
PROBLEM 3.4

KNOWN:  Curing of a transparent film by radiant heating with substrate and film surface subjected to
known thermal conditions.

FIND:  (a) Thermal circuit for this situation, (b) Radiant heat flux, oq′′  (W/m2), to maintain bond at

curing temperature, To, (c) Compute and plot oq′′  as a function of the film thickness for 0 ≤ Lf ≤ 1 mm,

and (d) If the film is not transparent, determine oq′′  required to achieve bonding; plot results as a function

of Lf.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat flow, (3) All the radiant heat
flux oq′′  is absorbed at the bond, (4) Negligible contact resistance.

ANALYSIS:  (a) The thermal circuit
for this situation is shown at the right.
Note that terms are written on a per unit
area basis.
(b) Using this circuit and performing an energy balance on the film-substrate interface,

o 1 2q q q′′ ′′ ′′= +                         o o 1
o

cv f s

T T T T
q

R R R
∞− −′′ = +

′′ ′′ ′′+

where the thermal resistances are
2 2

cvR 1 h 1 50 W m K 0.020 m K W′′ = = ⋅ = ⋅
2

f f fR L k 0.00025 m 0.025 W m K 0.010 m K W′′ = = ⋅ = ⋅
2

s s sR L k 0.001m 0.05 W m K 0.020 m K W′′ = = ⋅ = ⋅

( )
[ ]

( ) ( ) 2 2
o 2 2
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− −′′ = + = + =
+ ⋅ ⋅

$ $

<

(c) For the transparent film, the radiant flux required to achieve bonding as a function of film thickness Lf

is shown in the plot below.

(d) If the film is opaque (not transparent), the thermal circuit is shown below.  In order to find oq′′ , it is

necessary to write two energy balances, one around the Ts node and the second about the To node.

.
 The results of the analyses are plotted below.

Continued...
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COMMENTS:  (1) When the film is transparent, the radiant flux is absorbed on the bond.  The flux
required decreases with increasing film thickness.  Physically, how do you explain this?  Why is the
relationship not linear?

(2)  When the film is opaque, the radiant flux is absorbed on the surface, and the flux required increases
with increasing thickness of the film.  Physically, how do you explain this?  Why is the relationship
linear?

(3) The IHT Thermal Resistance Network Model was used to create a model of the film-substrate system
and generate the above plot.  The Workspace is shown below.

// Thermal Resistance Network
Model:
// The Network:

// Heat rates into node j,qij, through thermal resistance Rij
q21 = (T2 - T1) / R21
q32 = (T3 - T2) / R32
q43 = (T4 - T3) / R43

// Nodal energy balances
q1 + q21 = 0
q2 - q21 + q32 = 0
q3 - q32 + q43 = 0
q4 - q43 = 0

/* Assigned variables list: deselect the qi, Rij and Ti which are unknowns; set qi = 0 for embedded nodal points
at which there is no external source of heat. */
T1 = Tinf // Ambient air temperature, C
//q1 = // Heat rate, W; film side
T2 = Ts // Film surface temperature, C
q2 = 0 // Radiant flux, W/m^2; zero for part (a)
T3 = To // Bond temperature, C
q3 = qo // Radiant flux, W/m^2; part (a)
T4 = Tsub // Substrate temperature, C
//q4 = // Heat rate, W; substrate side

// Thermal Resistances:
R21 =  1 / ( h * As ) // Convection resistance, K/W
R32 =  Lf / (kf * As) // Conduction resistance, K/W; film
R43 =  Ls / (ks * As) // Conduction resistance, K/W; substrate

// Other Assigned Variables:
Tinf = 20 // Ambient air temperature, C
h = 50 // Convection coefficient, W/m^2.K
Lf = 0.00025 // Thickness, m; film
kf = 0.025 // Thermal conductivity, W/m.K; film
To = 60 // Cure temperature, C
Ls = 0.001 // Thickness, m; substrate
ks = 0.05 // Thermal conductivity, W/m.K; substrate
Tsub = 30 // Substrate temperature, C
As = 1 // Cross-sectional area, m^2; unit area



PROBLEM 3.6

KNOWN:  Design and operating conditions of a heat flux gage.

FIND:  (a) Convection coefficient for water flow (Ts = 27°C) and error associated with neglecting
conduction in the insulation, (b) Convection coefficient for air flow (Ts = 125°C) and error associated
with neglecting conduction and radiation, (c) Effect of convection coefficient on error associated with
neglecting conduction for Ts = 27°C.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional conduction, (3) Constant k.

ANALYSIS:  (a) The electric power dissipation is balanced by convection to the water and conduction
through the insulation.  An energy balance applied to a control surface about the foil therefore yields

( ) ( )elec conv cond s s bP q q h T T k T T L∞′′ ′′ ′′= + = − + −
Hence,

( ) ( )2
elec s b

s

P k T T L 2000 W m 0.04 W m K 2 K 0.01m
h

T T 2 K∞

′′ − − − ⋅
= =

−

( ) 2
22000 8 W m

h 996 W m K
2 K

−
= = ⋅ <

If conduction is neglected, a value of h = 1000 W/m2⋅K is obtained, with an attendant error of (1000 -
996)/996 = 0.40%

(b)  In air, energy may also be transferred from the foil surface by radiation, and the energy balance
yields

( ) ( ) ( )4 4
elec conv rad cond s s sur s bP q q q h T T T T k T T Lεσ∞′′ ′′ ′′ ′′= + + = − + − + −

Hence,

( ) ( )4 4
elec s sur s

s

P T T k T T L
h

T T

εσ ∞

∞

′′ − − − −
=

−

( )2 8 2 4 4 4 42000 W m 0.15 5.67 10 W m K 398 298 K 0.04 W m K (100 K) / 0.01m

100 K

−− × × ⋅ − − ⋅
=

( ) 2
22000 146 400 W m

14.5 W m K
100 K

− −
= = ⋅ <

Continued...



PROBLEM 3.6 (Cont.)

If conduction, radiation, or conduction and radiation are neglected, the corresponding values of h and the
percentage errors are 18.5 W/m2⋅K (27.6%), 16 W/m2⋅K (10.3%), and 20 W/m2⋅K (37.9%).

(c)  For a fixed value of Ts = 27°C, the conduction loss remains at condq′′  = 8 W/m2, which is also the

fixed difference between elecP′′  and convq′′ .  Although this difference is not clearly shown in the plot for

10 ≤ h ≤ 1000 W/m2⋅K, it is revealed in the subplot for 10 ≤ 100 W/m2⋅K.

0 200 400 600 800 1000

Convection coefficient, h(W/m^2.K)

0

400

800

1200

1600

2000

P
ow

er
 d

is
si

pa
tio

n,
 P

''e
le

c(
W

/m
^2

)

No conduction
With conduction             

0 20 40 60 80 100

Convection coefficient, h(W/m^2.K)

0

40

80

120

160

200

P
ow

er
 d

is
si

pa
tio

n,
 P

''e
le

c(
W

/m
^2

)

No conduction
With conduction

Errors associated with neglecting conduction decrease with increasing h from values which are
significant for small h (h < 100 W/m2⋅K) to values which are negligible for large h.

COMMENTS:  In liquids (large h), it is an excellent approximation to neglect conduction and assume
that all of the dissipated power is transferred to the fluid.



PROBLEM 3.7

KNOWN:  A layer of fatty tissue with fixed inside temperature can experience different
outside convection conditions.

FIND:  (a) Ratio of heat loss for different convection conditions, (b) Outer surface
temperature for different convection conditions, and (c) Temperature of still air which
achieves same cooling as moving air (wind chill effect).

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction through a plane wall, (2) Steady-state
conditions, (3) Homogeneous medium with constant properties, (4) No internal heat
generation (metabolic effects are negligible), (5) Negligible radiation effects.

PROPERTIES:  Table A-3, Tissue, fat layer:  k = 0.2 W/m⋅K.

