PROBLEM 3.4

KNOWN: Curing of atransparent film by radiant heating with substrate and film surface subjected to
known thermal conditions.

FIND: (a) Thermal circuit for this situation, (b) Radiant heat flux, qg (W/mP), to maintain bond at
curing temperature, T,, (¢) Compute and plot g asafunction of the film thicknessfor 0 < L¢ < 1 mm,
and (d) If thefilmis not transparent, determine g, required to achieve bonding; plot results as afunction
of L.
SCHEMATIC:

— T.=20°C

—_—>

— h=50W/m2.K |%

L;=0.25 mm Al >_F_i|[n _______ _
- Bond, T, =60 °C

k= 0.025 W/m K

S T, =30°C

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat flow, (3) All the radiant heat
flux qg isabsorbed at the bond, (4) Negligible contact resistance.

LS= 1.0 mm

ANALYSIS: (a) Thethermal circuit 9o

for this situation is shown at the right. R, R R%

Note that terms are written on a per unit 0y +— eAAA e AN AN —> Q)
areabasis. T Ts To Ty

(b) Using this circuit and performing an energy balance on the film-substrate interface,

= + = +
%o = *d2 % Ry, +Rf R

where the thermal resistances are
R, =1/h =1/50W/m? K =0.020m? K,/ W
R} =L¢ /k¢ =0.00025m/0.025W/m (K =0.010m? (K /W
RS = Lg/Kg =0.001m/0.05W/m K =0.020m? [K/W
- (60-20)"C .\ (60-30)°C
° [0020+0.010] m2 K/W 0.020m? (K/W

(c) For the transparent film, the radiant flux required to achieve bonding as a function of film thickness L+
is shown in the plot below.

= (133 +1500) W/ m? =2833W/m? <

(d) If the film is opaque (not transparent), the thermal circuit is shown below. Inorder tofind qg, itis
necessary to write two energy balances, one around the T node and the second about the T, hode.
qoll
RHCV R"f RIIS
q2H .4AA .AA“ 1‘ﬁ q1"

'The results of the analyses are plotted below.
Continued...



PROBLEM 3.4 (Cont.)
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COMMENTS: (1) When the filmistransparent, the radiant flux is absorbed on the bond. The flux
required decreases with increasing film thickness. Physically, how do you explain this? Why isthe
relationship not linear?

(2) When thefilm is opaque, the radiant flux is absorbed on the surface, and the flux required increases
with increasing thickness of the film. Physically, how do you explain this? Why is the relationship
linear?

(3) The IHT Thermal Resistance Network Model was used to create amodel of the film-substrate system
and generate the above plot. The Workspace is shown below.

/I Thermal Resistance Network

Model: \ RZ1 \\ R32 \\ R4 \

/I The Network: . ’v\./'\r . ’\f\,f\r ™ ‘V\,f\;

/I Heat rates into node j,qij, through thermal resistance Rij
q21 = (T2-T1)/R21
g32=(T3-T2)/R32
q43 = (T4 - T3) / R43

/I Nodal energy balances
gl+9g21=0
g2-921+9g32=0
03-032+0g43=0
g4-0943=0

/* Assigned variables list: deselect the gi, Rij and Ti which are unknowns; set gi = 0 for embedded nodal points
at which there is no external source of heat. */

T1 =Tinf /I Ambient air temperature, C

/lql = /I Heat rate, W; film side

T2=Ts /I Film surface temperature, C

g2=0 /I Radiant flux, W/m”2; zero for part (a)
T3=To /I Bond temperature, C

g3=qo /I Radiant flux, W/m”2; part (a)

T4 = Tsub /I Substrate temperature, C

/g4 = /I Heat rate, W; substrate side

/l Thermal Resistances:

R21=1/(h*As) /I Convection resistance, K/IW
R32 = Lf/ (kf * As) /I Conduction resistance, K/W; film
R43 = Ls/ (ks * As) /I Conduction resistance, K/W; substrate
/I Other Assigned Variables:

Tinf = 20 /I Ambient air temperature, C

h =50 /I Convection coefficient, W/m”2.K

Lf = 0.00025 /I Thickness, m; film

kf = 0.025 /I Thermal conductivity, W/m.K; film

To =60 /I Cure temperature, C

Ls = 0.001 /I Thickness, m; substrate

ks =0.05 /I Thermal conductivity, W/m.K; substrate
Tsub =30 /I Substrate temperature, C

As=1 /I Cross-sectional area, m”2; unit area



PROBLEM 3.6
KNOWN: Design and operating conditions of a heat flux gage.

FIND: (a) Convection coefficient for water flow (Ts = 27°C) and error associated with neglecting
conduction in the insulation, (b) Convection coefficient for air flow (Ts = 125°C) and error associated
with neglecting conduction and radiation, (c) Effect of convection coefficient on error associated with
neglecting conduction for T = 27°C.

SCHEMATIC:
Air or
Water f — ~  q'ony  9vad Foil (Pl = 2000 W/m?2)
h,T,.= 25 °C . 1 ______ g Tg=27 OC (Water)
T5=125 OC (Air)
"""""" : Surroundings
L=10mm fpegsppugegey, 00 ; Insulation Tsur=25°C

(k = 0.040 W/m-K)

Tp=25°C
ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction, (3) Constant k.

ANALYSIS: (@) The electric power dissipation is balanced by convection to the water and conduction
through the insulation. An energy balance applied to a control surface about the foil therefore yields

Paec = dconv *dcond = h(Ts _Too) +K (Ts _Tb)/L

Hence,
- Phec K (Ts=Tp)/L _ 2000W/m? -0.04W/m K (2K )/0.01m
- To—Too - 2K
_ 2
_ (2000 28|Zw/m - so6w1/m? K <

If conduction is neglected, a value of h = 1000 W/m?[K is obtained, with an attendant error of (1000 -
996)/996 = 0.40%

(b) Inair, energy may also be transferred from the foil surface by radiation, and the energy balance
yields
4 4
Piec = deonv *+drad +8cond =h(Ts ~Tw) +€0 (Ts _Tsur) +k (Ts _Tb)/l-
Hence,
P' _ 4 _ 4 _ _
h=

2000W/m? - 0.15x5.67 x10 8w/ m? K4 (3984 —2984)K4 ~0.04W/m [ (100K)/0.01m

100K

(2000- 146 - 400) W/ m?

=145W/m? K <
100K

Continued...



PROBLEM 3.6 (Cont.)

If conduction, radiation, or conduction and radiation are neglected, the corresponding values of h and the
percentage errors are 18.5 W/m’K (27.6%), 16 W/m?K (10.3%), and 20 W/m’K (37.9%).

(c) For afixed value of Ts= 27°C, the conduction loss remains at Qpong = 8 W/, which isalso the

fixed difference between Pyec and qgony - Although this differenceis not clearly shown in the plot for
10 < h < 1000 W/m’[K,, it is revealed in the subplot for 10 < 100 W/m’[K.
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Errors associated with neglecting conduction decrease with increasing h from values which are
significant for small h (h < 100 W/m’[K) to values which are negligible for large h.

COMMENTS: Inliquids (large h), it is an excellent approximation to neglect conduction and assume
that all of the dissipated power istransferred to the fluid.



PROBLEM 3.7

KNOWN: A layer of fatty tissue with fixed inside temperature can experience different
outside convection conditions.

FIND: (a) Ratio of heat loss for different convection conditions, (b) Outer surface
temperature for different convection conditions, and (c) Temperature of still air which
achieves same cooling as moving air (wind chill effect).

SCHEMATIC:

[L=0003m"|

To.=36C

h-25Wle- C
Fatty tissue TTT A=Z5W;;,_.oéor

ASSUMPTIONS: (1) One-dimensiona conduction through a plane wall, (2) Steady-state
conditions, (3) Homogeneous medium with constant properties, (4) No internal heat
generation (metabolic effects are negligible), (5) Negligible radiation effects.

