
PROBLEM 5.5

KNOWN:  Diameter and initial temperature of steel balls cooling in air.

FIND:  Time required to cool to a prescribed temperature.

SCHEMATIC:

ASSUMPTIONS:  (1) Negligible radiation effects, (2) Constant properties.

ANALYSIS:  Applying Eq. 5.10 to a sphere (Lc = ro/3),

( ) ( )2
oc h r / 3 20 W/m K 0.002mhL

Bi 0.001.
k k 40 W/m K

⋅
= = = =

⋅

Hence, the temperature of the steel remains approximately uniform during the cooling process, and
the lumped capacitance method may be used.  From Eqs. 5.4 and 5.5,
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COMMENTS:  Due to the large value of Ti, radiation effects are likely to be significant during the
early portion of the transient.  The effect is to shorten the cooling time.



PROBLEM 5.7

KNOWN:  Solid steel sphere (AISI 1010), coated with dielectric layer of prescribed thickness and
thermal conductivity.  Coated sphere, initially at uniform temperature, is suddenly quenched in an oil
bath.

FIND:  Time required for sphere to reach 140°C.

SCHEMATIC:

PROPERTIES:  Table A-1, AISI 1010 Steel [ ]( )T 500 140 C/2 320 C 600K := + = ≈o o

37832 kg/m ,  c 559 J/kg K, k 48.8 W/m K.ρ = = ⋅ = ⋅

ASSUMPTIONS:  (1) Steel sphere is space-wise isothermal, (2) Dielectric layer has negligible
thermal capacitance compared to steel sphere, (3) Layer is thin compared to radius of sphere, (4)
Constant properties.

ANALYSIS:  The thermal resistance to heat transfer from the sphere is due to the dielectric layer and
the convection coefficient.  That is,

( )
2

2
1 0.002m 1 m K

R 0.050 0.0003 0.0503 ,
k h 0.04 W/m K W3300 W/m K

⋅′′ = + = + = + =
⋅ ⋅

l

or in terms of an overall coefficient, 2U 1/R 19.88 W/m K.′′= = ⋅   The effective Biot number is

( ) ( )2
oc

e
U r /3 19.88 W/m K 0.300/6 mUL

Bi 0.0204
k k 48.8 W/m K

⋅ ×
= = = =

⋅
where the characteristic length is Lc = ro/3 for the sphere.  Since Bie < 0.1, the lumped capacitance
approach is applicable.  Hence, Eq. 5.5 is appropriate with h replaced by U,
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Substituting numerical values with (V/As) = ro/3 = D/6,

( )
( )

3

2
500 100 C7832 kg/m 559 J/kg K 0.300m

t  ln
619.88 W/m K 140 100 C

−× ⋅  =   ⋅ −

o

o

t 25,358s 7.04h.= = <
COMMENTS:  (1) Note from calculation of ′′R  that the resistance of the dielectric layer dominates
and therefore nearly all the temperature drop occurs across the layer.



PROBLEM 5.9

KNOWN:  Diameter and radial temperature of AISI 1010 carbon steel shaft.  Convection
coefficient and temperature of furnace gases.

FIND:  Time required for shaft centerline to reach a prescribed temperature.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, radial conduction, (2) Constant properties.

PROPERTIES:  AISI 1010 carbon steel, Table A.1 ( )T 550 K :=   ρ = 7832 kg / m3,  k = 51.2

W/m⋅K, c = 541 J/kg⋅K, α = 1.21×10
-5

 m
2
/s.

ANALYSIS:  The Biot number is

( )2
o 100 W/m K 0.05 m/2hr / 2

Bi 0.0488.
k 51.2 W/m K

⋅
= = =

⋅

Hence, the lumped capacitance method can be applied.  From Equation 5.6,
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2

3
800 1200 4 100 W/m K

ln 0.811 t
300 1200 7832 kg/m 541 J/kg K 0.1 m

− × ⋅  = − = − −  ⋅

t 859 s.= <
COMMENTS:  To check the validity of the foregoing result, use the one-term approximation to the
series solution.  From Equation 5.49c,
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For Bi = hro/k = 0.0976, Table 5.1 yields ς1 = 0.436 and C1 = 1.024.  Hence

( ) ( )
( )

( )
2 5 2

2

0.436 1.2 10  m / s
t ln 0.434 0.835

0.05 m

−− ×
= = −

t 915 s.=

The results agree to within 6%.  The lumped capacitance method underestimates the actual time,
since the response at the centerline lags that at any other location in the shaft.