ANALYSIS:  The thermal circuit for this situation is

Hence, the heat rate is

s,1 s,1

tot

T T T T
q .

R L/kA 1/ hA
∞ ∞− −

= =
+

Therefore,

windycalm

windy

calm

L 1
k hq

.
L 1q
k h

 +  ′′
=

′′  +  

Applying a surface energy balance to the outer surface, it also follows that

cond convq q .′′ ′′=

Continued …..



PROBLEM 3.7 (Cont.)

Hence,

( ) ( )s,1 s,2 s,2

s,1
s,2

k
T T h T T

L
k

T T
hLT .

k
1+

hL

∞

∞

− = −

+
=

To determine the wind chill effect, we must determine the heat loss for the windy day and use
it to evaluate the hypothetical ambient air temperature, ′∞T ,  which would provide the same
heat loss on a calm day, Hence,

s,1 s,1

windy calm

T T T T
q

L 1 L 1
k h k h

∞ ∞′− −
′′ = =

   + +      

From these relations, we can now find the results sought:

(a)
2calm

windy
2

0.003 m 1
q 0.2 W/m K 0.015 0.015465 W/m K

0.003 m 1q 0.015 0.04
0.2 W/m K 25 W/m K

+
′′ ⋅ +⋅= =

′′ ++
⋅ ⋅

calm

windy

q
0.553

q

′′
=

′′
<

(b)
( )( )

( )( )

2

s,2 calm
2

0.2 W/m K
15 C 36 C

25 W/m K 0.003 m
T 22.1 C

0.2 W/m K
1

25 W/m K 0.003 m

⋅− +
⋅

 = = ⋅+
⋅

$ $

$ <

( )( )

( )( )

2

s,2 windy
2

0.2 W/m K
15 C 36 C

65 W/m K 0.003m
T 10.8 C

0.2 W/m K
1

65 W/m K 0.003m

⋅− +
⋅

 = = ⋅+
⋅

$ $

$ <

(c) ( ) ( )
( )

0.003/0.2 1/ 25
T 36 C 36 15 C 56.3 C

0.003/ 0.2 1/ 65∞
+

′ = − + = −
+

$$ $ <

COMMENTS:  The wind chill effect is equivalent to a decrease of Ts,2 by 11.3°C and

increase in the heat loss by a factor of (0.553)
-1

 = 1.81.



PROBLEM 3.27

KNOWN:  Operating conditions for a board mounted chip.

FIND:  (a) Equivalent thermal circuit, (b) Chip temperature, (c) Maximum allowable heat dissipation for
dielectric liquid (ho = 1000 W/m2⋅K) and air (ho = 100 W/m2⋅K).  Effect of changes in circuit board
temperature and contact resistance.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible chip
thermal resistance, (4) Negligible radiation, (5) Constant properties.

PROPERTIES:  Table A-3, Aluminum oxide (polycrystalline, 358 K):  kb = 32.4 W/m⋅K.

ANALYSIS:  (a)

(b)  Applying conservation of energy to a control surface about the chip ( )in outE E 0− =� � ,

c i oq q q 0′′ ′′ ′′− − =

( )
c ,i c ,o

c
i t,c ob

T T T T
q

1 h L k R 1 h

∞ ∞− −
′′ = +

′′+ +

With ��  �q W mc 3 104 2 , ho = 1000 W/m2⋅K, kb = 1 W/m⋅K and 4 2
t,cR 10 m K W−′′ = ⋅ ,

( ) ( )
4 2 c c

24 2

T 20 C T 20 C
3 10 W m

1 1000 m K W1 40 0.005 1 10 m K W−
− −

× = +
⋅+ + ⋅

$ $

( )4 2 2
c c3 10 W m 33.2T 664 1000T 20,000 W m K× = − + − ⋅

1003Tc = 50,664

Tc = 49°C. <
(c)  For Tc = 85°C and ho = 1000 W/m2⋅K, the foregoing energy balance yields

2
cq 67,160 W m′′ = <

with oq′′  = 65,000 W/m2 and iq′′  = 2160 W/m2.  Replacing the dielectric with air (ho = 100 W/m2⋅K), the

following results are obtained for different combinations of kb and t,cR′′ .

Continued...



PROBLEM 3.27 (Cont.)

kb (W/m⋅K) t,cR ′′

(m2⋅K/W)
iq′′  (W/m2) oq′′  (W/m2) cq′′  (W/m2)

1 10-4 2159 6500 8659
32.4 10-4 2574 6500 9074

1 10-5 2166 6500 8666
32.4 10-5 2583 6500 9083

<

COMMENTS:  1.  For the conditions of part (b), the total internal resistance is 0.0301 m2⋅K/W, while
the outer resistance is 0.001 m2⋅K/W.  Hence

( )
( )

c ,o oo

i c ,i i

T T Rq 0.0301
30

q 0.001T T R

∞

∞

′′−′′
= = =

′′ ′′−
.

and only approximately 3% of the heat is dissipated through the board.

2.  With ho = 100 W/m2⋅K, the outer resistance increases to 0.01 m2⋅K/W, in which case o i i oq q R R′′ ′′ ′′ ′′=

= 0.0301/0.01 = 3.1 and now almost 25% of the heat is dissipated through the board.  Hence, although
measures to reduce iR ′′  would have a negligible effect on cq′′  for the liquid coolant, some improvement

may be gained for air-cooled conditions.  As shown in the table of part (b), use of an aluminum oxide
board increase iq′′  by 19% (from 2159 to 2574 W/m2) by reducing iR ′′  from 0.0301 to 0.0253 m2⋅K/W.

Because the initial contact resistance ( 4 2
t,cR 10 m K W−′′ = ⋅ ) is already much less than iR ′′ , any reduction

in its value would have a negligible effect on iq′′ .  The largest gain would be realized by increasing hi,
since the inside convection resistance makes the dominant contribution to the total internal resistance.



PROBLEM 3.36

KNOWN:  Temperature and volume of hot water heater.  Nature of heater insulating material.  Ambient
air temperature and convection coefficient.  Unit cost of electric power.

FIND:  Heater dimensions and insulation thickness for which annual cost of heat loss is less than $50.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, steady-state conduction through side and end walls, (2)
Conduction resistance dominated by insulation, (3) Inner surface temperature is approximately that of the
water (Ts,1 = 55°C), (4) Constant properties, (5) Negligible radiation.

PROPERTIES:  Table A.3, Urethane Foam (T = 300 K):  k = 0.026 W/m⋅K.

ANALYSIS:  To minimize heat loss, tank dimensions which minimize the total surface area, As,t, should

be selected.  With L = 4∀ /πD2, ( )2 2
s,tA DL 2 D 4 4 D D 2π π π= + = ∀ + , and the tank diameter for

which As,t is an extremum is determined from the requirement

2
s,tdA dD 4 D D 0π= − ∀ + =

It follows that

( ) ( )1/ 3 1/ 3D 4 and L 4π π= ∀ = ∀

With 2 2 3
s,td A dD 8 D 0π= ∀ + > , the foregoing conditions yield the desired minimum in As,t.

Hence, for ∀  = 100 gal × 0.00379 m3/gal = 0.379 m3,

op opD L 0.784 m= = <
The total heat loss through the side and end walls is

( )
( )

( ) ( )
s,1s,1

2 1
2 2

op 2 op op op

2 T TT T
q

1ln r r 1

2 kL h2 r L k D 4 h D 4

δ
π π π π

∞∞ −−
= +

++

We begin by estimating the heat loss associated with a 25 mm thick layer of insulation.  With r1 = Dop/2 =
0.392 m and r2 = r1 + δ = 0.417 m, it follows that

Continued...



PROBLEM 3.36 (Cont.)