PROPERTIES: Table A-3, Tissue, fat layer: k =0.2 W/mIK.
ANALYSIS: Thetherma circuit for this situation is

5,1 5e Joo

—>
LKA 1hA ?
Hence, the heat rate is

Riot ~ L/KA+1/hA°

Therefore,

O, 10
Jealm :E; ha/vindy.
Owindy G-, 10

k hbeam

Applying a surface energy balance to the outer surface, it aso follows that

dcond = deonv-

Continued .....



PROBLEM 3.7 (Cont.)
Hence,

To determine the wind chill effect, we must determine the heat |oss for the windy day and use
it to evaluate the hypothetical ambient air temperature, T.,, which would provide the same

heat |oss on a calm day, Hence,

' _ Tsl‘T _ Tsl ~Teo
- [L , 10 oL, O
ha/\/lndy Ek IA/Ecalm

From these relations, we can now find the results sought:

0.003 m + 1
deam _ 02W/mK g5 W/m2 K _ 0.015+0.0154

a, =
@ dwingy ~ 0003m 1 0.015+0.04
0.2W/mIK 25 W/m2 K
Gedm - 553 <
Awindy
_15°C+ 0.2 WimK 36°C
(25 W/m? [IK)(0.00S m) -
0 Ts2E,, = . S VimK =221°C
(25 Wim? ) (0.003 m)
scs 02WMK o
(65 wim? K ) (0.003m) g
T2 Eindy = 02 WimTK =108c
(65 W/m? ) (0.003m)
| g o . (0.003/0.2+1/25) .
() T =36"C-(36+15) C =-56.3°C <

(0.003/0.2+1/65)

COMMENTS: Thewind chill effect is equivalent to adecrease of Tg» by 11.3°C and
increase in the heat loss by a factor of (0.553)-1 =181



PROBLEM 3.27

KNOWN: Operating conditions for a board mounted chip.

FIND: (a) Equivalent thermal circuit, (b) Chip temperature, () Maximum allowable heat dissipation for
dielectric liquid (h, = 1000 W/m’[K) and air (h, = 100 W/m’K). Effect of changesin circuit board
temperature and contact resistance.

SCHEMATIC:

L hy
q”o\ T Tw=20°C

_ x = .
Lb-o.oo5_n£f \9 . \}\ .

Ky~ —> hj= 40 Wim2K
> T_;=20°C

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible chip
thermal resistance, (4) Negligible radiation, (5) Constant properties.

PROPERTIES: Table A-3, Aluminum oxide (polycrystalline, 358 K): k, = 32.4 W/mIK.
ANALYSIS: (a)

oo, | c 0,0

q" 1/h; (LIK), R"tC T "1”70 q",
qc
(b) Applying conservation of energy to a control surface about the chip (Ein - Eout = O) :
dc —di —do =0
v _ Tc ‘Too,i Te ‘Too,o
Oc = P
]/hi "'(L/k)b +Ric  Vho

With g7 = 3x10* W/m? , h, = 1000 W/m?K, ky = L W/mIK and R} ; =10~*m? (K/W

T.—-20°C . Te-20°C

3x104W/m? = s
(J/ 4o+o.005/1+1o‘4)m2 K/W  (1/1000)m? (K /W

3x10% W/ m? = (33.2T, ~664 +1000T, ~20,000)W/m? K
1003T, = 50,664

T.=49°C. <
(c) For T.=85°C and h, = 1000 W/m’[K, the foregoing energy balance yields

q. = 67,160 W/ m? <
with gg = 65,000 W/n? and ¢f = 2160 W/m’. Replacing the dielectric with air (h, = 100 W/n’[K), the
following results are obtained for different combinations of k, and Rt ¢.

Continued...



PROBLEM 3.27 (Cont.)

Ky (W/mIK) Ric g (W) do (W/m?) g (W/m?)
(MK /W)
<
1 10* 2159 6500 8659
324 10* 2574 6500 9074
1 10° 2166 6500 8666
324 10° 2583 6500 9083

COMMENTS: 1. For the conditions of part (b), the total internal resistance is 0.0301 m?K/W, while
the outer resistance is 0.001 m*K/W. Hence

g _ (Te~Tw,0)/Ro _0.0301 4

o (Te-Tewj)/R; 0001

and only approximately 3% of the heat is dissipated through the board.

2. With h, = 100 W/m?[K, the outer resistance increases to 0.01 m’IK/W, in which case dy /i = R; /R,

=0.0302/0.01 = 3.1 and now amost 25% of the heat is dissipated through the board. Hence, although
measures to reduce R; would have a negligible effect on g, for the liquid coolant, some improvement

may be gained for air-cooled conditions. As shown in the table of part (b), use of an aluminum oxide
board increase ¢f by 19% (from 2159 to 2574 W/m?) by reducing R; from 0.0301 to 0.0253 m*K/W.

Because the initial contact resistance (R; ¢ =10"*m? (K/W ) isaready much lessthan R; , any reduction

in its value would have a negligible effect on q; . The largest gain would be realized by increasing h;,
since the inside convection resistance makes the dominant contribution to the total internal resistance.



PROBLEM 3.36

KNOWN: Temperature and volume of hot water heater. Nature of heater insulating material. Ambient
air temperature and convection coefficient. Unit cost of electric power.

FIND: Heater dimensions and insulation thickness for which annual cost of heat lossis less than $50.
SCHEMATIC:

D
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ASSUMPTIONS: (1) One-dimensional, steady-state conduction through side and end walls, (2)
Conduction resistance dominated by insulation, (3) Inner surface temperature is approximately that of the
water (Ts; = 55°C), (4) Constant properties, (5) Negligible radiation.

PROPERTIES: Table A.3, Urethane Foam (T = 300 K): k =0.026 W/mIK.
ANALYSIS: To minimize heat loss, tank dimensions which minimize the total surface area, As;, should
be selected. With L = 40/mD? Ag ¢ = DL +2( rD2/4) =40/D+ 1D2/2, and the tank diameter for
which Ag; is an extremum is determined from the requirement

dAg/dD = ~40/ D% D= 0
It follows that

D = (ay/m)*3 and L= (@ /n)H3

With d2Asyt /dD2 = 8D/D3+ > 0, the foregoing conditions yield the desired minimum in As;.
Hence, for 0 = 100 gal x 0.00379 m*gal = 0.379 m’,

Dop = Lop =0.784m <
Thetotal heat loss through the side and end wallsis
4= In(rz/;zssl_Tw 1 52(TS,1_T00)1
+

+
2nkLop 2ol gp k(ITDgp/4) h(anp/4)

We begin by estimating the heat |oss associated with a 25 mm thick layer of insulation. Withr; = Dgy/2 =
0.392mandr,=r; + 0=0.417 m, it follows that
Continued...



PROBLEM 3.36 (Cont.)

(55-20)°C
In(0.417/0.392) . 1
27(0.026W/m(K)0.784m (2 w/m? K ) 2r1(0.417m)0.784m

q:

2(55-20)°C
0.025m 1

(0.026W/mK ) 71/4(0.784m)> ' (2W/ m? EK)n/4(O.784 m)?

+

+

= =(482+231)W =71.3W
q (0.483+0.243)K/W  (1.992+1.036)K/W ( )

The annual energy lossistherefore
Qannual = 71.3W (365days) (24 h/day) (10‘3 kW/W) =625kWh

With a unit electric power cost of $0.08/kWh, the annual cost of the heat lossis
C = ($0.08/kWh)625 kWh = $50.00

Hence, an insulation thickness of
0=25mm <
will satisfy the prescribed cost requirement.

