PROBLEM 5.9

KNOWN: Diameter and radiad temperature of AISI 1010 carbon sted shaft. Convection
coefficient and temperature of furnace gases.

FIND: Time required for shaft centerline to reach a prescribed temperature.
SCHEMATIC:

I
i
\

+o=0.05m ]/—T (r,0)=T-=300K
_wke

- To=1200K
T(01)=800K __,___—\> h=100Wfmz-K

ASSUMPTIONS: (1) One-dimensiond, radial conduction, (2) Constant properties.
PROPERTIES: AlSI 1010 carbon steel, Table A1 (T =550K): r =7832kg/ mS3, k=512
WIMK, ¢ = 541 JkgK, a = 1.21° 10> ni/s,

ANALYSIS: TheBiot number is

T T sawimx - 00488
Hence, the lumped cqoacitmce method can be applied. From Equation 5.6,
T- T¥ _ ¢ 4h 1
TR T vt T
@800- 12006 _ o0y 4 100 W/m? <K t
"&300- 12005 7832 kg/m3 (541 Jkg < )0.1 m
t=859s. <

COMMENTS: To check the vdidity of the foregoing result, use the one-term gpproximetion to the
series solution. From Equation 5.49c,

Jo- Ty =400 ams- Clexp( V12Fo)
T- Ty -900

For Bi = hrg/k = 0.0976, Table 5.1 yields \ = 0.436 and C1 = 1.024. Hence

: (0.436)2(1.2’ 105 m? /s)
#t =1n(0.434) =- 0.835
0.05m

t=915s

The reaults agree to within 6%. The lumped capacitance method underestimates the actud time,
since the response at the centerline lags thet at any other location in the shaft.



PROBLEM 5.16

KNOWN: Thickness and properties of strip steel heated in an annealing process. Furnace operating
conditions.

FIND: (a) Timerequired to heat the strip from 300 to 600°C. Required furnace length for prescribed
strip velocity (V = 0.5 m/s), (b) Effect of wall temperature on strip speed, temperature history, and
radiation coefficient.

SCHEMATIC:

ql;ad \ / q"COHV
Steel .  ___N_/__ . d/2 =0.006 m
T,= 300 OC? o I % £
|

T;=600°C V=0.5m/s
— = 2
Combustion { —— h =100 W/m#-K
gases = T.=T,

ASSUMPTIONS: (1) Constant properties, (2) Negligible temperature gradients in transverse direction
across strip, (¢) Negligible effect of strip conduction in longitudinal direction.

PROPERTIES: Sted: p=7900 kg/m3, C, = 640 JkglK, k = 30 W/mIK, €= 0.7.

ANALYSIS: (@) Considering afixed (control) mass of the moving strip, its temperature variation with
time may be obtained from an energy balance which equates the change in energy storage to heat transfer
by convection and radiation. If the surface area associated with one side of the control massis
designated as As, Asc = Asr = 2Asand V = 0As in Equation 5.15, which reduces to

pcs T - —281(T ~Two) +£0(T4 Ty )D
dt =
or, introducing the radiation coefficient from Equations 1.8 and 1.9 and integrating,
1 tf
T -Ti =———— T-Te) +h (T —T. t
T = o2 o (T ~Teo ) +hy (T ~Teur S

Using the IHT Lumped Capacitance Model to integrate numerically with T; = 573 K, wefind that T; =
873 K correspondsto

t = 209s <
in which case, the required furnace length is
L =Vt; =0.5m/sx209s =105m <

(b) For T,, = 1123 K and 1273 K, the numerical integration yields t; = 102s and 62s respectively. Hence,
forL =105m,V = L/t;yields

V (T, =1123K) =1.03m/s

V (Ty =1273K) =1.69m/s <
Continued...



PROBLEM 5.16 (Cont.)
which correspond to increased process rates of 106% and 238%, respectively. Clearly, productivity can

be enhanced by increasing the furnace environmental temperature, albeit at the expense of increasing
energy utilization and operating costs.

