PROBLEM 2.1
KNOWN: Steady-state, one-dimensional heat conduction through an axiSymmetric shape.
FIND: Sketch temperature distribution and explain shape of curve.

SCHEMATIC:
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ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3) No
internal heat generation.

ANALYSIS: Performing an energy balance on the object according to Eq. 1.11a, E;,, —Eq =0, it
follows that

Ein —Eout =dx
andthat qy # gy (X). That is, the heat rate within the object is everywhere constant. From Fourier’s
law,
dT

=-kA, —,
Ox X dx

and since gy and k are both constants, it follows that
T
Ay ar _ Constant.
dx

That is, the product of the cross-sectional area normal to the heat rate and temperature gradient

remains a constant and independent of distance x. It follows that since Ay increases with x, then
dT/dx must decrease with increasing X. Hence, the temperature distribution appears as shown above.

COMMENTS: (1) Be sureto recognize that dT/dx isthe slope of the temperature distribution. (2)
What would the distribution be when T2 > T1? (3) How does the heat flux, Qy, vary with distance?



PROBLEM 2.5
KNOWN: End-face temperatures and temperature dependence of k for atruncated cone.
FIND: Variation with axial distance along the cone of gy, g%, K, and dT / dx.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in x (negligible temperature gradients along y),
(2) Steady-state conditions, (3) Adiabatic sides, (4) No internal heat generation.

ANALYSIS: For the prescribed conditions, it follows from conservation of energy, Eq. 1.11a, that
for adifferential control volume, Ej,, = Egyt OF Oy = Oy 4qx- Hence

Oy IS independent of x.

Since A(x) increases with increasing x, it follows that gy = Qy /A(x) decreases with increasing Xx.

Since T decreases with increasing x, k increases with increasing x. Hence, from Fourier’s law, EQ.
2.2,

dT

"no— _k -
Ox dx

it follows that | dT/dx | decreases with increasing X.



PROBLEM 2.7

KNOWN: Thermal conductivit dy and thickness of a one-dimensional system with no internal heat
generation and steady-state conditions.

FIND: Unknown surface temperatures, temperature gradient or heat flux.

SCHEMATIC:
Tix)
T b ;1' L=05m
‘9';‘ g%-, Temperature gradient

k=25 W/m-K xq—‘-rz

ASSUMPTIONS: (1) One-dimensiona heat flow, (2) No internal heat generation, (3) Steady-state
conditions, (4) Constant properties.

ANALYSIS: Therate equation and temperature gradient for this system are

= —kd_T and d_T :m. (1’2)
dx dx L
Using Egs. (1) and (2), the unknown quantities can be determined.
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PROBLEM 2.17

KNOWN: Electrical heater sandwiched between two identical cylindrical (30 mm dia. x 60 mm
length) samples whose opposite ends contact plates maintained at T .
FIND: (a) Thermal conductivity of SS316 samples for the prescribed conditions (A) and their

average temperature, (b) Thermal conductivity of Armco iron sample for the prescribed conditions
(B), (c) Comment on advantages of experimental arrangement, lateral heat losses, and conditions for

which ATq £ AT».

SCHEMATIC:
7;: 77°C 7;= 7 706
AX=15mm SS3/6
Heater, aT=25.07C Heater, al;=150C
100V, SS316 100V, Armco iron
0:353A BT aL=250Cc 0601A AT;=15.0C
T=77°C ax=15mm T=77°C
=77 ase A ° Case B

ASSUMPTIONS: (1) One-dimensional heat transfer in samples, (2) Steady-state conditions, (3)
Negligible contact resistance between materials.

PROPERTIES: Table A.2, Stainless steel 316 (T =400 K): kKes =152 W/ mIK; Armcoiron
(T =380K): Kijron =716 W/ mK.
ANALYSIS: (&) For Case A recognize that half the heater power will pass through each of the
samples which are presumed identical. Apply Fourier’slaw to a sample

AT

=kA.—
q C Ax

(- GAx _ 05100V x0.353A) x 0015 m
AT 7(0.030m)?/4x250°C

=150 W/ mIK. <

The total temperature drop across the length of the sample is AT 1(L/Ax) = 25°C (60 mm/15 mm) =
100°C. Hence, the heater temperatureis T = 177°C. Thus the average temperature of the sampleis

T=(T,+T,)/2=127°C=400K <

We compare the calculated value of k with the tabulated value (see above) at 400 K and note the good
agreement.

