PROBLEM 6.4

KNOWN: Distribution of local convection coefficient for obstructed parallel flow over a flat plate.

FIND: Average heat transfer coefficient and ratio of average to local at the trailing edge.
SCHEMATIC:

ANALYSIS: The average convection coefficient is

$$
\begin{aligned}
& \overline{\mathrm{h}}_{\mathrm{L}}=\frac{1}{\mathrm{~L}} \int_{0}^{\mathrm{L}} \mathrm{~h}_{\mathrm{x}} \mathrm{dx}=\frac{1}{\mathrm{~L}} \int_{0}^{\mathrm{L}}\left(0.7+13.6 \mathrm{x}-3.4 \mathrm{x}^{2}\right) \mathrm{dx} \\
& \overline{\mathrm{~h}}_{\mathrm{L}}=\frac{1}{\mathrm{~L}}\left(0.7 \mathrm{~L}+6.8 \mathrm{~L}^{2}-1.13 \mathrm{~L}^{3}\right)=0.7+6.8 \mathrm{~L}-1.13 \mathrm{~L}^{2} \\
& \overline{\mathrm{~h}}_{\mathrm{L}}=0.7+6.8(3)-1.13(9)=10.9 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}
\end{aligned}
$$

The local coefficient at $\mathrm{x}=3 \mathrm{~m}$ is

$$
\mathrm{h}_{\mathrm{L}}=0.7+13.6(3)-3.4(9)=10.9 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}
$$

Hence,

$$
\overline{\mathrm{h}}_{\mathrm{L}} / \mathrm{h}_{\mathrm{L}}=1.0
$$

COMMENTS: The result $\overline{\mathrm{h}}_{\mathrm{L}} / \mathrm{h}_{\mathrm{L}}=1.0$ is unique to $\mathrm{x}=3 \mathrm{~m}$ and is a consequence of the existence of a maximum for $h_{x}(x)$. The maximum occurs at $x=2 m$, where $\left(\mathrm{dh}_{\mathrm{x}} / \mathrm{dx}\right)=0$ and $\left(\mathrm{d}^{2} \mathrm{~h}_{\mathrm{x}} / \mathrm{dx}{ }^{2}<0\right.$. $)$

PROBLEM 6.40

KNOWN: Drag force and air flow conditions associated with a flat plate.
FIND: Rate of heat transfer from the plate.

SCHEMATIC:

ASSUMPTIONS: (1) Chilton-Colburn analogy is applicable.
PROPERTIES: Table A-4, Air $\left(70^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right): \rho=1.018 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{c}_{\mathrm{p}}=1009 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}, \operatorname{Pr}=0.70$, $v=20.22 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.

ANALYSIS: The rate of heat transfer from the plate is

$$
\mathrm{q}=2 \overline{\mathrm{~h}}\left(\mathrm{~L}^{2}\right)\left(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{\infty}\right)
$$

where $\overline{\mathrm{h}}$ may be obtained from the Chilton-Colburn analogy,

$$
\begin{aligned}
& \overline{\mathrm{j}}_{\mathrm{H}}=\frac{\overline{\mathrm{C}}_{\mathrm{f}}}{2}=\overline{\mathrm{St}} \operatorname{Pr}^{2 / 3}=\frac{\overline{\mathrm{h}}}{\rho \mathrm{u}_{\infty} \mathrm{c}_{\mathrm{p}}} \operatorname{Pr}^{2 / 3} \\
& \frac{\overline{\mathrm{C}}_{\mathrm{f}}}{2}=\frac{1}{2} \frac{\bar{\tau}_{\mathrm{s}}}{\rho \mathrm{u}_{\infty}^{2} / 2}=\frac{1}{2} \frac{(0.075 \mathrm{~N} / 2) /(0.2 \mathrm{~m})^{2}}{1.018 \mathrm{~kg} / \mathrm{m}^{3}(40 \mathrm{~m} / \mathrm{s})^{2} / 2}=5.76 \times 10^{-4} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \overline{\mathrm{h}}=\frac{\mathrm{C}_{\mathrm{f}}}{2} \rho \mathrm{u}_{\infty} \mathrm{c}_{\mathrm{p}} \operatorname{Pr}^{-2 / 3} \\
& \overline{\mathrm{~h}}=5.76 \times 10^{-4}\left(1.018 \mathrm{~kg} / \mathrm{m}^{3}\right) 40 \mathrm{~m} / \mathrm{s}(1009 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.70)^{-2 / 3} \\
& \overline{\mathrm{~h}}=30 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K} .
\end{aligned}
$$

The heat rate is

$$
\begin{aligned}
& \mathrm{q}=2\left(30 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right)(0.2 \mathrm{~m})^{2}(120-20)^{\circ} \mathrm{C} \\
& \mathrm{q}=240 \mathrm{~W} .
\end{aligned}
$$

COMMENTS: Although the flow is laminar over the entire surface $\left(\operatorname{Re}_{\mathrm{L}}=\mathrm{u}_{\infty} \mathrm{L} / v=40 \mathrm{~m} / \mathrm{s}\right.$ $\times 0.2 \mathrm{~m} / 20.22 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}=4.0 \times 10^{5}$), the pressure gradient is zero and the Chilton-Colburn analogy is applicable to average, as well as local, surface conditions. Note that the only contribution to the drag force is made by the surface shear stress.