( )
( )

( ) ( ) ( )2

55 20 C
q

ln 0.417 0.392 1

2 0.026 W m K 0.784 m 2 W m K 2 0.417 m 0.784 mπ π

−
=

+
⋅ ⋅

$

  
( )

( ) ( ) ( ) ( )2 22

2 55 20 C

0.025 m 1

0.026 W m K 4 0.784 m 2 W m K 4 0.784 mπ π

−
+

+
⋅ ⋅

$

( )
( )

( ) ( )
2 35 C35 C

q 48.2 23.1 W 71.3 W
0.483 0.243 K W 1.992 1.036 K W

= + = + =
+ +

$

$

The annual energy loss is therefore

( )( )( )3
annualQ 71.3W 365days 24 h day 10 kW W 625 kWh−= =

With a unit electric power cost of $0.08/kWh, the annual cost of the heat loss is

C = ($0.08/kWh)625 kWh = $50.00

Hence, an insulation thickness of

δ = 25 mm <
will satisfy the prescribed cost requirement.

COMMENTS:  Cylindrical containers of aspect ratio L/D = 1 are seldom used because of floor space
constraints.  Choosing L/D = 2, ∀  = πD3/2 and D = (2∀ /π)1/3 = 0.623 m.  Hence, L = 1.245 m, r1 =
0.312m and r2 = 0.337 m.  It follows that q = 76.1 W and C = $53.37.  The 6.7% increase in the annual
cost of the heat loss is small, providing little justification for using the optimal heater dimensions.



PROBLEM 3.38

KNOWN:  Inner and outer radii of a tube wall which is heated electrically at its outer surface.  Inner and
outer wall temperatures.  Temperature of fluid adjoining outer wall.

FIND:  Effect of wall thermal conductivity, thermal contact resistance, and convection coefficient on
total heater power and heat rates to outer fluid and inner surface.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties,
(4) Negligible temperature drop across heater, (5) Negligible radiation.

ANALYSIS:  Applying an energy balance to a control surface about the heater,

i oq q q′ ′ ′= +

( ) ( )
o i o

o i o
t,c

T T T T
q

ln r r 1 2 r h
R

2 k

π
π

∞− −′ = +
′+

Selecting nominal values of k = 10 W/m⋅K, t,cR ′  = 0.01 m⋅K/W and h = 100 W/m2⋅K, the following

parametric variations are obtained
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For a prescribed value of h, oq′  is fixed, while iq′ , and hence q′ , increase and decrease, respectively,

with increasing k and t,cR′ .   These trends are attributable to the effects of k and t,cR′  on the total

(conduction plus contact) resistance separating the heater from the inner surface.  For fixed k and t,cR′ ,

iq′  is fixed, while oq′ , and hence q′ , increase with increasing h due to a reduction in the convection

resistance.

COMMENTS:  For the prescribed nominal values of k, t,cR′  and h, the electric power requirement is

q′  = 2377 W/m.  To maintain the prescribed heater temperature, q′  would increase with any changes
which reduce the conduction, contact and/or convection resistances.



PROBLEM 3.41

KNOWN:  Thin electrical heater fitted between two concentric cylinders, the outer surface of which
experiences convection.

FIND:  (a) Electrical power required to maintain outer surface at a specified temperature, (b)
Temperature at the center

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, radial conduction, (2) Steady-state conditions, (3) Heater
element has negligible thickness, (4) Negligible contact resistance between cylinders and heater, (5)
Constant properties, (6) No generation.

ANALYSIS:  (a) Perform an energy balance on the
composite system to determine the power required

to maintain T(r2) = Ts = 5°C.

in out gen stE E E E′ ′− + =� � � �

elec convq q 0.′ ′+ − =

Using Newton’s law of cooling,

( )elec conv 2 sq q h 2  r T Tπ ∞′ ′= = ⋅ −

( ) ( )elec 2
W

q 50 2 0.040m  5 15 C=251 W/m.
m K

π′  = × − − 
⋅

$ <

(b) From a control volume about Cylinder A, we recognize that the cylinder must be isothermal, that
is,

T(0) = T(r1).

Represent Cylinder B by a thermal circuit:

( )1 s

B

T r T
q =

R

−
′

′

For the cylinder, from Eq. 3.28,

B 2 1 BR ln r / r / 2  kπ′ =
giving

( )1 s B
W ln 40/20

T r T q R 5 C+253.1 23.5 C
m 2 1.5 W/m Kπ

′ ′= + = =
× ⋅

$ $

Hence, T(0) = T(r1) = 23.5°C. <
Note that kA has no influence on the temperature T(0).



PROBLEM 3.58

KNOWN:  Dimensions of spherical, stainless steel liquid oxygen (LOX) storage container.  Boiling
point and latent heat of fusion of LOX.  Environmental temperature.

FIND:  Thermal isolation system which maintains boil-off below 1 kg/day.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, steady-state conditions, (2) Negligible thermal resistances
associated with internal and external convection, conduction in the container wall, and contact between
wall and insulation, (3) Negligible radiation at exterior surface, (4) Constant insulation thermal
conductivity.

PROPERTIES:  Table A.1, 304 Stainless steel (T = 100 K):  ks = 9.2 W/m⋅K; Table A.3, Reflective,
aluminum foil-glass paper insulation (T = 150 K):  ki = 0.000017 W/m⋅K.

ANALYSIS:  The heat gain associated with a loss of 1 kg/day is

( )5
fg

1kg day
q mh 2.13 10 J kg 2.47 W

86, 400s day
= = × =�

With an overall temperature difference of ( )bpT T∞ −  = 150 K, the corresponding total thermal

resistance is

tot
T 150 K

R 60.7 K W
q 2.47 W

∆
= = =

Since the conduction resistance of the steel wall is

( )
3

t,cond,s
s 1 2

1 1 1 1 1 1
R 2.4 10 K W

4 k r r 4 9.2 W m K 0.35 m 0.40 mπ π
−= − = − = ×

⋅
   
   

  

it is clear that exclusive reliance must be placed on the insulation and that a special insulation of very low
thermal conductivity should be selected.  The best choice is a highly reflective foil/glass matted
insulation which was developed for cryogenic applications.  It follows that

( )t,cond,i
i 2 3 3

1 1 1 1 1 1
R 60.7 K W

4 k r r 4 0.000017 W m K 0.40 m rπ π
= = − = −

⋅
   
   
   

which yields r3 = 0.4021 m.  The minimum insulation thickness is therefore δ = (r3 - r2) = 2.1 mm.

COMMENTS:  The heat loss could be reduced well below the maximum allowable by adding more
insulation.  Also, in view of weight restrictions associated with launching space vehicles, consideration
should be given to fabricating the LOX container from a lighter material.



PROBLEM 3.73

KNOWN:  Composite wall with outer surfaces exposed to convection process.

FIND:  (a) Volumetric heat generation and thermal conductivity for material B required for special
conditions, (b) Plot of temperature distribution, (c) T1 and T2, as well as temperature distributions
corresponding to loss of coolant condition where h = 0 on surface A.

SCHEMATIC:

LA = 30 mm
LB = 30 mm
LC = 20 mm
kA = 25 W/m⋅K
kC = 50 W/m⋅K

ASSUMPTIONS:  (1) Steady-state, one-dimensional heat transfer, (2) Negligible contact resistance at
interfaces, (3) Uniform generation in B; zero in A and C.

ANALYSIS:  (a) From an energy balance on wall B,

in out g stE E E E− + =� � � �

1 2 Bq q 2qL 0′′ ′′− − + =�

( )B 1 2 Bq q q 2L′′ ′′= +� .