PROBLEM 5.11

KNOWN:  Diameter, density, specific heat and thermal conductivity of aluminum spheres used in
packed bed thermal energy storage system.  Convection coefficient and inlet gas temperature.

FIND:  Time required for sphere to acquire 90% of maximum possible thermal energy and the
corresponding center temperature.  Potential advantage of using copper in lieu of aluminum.

SCHEMATIC:

ASSUMPTIONS:  (1) Negligible heat transfer to or from a sphere by radiation or conduction due to
contact with other spheres, (2) Constant properties.

ANALYSIS:  To determine whether a lumped capacitance analysis can be used, first compute Bi =

h(ro/3)/k = 75 W/m
2⋅K (0.025m)/150 W/m⋅K = 0.013 < 0.1.  Hence, the lumped capacitance

approximation may be made, and a uniform temperature may be assumed to exist in the sphere at any
time.  From Eq. 5.8a, achievement of 90% of the maximum possible thermal energy storage
corresponds to

( )t
i

Q
0.90 1 exp t /

cV
τ

ρ θ
= = − −

where 3 2
t sVc / hA Dc / 6h 2700 kg / m 0.075m 950 J / kg K / 6 75 W / m K 427s.τ ρ ρ= = = × × ⋅ × ⋅ =   Hence,

( )tt ln 0.1 427s 2.30 984sτ= − = × = <
From Eq. (5.6), the corresponding temperature at any location in the sphere is

( ) ( ) ( )g,i i g,iT 984s T T T exp 6ht / Dcρ= + − −

( ) ( )2 3T 984s 300 C 275 C exp 6 75 W / m K 984s / 2700 kg / m 0.075m 950 J / kg K= ° − ° − × ⋅ × × × ⋅

( )T 984 s 272.5 C= ° <

Obtaining the density and specific heat of copper from Table A-1, we see that (ρc)Cu ≈ 8900 kg/m
3
 ×

400 J/kg⋅K = 3.56 × 10
6
 J/m

3⋅K > (ρc)Al = 2.57 × 10
6
 J/m

3⋅K.  Hence, for an equivalent sphere
diameter, the copper can store approximately 38% more thermal energy than the aluminum.

COMMENTS:  Before the packed bed becomes fully charged, the temperature of the gas decreases
as it passes through the bed.  Hence, the time required for a sphere to reach a prescribed state of
thermal energy storage increases with increasing distance from the bed inlet.



PROBLEM 5.15

KNOWN:  Thickness and properties of furnace wall.  Thermal resistance of film on surface of wall
exposed to furnace gases.  Initial wall temperature.

FIND:  (a) Time required for surface of wall to reach a prescribed temperature, (b) Corresponding
value of film surface temperature.

SCHEMATIC:

ASSUMPTIONS:  (1) Constant properties, (2) Negligible film thermal capacitance, (3) Negligible
radiation.

PROPERTIES:  Carbon steel (given):  ρ = 7850 kg/m
3
, c = 430 J/kg⋅K, k = 60 W/m⋅K.

ANALYSIS:  The overall coefficient for heat transfer from the surface of the steel to the gas is

( )
11

1 2 2 2
tot f 2

1 1
U R R 10 m K/W 20 W/m K.

h 25 W/m K

−−
− −  ′′ ′′= = + = + ⋅ = ⋅    ⋅ 

Hence,
2UL 20 W/m K 0.01 m

Bi 0.0033
k 60 W/m K

⋅ ×= = =
⋅

and the lumped capacitance method can be used.

(a) It follows that

( ) ( ) ( )t
i

T T
exp t/ exp t/RC exp Ut/ Lc
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−
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t ln ln
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ρ ∞
∞
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(b) Performing an energy balance at the outer surface (s,o),

( ) ( )s,o s,o s,i fh T T T T / R∞ ′′− = −

( ) ( )

2 -2 2s,i f
s,o 2f

hT T / R 25 W/m K 1300 K 1200 K/10 m K/W
T

h 1 / R 25 100 W/m K

∞ ′′+ ⋅ × + ⋅= =
′′+ + ⋅

s,oT 1220 K.= <

COMMENTS:  The film increases tτ  by increasing Rt but not Ct.