(b) For Case B, we assume that the thermal conductivity of the SS316 sampleis the same as that
found in Part (a). The heat rate through the Armco iron sampleis

Continued .....



PROBLEM 2.17 (CONT.)

m0.030m)°  150°C

iron = Yheater ~Uss =100V x0.601A -150W/ m K x

4 0.015m
Ciron = (601-106)W =49.5W
where
Oss = KA ATy / AXs.
Applying Fourier’s law to theiron sample,
_ QunX, _ 495Wx0015m  _ oo <

" AMT,  1(0.030m)*/4x150°C

Thetotal drop across theiron sample is 15°C(60/15) = 60°C; the heater temperatureis (77 + 60)°C =
137°C. Hence the average temperature of the iron sampleis

T=(137 + 77)°C/2=107°C=380K. <

We compare the computed value of k with the tabulated value (see above) at 380 K and note the good
agreement.

(c) The principal advantage of having two identical samplesis the assurance that all the electrical
power dissipated in the heater will appear as equivalent heat flows through the samples. With only
one sample, heat can flow from the backside of the heater even though insulated.

Heat |eakage out the lateral surfaces of the cylindrically shaped samples will become significant when
the sample thermal conductivity is comparable to that of the insulating material. Hence, the method is
suitable for metallics, but must be used with caution on nonmetallic materias.

For any combination of materials in the upper and lower position, we expect ATq = ATo. However, if
the insulation were improperly applied along the lateral surfaces, it is possible that heat |eakage will

occur, causing ATq # AT».



PROBLEM 2.24
KNOWN: Wall thickness, thermal conductivity, temperature distribution, and fluid temperature.

FIND: (a) Surface heat rates and rate of change of wall energy storage per unit area, and (b)
Convection coefficient.

SCHEMATIC:
| k=1W/m-k
. T(x)=200-200x + 30x2
200°C I
| 142.7°C
—_— —»
Qin ! : Qout T T
I

{ T =200°C, A
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ASSUMPTIONS: (1) One-dimensional conductionin x, (2) Constant k.
ANALYSIS: (a) From Fourier'slaw,

aT
v = k21 (200 -60x) &
ay F ( X)

°C w

x 1 =200 W/ n¥
m mK

Qin = Oyp = 200

Oy =i =(200-60%03)°C/m x 1W/m K =182 W/m’.
Applying an energy balance to a control volume about the wall, Eq. 1.11a,
Efn ~ Ebu = Ex
E% =i~ dou =18 W/m”,
(b) Applying a surface energy balance at x = L,
Gout = [T(L) - Te]

he G _ 182 W/ m?
T(L)-T, (142.7-100)°C

h=43W/m? K.
COMMENTS: (1) From the heat equation,
(0T/ot) = (k/pcp) 62T/6x2 = 60(k/pcp),
it follows that the temperature is increasing with time at every point in the wall.

(2) Thevaue of hissmall and istypical of free convection in agas.



PROBLEM 2.30
KNOWN: Planewall with no internal energy generation.

FIND: Determine whether the prescribed temperature distribution is possible; explain your
reasoning. With the temperatures T(0) = 0°C and T, =20°C fixed, compute and plot the
temperature T(L) as a function of the convection coefficient for the range 10 < h < 100 W/m?[K.

SCHEMATIC:

120
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0
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ASSUMPTIONS: (1) One-dimensional conduction, (2) No internal energy generation, (3) Constant
properties, (4) No radiation exchange at the surface x = L, and (5) Steady-state conditions.

ANALYSIS: (@) Isthe prescribed temperature distribution possible? If so, the energy balance at the
surface x = L as shown above in the Schematic, must be satisfied.

Ein —Eout 2="0 ay (L) —dey 2 =20 (1,2)
where the conduction and convection heat fluxes are, respectively,

arQ

a (L) =~ = —kw = 45W/m K x(120 -0)’ C/0.18m = -3000W/m?