To determine the heat fluxes, ��q1  and ��q2 , construct thermal circuits for A and C:

( ) ( )1 1 A Aq T T 1 h L k∞′′ = − + ( ) ( )2 2 C Cq T T L k 1 h∞′′ = − +

( )1 2

1 0.030 m
q 261 25 C

25 W m K1000 W m K
′′ = − +

⋅⋅

 
   

$     ( )2 2

0.020 m 1
q 211 25 C

50 W m K 1000 W m K
′′ = − +

⋅ ⋅

 
   

$

( ) 2
1q 236 C 0.001 0.0012 m K W′′ = + ⋅$ ( ) 2

2q 186 C 0.0004 0.001 m K W′′ = + ⋅$

2
1q 107, 273 W m′′ = 2

2q 132,857 W m′′ =

Using the values for 1q′′  and 2q′′  in Eq. (1), find

( )2 6 3
Bq 106,818 132,143 W m 2 0.030 m 4.00 10 W m= + × = ×� . <

To determine kB, use the general form of the temperature and heat flux distributions in wall B,

2B
1 2 x B 1

B B

q q
T(x) x C x C q (x) k x C

2k k
′′= − + + = − − +

 
  

� �

(1,2)

there are 3 unknowns, C1, C2 and kB, which can be evaluated using three conditions,
Continued...



PROBLEM 3.73 (Cont.)

( ) ( )2B
B 1 B 1 B 2

B

q
T L T L C L C

2k
− = = − − − +

�

where T1 = 261°C (3)

( ) ( )2B
B 2 B 1 B 2

B

q
T L T L C L C

2k
+ = = − + + +

�

where T2 = 211°C (4)

( ) ( )B
x B 1 B B 1

B

q
q L q k L C

k
′′ ′′− = − = − − − +

 
  

�

where 1q′′  = 107,273 W/m2 (5)

Using IHT to solve Eqs. (3), (4) and (5) simultaneously with Bq�  = 4.00 × 106 W/m3, find

Bk 15.3 W m K= ⋅ <
(b) Following the method of analysis in the IHT Example 3.6, User-Defined Functions, the temperature
distribution is shown in the plot below.  The important features are (1) Distribution is quadratic in B, but
non-symmetrical; linear in A and C; (2) Because thermal conductivities of the materials are different,
discontinuities exist at each interface; (3) By comparison of gradients at x = -LB and +LB, find 2q′′  > 1q′′ .

(c) Using the same method of analysis as for Part (c), the temperature distribution is shown in the plot
below when h = 0 on the surface of A.  Since the left boundary is adiabatic, material A will be isothermal
at T1.  Find

T1 = 835°C            T2 = 360°C <
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PROBLEM 3.79

KNOWN:  Wall of thermal conductivity k and thickness L with uniform generation q� ; strip heater

with uniform heat flux oq ;′′  prescribed inside and outside air conditions (hi, T∞,i, ho, T∞,o).

FIND:  (a) Sketch temperature distribution in wall if none of the heat generated within the wall is lost
to the outside air, (b) Temperatures at the wall boundaries T(0) and T(L) for the prescribed condition,
(c) Value of ′′qo  required to maintain this condition, (d) Temperature of the outer surface, T(L), if

oq=0 but q′′�  corresponds to the value calculated in (c).

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Uniform
volumetric generation, (4) Constant properties.

ANALYSIS:  (a) If none of the heat generated within the wall is
lost to the outside of the chamber, the gradient at x = 0 must be zero.
Since q�  is uniform, the temperature distribution is parabolic, with

T(L) > T∞,i.

(b) To find temperatures at the boundaries of wall, begin with the
general solution to the appropriate form of the heat equation (Eq.3.40).

( ) 2
1 2

q
T x x C x+C

2k
= − +

�
(1)

From the first boundary condition,

x=o 1
dT

0          C 0.
dx

= → = (2)

Two approaches are possible using different forms for the second boundary condition.

Approach No. 1:  With boundary condition ( ) 1 T 0 T→ =

( ) 2
1

q
T x x T

2k
= − +

�
(3)

To find T1, perform an overall energy balance on the wall

in out gE E E 0− + =� � �

( ) ( ),i 2 ,i
qL

h T L T qL=0     T L T T
h∞ ∞ − − + = = + 
�

� (4)

Continued …..



PROBLEM 3.79 (Cont.)

and from Eq. (3) with x = L and T(L) = T2,

( )
2

2 2
1 1 2 ,i

q q qL qL
T L L T      or     T T L T

2k 2k h 2k∞= − + = + = + +
� � � �

     (5,6)

Substituting numerical values into Eqs. (4) and (6), find

3 2
2T 50 C+1000 W/m 0.200 m/20 W/m K=50 C+10 C=60 C= × ⋅$ $ $ $ <

( )23
1T 60 C+1000 W/m 0.200 m / 2 4 W/m K=65 C.= × × ⋅$ $ <

Approach No. 2:  Using the boundary condition

( )x=L ,i
dT

k h T L T
dx ∞ − = − 

yields the following temperature distribution which can be evaluated at x = 0,L for the required
temperatures,

( ) ( )2 2
,i

q qL
T x x L T .

2k h ∞= − − + +
� �

(c) The value of oq′′  when T(0) = T1 = 65°C

follows from the circuit

1 ,o
o

o

T T
q

1/ h
∞−

′′ =

( )2 2
oq 5 W/m K 65-25 C=200 W/m .′′ = ⋅ $ <

(d) With q=0,�  the situation is represented
by the thermal circuit shown.  Hence,

o a bq q q′′ ′′ ′′= +

1 ,o 1 ,i
o

o i

T T T T
q

1/ h L/k+1/h

∞ ∞− −
′′ = +

which yields

1T 55 C.= $ <



PROBLEM 3.84

KNOWN:  Cylindrical shell with uniform volumetric generation is insulated at inner surface
and exposed to convection on the outer surface.

FIND:  (a) Temperature distribution in the shell in terms of i or ,  r ,  q, h, T  and k,∞�  (b)

Expression for the heat rate per unit length at the outer radius, ( )oq r .′

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional radial (cylindrical)
conduction in shell, (3) Uniform generation, (4) Constant properties.

ANALYSIS:  (a) The general form of the temperature distribution and boundary conditions
are

( ) 2
1 2

q
T r r C  ln r+C

4k
= − +

�

at r = ri:
i

2
i 1 1 i

ir

dT q 1 q
0 r C 0        C r

dr 2k r 2k
 = = − + + =

� �

at r = ro: ( )
o

o
r

dT
k h T r T         surface energy balance

dr ∞
  − = −  

2 2 2
o o o 2i i

o

q q 1 q q
k r r h r r ln r C T

2k 2k r 4k 2k ∞
     − + ⋅ = − + + −           

� � � �

2 22
o oi i

2 o
o o

qr qrr 1 r
C 1 ln r T

2h r 2k 2 r ∞
         = − + + − +            

� �

Hence,

( ) ( )
22

2 2 o ii
o

o o

qr qrq r r
T r r r ln 1 T .

4k 2k r 2h r ∞
     = − + − + +        

� �� <

(b) From an overall energy balance on the shell,

( ) ( )2 2
r o g o iq r E q r r .π′ ′= = −� � <

Alternatively, the heat rate may be found using Fourier’s law and the temperature distribution,

( ) ( ) ( )
o

2
2 2i

r o o o o i
or

qrdT q 1
q r k 2  r 2  kr r  0 0 q r r

dr 2k 2k r
π π π

   ′ = − = − − + + + = −    

��
�



PROBLEM 3.101

KNOWN:  Dimensions of a plate insulated on its bottom and thermally joined to heat sinks at its
ends.  Net heat flux at top surface.

FIND:  (a) Differential equation which determines temperature distribution in plate, (b) Temperature
distribution and heat loss to heat sinks.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional conduction in x (W,L>>t), (3) Constant
properties, (4) Uniform surface heat flux, (5) Adiabatic bottom, (6) Negligible contact resistance.