PROBLEM 5.22

KNOWN:  Droplet properties, diameter, velocity and initial and final temperatures.

FIND:  Travel distance and rejected thermal energy.

SCHEMATIC:

ASSUMPTIONS:  (1) Constant properties, (2) Negligible radiation from space.

PROPERTIES:  Droplet (given):  ρ = 885 kg/m
3
, c = 1900 J/kg⋅K, k = 0.145 W/m⋅K, ε = 0.95.

ANALYSIS:  To assess the suitability of applying the lumped capacitance method, use Equation 1.9
to obtain the maximum radiation coefficient, which corresponds to T = Ti.

( )33 8 2 4 2
r ih T 0.95 5.67 10 W/m K 500 K 6.73 W/m K.εσ −= = × × ⋅ = ⋅

Hence

( ) ( )( )2 3
r o

r

6.73 W/m K 0.25 10  m/3h r /3
Bi 0.0039

k 0.145 W/m K

−⋅ ×
= = =

⋅

and the lumped capacitance method can be used.  From Equation 5.19,

( )
( )
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3 32
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 
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 
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( ) ( )3 3

-8 2 4 3 3 3
0.1 m/s 885 kg/m 1900 J/kg K 0.5 10  m 1 1 1

L
18 0.95 5.67 10  W/m K 300 500 K

−⋅ ×  
= − 

× × × ⋅  

L 2.52 m.= <
The amount of energy rejected by each droplet is equal to the change in its internal energy.

( )
( )

( )
34

3
i f i f

5 10 m
E E Vc T T 885 kg/m 1900 J/kg K 200 K

6
ρ π

−×
− = − = ⋅

i fE E 0.022 J.− = <
COMMENTS:  Because some of the radiation emitted by a droplet will be intercepted by other
droplets in the stream, the foregoing analysis overestimates the amount of heat dissipated by radiation
to space.



PROBLEM 5.24

KNOWN:  Diameter and thermophysical properties of alumina particles.  Convection conditions
associated with a two-step heating process.

FIND:  (a) Time-in-flight (ti-f) required for complete melting, (b) Validity of assuming negligible
radiation.

SCHEMATIC:

ASSUMPTIONS:  (1) Particle behaves as a lumped capacitance, (2) Negligible radiation, (3) Constant
properties.

ANALYSIS:  (a) The two-step process involves (i) the time t1 to heat the particle to its melting point and
(ii) the time t2 required to achieve complete melting.  Hence, ti-f = t1 + t2, where from Eq. (5.5),

p p p p pi i
1

s mp

Vc D c T T
t ln ln

hA 6h T T

ρ ρθ
θ

∞
∞

−= =
−

( )
( )

( )
( )

3 6
4

1 2

3970 kg m 50 10 m 1560 J kg K 300 10,000
t ln 4 10 s

2318 10,0006 30,000 W m K

−
−

× ⋅ −
= = ×

−⋅

Performing an energy balance for the second step, we obtain

1 2

1

t t
conv stt

q dt E
+

= ∆∫
where qconv = hAs(T∞ - Tmp) and ∆Est = ρpVhsf.  Hence,

( )
( )

( ) ( )

3 6 6p p 4sf
2 2

mp

3970kg m 50 10 mD h 3.577 10 J kg
t 5 10 s

6h 10,000 2318 KT T 6 30,000 W m K

ρ
−

−

∞

× ×= = × = ×
−− ⋅

Hence  4
i ft 9 10 s 1ms−
− = × ≈ <

(b) Contrasting the smallest value of the convection heat flux, ( ) 8 2
conv,min mpq h T T 2.3 10 W m∞′′ = − = ×

to the largest radiation flux, ( )4 4
rad,max mp surq T Tεσ′′ = −  = 6.5 × 105 W/m2, we conclude that radiation

is, in fact, negligible.

COMMENTS:  (1) Since Bi = (hrp/3)/k ≈ 0.05, the lumped capacitance assumption is good.  (2) In an
actual application, the droplet should impact the substrate in a superheated condition (T > Tmp), which
would require a slightly larger ti-f.



