
PROBLEM 8.3

KNOWN:  Temperature and velocity of water flow in a pipe of prescribed dimensions.

FIND:  Pressure drop and pump power requirement for (a) a smooth pipe, (b) a cast iron pipe with a
clean surface, and (c) smooth pipe for a range of mean velocities 0.05 to 1.5 m/s.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady, fully developed flow.

PROPERTIES:  Table A.6, Water (300 K):  ρ = 997 kg/m3, µ = 855 × 10-6 N⋅s/m2, ν = µ/ρ = 8.576 ×
10-7 m2/s.

ANALYSIS:  From Eq. 8.22a and 8.22b, the pressure drop and pump power requirement are
2
mu

p f L
2D

ρ∆ =                          ( )2
mP pV p D 4 uπ= ∆ = ∆� (1,2)

The friction factor, f, may be determined from Figure 8.3 for different relative roughness, e/D, surfaces
or from Eq. 8.21 for the smooth condition, 3000 ≤ ReD ≤ 5 × 106,

( )( ) 2
Df 0.790ln Re 1.64

−= − (3)

where the Reynolds number is

5m
D 7 2

u D 1m s 0.25m
Re 2.915 10

8.576 10 m sν −
×= = = ×

×
(4)

(a) Smooth surface:  from Eqs. (3), (1) and (2),

( )( ) 25f 0.790ln 2.915 10 1.64 0.01451
−

= × − =

( )3 2 2 4 2p 0.01451 997 kg m 1m s 2 0.25m 1000 m 2.89 10 kg s m∆ = × × = × ⋅  = 0 289. bar <

( )4 2 2 2P 2.89 10 N m 0.25 m 4 1m s 1418 N m s 1.42 kWπ= × × = ⋅ = <
(b) Cast iron clean surface:  with e = 260 µm, the relative roughness is e/D = 260 × 10-6 m/0.25 m = 1.04
× 10-3.  From Figure 8.3 with ReD = 2.92 × 105, find f = 0.021.  Hence,

∆p = 0.419 bar                   P = 2.06 kW <
(c) Smooth surface:  Using IHT with the expressions of part (a), the pressure drop and pump power
requirement as a function of mean velocity, um, for the range 0.05 ≤ um ≤ 1.5 m/s are computed and
plotted below.

Continued...



PROBLEM 8.3 (Cont.)
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The pressure drop is a strong function of the mean velocity.  So is the pump power since it is proportional
to both ∆p and the mean velocity.

COMMENTS:  (1) Note that L/D = 4000 >> (xfg,h/D) ≈ 10 for turbulent flow and the assumption of fully
developed conditions is justified.

(2) Surface fouling results in increased surface roughness and increases operating costs through
increasing pump power requirements.

(3) The IHT Workspace used to generate the graphical results follows.

// Pressure drop:
deltap = f * rho * um^2 * L / ( 2 * D ) // Eq (1); Eq 8.22a
deltap_bar = deltap / 1.00e5 // Conversion, Pa to bar units
Power = deltap * ( pi * D^2 / 4 ) * um // Eq (2); Eq 8.22b
Power_kW = Power / 1000 // Useful for scaling graphical result

// Reynolds number and friction factor:
ReD = um * D / nu // Eq (3)
f =  (0.790 * ln (ReD) - 1.64 ) ^ (-2) // Eq (4); Eq 8.21, smooth surface condition

// Properties Tool - Water:
// Water property functions :T dependence, From Table A.6
// Units: T(K), p(bars);
x = 0 // Quality (0=sat liquid or 1=sat vapor)
rho = rho_Tx("Water",Tm,x) // Density, kg/m^3
nu = nu_Tx("Water",Tm,x) // Kinematic viscosity, m^2/s

// Assigned variables:
um = 1 // Mean velocity, m/s
Tm = 300 // Mean temperature, K
D = 0.25 // Tube diameter, m
L = 1000 // Tube length, m



PROBLEM 8.4

KNOWN:  Temperature and mass flow rate of various liquids moving through a tube of prescribed
diameter.