X =L
Ay =h[T (L) ~Teo] =30W/m? (K x(120 ~20)° C =3000W, m?

Substituting the heat flux valuesinto Eq. (2), find (-3000) - (3000) # 0 and therefore, the temperature
distribution is not possible.

(b) With T(0) = 0°C and T,, = 20°C, the temperature at the surfacex = L, T(L), can be determined
from an overall energy balance on the wall as shown above in the Schematic,

. T(L)-T(0
Ein ~Eout =0 dx (0) —dey =0 _kw _h[T (L) _Too] =0
-45W/mK (L) —0°C%/0.18m 30w/ m? KST(L)-20°¢ =0

T(L) =10.9°C <

Using this same analysis, T(L) as afunction of 2
the convection coefficient can be determined
and plotted. We don't expect T(L) to be
linearly dependent upon h. Notethat ash
increases to larger values, T(L) approaches
T,,. Towhat value will T(L) approach as h
decreases? a
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Surface temperature, T(L) (C)
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PROBLEM 2.33

KNOWN: Heat diffusion with internal heat generation for one-dimensional cylindrical,
radial coordinate system.

FIND: Heat diffusion equation.
SCHEMATIC:

ASSUMPTIONS: (1) Homogeneous medium.
ANALYSIS: Control volume hasvolume, V = A, [dr = 27z [dr [1, with unit thickness
normal to page. Using the conservation of energy requirement, Eq. 1.11a,

Ein —Eout * Egen =Eg

oT
Or —Qr+gr +QV = pVey—— FT

Fourier'slaw, Eg. 2.1, for this one-dimensional coordinate systemis

qr = kA, ﬂ:—k X271 EIJ><ﬂ
Tor or

At the outer surface, r+dr, the conduction rateis

d TO
Or+dr =0r "‘(?—(Qr)dr Oy "'ﬂ%‘k ﬁ— dr.

0 r
Hence, the energy balance becomes
0TO oT
k2 — dr +( R rdr= p2 mrdr @
qu orH \ P ot

Dividing by the factor 2rr dr, we obtain

10 J0TO oT
<
rdr% Eqppo"'t

COMMENTS: (1) Note how the result compares with Eq. 2.20 when the terms for the @,z
coordinates are eliminated. (2) Recognize that we did not require ¢ and k to be independent

of r.



PROBLEM 2.47

KNOWN: Planewall, initially at a uniform temperature Tj, is suddenly exposed to convection with a

fluid at To, at one surface, while the other surface is exposed to a constant heat flux qg,.

FIND: (a) Temperature distributions, T(x,t), for initial, steady-state and two intermediate times, (b)
Corresponding heat fluxeson gy — X coordinates, (c) Heat flux at locationsx =0andx =L asa

function of time, (d) Expression for the steady-state temperature of the heater, T(0,0), in terms of
Jo, Teos k, hand L.

SCHEMATIC:
: 2=0,k
Heater, 9,
LS

0
Insulati Teo,
nsulation |_’x A T(x,0)=7,7
ASSUMPTIONS: (1) One-dimensional conduction, (2) No heat generation, (3) Constant properties.
ANALYSIS: (a) For T <T,, thetemperature distributions are

TN T

To | — oo
7;_ MT@;O):ﬁ
(0] L R

Note the constant gradient at x = 0 since gy (0) = gp.

(b) The heat flux distribution, q')’((x, t), is determined from knowledge of the temperature gradients,
evident from Part (a), and Fourier’s law.

93(,1-)A E ?o 1’: 9”x (o'm) 9’(’(,’.) A 9x1{0"’: ?o”
o ' 76,0 oV L)
0 — .

(c) On gy (x, t) —1t coordinates, the heat fluxes at the boundaries are shown above.

(d) Perform a surface energy balance at x = L and an energy balance on the wall:

Geond = Acony = N[T(L,©) ~Too| (1), Agona =0 (2

For the wall, under steady-state conditions, Fourier’slaw gives 1 E
7 :_1/"
o 9T _ T(01°°) - T(L, °°) gcond I 9conv
Qo = —k——=k : (3) lL
dx L x=

Combine Egs. (1), (2), (3) to find:

T(0,00) =T, 4 %
1/h+L/k
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