PROBLEM 5.25

KNOWN:  Diameters, initial temperature and thermophysical properties of WC and Co in composite
particle.  Convection coefficient and freestream temperature of plasma gas.  Melting point and latent
heat of fusion of Co.
FIND:  Times required to reach melting and to achieve complete melting of Co.

SCHEMATIC:

ASSUMPTIONS:  (1) Particle is isothermal at any instant, (2) Radiation exchange with surroundings
is negligible, (3) Negligible contact resistance at interface between WC and Co, (4) Constant
properties.
ANALYSIS:  From Eq. (5.5), the time required to reach the melting point is

( )tot i
1 2 mpo

Vc T T
t ln

T Th D

ρ

π
∞
∞

−=
−

where the total heat capacity of the composite particle is

( ) ( ) ( ) ( )33 5
tot c sVc Vc Vc 16,000kg / m 1.6 10 m / 6 300J / kg Kρ ρ ρ π − 

= + = × ⋅ 
 

( ) ( )3 33 5 58900 kg / m / 6 2.0 10 m 1.6 10 m 750 J / kg Kπ − −   + × − × ⋅  
   

( )8 8 81.03 10 1.36 10 J / K 2.39 10 J / K− − −= × + × = ×

( ) ( )
( )
( )

8
4

1 22 5

300 10,000 K2.39 10 J / K
t ln 1.56 10 s

1770 10,000 K
20,000 W / m K 2.0 10 mπ

−
−

−

−×= = ×
−

⋅ ×
<

The time required to melt the Co may be obtained by applying the first law, Eq. (1.11b) to a control
surface about the particle.  It follows that

( ) ( )( )2 3 3
in o mp 2 st s o sfiE h D T T t E / 6 D D hπ ρ π∞= − = ∆ = −

( ) ( ) ( )
( ) ( ) ( )

3 33 5 5 5

5
2 22 5

8900 kg / m / 6 2 10 m 1.6 10 m 2.59 10 J / kg

t 2.28 10 s

20, 000 W / m K 2 10 m 10, 000 1770 K

π

π

− −

−

−

× − × ×

= = ×

⋅ × −

 
   <

COMMENTS:  (1) The largest value of the radiation coefficient corresponds to hr = εσ (Tmp + Tsur)

( )2 2
mp surT T .+   For the maximum possible value of ε = 1 and Tsur = 300K, hr = 378 W/m

2⋅K << h =

20,000 W/m
2⋅K.  Hence, the assumption of negligible radiation exchange is excellent.  (2) Despite the

large value of h, the small values of Do and Di and the large thermal conductivities (~ 40 W/m⋅K and
70 W/m⋅K for WC and Co, respectively) render the lumped capacitance approximation a good one.
(3) A detailed treatment of plasma heating of a composite powder particle is provided by Demetriou,
Lavine and Ghoniem (Proc. 5th ASME/JSME Joint Thermal Engineering Conf., March, 1999).



PROBLEM 5.49

KNOWN:  A long cylinder, initially at a uniform temperature, is suddenly quenched in a large oil bath.

FIND:  (a) Time required for the surface to reach 500 K, (b) Effect of convection coefficient on surface
temperature history.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional radial conduction, (2) Constant properties, (3) Fo > 0.2.

ANALYSIS:  (a) Check first whether lumped capacitance method is applicable.  For h = 50 W/m2⋅K,

( ) ( )2
oc

c
h r 2 50 W m K 0.015m / 2hL

Bi 0.221
k k 1.7 W m K

⋅
= = = =

⋅
.

Since Bic > 0.1, method is not suited.  Using the approximate series solution for the infinite cylinder,

( ) ( ) ( )* * 2 *
1 0 11r , Fo C exp Fo J rθ ζ ζ= − × (1)

Solving for Fo and setting r* = 1, find

( )
*

2 1 0 11

1
Fo ln

C J

θ
ζζ

 
= −  

  

where ( ) ( ) ( )
( )

o o*

i

T r , t T 500 350 K
1,Fo 0.231

T T 1000 350 K
θ ∞

∞

− −
= = = =

− −
.

From Table 5.1, with Bi = 0.441, find ζ1 = 0.8882 rad and C1 = 1.1019.  From Table B.4, find J0(ζ1) =
0.8121.  Substituting numerical values into Eq. (2),

( )
[ ]2

1
Fo ln 0.231 1.1019 0.8121 1.72

0.8882
= − × = .