ANALYSIS:  (a) Applying conservation of energy to the differential control volume, qx + dq

= qx +dx, where qx+dx = qx + (dqx/dx) dx and ( )odq=q  W dx .′′ ⋅   Hence, ( )x odq / dx q  W=0.′′−

From Fourier’s law, ( )xq k t W  dT/dx.= − ⋅   Hence, the differential equation for the

temperature distribution is

2
o

o 2
qd dT d T

 ktW q  W=0          0.
dx dx ktdx

′′  ′′− − + =  
<

(b) Integrating twice, the general solution is,

( ) 2o
1 2

q
T x x C  x +C

2kt

′′
= − +

and appropriate boundary conditions are T(0) = To, and T(L) = To.  Hence, To = C2, and

2o o
o 1 2 1

q q L
T L C L+C           and          C .

2kt 2kt

′′ ′′
= − + =

Hence, the temperature distribution is

( ) ( )2o
o

q L
T x x Lx T .

2kt

′′
= − − + <

Applying Fourier’s law at x = 0, and at x = L,

( ) ( )
x=0

o o
x=0

q q WLL
q 0 k Wt  dT/dx) kWt  x

kt 2 2

′′ ′′   = − = − − − = −     

( ) ( )
x=L

o o
x=L

q q WLL
q L k Wt dT/dx) kWt  x

kt 2 2

′′ ′′   = − = − − − = +     

Hence the heat loss from the plates is ( )o oq=2 q WL/2 q WL.′′ ′′= <
COMMENTS:  (1) Note signs associated with q(0) and q(L).  (2) Note symmetry about x =

L/2.  Alternative boundary conditions are T(0) = To and dT/dx)x=L/2=0.



PROBLEM 3.111

KNOWN:   Rod protruding normally from a furnace wall covered with insulation of thickness Lins

with the length Lo exposed to convection with ambient air.

FIND:   (a) An expression for the exposed surface temperature To as a function of the prescribed
thermal and geometrical parameters.  (b)  Will a rod of Lo = 100 mm meet the specified operating
limit, T0 ≤ 100°C?   If not, what design parameters would you change?

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in rod, (3) Negligible
thermal contact resistance between the rod and hot furnace wall,  (4) Insulated section of rod, Lins,
experiences no lateral heat losses, (5) Convection coefficient uniform over the exposed portion of the
rod, Lo,  (6) Adiabatic tip condition for the rod and (7) Negligible radiation exchange between rod and
its surroundings.

ANALYSIS:   (a) The rod can be modeled as a thermal network comprised of two resistances in
series:  the portion of the rod, Lins, covered by insulation, Rins, and the portion of the rod, Lo,
experiencing convection, and behaving as a fin with an adiabatic tip condition, Rfin.  For the insulated
section:

ins ins cR L kA= (1)

For the fin, Table 3.4, Case B, Eq. 3.76,

( ) ( )
fin b f 1/ 2

c o

1
R q

hPkA tanh mL
θ= = (2)

( )1/ 2 2
c cm hP kA A D 4 P Dπ π= = = (3,4,5)

From the thermal network, by inspection,

( )o w fin
o w

fin ins fin ins fin

T T T T R
T T T T

R R R R R
∞ ∞

∞ ∞
− −

= = + −
+ +

(6) <
(b) Substituting numerical values into Eqs. (1) - (6) with Lo = 200 mm,

( )o
6.298

T 25 C 200 25 C 109 C
6.790 6.298

= + − =
+

$$ $ <

( ) 4 22
ins c4 2

0.200 m
R 6.790 K W A 0.025 m 4 4.909 10 m

60 W m K 4.909 10 m
π −

−
= = = = ×

⋅ × ×

( ) ( )
1/ 22 2

finR 1 0.0347 W K tanh 6.324 0.200 6.298 K W= × =

( ) ( )( )2 4 2 2 2
chPkA 15 W m K 0.025 m 60 W m K 4.909 10 m 0.0347 W Kπ −= ⋅ × × ⋅ × × =

Continued...



PROBLEM 3.111 (Cont.)

( ) ( )( )1/ 22 4 2 11/ 2
cm hP kA 15 W m K 0.025 m 60 W m K 4.909 10 m 6.324 mπ − −= = ⋅ × ⋅ × × =

Consider the following design changes aimed at reducing To ≤ 100°C.  (1) Increasing length of the fin
portions:  with Lo = 200 mm, the fin already behaves as an infinitely long fin.  Hence, increasing Lo

will not result in reducing To.  (2) Decreasing the thermal conductivity:  backsolving the above
equation set with T0 = 100°C, find the required thermal conductivity is k = 14 W/m⋅K.  Hence, we
could select a stainless steel alloy; see Table A.1.  (3) Increasing the insulation thickness:  find that
for To = 100°C, the required insulation thickness would be Lins = 211 mm.  This design solution might
be physically and economically unattractive.  (4) A very practical solution would be to introduce
thermal contact resistance between the rod base and the furnace wall by “tack welding” (rather than a
continuous bead around the rod circumference) the rod in two or three places.  (5) A less practical
solution would be to increase the convection coefficient, since to do so, would require an air handling
unit.

COMMENTS:  (1) Would replacing the rod by a thick-walled tube provide a practical solution?

(2) The IHT Thermal Resistance Network Model and the Thermal Resistance Tool for a fin with an
adiabatic tip were used to create a model of the rod.  The Workspace is shown below.

// Thermal Resistance Network Model:
// The Network:

// Heat rates into node j,qij, through thermal resistance Rij
q21 = (T2 - T1) / R21
q32 = (T3 - T2) / R32

// Nodal energy balances
q1 + q21 = 0
q2 - q21 + q32 = 0
q3 - q32 = 0

/* Assigned variables list: deselect the qi, Rij and Ti which are unknowns; set qi = 0 for embedded nodal
points at which there is no external source of heat. */
T1 = Tw // Furnace wall temperature, C
//q1 = // Heat rate, W
T2 = To // To, beginning of rod exposed length
q2 =  0 // Heat rate, W; node 2; no external heat source
T3 =  Tinf // Ambient air temperature, C
//q3 = // Heat rate, W

// Thermal Resistances:
// Rod - conduction resistance
R21 =  Lins / (k * Ac)      // Conduction resistance, K/W
Ac = pi * D^2 / 4 // Cross sectional area of rod, m^2

// Thermal Resistance Tools - Fin with Adiabatic Tip:
R32 =  Rfin //  Resistance of fin, K/W
/* Thermal resistance of a fin of uniform cross sectional area Ac, perimeter P, length L, and thermal
conductivity k with an adiabatic tip condition experiencing convection with a fluid at Tinf and coefficient h, */
Rfin = 1/ ( tanh (m*Lo) * (h * P * k * Ac ) ^ (1/2) )              // Case B, Table 3.4
m = sqrt(h*P / (k*Ac))
P = pi * D                       // Perimeter, m

// Other Assigned Variables:
Tw = 200 // Furnace wall temperature, C
k = 60 // Rod thermal conductivity, W/m.K
Lins = 0.200 // Insulated length, m
D = 0.025 // Rod diameter, m
h = 15 // Convection coefficient, W/m^2.K
Tinf = 25 // Ambient air temperature,C
Lo = 0.200 // Exposed length, m



PROBLEM 3.116

KNOWN:  Dimensions and thermal conductivity of a gas turbine blade.  Temperature and convection
coefficient of gas stream.  Temperature of blade base and maximum allowable blade temperature.

FIND:  (a) Whether blade operating conditions are acceptable, (b) Heat transfer to blade coolant.

SCHEMATIC:

ASSUMPTIONS:  (1)  One-dimensional, steady-state conduction in blade, (2) Constant k, (3) Adiabatic
blade tip, (4) Negligible radiation.

ANALYSIS:  Conditions in the blade are determined by Case B of Table 3.4.

(a) With the maximum temperature existing at x = L, Eq. 3.75 yields

( )
b

T L T 1

T T cosh mL
∞

∞

−
=

−

( ) ( )1/ 21/ 2 2 4 2
cm hP/kA 250W/m K 0.11m/20W/m K 6 10 m−= = ⋅ × ⋅ × ×

m = 47.87 m-1    and    mL = 47.87 m-1 × 0.05 m = 2.39

From Table B.1, cosh mL = 5.51.  Hence,

( )T L 1200 C (300 1200) C/5.51 1037 C= + − =$ $ $ <
and the operating conditions are acceptable.