COMMENTS: Cylindrical containers of aspect ratio L/D = 1 are seldom used because of floor space
constraints. Choosing L/D =2, 0 = mD%2 and D = (20/m)** = 0.623 m. Hence, L =1.245m, 1, =
0.312mandr, = 0.337 m. It followsthat q=76.1 W and C = $53.37. The 6.7% increase in the annual
cost of the heat lossis small, providing little justification for using the optimal heater dimensions.



PROBLEM 3.38

KNOWN: Inner and outer radii of atube wall which is heated electrically at its outer surface. Inner and
outer wall temperatures. Temperature of fluid adjoining outer wall.

FIND: Effect of wall thermal conductivity, thermal contact resistance, and convection coefficient on
total heater power and heat rates to outer fluid and inner surface.

SCHEMATIC:

T5=25°C7 _ Electrical heater, q
)
fo=75mm - T T 10_éhé1000W/m K
r:=25mm i~ Too—-1OC

1< k<200 W/meK 0£R't £0.1 m-K/W

9% Un(rolr) R'te A(12nrgh) 9o
27Tk q’

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties,
(4) Negligible temperature drop across heater, (5) Negligible radiation.

ANALYSIS: Applying an energy balance to a control surface about the heater,
q =dj +do
= +
in(io/%), . (2mgh)
t,c
21k '

Selecting nominal values of k = 10 W/miK, R't,c =0.01 mEK/W and h = 100 W/m’K,, the following
parametric variations are obtained

3500
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I ]
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500 500 \FL —
B |
/ [ a1 4
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0 50 100 150 200 0 0.02 0.04 0.06 0.08 0.1
Thermal conductivity, k(W/m.K) Contact resistance, Rtc(m.K/W)
—8— qi G
s g q
—0— qo —5—qo

Continued...



PROBLEM 3.38 (Cont.)
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For aprescribed value of h, g isfixed, while g, and hence ', increase and decrease, respectively,
withincreasingk and Rt ¢. These trends are attributable to the effects of k and Rt ¢ on the total
(conduction plus contact) resistance separating the heater from the inner surface. For fixed k and R't,c’
q; isfixed, while g, and hence q', increase with increasing h due to a reduction in the convection
resistance.

COMMENTS: For the prescribed nominal values of k, Rt ¢ and h, the electric power requirement is

g =2377 W/m. To maintain the prescribed heater temperature, ' would increase with any changes
which reduce the conduction, contact and/or convection resistances.



PROBLEM 3.41

KNOWN: Thin electrical heater fitted between two concentric cylinders, the outer surface of which
experiences convection.

FIND: (a) Electrical power required to maintain outer surface at a specified temperature, (b)
Temperature at the center

SCHEMATIC:

A, kA:O'IS;,Y\?, ry=20mm
Thin electrical heater ry=40mm

r=ry) Tw=-15°C
I B'k8=1'5ﬂ7wk /J/)/] h =50 Wfm2-K

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Steady-state conditions, (3) Heater
element has negligible thickness, (4) Negligible contact resistance between cylinders and heater, (5)
Constant properties, (6) No generation.

ANALYSIS: (a) Perform an energy balance on the
composite system to determine the power required
to maintain T(rp) = Tg=5°C.

=in — Eout +I'Egen =Eg
+Jdlec ~Yconv =0.

Using Newton's law of cooling,
delec = Yeonv =h 27T 1o (Ts _TOO)

, w 0~
Jelec =50 o x277(0.040m) B —(-15) C=251 W/m. <

(b) From acontrol volume about Cylinder A, we recognize that the cylinder must be isothermal, that
is,

T(0) =T(rq).
Represent Cylinder B by athermal circuit:
T(f‘.z) 7—5
O—WAMMAMN—O —9,—> —<> qu
Rg RB
For the cylinder, from Eq. 3.28,
Re =Inrp/n/2mkyg
giving
o w In 40/20 °
T(n)=Ts+qRg =5 C+253.1— =235C
(1) =Ts +dRs m 271x1.5 W/m K
Hence, T(0) = T(rq) = 23.5°C. <

Note that ka has no influence on the temperature T(0).



PROBLEM 3.58

KNOWN: Dimensions of spherical, stainless steel liquid oxygen (LOX) storage container. Boiling
point and latent heat of fusion of LOX. Environmental temperature.

FIND: Thermal isolation system which maintains boil-off below 1 kg/day.

SCHEMATIC:
rq =0.035m
rp =0.040 m Lox, pr =90 K, hfg =213 kd/kg
I3
Steel container
Amb_ient
air Insulation

T..=240 K

ASSUMPTIONS: (1) One-dimensional, steady-state conditions, (2) Negligible thermal resistances
associated with internal and external convection, conduction in the container wall, and contact between
wall and insulation, (3) Negligible radiation at exterior surface, (4) Constant insulation thermal
conductivity.

PROPERTIES: Table A.1, 304 Stainless steel (T =100 K): ks=9.2 W/mIK; Table A.3, Reflective,
aluminum foil-glass paper insulation (T = 150 K): k; = 0.000017 W/mIK.

ANALYSIS: The heat gain associated with aloss of 1 kg/day is

1kg/day

. 5
=gy =—— 29 (5 13x10° J/k ):2.47w
9 86,4005/day( /ko

q

With an overall temperature difference of (Too - pr) = 150 K, the corresponding total thermal

resistanceis
AT 150K
Riot =— = =60.7K/W
q 247TW

Since the conduction resistance of the steel wall is

1 01 10 1 0 1 1 0
4nkSEE rz% 4n(9.2W/m[lK)Ep.35m 0.40mH

— -3

itisclear that exclusive reliance must be placed on the insulation and that a special insulation of very low
thermal conductivity should be selected. The best choiceis ahighly reflective foil/glass matted
insulation which was devel oped for cryogenic applications. It follows that

R | =60.7K/W =—— L -1a- : -
t,cond,i ' 4n1<iE}; 30 4n(0.000017W/m[|K)E0.40m r}%

which yields rz = 0.4021 m. The minimum insulation thicknessistherefore d = (r3- r;) = 2.1 mm.

COMMENTS: The heat loss could be reduced well below the maximum allowable by adding more
insulation. Also, in view of weight restrictions associated with launching space vehicles, consideration
should be given to fabricating the LOX container from alighter material.



PROBLEM 3.73
KNOWN: Composite wall with outer surfaces exposed to convection process.

FIND: (a) Volumetric heat generation and thermal conductivity for material B required for special
conditions, (b) Plot of temperature distribution, (c) T, and T,, aswell as temperature distributions
corresponding to loss of coolant condition where h = 0 on surface A.

SCHEMATIC: . .
T1=2610C 2=2117°C Lr=30mm
Lg =30 mm
Toh 111 Tt =250 Lc=20mm
h=1000 W/m2:K  ka = 25 W/mIK
ke =50 W/mK

—Lp —}«—2Lg —|—L |
I B~ c—
ASSUMPTIONS: (1) Steady-state, one-dimensional heat transfer, (2) Negligible contact resistance at

interfaces, (3) Uniform generation in B; zeroin A and C.
ANALYSIS: (a) From an energy balance on wall B,

Ein ~Eout *Eg =Eg«

—qi —q'2 +20Lg =0

dg = (o1 +d2)/2Lg .
To determine the heat fluxes, q; and g3, construct thermal circuits for A and C:

T..=25°C T4 =261°C To=211°C Tn=25°C
— — o~/ VW WWANO
omo % 72 Re=Lo/ks R'cony=1h

a1 = (T2~ Teo )/(V +L A /KA ) a2 = (T2 - T )/(Le/kc +1/h)

= (261- 25) C/D 1 , 0osom L 0, = (211-25) C/ 0.020m 1O
Elooow/mztk 25W/mﬂ<ﬁ %OW/mEK 1000w/ m? [KE

4] = 236°C/(0.001+0.0012) m? (K /W 4} =186° C/(0.0004 +0.001) m? (K /W

o =107, 273W/ m? o = 132,857 W,/ m?