If the annealing process extends from 25°C (298 K) to 600°C (873 K), numerical integration
yields the following results for the prescribed furnace temperatures.
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As expected, the heating rate and time, respectively, increase and decrease significantly with increasing
Tw. Although the radiation heat transfer rate decreases with increasing time, the coefficient h, increases
with t as the strip temperature approaches T,.

COMMENTS: To check the validity of the lumped capacitance approach, we calculate the Biot number

based on a maximum cumulative coefficient of (h + h,) = 300 W/m’K. It followsthat Bi = (h + h,)(8/2)/k
= 0.06 and the assumption isvalid.



PROBLEM 5.40

KNOWN: Initid temperaure, thickness and thermd diffugvity of glassplate. Prescribed surface
temperature.

FIND: (a) Time to achieve 50% reduction in midplane temperature, (b) Maximum temperature
gradient a that time.

SCHEMATIC:
f< >—2L=20mm
Glass, oc= 6x10 m2[s, T
T -Tg=300°C
7; 7; / s

ASSUMPTIONS: (1) One-dimensiona conduction, (2) Constant properties.
ANALYSIS: Prescribed surface temperatureisandogoustoh ® ¥ and Ty = Ts. Hence, Bi = ¥.
Assume vdidity of one-term approximation to series solution for T (xt).
(a) At the midplane,
* _To- T
o = ——>
Ti-Ts

=050 = Clexp(- szo)

zqtanz1 =Bi=¥ ® z1=p /2.

Hence
4si 4
Cr=—2L 29073
2z1+sin(2z1) p
In (qé/Cl)
Fo=- ——1-0379
2
21

Fol? _0.379(0.01m)%
a 6 10 ' m?/s

63s. <
(b) With q* = Clexp(- 212F0) coszlx*

17 _(Ti-Ts) 1q _-. (Ti - Ts)Zlclexp(-zleo)sinzlx*
q x L qx L

, =.300C pyes__ 536 104°C/m. <
x'=1" 001m 2

COMMENTS: Vdidity of one-term gpproximation is confirmed by Fo > 0.2.

T T/ X‘max =9 T/9 x




PROBLEM 5.53

KNOWN: Long plagtic rod of diameter D heated uniformly in an oven to Tj and then alowed to

convectively cool in ambient air (Ty, h) for a3 minute period. Minimum temperature of rod should
not be less than 200° C and the maximum-minimum temperature within the rod should not exceed
10°C.

FIND: Initid uniform temperature T; to which rod should be heated. Whether the 10°C internd
temperature difference is exceeded.

SCHEMATIC:
Rod, r=15mm
e
Ambient air T(~0)=T;
T0=25°C /<' T(ry 5 min)=200°C
h= 8W/m2- K /1 worst case condition

ASSUMPTIONS: (1) One-dimensional radial conduction, (2) Constant properties, (3) Uniform
and congtant convection coefficients.

PROPERTIES: Pasticrod (given): k =0.3 W/mX, r cp = 1040 kJ/m3>K.

ANALYSIS: For the worst case condition, the rod cools for 3 minutes and its outer surfaceis at
least 200°C in order that the subsequent pressing operation will be satisfactory. Hence,

hro 8 W/m2x ~ 0.015 m

=0.40
akt K O':),'[\/\//rmK() 3W/mxK 3" 60s
Fo=—= X_— = . . =0.2308.

@ T % 1 1040 10° ImxK  (0.015m)?
Usng Eq. 5.49aand zq =0.8516 rad and C1 = 1.0932 from Table 5.1,

Bi =

* T(ro,t) - T¥ * 2
= =CGJ (z I )ex (-z Fo).
q T- Ty 1901 Z1%0 | €XP| - 21
With 1y =1, from Table B4, J (21" 1) =J (0.8516) = 0.8263, gving
220' 2 _1.0032 O.8263exp(- 0.8516%" 0.2308) Tj =254°C. <
.