(b) With ( ) ( ) ( )1/ 22 4 21/ 2
c bM hPkA 250W/m K 0.11m 20W/m K 6 10 m 900 C 517W−= Θ = ⋅ × × ⋅ × × − = −$ ,

Eq. 3.76 and Table B.1 yield

( )fq M tanh mL 517W 0.983 508W= = − = −

Hence, b fq q 508W= − = <
COMMENTS:  Radiation losses from the blade surface and convection from the tip will contribute to
reducing the blade temperatures.



PROBLEM 3.127

KNOWN:  Positions of equal temperature on two long rods of the same diameter, but
different thermal conductivity, which are exposed to the same base temperature and ambient
air conditions.

FIND:  Thermal conductivity of rod B, kB.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Rods are infinitely long fins of uniform
cross-sectional area, (3) Uniform heat transfer coefficient, (4) Constant properties.

ANALYSIS:  The temperature distribution for the infinite fin has the form

( ) 1/ 2
-mx

b o c

T x T hP
e           m .

T T kA

θ
θ

∞

∞

−  
= = =  −  

       (1,2)

For the two positions prescribed, xA and xB, it was observed that

( ) ( ) ( ) ( )A A B B A A B BT x T x           or          x x .θ θ= = (3)

Since θb is identical for both rods, Eq. (1) with the equality of Eq. (3) requires that

A A B Bm x m x=

Substituting for m from Eq. (2) gives

1/ 2 1/ 2

A B
A c B c

hP hP
x x .

k A k A

   
=   

   

Recognizing that h, P and Ac are identical for each rod and rearranging,

2
B

B A
A

x
k k

x

 
=  

 

2

B
0.075m

k 70 W/m K 17.5 W/m K.
0.15m

 = × ⋅ = ⋅  
<

COMMENTS:  This approach has been used as a method for determining the thermal
conductivity.  It has the attractive feature of not requiring power or temperature
measurements, assuming of course, a reference material of known thermal conductivity is
available.



PROBLEM 3.58

KNOWN:  Dimensions of spherical, stainless steel liquid oxygen (LOX) storage container.  Boiling
point and latent heat of fusion of LOX.  Environmental temperature.

FIND:  Thermal isolation system which maintains boil-off below 1 kg/day.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, steady-state conditions, (2) Negligible thermal resistances
associated with internal and external convection, conduction in the container wall, and contact between
wall and insulation, (3) Negligible radiation at exterior surface, (4) Constant insulation thermal
conductivity.

PROPERTIES:  Table A.1, 304 Stainless steel (T = 100 K):  ks = 9.2 W/m⋅K; Table A.3, Reflective,
aluminum foil-glass paper insulation (T = 150 K):  ki = 0.000017 W/m⋅K.

ANALYSIS:  The heat gain associated with a loss of 1 kg/day is

( )5
fg

1kg day
q mh 2.13 10 J kg 2.47 W

86, 400s day
= = × =�

With an overall temperature difference of ( )bpT T∞ −  = 150 K, the corresponding total thermal

resistance is

tot
T 150 K

R 60.7 K W
q 2.47 W

∆
= = =

Since the conduction resistance of the steel wall is

( )
3

t,cond,s
s 1 2

1 1 1 1 1 1
R 2.4 10 K W

4 k r r 4 9.2 W m K 0.35 m 0.40 mπ π
−= − = − = ×

⋅
   
   

  

it is clear that exclusive reliance must be placed on the insulation and that a special insulation of very low
thermal conductivity should be selected.  The best choice is a highly reflective foil/glass matted
insulation which was developed for cryogenic applications.  It follows that

( )t,cond,i
i 2 3 3

1 1 1 1 1 1
R 60.7 K W

4 k r r 4 0.000017 W m K 0.40 m rπ π
= = − = −

⋅
   
   
   

which yields r3 = 0.4021 m.  The minimum insulation thickness is therefore δ = (r3 - r2) = 2.1 mm.

COMMENTS:  The heat loss could be reduced well below the maximum allowable by adding more
insulation.  Also, in view of weight restrictions associated with launching space vehicles, consideration
should be given to fabricating the LOX container from a lighter material.



PROBLEM 3.73

KNOWN:  Composite wall with outer surfaces exposed to convection process.

FIND:  (a) Volumetric heat generation and thermal conductivity for material B required for special
conditions, (b) Plot of temperature distribution, (c) T1 and T2, as well as temperature distributions
corresponding to loss of coolant condition where h = 0 on surface A.

SCHEMATIC:

LA = 30 mm
LB = 30 mm
LC = 20 mm
kA = 25 W/m⋅K
kC = 50 W/m⋅K

ASSUMPTIONS:  (1) Steady-state, one-dimensional heat transfer, (2) Negligible contact resistance at
interfaces, (3) Uniform generation in B; zero in A and C.

ANALYSIS:  (a) From an energy balance on wall B,

in out g stE E E E− + =� � � �

1 2 Bq q 2qL 0′′ ′′− − + =�

( )B 1 2 Bq q q 2L′′ ′′= +� .

To determine the heat fluxes, ��q1  and ��q2 , construct thermal circuits for A and C:

( ) ( )1 1 A Aq T T 1 h L k∞′′ = − + ( ) ( )2 2 C Cq T T L k 1 h∞′′ = − +

( )1 2

1 0.030 m
q 261 25 C

25 W m K1000 W m K
′′ = − +

⋅⋅

 
   

$     ( )2 2

0.020 m 1
q 211 25 C

50 W m K 1000 W m K
′′ = − +

⋅ ⋅

 
   

$

( ) 2
1q 236 C 0.001 0.0012 m K W′′ = + ⋅$ ( ) 2

2q 186 C 0.0004 0.001 m K W′′ = + ⋅$

2
1q 107, 273 W m′′ = 2

2q 132,857 W m′′ =

Using the values for 1q′′  and 2q′′  in Eq. (1), find

( )2 6 3
Bq 106,818 132,143 W m 2 0.030 m 4.00 10 W m= + × = ×� . <

To determine kB, use the general form of the temperature and heat flux distributions in wall B,

2B
1 2 x B 1

B B

q q
T(x) x C x C q (x) k x C

2k k
′′= − + + = − − +

 
  

� �

(1,2)

there are 3 unknowns, C1, C2 and kB, which can be evaluated using three conditions,
Continued...



PROBLEM 3.73 (Cont.)

( ) ( )2B
B 1 B 1 B 2

B

q
T L T L C L C

2k
− = = − − − +

�

where T1 = 261°C (3)

( ) ( )2B
B 2 B 1 B 2

B

q
T L T L C L C

2k
+ = = − + + +

�

where T2 = 211°C (4)

( ) ( )B
x B 1 B B 1

B

q
q L q k L C

k
′′ ′′− = − = − − − +

 
  

�

where 1q′′  = 107,273 W/m2 (5)

Using IHT to solve Eqs. (3), (4) and (5) simultaneously with Bq�  = 4.00 × 106 W/m3, find

Bk 15.3 W m K= ⋅ <
(b) Following the method of analysis in the IHT Example 3.6, User-Defined Functions, the temperature
distribution is shown in the plot below.  The important features are (1) Distribution is quadratic in B, but
non-symmetrical; linear in A and C; (2) Because thermal conductivities of the materials are different,
discontinuities exist at each interface; (3) By comparison of gradients at x = -LB and +LB, find 2q′′  > 1q′′ .