Using the valuesfor gj and g5 in Eq. (1), find
dg = (106, 818+132,143W/ m2) / 2x0.030m =400 x10° W/m? <
To determine kg, use the general form of the temperature and heat flux distributionsin wall B,

4 2 . 0 q O
T(x)=-——x" +C;x +C oy (X) =k X +Cy 1,2
2 X B kg E

2kg

there are 3 unknowns, C;, C, and kg, which can be evaluated using three conditions,
Continued...



PROBLEM 3.73 (Cont.)

T(-Lg)=T = _;TBHB)Z —CiLg +Cy where T, = 261°C 3
B
T(+Lg)=Tz2 = _:TB(JfLB)Z +Cilg +C) where T, = 211°C (4
B
ay (-Lg) = = kg - (1g) +c:1D where ¢y = 107,273 W/m? (5)
H kg d

Using IHT to solve Egs. (3), (4) and (5) simultaneously with gg = 4.00 x 10° W/m®, find
kg =15.3W/m K <

(b) Following the method of analysisin the IHT Example 3.6, User-Defined Functions, the temperature
distribution is shown in the plot below. The important features are (1) Distribution is quadratic in B, but
non-symmetrical; linear in A and C; (2) Because thermal conductivities of the materials are different,
discontinuities exist at each interface; (3) By comparison of gradientsat X = -Lg and +Lg, find g5 > q; .

(c) Using the same method of analysis asfor Part (c), the temperature distribution is shown in the plot
below when h = 0 on the surface of A. Since the left boundary is adiabatic, material A will be isothermal
aT,. Find

T, =835°C T, = 360°C <

Loss of coolant on surface A
400

800

300

600

Temperature, T (C)
[
o
o
/
v
Temperature, T (C)

400

100

200
-60 -40 -20 0 20 40 -60 -40 -20 0

20 40

Wall position, x-coordinate (mm) Wall position, x-coordinate (mm)
—>%— T_xA, kA =25 W/m.K

—+— T_x, kB = 15 W/m.K, qdotB = 4.00e6 W/m"3
—6— T_x, kC = 50 W/m.K

T_xA, kA = 25 W/m.K; adiabatic surface
T_x, kB = 15 W/m.K, qdotB = 4.00e6 W/m"3
T_x, kC = 50 W/m.K

1t



PROBLEM 3.79
KNOWN: Wall of thermal conductivity k and thickness L with uniform generation q; strip heater
with uniform heat flux gg; prescribed inside and outside air conditions (hj, Teo i, ho, Teo,0)-

FIND: (a) Sketch temperature distribution in wall if none of the heat generated within the wall is lost
to the outside air, (b) Temperatures at the wall boundaries T(0) and T(L) for the prescribed condition,
(c) Valueof qg required to maintain this condition, (d) Temperature of the outer surface, T(L), if

¢=0 but g, corresponds to the value calculated in (c).

SCHEMATIC:
@ 2 Wall, 9=1000W/m?,
Strip heater, 9: a k=4W[m-K
Outside chamber s Inside chamber
5 Toi=50°C

herd |

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Uniform
volumetric generation, (4) Constant properties.

ANALYSIS: (@) If none of the heat generated within the wall is
lost to the outside of the chamber, the gradient at x = 0 must be zero.
Since ( isuniform, the temperature distribution is parabolic, with

Lx £:200mm T T Th,-zow/mZK

T(L) > Tooi-

(b) To find temperatures at the boundaries of wall, begin with the
general solution to the appropriate form of the heat equation (Eq.3.40).

T(X) -4 +Cx+Cop 1)
2k
From the first boundary condition,
dT _
d_x|x=0 = - ¢ =0 )

Two approaches are possible using different forms for the second boundary condition.

Approach No. 1: With boundary condition — T(0)=T

T(x)——%x +Ty (3

To find T1, perform an overall energy balance on the wall
Ein ~Eout tEg =0

(L) ~TeojB+6L=0  T(L)=Tp =T, +% @)

Continued .....



PROBLEM 3.79 (Cont.)
and fromEq. (3) withx =L and T(L) =Ty,

. . . 2
q,2 q,2 aL .qL
T(L)=——L+Ty o Ty =To +—L° =Ty j +— +— 5,6
(L)=-5 L+ 1=T2 +o wi T o (5.6)
Substituting numerical valuesinto Egs. (4) and (6), find
T, =50°C+1000 W/ mS x0.200 m/20 W/m? [K=50°C+10°C=60°C <
Ty = 60° C+1000 W/m® x(0.200 m)? / 2 x4 W/m [K=65°C. <

Approach No. 2: Using the boundary condition
K dT

ot TNF (L) -To i

yields the following temperature distribution which can be evaluated at x = O,L for the required
temperatures,

. "
T(x)= —%(x2 —L2) +qT T

7a.—:, o 770) =7;
(e aVAVaVaVa e/

(c) Thevaueof gy when T(0) =Tq =65°C =
0 1/, 9%,

follows from the circuit
, Ihi—T
do = =0
1/hg
g =5 W/m? [K (65-25)° C=200 W/m?. <

(d) With g=0, the situation is represented
by the thermal circuit shown. Hence,

q'o = da +qb o

7;.0 9°¢ 7;0,1'
o = T1-Teo +T1—Too,i 93 I, % Lk 1hi 9,
o=

1/hg L/k+1/h;
which yields

Ty =55"C. <



PROBLEM 3.84

KNOWN: Cylindrical shell with uniform volumetric generation isinsulated at inner surface
and exposed to convection on the outer surface.

FIND: (a) Temperature distribution in the shell intermsof r;, ry, ¢, h, T, andk, (b)
Expression for the heat rate per unit length at the outer radius, g (r ).

SCHEMATIC:

- #_ /ri=0,insu/afed boundary

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radia (cylindrical)
conduction in shell, (3) Uniform generation, (4) Constant properties.

ANALYSIS: (a) The general form of the temperature distribution and boundary conditions
are

T(r)= —% 2 +Cq Inr+Cy

dT O q 1 q 2
ar=r —n =0=—1, +C —+O C =—r.
! ar k't 17
] dT O
ar=rq: —kd— =hJ () -Twg  surfaceenergy balance
r

Jq, 0 210 0 qg 2 09 20
KF—ry + I =h——r5 + r“Ainr, +C
32k ° Bk T H a4k © THk i H e 2T H

o .20 2 O
Cp=- qr0 E,iD2D+ roml D el 4T,

2h D To0 ] 2kD2

[
Hence,
2
T(r)'%(rg rz) qz;<| Erz,g gh Ei%r% §+T°°' <
(b) From an overall energy balance on the shell,D -
ar (ro) = E’g :('m(rg —riz). <
Alternatively, the heat rate may be found using Fourier’s law and the temperature distribution,

0

: 0
' dr O q 1 .
qr (r)=—k(2m ro)aa = -27kr, D—z_qkro +_2|'( = +0 +00 = r(rg _riz)



PROBLEM 3.101

KNOWN: Dimensions of a plate insulated on its bottom and thermally joined to heat sinks at its
ends. Net heat flux at top surface.

FIND: (a) Differential equation which determines temperature distribution in plate, (b) Temperature
distribution and heat loss to heat sinks.

SCHEMATIC:
=X/ o  W--width 199
9 — T =
Tl X% |7 o> ia.?

AT ———)

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conductionin x (W,L>>t), (3) Constant
properties, (4) Uniform surface heat flux, (5) Adiabatic bottom, (6) Negligible contact resistance.

