energy balance at x = L,

′′ = − ∞q h T L Tout � �

h =
q

T L T
 W / m

142.7 -100 C
out

2′′
−

=
°∞� � � �

182

h = 4.3 W / m K.2 ⋅ <
COMMENTS:  (1) From the heat equation,

(∂T/∂t) = (k/ρcp) ∂2
T/∂x

2
 = 60(k/ρcp),

it follows that the temperature is increasing with time at every point in the wall.

(2) The value of h is small and is typical of free convection in a gas.



PROBLEM 2.30

KNOWN:   Plane wall with no internal energy generation.

FIND:   Determine whether the prescribed temperature distribution is possible; explain your
reasoning. With the temperatures T(0) = 0°C and T∞  = 20°C  fixed, compute and plot the

temperature T(L) as a function of the convection coefficient for the range 10 ≤ h ≤ 100 W/m2⋅K.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction, (2) No internal energy generation, (3) Constant
properties,  (4) No radiation exchange at the surface x = L, and (5) Steady-state conditions.

ANALYSIS:  (a) Is the prescribed temperature distribution possible?  If so, the energy balance at the
surface x = L as shown above in the Schematic, must be satisfied.

( )in out x cvE E ? ?0 q L q ? ?0′′ ′′− = − =� � (1,2)

where the conduction and convection heat fluxes are, respectively,

( ) ( ) ( ) ( ) 2
x

x L

T L T 0dT
q L k k 4.5 W m K 120 0 C 0.18m 3000 W m

dx L=

−′′ = − = − = − ⋅ × − = −


$

( )[ ] ( )2 2
cvq h T L T 30 W m K 120 20 C 3000 W m∞′′ = − = ⋅ × − =$

Substituting the heat flux values into Eq. (2), find (-3000) - (3000) ≠ 0 and therefore, the temperature
distribution is not possible.

(b) With T(0) = 0°C and T∞  = 20°C, the temperature at the surface x = L, T(L), can be determined
from an overall energy balance on the wall as shown above in the Schematic,

( ) ( ) ( )[ ]in out x cv
T L T 0

E E 0 q (0) q 0 k h T L T 0
L

∞
−′′ ′′− = − = − − − =� �

( ) ( )24.5 W m K T L 0 C 0.18 m 30 W m K T L 20 C 0− ⋅ − − ⋅ − =   
   

$ $

T(L) = 10.9°C <
Using this same analysis, T(L) as a function of
the convection coefficient can be determined
and plotted.  We don’t expect T(L) to be
linearly dependent upon h.  Note that as h
increases to larger values, T(L) approaches
T∞ .  To what value will T(L) approach as h
decreases?
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PROBLEM 2.33

KNOWN:  Heat diffusion with internal heat generation for one-dimensional cylindrical,
radial coordinate system.

FIND:  Heat diffusion equation.

SCHEMATIC:

ASSUMPTIONS:  (1) Homogeneous medium.

ANALYSIS:  Control volume has volume, V = A dr = 2 r dr 1,r ⋅ ⋅ ⋅π  with unit thickness
normal to page.  Using the conservation of energy requirement, Eq. 1.11a,

� � � �

� .

E E E E
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 T
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r r+dr p

− + =

− + ρ ∂
∂

Fourier’s law, Eq. 2.1, for this one-dimensional coordinate system is

q kA
 T

 r
k 2 r 1

 T

 rr r= − = − × ⋅ ×∂
∂

π ∂
∂

.

At the outer surface, r+dr, the conduction rate is

( )r+dr r r r
 T

q q q dr=q k 2 r dr.
 r  r  r

∂ ∂ ∂π
∂ ∂ ∂

 = + + − ⋅ ⋅  

Hence, the energy balance becomes

r r p
 T  T

q q k2 r dr q 2 rdr= 2 rdr c
 r  r  t

∂ ∂ ∂π π ρ π
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�

Dividing by the factor 2πr dr, we obtain

p
1  T  T

kr q= c .
r  r  r  t

∂ ∂ ∂ρ
∂ ∂ ∂

  +  
� <

COMMENTS:  (1) Note how the result compares with Eq. 2.20 when the terms for the φ,z
coordinates are eliminated.  (2) Recognize that we did not require �q  and k to be independent
of r.



PROBLEM 2.47

KNOWN:  Plane wall, initially at a uniform temperature Ti, is suddenly exposed to convection with a

fluid at T∞ at one surface, while the other surface is exposed to a constant heat flux ′′qo.

FIND:  (a) Temperature distributions, T(x,t), for initial, steady-state and two intermediate times, (b)
Corresponding heat fluxes on ′′ −q xx  coordinates, (c) Heat flux at locations x = 0 and x = L as a

function of time, (d) Expression for the steady-state temperature of the heater, T(0,∞), in terms of
′′ ∞q  T  k,  h and L.o , ,

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction, (2) No heat generation, (3) Constant properties.

ANALYSIS:  (a) For T Ti < ∞ ,  the temperature distributions are

Note the constant gradient at x = 0 since ′′ = ′′q qx o0� � .

(b) The heat flux distribution, ′′q x, tx� �,  is determined from knowledge of the temperature gradients,

evident from Part (a), and Fourier’s law.

(c) On ′′ −q x, t tx� �  coordinates, the heat fluxes at the boundaries are shown above.

(d)  Perform a surface energy balance at x = L and an energy balance on the wall:

′′ = ′′ = ∞ − ′′ = ′′∞q q h T L, T      (1),       q q      (2)cond conv cond o� � .

For the wall, under steady-state conditions, Fourier’s law gives

′′ = − =
∞ − ∞

q k
dT

dx
k

T 0, T L,

L
                                   (3)o

� � � �
.

Combine Eqs. (1), (2), (3) to find:

T 0, T
q

1/ h L / k
o∞ = + ′′

+∞� � .
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