At thistime (3 minutes) what is the difference between the center and surface temperatures of the
rod? From Eqg. 5.49b,
" T(rg,t)- T ] x

a__Tlot)- T« __200-25 =Jo(z1r5) =0.8263

do T(0t)-Ty T(Ot)-25
which gives T(0,t) = 237°C. Hence,

DT =T(0,180s)- T(ro,180s) =(237- 200)° C=37°C. <
Hence, the desired max-min temperature difference sought (10°C) is not achieved.

COMMENTS: DT could be reduced by decreasing the cooling rate; however, h can not be made
much smaller. Two solutions are (a) increase ambient air temperature and (b) non-uniformly heet
rod in oven by controlling its resdence time.




PROBLEM 5.58

KNOWN: A ball bearing is suddenly immersed in a molten salt bath; heat treatment to harden occurs
at locationswith T > 1000K.

FIND: Time required to harden outer layer of 1mm.

SCHEMATIC:
p=7800kg[m® T(r,0)= 300K
c=500]fkg-K T(Gmm, +)=1000K
ootk ot s
D=20mm T T T =1300K

h=5000W/m2-K
ASSUMPTIONS: (1) One-dimensional radial conduction, (2) Constant properties, (3) Fo = 0.2.

ANALYSIS: Sinceany location within the ball whose temperature exceeds 1000K will be hardened,
the problem isto find the time when the location r = 9mm reaches 1000K. Then a 1mm outer |ayer
will be hardened. Begin by finding the Biot number.

_hr, _ 5000 W/m? (K (0.020m/2)

=1.00.
Kk 50 W/m K
Using the one-term approximate solution for a sphere, find
Fo= —im wﬂ/q—sn(@ﬂ)
= 4 E

From Table 5.1 with Bi = 1.00, for the spherefind {1 =15708 rad and C1 = 1.2732. Withr*
=r1lrg= (9mm/10mm) = 0.9, substitute numerical values.

1000- 1300)K/ ;sjn(l 5708x09rad)D—0441
(1. 5708) g(soo 1300)K T 15708x09° v ' 5_ o

From the definition of the Fourier number with a = k/pc
2
I
t=Fo® = FoF2 ﬁ _ 0,441 <0.020mCF 7800 x5ooL/50 Wim K =34s. <
a E E kg (K
COMMENTS: (1) Note the very short time required to harden the ball. At thistime it can be easily
shown the center temperatureis T(0,3.4s) = 871 K.

Fo=

(2) The Heider charts can also be used. From Fig. D.8, with Bi_1 =1.0andr/rg=0.9, read 6/6g =
0.69(x0.03). Since

6 =T - T, =1000 1300 = -300K 6 =T, T, =-1000K

it follows that
ﬂ =0.30. Since 2 :i ﬁﬂ, then 2 =0.69 6—0
6 8 6 § q q

and  6,/6 =0.30/0.69=0.43 (+0.02).

From Fig. D.7 at 84/6;=0.43, Bi'1=1.0, read Fo = 0.45 (x0.03) and t = 3.5 (+0.2)s. Note the use of
tolerances associated with reading the charts to +5%.



PROBLEM 5.71

KNOWN: Agphdt pavement, initidly at 50°C, is suddenly exposed to arainstorm reducing the
surface temperature to 20°C.

FIND: Totd amount of energy removed (J/mz) from the pavement for a 30 minute period.
SCHEMATIC:

ASSUMPTIONS: (1) Asphat pavement can be treated as a semi-infinite solid, (2) Effect of
rainstorm is to suddenly reduce the surface temperature to 20°C and is maintained at that level for
the period of interest.

PROPERTIES: Table A-3, Asphalt (300K): r =2115 kg/m3, ¢ =920 JkgK, k = 0.062
W/mK.