ANALYSIS: (a) Applying conservation of energy to the differential control volume, gy + dqg
= Ox +dx, Where Oxdx = O + (dox/dx) dx and dg=qg, (W [dx). Hence, (day /dx)-qp W=0.
From Fourier'slaw, gy =-k(t W) dT/dx. Hence, the differential equation for the
temperature distribution is

2 P
dx axH a2  kt

(b) Integrating twice, the general solutioniis,

T(x)=- ;gt x2 +Cp X +Cp

and appropriate boundary conditions are T(0) = T, and T(L) = To. Hence, Tq = Cop, and

To = % 2 +C1L+Cy and C =Gl

2kt 2kt
Hence, the temperature distribution is
oL

T(x)= _qZOT(XZ —Lx) +To. <
Applying Fourier'slaw at x =0,and at x = L,

q(0) = -k (Wt) dT/ck)y—g = KWt - - E % 55 %WL

_ _ 0 Q'oD g _ . GoWL
L) =-k(Wt)dT/dx)y= ——kWt = +

(L) = K (WOAT/ e Sakg =%

Hence the heat loss from the platesis g=2(gpWL/2) = g WL. <

COMMENTS: (1) Note signs associated with gq(0) and g(L). (2) Note symmetry about X =
L/2. Alternative boundary conditions are T(0) = T and dT/dX)y= j2=0.



PROBLEM 3.111

KNOWN: Rod protruding normally from a furnace wall covered with insulation of thickness Lng
with the length L, exposed to convection with ambient air.

FIND: (@) Anexpression for the exposed surface temperature T, as afunction of the prescribed
thermal and geometrical parameters. (b) Will arod of L, = 100 mm meet the specified operating
limit, To < 100°C? If not, what design parameters would you change?

SCHEMATIC:
Insulation

T.=250C
h=15W/m2 -K

O 2 ]

Furnace wall, Y
T,22000C [~

\Toi 100 °C Rod, D=25mm
k=60 W/m-K

e g T

Lins =200 mm —i k—Lg l

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in rod, (3) Negligible
thermal contact resistance between the rod and hot furnace wall, (4) Insulated section of rod, Lips,
experiences no lateral heat losses, (5) Convection coefficient uniform over the exposed portion of the
rod, Lo, (6) Adiabatic tip condition for the rod and (7) Negligible radiation exchange between rod and
its surroundings.

ANALYSIS: (@) Therod can be modeled as athermal network comprised of two resistancesin
series. the portion of the rod, Lins, covered by insulation, Ry, and the portion of the rod, L,
experiencing convection, and behaving as a fin with an adiabatic tip condition, Ry, For the insulated
section:

Rins = Lins/KAc @) TS s
R; Ry
For the fin, Table 3.4, Case B, Eq. 3.76, 9 Ins fin
1
Rfin =6p/df = @)
(hPkA . Y 2 tanh (mL )
m = (hP/kA¢ )Y 2 A, =nD?/4 P=7mD (34:5)
From the thermal network, by inspection,
Ty -T Ty - T. :
0] 0o _ \W 00 TO =Too + Rfln (TW _Too) (6) <
Rfin  Rins *Rfin Rins *+ Rfin
(b) Substituting numerical valuesinto Egs. (1) - (6) with L, =200 mm,
. 2 0 o
To =25 c+&(200—25) C =109°C <
6.790 + 6.298
2 -
Rins = 0200m = 6.790K /W A =m(0.025m)2 /4 =4.900 104 m?

60W/ m K x4.909x10 % m

5/ p\l2
Rfin = (o.o347w / K ) tanh (6.324x0.200) =6.298K /W

(hPKA ) = (15W/m2 (K x77(0.025m) x60W/m [K x4.909 ><10_4m2) =00347W?/ K2

Continued...



PROBLEM 3.111 (Cont.)

1/2
m = (hP/ka )Y 2 = (15W/m2 K x(0.025m)/ 60W/m (K x4.909 ><10_4m2)

=6.324m "+
Consider the following design changes aimed at reducing T, < 100°C. (1) Increasing length of thefin
portions: with L, =200 mm, the fin already behaves as an infinitely long fin. Hence, increasing L,
will not result in reducing T,. (2) Decreasing the thermal conductivity: backsolving the above
equation set with To = 100°C, find the required thermal conductivity isk = 14 W/mIK. Hence, we
could select a stainless steel aloy; see Table A.1. (3) Increasing the insulation thickness: find that
for T, = 100°C, the required insulation thickness would be Lins = 211 mm. This design solution might
be physically and economically unattractive. (4) A very practical solution would be to introduce
thermal contact resistance between the rod base and the furnace wall by “tack welding” (rather than a
continuous bead around the rod circumference) the rod in two or three places. (5) A less practical
solution would be to increase the convection coefficient, since to do so, would require an air handling
unit.

COMMENTS: (1) Would replacing the rod by a thick-walled tube provide a practical solution?

(2) The IHT Thermal Resistance Network Model and the Thermal Resistance Tool for afin with an
adiabatic tip were used to create amodel of therod. The Workspace is shown below.

/l Thermal Resistance Network Model:
/I The Network:

q1 =) q=2
Y R21 "y REZ "y
1 vy 2 iy k]

/I Heat rates into node j,qij, through thermal resistance Rij
021 =(T2-T1)/R21
032 =(T3-T2)/R32

/I Nodal energy balances
gl+9g21=0
02-021+932=0
g3-932=0

/* Assigned variables list: deselect the qi, Rij and Ti which are unknowns; set gi = 0 for embedded nodal
points at which there is no external source of heat. */

T1l=Tw /I Furnace wall temperature, C

/lql = /I Heat rate, W

T2=To /I To, beginning of rod exposed length

g2=0 /I Heat rate, W; node 2; no external heat source
T3 = Tinf /I Ambient air temperature, C

/g3 = /I Heat rate, W

/l Thermal Resistances:

/I Rod - conduction resistance

R21 = Lins/ (k * Ac) /I Conduction resistance, K/IW
Ac=pi*D"2/4 /I Cross sectional area of rod, m"2

/l Thermal Resistance Tools - Fin with Adiabatic Tip:

R32 = Rfin /I Resistance of fin, KIW

/* Thermal resistance of a fin of uniform cross sectional area Ac, perimeter P, length L, and thermal
conductivity k with an adiabatic tip condition experiencing convection with a fluid at Tinf and coefficient h, */

Rfin = 1/ (tanh (m*Lo) * (h* P *k * Ac ) ~ (1/2) ) /I Case B, Table 3.4
m = sqrt(h*P / (k*Ac))

P=pi*D /I Perimeter, m

/I Other Assigned Variables:

Tw = 200 /I Furnace wall temperature, C

k =60 /I Rod thermal conductivity, W/m.K

Lins = 0.200 /I Insulated length, m

D =0.025 /I Rod diameter, m

h=15 /I Convection coefficient, W/m”2.K

Tinf = 25 /I Ambient air temperature,C

Lo =0.200 /I Exposed length, m



PROBLEM 3.116

KNOWN: Dimensions and thermal conductivity of a gas turbine blade. Temperature and convection
coefficient of gas stream. Temperature of blade base and maximum allowable blade temperature.

FIND: (a) Whether blade operating conditions are acceptable, (b) Heat transfer to blade coolant.
SCHEMATIC:

T..= 1200 °C //"/'
h =250 W/m2K

Turbine blade,
k=20 WimK, A, =6x104m?,
P=0.11m

/T, =300°C Disc

1 v3p

ASSUMPTIONS: (1) One-dimensional, steady-state conduction in blade, (2) Constant k, (3) Adiabatic
blade tip, (4) Negligible radiation.

ANALYSIS: Conditionsin the blade are determined by Case B of Table 3.4.
(a) With the maximum temperature existing at x = L, Eq. 3.75 yields
T(L)-Tew 1
Tp—Tew  CoshmL

1/2 _

2 —4 _2\l/2
m = (hPIKA() —(250W/m (K x0.11m/20W/m [K x6 x10""'m )

m=47.87m" and mL =47.87m" x 0.05m=2.39
From Table B.1, cosh mL = 5.51. Hence,

T(L)=1200°C +(300 -1200)° C/5.51 =1037°C <
and the operating conditions are acceptable.