FIND:  Mean velocity and hydrodynamic and thermal entry lengths.

SCHEMATIC:

ASSUMPTIONS:  Constant properties.

PROPERTIES:  (T = 300K)

  Liquid Table ρ(kg/m3) µ(N⋅s/m2) ν(m2/s)        Pr

Engine oil  A-5      884      0.486 550 × 10
-6

6400

Mercury  A-5 13,529 0.152 × 10
-2

0.113 ×10
-6

      0.0248

Water  A-6     1000 0.855 × 10
-3

0.855 × 10
-6

      5.83

ANALYSIS:  The mean velocity is given by

( )

2
m 2c

m 0.03 kg/s 61.1 kg/s m
u .

A 0.025m / 4ρ ρρπ

⋅= = =
&

The hydrodynamic and thermal entry lengths depend on ReD ,

( )D
4m 4 0.03 kg/s 1.53 kg/s m

Re .
 D 0.025mπ µ π µ µ

× ⋅
= = =

&

Hence, even for water (µ = 0.855 × 10
-3

 N⋅s/m2
), ReD < 2300 and the flow is laminar.  From Eqs.

8.3 and 8.23 it follows that
3

fd,h D
1.91 10  kg/s

x 0.05 D Re
µ

−×= =

( )3

fd,t D
1.91 10  kg/s Pr

x 0.05 D Re Pr .
µ

−×
= =

Hence:

Liquid um(m/s) xfd,h(m) xfd,t(m)

Oil  0.069  0.0039  25.2
Mercury  0.0045  1.257    0.031
Water  0.061  2.234  13.02

COMMENTS:  Note the effect of viscosity on the hydrodynamic entry length and the effect of Pr
on the thermal entry length.



PROBLEM 8.11

KNOWN:  Internal flow with prescribed wall heat flux as a function of distance.

FIND:  (a) Beginning with a properly defined differential control volume, the temperature distribution,
Tm(x), (b) Outlet temperature, Tm,o, (c) Sketch Tm(x), and Ts(x) for fully developed and developing flow
conditions, and (d) Value of uniform wall flux ��qs  (instead of �qs  = ax) providing same outlet temperature
as found in part (a);  sketch Tm(x) and Ts(x) for this heating condition.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Incompressible flow.

PROPERTIES:  Table A.6, Water (300 K):  cp = 4.179 kJ/kg⋅K.

ANALYSIS:  (a) Applying energy conservation to the control volume above,

conv p mdq mc dT= � (1)

where Tm(x) is the mean temperature at any cross-section and dqconv = q dx′ ⋅ .  Hence,

m
p

dT
ax mc

dx
= � . (2)

Separating and integrating with proper limits gives

( )m

m,i

x T x
p mx 0 T

a xdx mc dT
=

=∫ ∫�                     ( )
2

m m,i
p

ax
T x T

2mc
= +

�
(3,4)<

(b) To find the outlet temperature, let x = L, then

( ) 2
m m,o m,i pT L T T aL 2mc= = + � . (5)

Solving for Tm,o and substituting numerical values, find

( )
( )( )

2 2

m,o

20 W m 30m
T 27 C

2 450 kg h 3600s h 4179J kg K
= +

× ⋅
$  27 C 17.2 C 44.2 C= + =$ $ $ . <

(c) For linear wall heating, �  q axs , the fluid temperature distribution along the length of the tube is
quadratic as prescribed by Eq. (4).  From the convection rate equation,

( ) ( ) ( )( )s s mq h x D T x T xπ′ = ⋅ − (6)

For fully developed flow conditions, h(x) = h is a constant; hence, Ts(x) - Tm(x) increases linearly with x.
For developing conditions, h(x) will decrease with increasing distance along the tube eventually
achieving the fully developed value.

Continued...



PROBLEM 8.11 (Cont.)