ANALYSIS: Thissolution correspondsto Case 1, Figure 5.7, and the surface heat flux is given by
Eq. 5.58 as

of(t) =k (Ts- Ti)/(pa t (1)
The energy into the pavement over a period of timeisthe integra of the surface heet flux expressed
as

1/2
)

R
(=40 t)dt. 2
Qe=0 ag(t) 2
Note that q¢(t) isinto the solid and, hence, Q represents energy into the solid. Substituting Eq. (1)
for qg(t) into Eq. (2) and integrating find

t k(Ts- Ti).
Qe=k (Ts- Ti)/(pa)llzoot ”2dt:—(( 3)1/2') 22, )
pa

Subgtituting numerical vauesinto Eqg. (3) with

Lok 0.0623W/m><K 218 10-81m2 s
¢ 2115kg/m3” 920 JkgK
find that for the 30 minute period,
0.062 W/mK (20- 50)K
Qe= ( 122 * 2(30" 60s)H/2 =- 4.99" 10° Im2. <
(p * 318" 108m? /s)

COMMENTS: Notethat thesign for Q@ is negative implying that energy is removed from the
solid.



PROBLEM 5.88
KNOWN: Initial temperature of fire clay brick which is cooled by convection.
FIND: Center and corner temperatures after 50 minutes of cooling.

SCHEMATIC:
/42L5=0.2m7/
2L ,=009m
/‘7
2L,=006m / //vv7;o=313/<
h: OW/mZ'K

Fire clay brick, T;=1600K

ASSUMPTIONS: (1) Homogeneous medium with constant properties, (2) Negligible
radiation effects.

PROPERTIES: Table A-3, Fire clay brick (900K): p = 2050 kg/m3, k=10W/mIK, ¢, =
960 JkglK. a = 0.51 x 10 °m?/s.
ANALYSIS: From Fig. 5.11(h), the center temperature is given by

T(0,00,t)- T,
Ti —Te

=R (0,t)xP,(0,t) xP3(0,t)

where P, P, and P3 must be obtained from Fig. D.1.

L;=008m  Bip="l-o150 oy =9t =170
Kk L2
1
L,=0045m:  Bip="t2-225 o, =%} =0756
k |_2
L3=010m:  Big :h—L‘i"’ =50  Fog :C'—Zt =0.153
L
3

Hencefrom Fig. D.1,
R (0,t)=0.22 P (0,t)=0.50 P3(0,t) =0.85.

T(0,001t)-T

Hence, —— ® ~0.22x0.50%0.85 =0.094
i~ loo

and the center temperatureis

T(0,0,0;t) = 0.094(1600-313)K +313K =434K. <

Continued .....



PROBLEM 5.88 (Cont.)
The corner temperature is given by
T(Ly,Lo,L3,t) - Te

=P(Lq,t)xP(L2,t)xP(L3,t)

Ti —Te
where
Q(Ll,t)
P(Ly,t)= g R (0,t), etc.
(0}

and similar forms can be written for Lo and L3. From Fig. D.2,

O(Let) _geg  O(L2t) o, O30
0

o 6O 60

Hence,

p ~0.85x0.25=0.21

P(L1,t)=0.55%x0.22=0.12
L3t

P(Lo, tg =~ 0.43x0.50 =0.22

and

T(LiLoLat)-T
G T2 T?’ )=Teo _ 0.19%0.22x0.21 =0.0056
i~ loo

or
T(Lq,Lp,L3,t)=0.0056(1600-313)K +313K.
The corner temperature is then
T(Lg,Lp,L3,t)=320K. <
COMMENTS: (1) Theforegoing temperatures are overpredicted by ignoring radiation,

which is significant during the early portion of the transient.

(2) Note that, if the time required to reach a certain temperature were to be determined, an
iterative approach would have to be used. The foregoing procedure would be used to compute
the temperature for an assumed value of the time, and the cal culation would be repeated until
the specified temperature were obtai ned.
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