1/2

(b) With M = (hPka, ) 2 @, :(2soW/m2 (K x0.11m x20W/m [K x6 >¢o‘4m2) (Jgoo°c) = 517W,
Eq. 3.76 and Table B.1 yield

gf =M tanhmL = -517W (0.983) = -508W

Hence, qp = —0f =508W <

COMMENTS: Radiation losses from the blade surface and convection from the tip will contribute to
reducing the blade temperatures.



PROBLEM 3.127

KNOWN: Positions of equal temperature on two long rods of the same diameter, but
different thermal conductivity, which are exposed to the same base temperature and ambient
air conditions.

FIND: Thermal conductivity of rod B, kg.
SCHEMATIC:

XA:O.15m Rod A) /(A=70W/777'K

? % {
reoc<q___Fnt (.
P f\L
xg=0.075m Rod B, kg

ASSUMPTIONS: (1) Steady-state conditions, (2) Rods are infinitely long fins of uniform
cross-sectional area, (3) Uniform heat transfer coefficient, (4) Constant properties.

ANALYSIS: Thetemperature distribution for the infinite fin has the form

/2
i = —T (X) Too = e—mx m= D hP Ell . (1,2)
O To-Tw FACD
For the two positions prescribed, x and xpg, it was observed that
Ta (XA):TB(XB) or QA (XA):QB(XB). 3

Since By, isidentical for both rods, Eq. (1) with the equality of Eqg. (3) requires that
MAXA =MpXp
Substituting for m from Eq. (2) gives

ow ¥% o hPD/ZX
0 XA=O—f8 X
AAcO OkeAd]

Recognizing that h, P and A areidentical for each rod and rearranging,

FD kA

kg = é’ﬂgxmwmm =17.5W/m K. <

COMMENTS: This approach has been used as a method for determining the thermal
conductivity. It hasthe attractive feature of not requiring power or temperature
measurements, assuming of course, areference material of known thermal conductivity is
available.



PROBLEM 3.58

KNOWN: Dimensions of spherical, stainless steel liquid oxygen (LOX) storage container. Boiling
point and latent heat of fusion of LOX. Environmental temperature.

FIND: Thermal isolation system which maintains boil-off below 1 kg/day.

SCHEMATIC:
rq =0.035m
rp =0.040 m Lox, pr =90 K, hfg =213 kd/kg
I3
Steel container
Amb_ient
air Insulation

T..=240 K

ASSUMPTIONS: (1) One-dimensional, steady-state conditions, (2) Negligible thermal resistances
associated with internal and external convection, conduction in the container wall, and contact between
wall and insulation, (3) Negligible radiation at exterior surface, (4) Constant insulation thermal
conductivity.

PROPERTIES: Table A.1, 304 Stainless steel (T =100 K): ks=9.2 W/mIK; Table A.3, Reflective,
aluminum foil-glass paper insulation (T = 150 K): k; = 0.000017 W/mIK.

ANALYSIS: The heat gain associated with aloss of 1 kg/day is

1kg/day

. 5
=gy =—— 29 (5 13x10° J/k ):2.47w
9 86,4005/day( /ko

q

With an overall temperature difference of (Too - pr) = 150 K, the corresponding total thermal

resistanceis
AT 150K
Riot =— = =60.7K/W
q 247TW

Since the conduction resistance of the steel wall is

1 01 10 1 0 1 1 0
4nkSEE rz% 4n(9.2W/m[lK)Ep.35m 0.40mH

— -3

itisclear that exclusive reliance must be placed on the insulation and that a special insulation of very low
thermal conductivity should be selected. The best choiceis ahighly reflective foil/glass matted
insulation which was devel oped for cryogenic applications. It follows that

R | =60.7K/W =—— L -1a- : -
t,cond,i ' 4n1<iE}; 30 4n(0.000017W/m[|K)E0.40m r}%

which yields rz = 0.4021 m. The minimum insulation thicknessistherefore d = (r3- r;) = 2.1 mm.

COMMENTS: The heat loss could be reduced well below the maximum allowable by adding more
insulation. Also, in view of weight restrictions associated with launching space vehicles, consideration
should be given to fabricating the LOX container from alighter material.



PROBLEM 3.73
KNOWN: Composite wall with outer surfaces exposed to convection process.

FIND: (a) Volumetric heat generation and thermal conductivity for material B required for special
conditions, (b) Plot of temperature distribution, (c) T, and T,, aswell as temperature distributions
corresponding to loss of coolant condition where h = 0 on surface A.

SCHEMATIC: . .
T1=2610C 2=2117°C Lr=30mm
Lg =30 mm
Toh 111 Tt =250 Lc=20mm
h=1000 W/m2:K  ka = 25 W/mIK
ke =50 W/mK

—Lp —}«—2Lg —|—L |
I B~ c—
ASSUMPTIONS: (1) Steady-state, one-dimensional heat transfer, (2) Negligible contact resistance at

interfaces, (3) Uniform generation in B; zeroin A and C.
ANALYSIS: (a) From an energy balance on wall B,

Ein ~Eout *Eg =Eg«

—qi —q'2 +20Lg =0

dg = (o1 +d2)/2Lg .
To determine the heat fluxes, q; and g3, construct thermal circuits for A and C:

T..=25°C T4 =261°C To=211°C Tn=25°C
— — o~/ VW WWANO
omo % 72 Re=Lo/ks R'cony=1h

a1 = (T2~ Teo )/(V +L A /KA ) a2 = (T2 - T )/(Le/kc +1/h)

= (261- 25) C/D 1 , 0osom L 0, = (211-25) C/ 0.020m 1O
Elooow/mztk 25W/mﬂ<ﬁ %OW/mEK 1000w/ m? [KE

4] = 236°C/(0.001+0.0012) m? (K /W 4} =186° C/(0.0004 +0.001) m? (K /W

o =107, 273W/ m? o = 132,857 W,/ m?

Using the valuesfor gj and g5 in Eq. (1), find
dg = (106, 818+132,143W/ m2) / 2x0.030m =400 x10° W/m? <
To determine kg, use the general form of the temperature and heat flux distributionsin wall B,

4 2 . 0 q O
T(x)=-——x" +C;x +C oy (X) =k X +Cy 1,2
2 X B kg E

2kg

there are 3 unknowns, C;, C, and kg, which can be evaluated using three conditions,
Continued...



PROBLEM 3.73 (Cont.)

T(-Lg)=T = _;TBHB)Z —CiLg +Cy where T, = 261°C 3
B
T(+Lg)=Tz2 = _:TB(JfLB)Z +Cilg +C) where T, = 211°C (4
B
ay (-Lg) = = kg - (1g) +c:1D where ¢y = 107,273 W/m? (5)
H kg d

Using IHT to solve Egs. (3), (4) and (5) simultaneously with gg = 4.00 x 10° W/m®, find
kg =15.3W/m K <

(b) Following the method of analysisin the IHT Example 3.6, User-Defined Functions, the temperature
distribution is shown in the plot below. The important features are (1) Distribution is quadratic in B, but
non-symmetrical; linear in A and C; (2) Because thermal conductivities of the materials are different,
discontinuities exist at each interface; (3) By comparison of gradientsat X = -Lg and +Lg, find g5 > q; .