From the definition of the Fourier number, Fo = 2
ot rα , and α = k/ρc,

2
2o
o

r c
t Fo Fo r

k

ρ
α

= = ⋅

( )2 3t 1.72 0.015m 400kg m 1600J kg K 1.7 W m K 145s= × × ⋅ ⋅ = . <
(b) Using the IHT Transient Conduction Model for a Cylinder, the following surface temperature
histories were obtained.

Continued...



PROBLEM 5.49 (Cont.)

0 50 100 150 200 250 300

Time, t(s)

300

400

500

600

700

800

900

1000

S
ur

fa
ce

 te
m

pe
ra

tu
re

, T
(K

)

h = 250 W/m^2.K
h =  50 W/m^2.K

Increasing the convection coefficient by a factor of 5 has a significant effect on the surface temperature,
greatly accelerating its approach to the oil temperature.  However, even with h = 250 W/m2⋅K, Bi = 1.1
and the convection resistance remains significant.  Hence, in the interest of accelerated cooling,
additional benefit could be achieved by further increasing the value of h.

COMMENTS:  For Part (a), note that, since Fo = 1.72 > 0.2, the approximate series solution is
appropriate.



PROBLEM 5.51

KNOWN:  Sapphire rod, initially at a uniform temperature of 800K is suddenly cooled by a convection
process; after 35s, the rod is wrapped in insulation.

FIND:  Temperature rod reaches after a long time following the insulation wrap.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional radial conduction, (2) Constant properties, (3) No heat losses
from the rod when insulation is applied.

PROPERTIES:  Table A-2, Aluminum oxide, sapphire (550K):  ρ = 3970 kg/m
3
, c = 1068 J/kg⋅K, k =

22.3 W/m⋅K, α = 5.259×10
-5

 m
2
/s.

ANALYSIS:  First calculate the Biot number with Lc = ro/2,

( ) ( )2
oc h r / 2 1600 W/m K 0.020 m/2h L

Bi 0.72.
k k 22.3 W/m K

⋅
= = = =

⋅
Since Bi > 0.1, the rod cannot be approximated as a lumped capacitance system.  The temperature
distribution during the cooling process, 0 ≤ t ≤ 35s, and for the time following the application of
insulation, t > 35s, will appear as

Eventually (t → ∞), the temperature of the rod will be uniform at ( )T .∞   To find ( )T ,∞  write the

conservation of energy requirement for the rod on a time interval basis, in out final initialE E E E E .− = ∆ ≡ −

Using the nomenclature of Section 5.5.3 and basing energy relative to T∞, the energy balance becomes

( )( ) oQ  cV T T Qρ ∞− = ∞ − −

where Qo = ρcV(Ti - T∞).  Dividing through by Qo and solving for ( )T ,∞  find

( ) ( )( )i oT T T T 1 Q/Q .∞ ∞∞ = + − −
From the Groeber chart, Figure D.6, with

2
ohr 1600 W/m K  0.020m

Bi 1.43
k 22.3 W/m K

⋅ ×= = =
⋅

( ) ( ) ( )( )2 22 2 2 -6 2
oBi Fo Bi  t/r 1.43  5.259 10  m /s 35s/ 0.020m 0.95.α= = × × =

find Q/Qo ≈ 0.57.  Hence,

( ) ( ) ( )T 300K 800 300 K 1-0.57 515 K.∞ = + − = <
COMMENTS:  From use of Figures D.4 and D.5, find T(0,35s) = 525K and T(ro,35s) = 423K.



PROBLEM 5.54

KNOWN:  Diameter and initial temperature of roller bearings.  Temperature of oil bath and
convection coefficient.  Final centerline temperature.  Number of bearings processed per hour.

FIND:  Time required to reach centerline temperature.  Cooling load.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, radial conduction in rod, (2) Constant properties.

PROPERTIES:  Table A.1, St. St. 304 ( )T 548K :=  ρ=7900 kg/m
3
, k = 19.0 W/m⋅K, cp = 546

J/kg⋅K, α = 4.40 × 10
-6

 m
2
/s.