(d) For uniform wall heat flux heating, the overall energy balance on the tube yields

( )s p m,o m,iq q DL mc T Tπ′′= = −�

Requiring that Tm,o = 44.2°C from part (a), find

( ) ( ) 2
s

450 3600 kg s 4179 J kg K 44.2 27 K
q 95.3 / D W m

D 30 mπ
× ⋅ −

′′ = =
×

<

where D is the diameter (m) of the tube which, when specified, would permit determining the required
heat flux, sq′′ .  For uniform heating, Section 3.3.2, we know that Tm(x) will be linear with distance.  Ts(x)

will also be linear for fully developed conditions and appear as shown below when the flow is
developing.

COMMENTS:  (1) Note that cp should be evaluated at Tm = (27 + 44)°C/2 = 309 K.

(2) Why did we show Ts(0) = Tm(0) for both types of history when the flow was developing?

(3) Why must Tm(x) be linear with distance in the case of uniform wall flux heating?



PROBLEM 8.12

KNOWN:  Internal flow with constant surface heat flux, ′′qs .

FIND:  (a) Qualitative temperature distributions, T(x), under developing and fully-developed flow,
(b) Exit mean temperature for both situations.

SCHEMATIC:

ASSUMPTIONS:  (a) Steady-state conditions, (b) Constant properties, (c) Incompressible flow.

ANALYSIS:  Based upon the analysis leading to Eq. 8.40, note for the case of constant surface
heat flux conditions,

mdT
 constant.

dx
=

Hence, regardless of whether the hydrodynamic or thermal boundary layer is fully developed, it
follows that

( )mT x is linear and

m,2T will be the same for all flow conditions. <
The surface heat flux can also be written, using Eq. 8.28, as

( ) ( )s s mq h T x T x .′′  = − 

Under fully-developed flow and thermal conditions, h = hfd is a constant.  When flow is developing h

> hfd.  Hence, the temperature distributions appear as below.

<



PROBLEM 8.26

KNOWN:  Ethylene glycol flowing through a coiled, thin walled tube submerged in a well-stirred
water bath maintained at a constant temperature.

FIND:  Heat rate and required tube length for prescribed conditions.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Tube wall thermal resistance negligible, (3)
Convection coefficient on water side infinite; cooling process approximates constant wall surface
temperature distribution, (4) KE, PE and flow work changes negligible, (5) Constant properties, (6)
Negligible heat transfer enhancement associated with the coiling.

PROPERTIES:  Table A-5, Ethylene glycol (Tm = (85 + 35)°C/2 = 60°C = 333 K):  cp = 2562

J/kg⋅K, µ = 0.522 × 10
-2

 N⋅s/m
2
, k = 0.260 W/m⋅K, Pr = 51.3.

ANALYSIS:  From an overall energy balance on the tube,

( ) ( )conv p m,o m,iq m c T T 0.01 kg/s 2562 J/kg 35 85 C 1281 W.= − = × − = −o&      (1) <
For the constant surface temperature condition, from the rate equation,

s conv mA q / h T= ∆ l   (2)

( ) ( ) ( )o
m o i

i

T 35 25
T T T / n 35 25 C 85 25 C / n 27.9 C.

T 85 25

∆ −
∆ = ∆ −∆ = − − − =

∆ −
 
  

o o o
l l l   (3)

Find the Reynolds number to determine flow conditions,

D -2 2
4m 4 0.01 kg/s

Re 813.
 D 0.003 m 0.522 10 N s/mπ µ π

×= = =
× × × ⋅

&
(4)

Hence, the flow is laminar and, assuming the flow is fully developed, the appropriate correlation is

2
D

hD k W
Nu 3.66,        h Nu 3.66 0.260 /0.003m 317 W/m K.

k D m K
= = = = × = ⋅

⋅
(5)

From Eq. (2), the required area, As, and tube length, L, are

2 2
sA 1281 W/317 W/m K 27.9 C 0.1448 m= ⋅ × =o

( )2
sL A /  D 0.1448m / 0.003m 15.4m.π π= = = <

COMMENTS:  Note that for fully developed laminar flow conditions, the requirement is satisfied:

Gz
-1

 = (L/D) / ReD Pr = (15.3/0.003) / (813 × 51.3) = 0.122 > 0.05.  Note also the sign of the heat

rate qconv when using Eqs. (1) and (2).