(c) Using the same method of analysis asfor Part (c), the temperature distribution is shown in the plot
below when h = 0 on the surface of A. Since the left boundary is adiabatic, material A will be isothermal
aT,. Find

T, =835°C T, = 360°C <

Loss of coolant on surface A
400

800

300

600

Temperature, T (C)
[
o
o
/
v
Temperature, T (C)

400

100

200
-60 -40 -20 0 20 40 -60 -40 -20 0

20 40

Wall position, x-coordinate (mm) Wall position, x-coordinate (mm)
—>%— T_xA, kA =25 W/m.K

—+— T_x, kB = 15 W/m.K, qdotB = 4.00e6 W/m"3
—6— T_x, kC = 50 W/m.K

T_xA, kA = 25 W/m.K; adiabatic surface
T_x, kB = 15 W/m.K, qdotB = 4.00e6 W/m"3
T_x, kC = 50 W/m.K

1t



PROBLEM 3.79
KNOWN: Wall of thermal conductivity k and thickness L with uniform generation q; strip heater
with uniform heat flux gg; prescribed inside and outside air conditions (hj, Teo i, ho, Teo,0)-

FIND: (a) Sketch temperature distribution in wall if none of the heat generated within the wall is lost
to the outside air, (b) Temperatures at the wall boundaries T(0) and T(L) for the prescribed condition,
(c) Valueof qg required to maintain this condition, (d) Temperature of the outer surface, T(L), if

¢=0 but g, corresponds to the value calculated in (c).

SCHEMATIC:
@ 2 Wall, 9=1000W/m?,
Strip heater, 9: a k=4W[m-K
Outside chamber s Inside chamber
5 Toi=50°C

herd |

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Uniform
volumetric generation, (4) Constant properties.

ANALYSIS: (@) If none of the heat generated within the wall is
lost to the outside of the chamber, the gradient at x = 0 must be zero.
Since ( isuniform, the temperature distribution is parabolic, with

Lx £:200mm T T Th,-zow/mZK

T(L) > Tooi-

(b) To find temperatures at the boundaries of wall, begin with the
general solution to the appropriate form of the heat equation (Eq.3.40).

T(X) -4 +Cx+Cop 1)
2k
From the first boundary condition,
dT _
d_x|x=0 = - ¢ =0 )

Two approaches are possible using different forms for the second boundary condition.

Approach No. 1: With boundary condition — T(0)=T

T(x)——%x +Ty (3

To find T1, perform an overall energy balance on the wall
Ein ~Eout tEg =0

(L) ~TeojB+6L=0  T(L)=Tp =T, +% @)

Continued .....



PROBLEM 3.79 (Cont.)
and fromEq. (3) withx =L and T(L) =Ty,

. . . 2
q,2 q,2 aL .qL
T(L)=——L+Ty o Ty =To +—L° =Ty j +— +— 5,6
(L)=-5 L+ 1=T2 +o wi T o (5.6)
Substituting numerical valuesinto Egs. (4) and (6), find
T, =50°C+1000 W/ mS x0.200 m/20 W/m? [K=50°C+10°C=60°C <
Ty = 60° C+1000 W/m® x(0.200 m)? / 2 x4 W/m [K=65°C. <

Approach No. 2: Using the boundary condition
K dT

ot TNF (L) -To i

yields the following temperature distribution which can be evaluated at x = O,L for the required
temperatures,

. "
T(x)= —%(x2 —L2) +qT T

7a.—:, o 770) =7;
(e aVAVaVaVa e/

(c) Thevaueof gy when T(0) =Tq =65°C =
0 1/, 9%,

follows from the circuit
, Ihi—T
do = =0
1/hg
g =5 W/m? [K (65-25)° C=200 W/m?. <

(d) With g=0, the situation is represented
by the thermal circuit shown. Hence,

q'o = da +qb o

7;.0 9°¢ 7;0,1'
o = T1-Teo +T1—Too,i 93 I, % Lk 1hi 9,
o=

1/hg L/k+1/h;
which yields

Ty =55"C. <



PROBLEM 3.84

KNOWN: Cylindrical shell with uniform volumetric generation isinsulated at inner surface
and exposed to convection on the outer surface.

FIND: (a) Temperature distribution in the shell intermsof r;, ry, ¢, h, T, andk, (b)
Expression for the heat rate per unit length at the outer radius, g (r ).

SCHEMATIC:

- #_ /ri=0,insu/afed boundary

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radia (cylindrical)
conduction in shell, (3) Uniform generation, (4) Constant properties.

ANALYSIS: (a) The general form of the temperature distribution and boundary conditions
are

T(r)= —% 2 +Cq Inr+Cy

dT O q 1 q 2
ar=r —n =0=—1, +C —+O C =—r.
! ar k't 17
] dT O
ar=rq: —kd— =hJ () -Twg  surfaceenergy balance
r

Jq, 0 210 0 qg 2 09 20
KF—ry + I =h——r5 + r“Ainr, +C
32k ° Bk T H a4k © THk i H e 2T H

o .20 2 O
Cp=- qr0 E,iD2D+ roml D el 4T,

2h D To0 ] 2kD2

[
Hence,
2
T(r)'%(rg rz) qz;<| Erz,g gh Ei%r% §+T°°' <
(b) From an overall energy balance on the shell,D -
ar (ro) = E’g :('m(rg —riz). <
Alternatively, the heat rate may be found using Fourier’s law and the temperature distribution,

0

: 0
' dr O q 1 .
qr (r)=—k(2m ro)aa = -27kr, D—z_qkro +_2|'( = +0 +00 = r(rg _riz)



PROBLEM 3.101

KNOWN: Dimensions of a plate insulated on its bottom and thermally joined to heat sinks at its
ends. Net heat flux at top surface.

FIND: (a) Differential equation which determines temperature distribution in plate, (b) Temperature
distribution and heat loss to heat sinks.

SCHEMATIC:
=X/ o  W--width 199
9 — T =
Tl X% |7 o> ia.?

AT ———)

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conductionin x (W,L>>t), (3) Constant
properties, (4) Uniform surface heat flux, (5) Adiabatic bottom, (6) Negligible contact resistance.

ANALYSIS: (a) Applying conservation of energy to the differential control volume, gy + dqg
= Ox +dx, Where Oxdx = O + (dox/dx) dx and dg=qg, (W [dx). Hence, (day /dx)-qp W=0.
From Fourier'slaw, gy =-k(t W) dT/dx. Hence, the differential equation for the
temperature distribution is

2 P
dx axH a2  kt

(b) Integrating twice, the general solutioniis,

T(x)=- ;gt x2 +Cp X +Cp

and appropriate boundary conditions are T(0) = T, and T(L) = To. Hence, Tq = Cop, and

To = % 2 +C1L+Cy and C =Gl

2kt 2kt
Hence, the temperature distribution is
oL

T(x)= _qZOT(XZ —Lx) +To. <
Applying Fourier'slaw at x =0,and at x = L,

q(0) = -k (Wt) dT/ck)y—g = KWt - - E % 55 %WL

_ _ 0 Q'oD g _ . GoWL
L) =-k(Wt)dT/dx)y= ——kWt = +

(L) = K (WOAT/ e Sakg =%

Hence the heat loss from the platesis g=2(gpWL/2) = g WL. <

COMMENTS: (1) Note signs associated with gq(0) and g(L). (2) Note symmetry about X =
L/2. Alternative boundary conditions are T(0) = T and dT/dX)y= j2=0.



PROBLEM 3.111

KNOWN: Rod protruding normally from a furnace wall covered with insulation of thickness Lng
with the length L, exposed to convection with ambient air.

FIND: (@) Anexpression for the exposed surface temperature T, as afunction of the prescribed
thermal and geometrical parameters. (b) Will arod of L, = 100 mm meet the specified operating
limit, To < 100°C? If not, what design parameters would you change?

SCHEMATIC:
Insulation

T.=250C
h=15W/m2 -K

O 2 ]

Furnace wall, Y
T,22000C [~

\Toi 100 °C Rod, D=25mm
k=60 W/m-K

e g T

Lins =200 mm —i k—Lg l

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in rod, (3) Negligible
thermal contact resistance between the rod and hot furnace wall, (4) Insulated section of rod, Lips,
experiences no lateral heat losses, (5) Convection coefficient uniform over the exposed portion of the
rod, Lo, (6) Adiabatic tip condition for the rod and (7) Negligible radiation exchange between rod and
its surroundings.