ANALYSIS:  With Bi = h (ro/2)/k = 0.658, the lumped capacitance method can not be used.  From
the one-term approximation of Eq. 5.49 c for the centerline temperature,

( ) ( )22o
o 1 1

i

T T 50 30
0.0426 C exp Fo 1.1382exp 0.9287 Fo

T T 500 30
θ ζ∗ ∞

∞

− −  = = = = − = −  − −

where, for Bi = hro/k = 1.316, C1 = 1.1382 and 1ζ  = 0.9287 from Table 5.1.

( )Fo n 0.0374 / 0.863 3.81= − =�

( )22 6
f ot Fo r / 3.81 0.05m / 4.40 10 2162s 36minα −= = × = = <

From Eqs. 5.44 and 5.51, the energy extracted from a single rod is

( ) ( )o
i 1 1

1

2
Q cV T T 1 J

θρ ζ
ζ

∗
∞

 
= − − 

  

With J1 (0.9287) = 0.416 from Table B.4,

( )23 70.0852 0.416
Q 7900kg / m 546 J / kg K 0.05m 1m 470K 1 1.53 10 J

0.9287
π ×  = × ⋅ − = ×     

The nominal cooling load is

7

f

N Q 10 1.53 10 J
q 70,800 W 7.08 kW

t 2162s

× ×= = = = <

COMMENTS:  For a centerline temperature of 50°C, Eq. 5.49b yields a surface temperature of

( ) ( ) ( )o i o o 1T r , t T T T J 30 C 470 C 0.0426 0.795 45.9 Cθ ζ∗
∞ ∞= + − = ° + ° × × = °



PROBLEM 5.58

KNOWN:  A ball bearing is suddenly immersed in a molten salt bath; heat treatment to harden occurs
at locations with T > 1000K.

FIND:  Time required to harden outer layer of 1mm.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional radial conduction, (2) Constant properties, (3) Fo ≥ 0.2.

ANALYSIS:  Since any location within the ball whose temperature exceeds 1000K will be hardened,
the problem is to find the time when the location r = 9mm reaches 1000K.  Then a 1mm outer layer
will be hardened.  Begin by finding the Biot number.

( )2
o 5000 W/m K 0.020m/2h r

Bi 1.00.
k 50 W/m K

⋅
= = =

⋅
Using the one-term approximate solution for a sphere, find

( )1 12
11

1 1
Fo ln / C sin r .

r
θ ζ

ζ ζ
∗ ∗

∗

 
= −  

  

From Table 5.1 with Bi = 1.00, for the sphere find ζ 1 15708= .  rad and C1 = 1.2732.  With r*

= r/ro = (9mm/10mm) = 0.9, substitute numerical values.

( )
( )
( ) ( )2

1000 1300 K1 1
Fo ln /1.2732 sin 1.5708 0.9 rad 0.441.

300 1300 K 1.5708 0.91.5708

 −−= × = − ×  
From the definition of the Fourier number with α = k/ρc,

22
2o
o 3

r  c 0.020m kg J
t Fo Fo r 0.441 7800 500 / 50 W/m K 3.4s.

k 2 kg Km

ρ
α

 = = ⋅ = × × ⋅ =  ⋅ 
<

COMMENTS:  (1) Note the very short time required to harden the ball.  At this time it can be easily
shown the center temperature is T(0,3.4s) = 871 K.

(2) The Heisler charts can also be used.  From Fig. D.8, with Bi
-1

 = 1.0 and r/ro = 0.9, read θ/θo =
0.69(±0.03).  Since

i iT T 1000 1300 300K          T T 1000Kθ θ∞ ∞= − = − = − = − = −
it follows that

o o

i i o i i i
0.30.     Since     ,     then     0.69 

θ θθ θ θ θ
θ θ θ θ θ θ

= = ⋅ =

and ( )o i/ 0.30 / 0.69 0.43 0.02 .θ θ = = ±

From Fig. D.7 at θo/θi=0.43, Bi
-1

=1.0, read Fo = 0.45 (±0.03) and t = 3.5 (±0.2)s.  Note the use of
tolerances associated with reading the charts to ±5%.



PROBLEM 5.79

KNOWN:  Initial temperature, density and specific heat of a material.  Convection coefficient and
temperature of air flow.  Time for embedded thermocouple to reach a prescribed temperature.

FIND:  Thermal conductivity of material.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in x, (2) Sample behaves as a semi-infinite
modium, (3) Constant properties.