PROBLEM 8.32
KNOWN:  Thermal conductivity and inner and outer diameters of plastic pipe.  Volumetric flow rate and inlet
and outlet temperatures of air flow through pipe.  Convection coefficient and temperature of water.

FIND:  Pipe length and fan power requirement.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, (2) Negligible heat transfer from air in vertical legs of pipe, (3)
Negligible flow work and potential and kinetic energy changes for air flow through pipe, (4) Smooth
interior surface, (5) Constant properties.

PROPERTIES:  Table A-4, Air (Tm,i = 29°C):  3
i 1.155 kg / m .ρ =   Air ( )mT 25 C := °  cp = 1007

J/kg⋅K, µ = 183.6 × 10
-7

 N⋅s/m
2
, ka = 0.0261 W/m⋅K, Pr = 0.707.

ANALYSIS:  From Eq. (8.46a)

m,o s

m,i p

T T UA
exp

T T m c

∞

∞

−
= −

−

 
   �

where, from Eq. (3.32), ( ) ( )1 o i
s tot

i i o o

ln D / D1 l
UA R

h D L 2 Lk h D Lπ π π
− = = + +

With i im 0.0289 kg / sρ= ∀ =�

�  and D iRe 4m / D 13, 350,π µ= =�  flow in the pipe is turbulent.  Assuming
fully developed flow throughout the pipe, and from Eq. (8.60),

( ) ( )4 / 5 0.3 24 / 5 0.3a
i D

i

k 0.0261W / m K 0.023
h 0.023 Re Pr 13,350 0.707 7.20 W / m K

D 0.15m

⋅ ×
= = = ⋅

( ) ( )1
s 2 2

l 1 ln 0.17 / 0.15 1
UA

L 2 0.15 W / m K7.21 W / m K 0.15m 1500 W / m K 0.17mππ π

− = + +
× ⋅⋅ × × ⋅ × ×

 
   

( )s
L

UA 2.335 L W / K
0.294 0.133 0.001

= =
+ +

( )m,o

m,i

T T 17 21 2.335 L
0.333 exp exp 0.0802

T T 17 29 0.0289 kg / s 1007 J / kg K

∞

∞

− −
= = = − = −

− − × ⋅

 
  

( )ln 0.333
L 13.7m

0.0802
= − = <

From Eqs. (8.22a) and (8.22b) and with ( )2
m,i i iu / D / 4 1.415 m / s,π= ∀ =�  the fan power is

( ) ( )
( )

2 3 2
i m,i 3

i
i

u 1.155 kg / m 1.415 m / s
P p f L 0.0294 13.7m 0.025 m / s 0.078 W

2 D 2 0.15m

ρ
= ∆ ∀ ≈ ∀ = × =� � <

where 1/ 4
Df 0.316 Re 0.0294−= =  from Eq. (8.20a).

COMMENTS:  (1) With L/Di = 91, the assumption of fully developed flow throughout the pipe is
justified.  (2) The fan power requirement is small, and the process is economical.  (3) The resistance
to heat transfer associated with convection at the outer surface is negligible.



PROBLEM 8.70

KNOWN:  Inner and outer radii and thermal conductivity of a teflon tube.  Flowrate and temperature
of confined water.  Heat flux at outer surface and temperature and convection coefficient of ambient
air.

FIND:  Fraction of heat transfer to water
and temperature of tube outer surface.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Fully-developed flow, (3) One-dimensional
conduction, (4) Negligible tape contact and conduction resistances.

PROPERTIES:  Table A-6, Water (Tm = 290K):  µ = 1080 × 10
-6

 kg/s⋅m, k = 0.598 W/m⋅K, Pr =
7.56.