ANALYSIS: (@) Therod can be modeled as athermal network comprised of two resistancesin
series. the portion of the rod, Lins, covered by insulation, Ry, and the portion of the rod, L,
experiencing convection, and behaving as a fin with an adiabatic tip condition, Ry, For the insulated
section:

Rins = Lins/KAc @) TS s
R; Ry
For the fin, Table 3.4, Case B, Eq. 3.76, 9 Ins fin
1
Rfin =6p/df = @)
(hPkA . Y 2 tanh (mL )
m = (hP/kA¢ )Y 2 A, =nD?/4 P=7mD (34:5)
From the thermal network, by inspection,
Ty -T Ty - T. :
0] 0o _ \W 00 TO =Too + Rfln (TW _Too) (6) <
Rfin  Rins *Rfin Rins *+ Rfin
(b) Substituting numerical valuesinto Egs. (1) - (6) with L, =200 mm,
. 2 0 o
To =25 c+&(200—25) C =109°C <
6.790 + 6.298
2 -
Rins = 0200m = 6.790K /W A =m(0.025m)2 /4 =4.900 104 m?

60W/ m K x4.909x10 % m

5/ p\l2
Rfin = (o.o347w / K ) tanh (6.324x0.200) =6.298K /W

(hPKA ) = (15W/m2 (K x77(0.025m) x60W/m [K x4.909 ><10_4m2) =00347W?/ K2

Continued...



PROBLEM 3.111 (Cont.)

1/2
m = (hP/ka )Y 2 = (15W/m2 K x(0.025m)/ 60W/m (K x4.909 ><10_4m2)

=6.324m "+
Consider the following design changes aimed at reducing T, < 100°C. (1) Increasing length of thefin
portions: with L, =200 mm, the fin already behaves as an infinitely long fin. Hence, increasing L,
will not result in reducing T,. (2) Decreasing the thermal conductivity: backsolving the above
equation set with To = 100°C, find the required thermal conductivity isk = 14 W/mIK. Hence, we
could select a stainless steel aloy; see Table A.1. (3) Increasing the insulation thickness: find that
for T, = 100°C, the required insulation thickness would be Lins = 211 mm. This design solution might
be physically and economically unattractive. (4) A very practical solution would be to introduce
thermal contact resistance between the rod base and the furnace wall by “tack welding” (rather than a
continuous bead around the rod circumference) the rod in two or three places. (5) A less practical
solution would be to increase the convection coefficient, since to do so, would require an air handling
unit.

COMMENTS: (1) Would replacing the rod by a thick-walled tube provide a practical solution?

(2) The IHT Thermal Resistance Network Model and the Thermal Resistance Tool for afin with an
adiabatic tip were used to create amodel of therod. The Workspace is shown below.

/l Thermal Resistance Network Model:
/I The Network:

q1 =) q=2
Y R21 "y REZ "y
1 vy 2 iy k]

/I Heat rates into node j,qij, through thermal resistance Rij
021 =(T2-T1)/R21
032 =(T3-T2)/R32

/I Nodal energy balances
gl+9g21=0
02-021+932=0
g3-932=0

/* Assigned variables list: deselect the qi, Rij and Ti which are unknowns; set gi = 0 for embedded nodal
points at which there is no external source of heat. */

T1l=Tw /I Furnace wall temperature, C

/lql = /I Heat rate, W

T2=To /I To, beginning of rod exposed length

g2=0 /I Heat rate, W; node 2; no external heat source
T3 = Tinf /I Ambient air temperature, C

/g3 = /I Heat rate, W

/l Thermal Resistances:

/I Rod - conduction resistance

R21 = Lins/ (k * Ac) /I Conduction resistance, K/IW
Ac=pi*D"2/4 /I Cross sectional area of rod, m"2

/l Thermal Resistance Tools - Fin with Adiabatic Tip:

R32 = Rfin /I Resistance of fin, KIW

/* Thermal resistance of a fin of uniform cross sectional area Ac, perimeter P, length L, and thermal
conductivity k with an adiabatic tip condition experiencing convection with a fluid at Tinf and coefficient h, */

Rfin = 1/ (tanh (m*Lo) * (h* P *k * Ac ) ~ (1/2) ) /I Case B, Table 3.4
m = sqrt(h*P / (k*Ac))

P=pi*D /I Perimeter, m

/I Other Assigned Variables:

Tw = 200 /I Furnace wall temperature, C

k =60 /I Rod thermal conductivity, W/m.K

Lins = 0.200 /I Insulated length, m

D =0.025 /I Rod diameter, m

h=15 /I Convection coefficient, W/m”2.K

Tinf = 25 /I Ambient air temperature,C

Lo =0.200 /I Exposed length, m



PROBLEM 3.116

KNOWN: Dimensions and thermal conductivity of a gas turbine blade. Temperature and convection
coefficient of gas stream. Temperature of blade base and maximum allowable blade temperature.

FIND: (a) Whether blade operating conditions are acceptable, (b) Heat transfer to blade coolant.
SCHEMATIC:

T..= 1200 °C //"/'
h =250 W/m2K

Turbine blade,
k=20 WimK, A, =6x104m?,
P=0.11m

/T, =300°C Disc

1 v3p

ASSUMPTIONS: (1) One-dimensional, steady-state conduction in blade, (2) Constant k, (3) Adiabatic
blade tip, (4) Negligible radiation.

ANALYSIS: Conditionsin the blade are determined by Case B of Table 3.4.
(a) With the maximum temperature existing at x = L, Eq. 3.75 yields
T(L)-Tew 1
Tp—Tew  CoshmL

1/2 _

2 —4 _2\l/2
m = (hPIKA() —(250W/m (K x0.11m/20W/m [K x6 x10""'m )

m=47.87m" and mL =47.87m" x 0.05m=2.39
From Table B.1, cosh mL = 5.51. Hence,

T(L)=1200°C +(300 -1200)° C/5.51 =1037°C <
and the operating conditions are acceptable.

1/2

(b) With M = (hPka, ) 2 @, :(2soW/m2 (K x0.11m x20W/m [K x6 >¢o‘4m2) (Jgoo°c) = 517W,
Eq. 3.76 and Table B.1 yield

gf =M tanhmL = -517W (0.983) = -508W

Hence, qp = —0f =508W <

COMMENTS: Radiation losses from the blade surface and convection from the tip will contribute to
reducing the blade temperatures.



PROBLEM 3.127

KNOWN: Positions of equal temperature on two long rods of the same diameter, but
different thermal conductivity, which are exposed to the same base temperature and ambient
air conditions.

FIND: Thermal conductivity of rod B, kg.
SCHEMATIC:

XA:O.15m Rod A) /(A=70W/777'K

? % {
reoc<q___Fnt (.
P f\L
xg=0.075m Rod B, kg

ASSUMPTIONS: (1) Steady-state conditions, (2) Rods are infinitely long fins of uniform
cross-sectional area, (3) Uniform heat transfer coefficient, (4) Constant properties.

ANALYSIS: Thetemperature distribution for the infinite fin has the form

/2
i = —T (X) Too = e—mx m= D hP Ell . (1,2)
O To-Tw FACD
For the two positions prescribed, x and xpg, it was observed that
Ta (XA):TB(XB) or QA (XA):QB(XB). 3

Since By, isidentical for both rods, Eq. (1) with the equality of Eqg. (3) requires that
MAXA =MpXp
Substituting for m from Eq. (2) gives

ow ¥% o hPD/ZX
0 XA=O—f8 X
AAcO OkeAd]

Recognizing that h, P and A areidentical for each rod and rearranging,

FD kA

kg = é’ﬂgxmwmm =17.5W/m K. <

COMMENTS: This approach has been used as a method for determining the thermal
conductivity. It hasthe attractive feature of not requiring power or temperature
measurements, assuming of course, areference material of known thermal conductivity is
available.
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