(c) Using the same method of analysis as for Part (c), the temperature distribution is shown in the plot
below when h = 0 on the surface of A.  Since the left boundary is adiabatic, material A will be isothermal
at T1.  Find

T1 = 835°C            T2 = 360°C <
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PROBLEM 3.79

KNOWN:  Wall of thermal conductivity k and thickness L with uniform generation q� ; strip heater

with uniform heat flux oq ;′′  prescribed inside and outside air conditions (hi, T∞,i, ho, T∞,o).

FIND:  (a) Sketch temperature distribution in wall if none of the heat generated within the wall is lost
to the outside air, (b) Temperatures at the wall boundaries T(0) and T(L) for the prescribed condition,
(c) Value of ′′qo  required to maintain this condition, (d) Temperature of the outer surface, T(L), if

oq=0 but q′′�  corresponds to the value calculated in (c).

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Uniform
volumetric generation, (4) Constant properties.

ANALYSIS:  (a) If none of the heat generated within the wall is
lost to the outside of the chamber, the gradient at x = 0 must be zero.
Since q�  is uniform, the temperature distribution is parabolic, with

T(L) > T∞,i.

(b) To find temperatures at the boundaries of wall, begin with the
general solution to the appropriate form of the heat equation (Eq.3.40).

( ) 2
1 2

q
T x x C x+C

2k
= − +

�
(1)

From the first boundary condition,

x=o 1
dT

0          C 0.
dx

= → = (2)

Two approaches are possible using different forms for the second boundary condition.

Approach No. 1:  With boundary condition ( ) 1 T 0 T→ =

( ) 2
1

q
T x x T

2k
= − +

�
(3)

To find T1, perform an overall energy balance on the wall

in out gE E E 0− + =� � �

( ) ( ),i 2 ,i
qL

h T L T qL=0     T L T T
h∞ ∞ − − + = = + 
�

� (4)

Continued …..



PROBLEM 3.79 (Cont.)

and from Eq. (3) with x = L and T(L) = T2,

( )
2

2 2
1 1 2 ,i

q q qL qL
T L L T      or     T T L T

2k 2k h 2k∞= − + = + = + +
� � � �

     (5,6)

Substituting numerical values into Eqs. (4) and (6), find

3 2
2T 50 C+1000 W/m 0.200 m/20 W/m K=50 C+10 C=60 C= × ⋅$ $ $ $ <

( )23
1T 60 C+1000 W/m 0.200 m / 2 4 W/m K=65 C.= × × ⋅$ $ <

Approach No. 2:  Using the boundary condition

( )x=L ,i
dT

k h T L T
dx ∞ − = − 

yields the following temperature distribution which can be evaluated at x = 0,L for the required
temperatures,

( ) ( )2 2
,i

q qL
T x x L T .

2k h ∞= − − + +
� �

(c) The value of oq′′  when T(0) = T1 = 65°C

follows from the circuit

1 ,o
o

o

T T
q

1/ h
∞−

′′ =

( )2 2
oq 5 W/m K 65-25 C=200 W/m .′′ = ⋅ $ <

(d) With q=0,�  the situation is represented
by the thermal circuit shown.  Hence,

o a bq q q′′ ′′ ′′= +

1 ,o 1 ,i
o

o i

T T T T
q

1/ h L/k+1/h

∞ ∞− −
′′ = +

which yields

1T 55 C.= $ <



PROBLEM 3.84

KNOWN:  Cylindrical shell with uniform volumetric generation is insulated at inner surface
and exposed to convection on the outer surface.

FIND:  (a) Temperature distribution in the shell in terms of i or ,  r ,  q, h, T  and k,∞�  (b)

Expression for the heat rate per unit length at the outer radius, ( )oq r .′

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional radial (cylindrical)
conduction in shell, (3) Uniform generation, (4) Constant properties.

ANALYSIS:  (a) The general form of the temperature distribution and boundary conditions
are

( ) 2
1 2

q
T r r C  ln r+C

4k
= − +

�

at r = ri:
i

2
i 1 1 i

ir

dT q 1 q
0 r C 0        C r

dr 2k r 2k
 = = − + + =

� �

at r = ro: ( )
o

o
r

dT
k h T r T         surface energy balance

dr ∞
  − = −  

2 2 2
o o o 2i i

o

q q 1 q q
k r r h r r ln r C T

2k 2k r 4k 2k ∞
     − + ⋅ = − + + −           

� � � �

2 22
o oi i

2 o
o o

qr qrr 1 r
C 1 ln r T

2h r 2k 2 r ∞
         = − + + − +            

� �

Hence,

( ) ( )
22

2 2 o ii
o

o o

qr qrq r r
T r r r ln 1 T .

4k 2k r 2h r ∞
     = − + − + +        

� �� <

(b) From an overall energy balance on the shell,

( ) ( )2 2
r o g o iq r E q r r .π′ ′= = −� � <

Alternatively, the heat rate may be found using Fourier’s law and the temperature distribution,

( ) ( ) ( )
o

2
2 2i

r o o o o i
or

qrdT q 1
q r k 2  r 2  kr r  0 0 q r r

dr 2k 2k r
π π π

   ′ = − = − − + + + = −    

��
�



PROBLEM 3.101

KNOWN:  Dimensions of a plate insulated on its bottom and thermally joined to heat sinks at its
ends.  Net heat flux at top surface.

FIND:  (a) Differential equation which determines temperature distribution in plate, (b) Temperature
distribution and heat loss to heat sinks.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional conduction in x (W,L>>t), (3) Constant
properties, (4) Uniform surface heat flux, (5) Adiabatic bottom, (6) Negligible contact resistance.

ANALYSIS:  (a) Applying conservation of energy to the differential control volume, qx + dq

= qx +dx, where qx+dx = qx + (dqx/dx) dx and ( )odq=q  W dx .′′ ⋅   Hence, ( )x odq / dx q  W=0.′′−

From Fourier’s law, ( )xq k t W  dT/dx.= − ⋅   Hence, the differential equation for the

temperature distribution is

2
o

o 2
qd dT d T

 ktW q  W=0          0.
dx dx ktdx

′′  ′′− − + =  
<

(b) Integrating twice, the general solution is,

( ) 2o
1 2

q
T x x C  x +C

2kt

′′
= − +

and appropriate boundary conditions are T(0) = To, and T(L) = To.  Hence, To = C2, and

2o o
o 1 2 1

q q L
T L C L+C           and          C .

2kt 2kt

′′ ′′
= − + =

Hence, the temperature distribution is

( ) ( )2o
o

q L
T x x Lx T .

2kt

′′
= − − + <

Applying Fourier’s law at x = 0, and at x = L,

( ) ( )
x=0

o o
x=0

q q WLL
q 0 k Wt  dT/dx) kWt  x

kt 2 2

′′ ′′   = − = − − − = −     

( ) ( )
x=L

o o
x=L

q q WLL
q L k Wt dT/dx) kWt  x

kt 2 2

′′ ′′   = − = − − − = +     

Hence the heat loss from the plates is ( )o oq=2 q WL/2 q WL.′′ ′′= <
COMMENTS:  (1) Note signs associated with q(0) and q(L).  (2) Note symmetry about x =

L/2.  Alternative boundary conditions are T(0) = To and dT/dx)x=L/2=0.



PROBLEM 3.111

KNOWN:   Rod protruding normally from a furnace wall covered with insulation of thickness Lins

with the length Lo exposed to convection with ambient air.

FIND:   (a) An expression for the exposed surface temperature To as a function of the prescribed
thermal and geometrical parameters.  (b)  Will a rod of Lo = 100 mm meet the specified operating
limit, T0 ≤ 100°C?   If not, what design parameters would you change?

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in rod, (3) Negligible
thermal contact resistance between the rod and hot furnace wall,  (4) Insulated section of rod, Lins,
experiences no lateral heat losses, (5) Convection coefficient uniform over the exposed portion of the
rod, Lo,  (6) Adiabatic tip condition for the rod and (7) Negligible radiation exchange between rod and
its surroundings.