ANALYSIS:  The outer surface temperature follows from a surface energy balance

( )
( ) ( )( ) ( )

s,o s,o m
o 1 o i i io o

T T T T
2  r L q

ln r / r / 2  Lk 1/2  r Lhh 2  r L
π

π ππ

∞
−

− −
′′ = +

+

( ) ( ) ( ) ( )
s,o m

o s,o
o o i o i i

T T
q h T T .

r / k ln r / r r / r / h∞
−

′′ = − +
+

With ( ) ( ) ( ) 6
DRe 4 m/  D 4 0.2kg/s / 0.02 m 1080 10  kg/s m 11,789π µ π − = = × ⋅ =  

&

the flow is turbulent and Eq. 8.60 yields

( ) ( )( )( ) ( )4 / 5 0.44/5 0.4 2
i i Dh k/D 0.023Re Pr 0.598 W/m K/0.02 m 0.023 11,789 7.56 2792 W/m K.= = ⋅ = ⋅

Hence

( )
( ) ( ) ( ) ( )

s,o2 2
s,o 2

T 290 K
2000 W/m 25 W/m K T 300K

0.013 m/0.35 W/m K ln 1.3 1.3 / 2792 W/m K

−
= ⋅ − +

⋅ + ⋅

and solving for Ts,o, Ts,o = 308.3 K. <
The heat flux to the air is

( ) ( )2 2
o o s,oq h T T 25 W/m K 308.3 300 K 207.5 W/m .∞′′ = − = ⋅ − =

Hence, ( ) 2 2
iq / q 2000 207.5 W/m /2000 W/m 0.90.′′ ′′ = − = <

COMMENTS:  The resistance to heat transfer by convection to the air substantially exceeds that due
to conduction in the teflon and convection in the water.  Hence, most of the heat is transferred to the
water.



PROBLEM 8.77

KNOWN:  Flow rate and inlet temperature of air passing through a rectangular duct of prescribed
dimensions and surface heat flux.

FIND:  Air and duct surface temperatures at outlet.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform surface heat flux, (3) Constant properties,
(4) Atmospheric pressure, (3) Fully developed conditions at duct exit, (6) Negligible KE, PE and flow
work effects.

PROPERTIES:  Table A-4, Air ( )mT 300K, 1 atm :≈   cp = 1007 J/kg⋅K, µ = 184.6 × 10
-7

 N⋅s/m
2
,

k = 0.0263 W/m⋅K, Pr = 0.707.

ANALYSIS:  For this uniform heat flux condition, the heat rate is

( ) ( )s s sq q  A q 2 L W 2 L H′′ ′′  = = × + × 

( ) ( )2q 600 W/m 2 1m 0.016m 2 1m 0.004m 24 W. = × + × = 
From an overall energy balance

m,o m,i 4p

q 24 W
T =T 300K 379 K.

m c 3 10  kg/s 1007 J/kg K−
+ = + =

× × ⋅&
<

The surface temperature at the outlet may be determined from Newton’s law of cooling, where

s,o m,oT T q /h.′′= +

From Eqs. 8.67 and 8.1

( )
( )

c
h

4 0.016m 0.004m4 A
D 0.0064 m

P 2 0.016m 0.004m

×
= = =

+

( )
( )
4

m h h
D 6 2 7 2c

3 10 kg/s 0.0064m u  D m D
Re 1625.

A 64 10 m 184.6 10  N s/m

ρ
µ µ

−

− −
×

= = = =
× × ⋅

&

Hence the flow is laminar, and from Table 8.1
2

h

k 0.0263 W/m K
h 5.33 5.33 22 W/m K

D 0.0064 m
⋅= = = ⋅

2
s,o 2

600 W/m
T 379 K 406 K.

22 W/m K
= + =

⋅
<

COMMENTS:  The calculations should be reperformed with properties evaluated at T  K.m = 340

The change in Tm,o would be negligible, and Ts,o would decrease slightly.



PROBLEM 8.79
KNOWN:  Temperature and velocity of gas flow between parallel plates of prescribed surface
temperature and separation.  Thickness and location of plate insert.