ANALYSIS:  The thermal response of the sample is given by Case 3, Eq. 5.60,

( ) 2
i

2i

T x, t T x hx h t x h t
erfc exp erfc

T T k k2 t 2 tk

α α
α α∞

     −     = − + +      −         

where, for x = 0.01m at t = 300 s, [T(x,t) – Ti]/(T∞ - Ti) = 0.533.  The foregoing equation must be

solved iteratively for k, with α = k/ρcp.  The result is

k 0.45 W / m K= ⋅ <

with α = 4.30 × 10
-7

 m
2
/s.

COMMENTS:  The solution may be effected by inserting the Transient Conduction/Semi-infinite
Solid/Surface Conduction Model of IHT into the work space and applying the IHT Solver.  However,
the ability to obtain a converged solution depends strongly on the initial guesses for k and α.



PROBLEM 5.82

KNOWN:  Thickness, initial temperature and thermophysical properties of concrete firewall.
Incident radiant flux and duration of radiant heating.  Maximum allowable surface temperatures at the
end of heating.

FIND:  If maximum allowable temperatures are exceeded.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in wall, (2) Validity of semi-infinite medium
approximation, (3) Negligible convection and radiative exchange with the surroundings at the
irradiated surface, (4) Negligible heat transfer from the back surface, (5) Constant properties.

ANALYSIS:  The thermal response of the wall is described by Eq. (5.60)

( ) ( )1/ 2 2
o o

i
2 q t / q xx x

T x, t T exp erfc
k 4 t k 2 t

α π
α α

 ′′ ′′−   = + −      

where, 7 2
pk / c 6.92 10 m / sα ρ −= = ×  and for ( )1/ 2

ot 30 min 1800s, 2q t / / k 284.5 K.α π′′= = =   Hence,

at x = 0,

( )T 0,30 min 25 C 284.5 C 309.5 C 325 C= ° + ° = ° < ° <

At ( ) ( )2 1/ 2
ox 0.25m, x / 4 t 12.54, q x / k 1, 786K, and x / 2 t 3.54.α α′′= − = − = =   Hence,

( ) ( ) ( )6T 0.25m, 30 min 25 C 284.5 C 3.58 10 1786 C ~ 0 25 C−= ° + ° × − ° × ≈ ° <

Both requirements are met.

COMMENTS:  The foregoing analysis is conservative since heat transfer at the irradiated surface
due to convection and net radiation exchange with the environment have been neglected.  If the

emissivity of the surface and the temperature of the surroundings are assumed to be ε = 1 and Tsur =

298K, radiation exchange at Ts = 309.5°C would be ( )4 4 2
rad s surq T T 6, 080 W / m K,εσ′′ = − = ⋅

which is significant  (~ 60% of the prescribed radiation).



PROBLEM 5.84

KNOWN:  Initial temperatures, properties, and thickness of two plates, each insulated on one
surface.

FIND: Temperature on insulated surface of one plate at a prescribed time after they are pressed
together.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties, (3) Negligible
contact resistance.

PROPERTIES:  Stainless steel (given):  ρ = 8000 kg/m
3
, c = 500 J/kg⋅K, k = 15 W/m⋅K.

ANALYSIS:  At the instant that contact is made, the plates behave as semi-infinite slabs and, since
the (ρkc) product is the same for the two plates, Equation 5.63 yields a surface temperature of

sT 350K.=

The interface will remain at this temperature, even after thermal effects penetrate to the insulated
surfaces.  The transient response of the hot wall may therefore be calculated from Equations 5.40
and 5.41.  At the insulated surface (x* = 0), Equation 5.41 yields

( )2o s
1 1

i s

T T
C exp Fo

T T
ζ− = −

−

where, in principle, h → ∞ and T∞ → Ts.  From Equation 5.39c, Bi → ∞ yields 1ζ  = 1.5707, and
from Equation 5.39b

( )
1

1
1 1

4sin
C 1.273

2 sin 2
ζ

ζ ζ
= =

+

Also,
( )

( )

6 2

2 2
3.75 10 m / s 60st

Fo 0.563.
L 0.02 m

α −×
= = =

Hence, ( )2oT 350
1.273exp 1.5707 0.563 0.318

400 350
− = − × =
−

oT 365.9 K.= <
COMMENTS:  Since Fo > 0.2, the one-term approximation is appropriate.
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