ANALYSIS:   (a) The rod can be modeled as a thermal network comprised of two resistances in
series:  the portion of the rod, Lins, covered by insulation, Rins, and the portion of the rod, Lo,
experiencing convection, and behaving as a fin with an adiabatic tip condition, Rfin.  For the insulated
section:

ins ins cR L kA= (1)

For the fin, Table 3.4, Case B, Eq. 3.76,

( ) ( )
fin b f 1/ 2

c o

1
R q

hPkA tanh mL
θ= = (2)

( )1/ 2 2
c cm hP kA A D 4 P Dπ π= = = (3,4,5)

From the thermal network, by inspection,

( )o w fin
o w

fin ins fin ins fin

T T T T R
T T T T

R R R R R
∞ ∞

∞ ∞
− −

= = + −
+ +

(6) <
(b) Substituting numerical values into Eqs. (1) - (6) with Lo = 200 mm,

( )o
6.298

T 25 C 200 25 C 109 C
6.790 6.298

= + − =
+

$$ $ <

( ) 4 22
ins c4 2

0.200 m
R 6.790 K W A 0.025 m 4 4.909 10 m

60 W m K 4.909 10 m
π −

−
= = = = ×

⋅ × ×

( ) ( )
1/ 22 2

finR 1 0.0347 W K tanh 6.324 0.200 6.298 K W= × =

( ) ( )( )2 4 2 2 2
chPkA 15 W m K 0.025 m 60 W m K 4.909 10 m 0.0347 W Kπ −= ⋅ × × ⋅ × × =

Continued...



PROBLEM 3.111 (Cont.)

( ) ( )( )1/ 22 4 2 11/ 2
cm hP kA 15 W m K 0.025 m 60 W m K 4.909 10 m 6.324 mπ − −= = ⋅ × ⋅ × × =

Consider the following design changes aimed at reducing To ≤ 100°C.  (1) Increasing length of the fin
portions:  with Lo = 200 mm, the fin already behaves as an infinitely long fin.  Hence, increasing Lo

will not result in reducing To.  (2) Decreasing the thermal conductivity:  backsolving the above
equation set with T0 = 100°C, find the required thermal conductivity is k = 14 W/m⋅K.  Hence, we
could select a stainless steel alloy; see Table A.1.  (3) Increasing the insulation thickness:  find that
for To = 100°C, the required insulation thickness would be Lins = 211 mm.  This design solution might
be physically and economically unattractive.  (4) A very practical solution would be to introduce
thermal contact resistance between the rod base and the furnace wall by “tack welding” (rather than a
continuous bead around the rod circumference) the rod in two or three places.  (5) A less practical
solution would be to increase the convection coefficient, since to do so, would require an air handling
unit.

COMMENTS:  (1) Would replacing the rod by a thick-walled tube provide a practical solution?

(2) The IHT Thermal Resistance Network Model and the Thermal Resistance Tool for a fin with an
adiabatic tip were used to create a model of the rod.  The Workspace is shown below.

// Thermal Resistance Network Model:
// The Network:

// Heat rates into node j,qij, through thermal resistance Rij
q21 = (T2 - T1) / R21
q32 = (T3 - T2) / R32

// Nodal energy balances
q1 + q21 = 0
q2 - q21 + q32 = 0
q3 - q32 = 0

/* Assigned variables list: deselect the qi, Rij and Ti which are unknowns; set qi = 0 for embedded nodal
points at which there is no external source of heat. */
T1 = Tw // Furnace wall temperature, C
//q1 = // Heat rate, W
T2 = To // To, beginning of rod exposed length
q2 =  0 // Heat rate, W; node 2; no external heat source
T3 =  Tinf // Ambient air temperature, C
//q3 = // Heat rate, W

// Thermal Resistances:
// Rod - conduction resistance
R21 =  Lins / (k * Ac)      // Conduction resistance, K/W
Ac = pi * D^2 / 4 // Cross sectional area of rod, m^2

// Thermal Resistance Tools - Fin with Adiabatic Tip:
R32 =  Rfin //  Resistance of fin, K/W
/* Thermal resistance of a fin of uniform cross sectional area Ac, perimeter P, length L, and thermal
conductivity k with an adiabatic tip condition experiencing convection with a fluid at Tinf and coefficient h, */
Rfin = 1/ ( tanh (m*Lo) * (h * P * k * Ac ) ^ (1/2) )              // Case B, Table 3.4
m = sqrt(h*P / (k*Ac))
P = pi * D                       // Perimeter, m

// Other Assigned Variables:
Tw = 200 // Furnace wall temperature, C
k = 60 // Rod thermal conductivity, W/m.K
Lins = 0.200 // Insulated length, m
D = 0.025 // Rod diameter, m
h = 15 // Convection coefficient, W/m^2.K
Tinf = 25 // Ambient air temperature,C
Lo = 0.200 // Exposed length, m



PROBLEM 3.116

KNOWN:  Dimensions and thermal conductivity of a gas turbine blade.  Temperature and convection
coefficient of gas stream.  Temperature of blade base and maximum allowable blade temperature.

FIND:  (a) Whether blade operating conditions are acceptable, (b) Heat transfer to blade coolant.

SCHEMATIC:

ASSUMPTIONS:  (1)  One-dimensional, steady-state conduction in blade, (2) Constant k, (3) Adiabatic
blade tip, (4) Negligible radiation.

ANALYSIS:  Conditions in the blade are determined by Case B of Table 3.4.

(a) With the maximum temperature existing at x = L, Eq. 3.75 yields

( )
b

T L T 1

T T cosh mL
∞

∞

−
=

−

( ) ( )1/ 21/ 2 2 4 2
cm hP/kA 250W/m K 0.11m/20W/m K 6 10 m−= = ⋅ × ⋅ × ×

m = 47.87 m-1    and    mL = 47.87 m-1 × 0.05 m = 2.39

From Table B.1, cosh mL = 5.51.  Hence,

( )T L 1200 C (300 1200) C/5.51 1037 C= + − =$ $ $ <
and the operating conditions are acceptable.

(b) With ( ) ( ) ( )1/ 22 4 21/ 2
c bM hPkA 250W/m K 0.11m 20W/m K 6 10 m 900 C 517W−= Θ = ⋅ × × ⋅ × × − = −$ ,

Eq. 3.76 and Table B.1 yield

( )fq M tanh mL 517W 0.983 508W= = − = −

Hence, b fq q 508W= − = <
COMMENTS:  Radiation losses from the blade surface and convection from the tip will contribute to
reducing the blade temperatures.



PROBLEM 3.127

KNOWN:  Positions of equal temperature on two long rods of the same diameter, but
different thermal conductivity, which are exposed to the same base temperature and ambient
air conditions.

FIND:  Thermal conductivity of rod B, kB.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Rods are infinitely long fins of uniform
cross-sectional area, (3) Uniform heat transfer coefficient, (4) Constant properties.

ANALYSIS:  The temperature distribution for the infinite fin has the form

( ) 1/ 2
-mx

b o c

T x T hP
e           m .

T T kA

θ
θ

∞

∞

−  
= = =  −  

       (1,2)

For the two positions prescribed, xA and xB, it was observed that

( ) ( ) ( ) ( )A A B B A A B BT x T x           or          x x .θ θ= = (3)

Since θb is identical for both rods, Eq. (1) with the equality of Eq. (3) requires that

A A B Bm x m x=

Substituting for m from Eq. (2) gives

1/ 2 1/ 2

A B
A c B c

hP hP
x x .

k A k A

   
=   

   

Recognizing that h, P and Ac are identical for each rod and rearranging,

2
B

B A
A

x
k k

x

 
=  

 

2

B
0.075m

k 70 W/m K 17.5 W/m K.
0.15m

 = × ⋅ = ⋅  
<

COMMENTS:  This approach has been used as a method for determining the thermal
conductivity.  It has the attractive feature of not requiring power or temperature
measurements, assuming of course, a reference material of known thermal conductivity is
available.
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