FIND:  Heat flux to the plates (a) without and (b) with the insert.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation, (3) Gas has properties of
atmospheric air, (4) Plates are of infinite width W, (5) Fully developed flow.

PROPERTIES:  Table A-4, Air (1 atm, Tm = 1000K):  ρ = 0.348 kg/m
3
, µ = 424.4 × 10

-7
 kg/s⋅m, k

= 0.0667 W/m⋅K, Pr = 0.726.

ANALYSIS:  (a) Based upon the hydraulic diameter Dh, the Reynolds number is

( ) ( )h cD 4 A / P 4 H W / 2 H W 2H 80 mm= = ⋅ + = =

( )
h

3
m h

D 7
0.348 kg/m 60 m/s 0.08 m u  D

Re 39,360.
424.4 10  kg/s m

ρ
µ −

= = =
× ⋅

Since the flow is fully developed and turbulent, use the Dittus-Boelter correlation,

( ) ( )4/5 0.34/5 0.3
D DNu 0.023 Re Pr 0.023 39,360 0.726 99.1= = =

2
D

h

k 0.0667 W/m K
h Nu 99.1 82.6 W/m K

D 0.08 m
⋅= = = ⋅

( ) ( )2 2
m sq h T T 82.6 W/m K 1000 350 K 53,700 W/m .′′ = − = ⋅ − = <

(b) From continuity,
( ) ( ) ) ) ( ) ( ) ( )m m m ma b b a a bm  u A  u A           u u A / A 60 m/s 40/20 120 m/s.ρ ρ ρ ρ= = = = =&

For each of the resulting channels, Dh = 0.02 m and

( )
h

3
m h

D 7
0.348 kg/m 120 m/s 0.02 m u  D

Re 19,680.
424.4 10 kg/s m

ρ
µ −

= = =
× ⋅

Since the flow is still turbulent,

( ) ( ) ( )4/5 0.3 2
D

56.9 0.0667 W/m K
Nu 0.023 19,680 0.726 56.9        h 189.8 W/m K

0.02 m

⋅
= = = = ⋅

( )2 2q 189.8 W/m K 1000 350 K 123,400 W/m .′′ = ⋅ − = <
COMMENTS:  From the Dittus-Boelter equation,

( ) ( ) ( ) ( )0.8 0.2 0.8 0.2
b a m,b m,a h,a h,bh / h u / u D / D 2 4 1.74 1.32 2.30.= = = × =

Hence, heat transfer enhancement due to the insert is primarily a result of the increase in um and

secondarily a result of the decrease in Dh.



PROBLEM 8.82

KNOWN:  Heat exchanger to warm blood from a storage temperature 10°C to 37° at 200 ml/min.
Tubing has rectangular cross-section 6.4 mm × 1.6 mm sandwiched between plates maintained at
40°C.

FIND:  (a) Length of tubing and (b) Assessment of assumptions to indicate whether analysis under- or
over-estimates length.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible kinetic and potential energy changes, (3)
Blood flow is fully developed, (4) Blood has properties of water, and (5) Negligible tube wall and
contact resistance.

PROPERTIES:  Table A-6, Water ( mT  ≈ 300 K):  cp,f = 4179 J/kg⋅K, ρf = 1/vf = 997 kg/m
3
, νf =

µfvf = 8.58 × 10
-7

 m
2
/s, k = 0.613 W/m⋅K, Pr = 5.83.

ANALYSIS:  (a) From an overall energy balance and the rate equation,

( )p m,o m,i s LMTDq m c T T hA T= − = ∆& (1)

where

( )
( ) ( )

( )
1 2

LMTD
1 2

40 15 40 37T T
T 10 C.

ln T / T ln 25 /3

− − −∆ − ∆∆ = = =
∆ ∆

o

To estimate h,  find the Reynolds number for the rectangular tube,

m h
D 7 2

u D 0.326 m/s 0.00256 m
Re 973

8.58 10 m / sν −
×= = =

×
where

( ) ( )h cD 4 A / P 4 6.4 mm 1.6 mm / 2 6.4 1.6 mm 2.56 mm= = × + =

( ) 5 2
cA 6.4 mm 1.6 mm 1.024 10 m−= × = ×

( )6 3 5 2
m c cu m/ A /A 200 m /60 s 10 m / m /1.024 10 m 0.326 m/s.ρ − −= = ∀ = × =&& l l

Hence the flow is laminar, but assuming fully developed flow with an isothermal surface from Table
8.1 with b/a = 6.4/1.6 = 4,

2h
D

hD 4.4 0.613 W/m K
Nu 4.4          h 1054 W/m K.

k 0.00256 m
× ⋅= = = = ⋅

Continued …..



PROBLEM 8.82 (Cont.)

From Eq. (1) with

( ) 3 2
sA PL 2 6.4 1.6 10 m L=1.6 10 L− −= = + × × × Z

3 5 2 3
c mm A u 997 kg/m 1.024 10 m 0.326 m/s 3.328 10  kg/sρ − −= = × × × = ×&

the length of the rectangular tubing can be found as

( )3 2 -2 23.328 10  kg/s 4179 J/kg K 37 15 K 1054 W/m K 1.6 10 Lm 10 K−× × ⋅ − = ⋅ × × ×

L 1.8 m.= <
(b) Consider these comments with regard to whether the analysis under- or over-estimates the length,

⇒ fully-developed flow - L/Dh = 1.8 m/0.00256 = 700; not likely to have any effect,
⇒ negligible tube wall resistance - depends upon materials of construction; if plastic, analysis

under predicts length,
⇒ negligible thermal contact resistance between tube and heating plate - if present, analysis

under predicts length.



PROBLEM 8.97

KNOWN:  Heat rate per unit length at the inner surface of an annular recuperator of prescribed
dimensions.  Flow rate and inlet temperature of air passing through annular region.

FIND:  (a) Temperature of air leaving the recuperator, (b) Inner pipe temperature at inlet and outlet
and outer pipe temperature at inlet.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Uniform heating of
recuperator inner surface, (4) Adiabatic outer surface, (5) Negligible kinetic and potential energy
changes for air, (6) Fully developed air flow throughout.

PROPERTIES:  Table A-4, Air ( )mT 500K :=   cp = 1030 J/kg⋅K, µ = 270 × 10
-7

 N⋅s/m2
, k =

0.041 W/m⋅K, Pr = 0.68.

ANALYSIS:  (a) From an energy balance on the air

( )i a p,a a,2 a,1q  L m  c T T′ = −&

5
i

a,2 a,1
a p,a

q  L 1.25 10 W/m 7m
T T 300K 704.5K.

m  c 2.1 kg/s 1030 J/kg K

′ × ×= + = + =
× ⋅&

<

(b) The surface temperatures may be evaluated from Eqs. 8.68 and 8.69 with

( )
( ) ( ) ( )

( )
( )

a o i am h
D 7 22 2 o io i

m  D D 4 2.1 kg/s4 m u D
Re

D D 4.05m  270 10 N s/m/4  D D

ρ
µ π µ ππ µ −

−
= = = =

+ × ⋅−

& &

DRe 24,452=
the flow is turbulent and from Eq. 8.60

( ) ( )4/5 0.44/5 0.4 2
i o D

h

k 0.041 W/m K
h h 0.023 Re Pr 0.023 24,452 0.68 52 W/m K.

D 0.05 m
⋅≈ ≈ = = ⋅

With 5 2
i i iq q /  D 1.25 10 W/m/ 2m 19,900 W/mπ π′′ ′= = × × =

Eq. 8.68 gives

( ) 2 2
s,i m i iT T q / h 19,900 W/m /52 W/m K 383K′′− = = ⋅ =

s,i,1 s,i,2T 683K         T 1087K.= = <
From Eq. 8.69, with ( )o s,o mq 0, T T 0.′′ = − =   Hence

s,o,1 a,1T T 300K.= = <
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