
PROBLEM 12.2

KNOWN: A diffuse surface of area A1 = 10-4m2 emits diffusely with total emissive power E = 5 × 104

W/m2 .

FIND:  (a) Rate this emission is intercepted by small surface of  area A2 = 5 × 10-4 m2 at a prescribed
location and orientation, (b) Irradiation G2 on A2, and (c) Compute and plot G2 as a function of the
separation distance r2  for the range 0.25 ≤ r2 ≤ 1.0 m for zenith angles  θ2 = 0, 30 and 60°.

SCHEMATIC:  

ASSUMPTIONS: (1) Surface A1 emits diffusely, (2) A1  may be approximated as a differential surface

area and that 2
2 2A r  << 1.

ANALYSIS: (a) The rate at which emission from A1  is intercepted by A2  follows from Eq. 12.5 written
on a total rather than spectral basis.

( )1 2 e,1 1 1 2 1q I , A cos dθ φ θ ω→ −= . (1)

Since the surface A1 is diffuse, it follows from Eq. 12.13 that

( )e,1 e,1 1I , I Eθ φ π= =  . (2)

The solid angle subtended by A2 with respect to A1 is

2
2 1 2 2 2d A cos rω θ− ≈ ⋅  . (3)

Substituting Eqs. (2) and (3) into Eq. (1) with numerical values gives

    1 2 2
1 2 1 1 2

2

E A cos
q A cos

r

θ
θ

π→ = ⋅ ⋅ ( )
( )

4 2 4 2
4 2

2

5 10 W m 5 10 m cos30
10 m cos 60 sr

sr 0.5mπ

−
−× × ×

= × × ×
 
 
  

$

$ (4)

( )2 5 2 3 3
1 2q 15,915 W m sr 5 10 m 1.732 10 sr 1.378 10 W− − −
→ = × × × × = × . <

(b) From section 12, 2.3, the irradiation is the rate at which radiation is incident upon the surface per unit
surface area,

3
21 2

2 4 22

q 1.378 10 W
G 2.76 W m

A 5 10 m

−
→

−
×

= = =
×

(5) <
(c) Using the IHT workspace with the foregoing equations, the G2 was computed as a function of the
separation distance for selected zenith angles.  The results are plotted below.

Continued...



PROBLEM 12.2 (Cont.)
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For all zenith angles, G2 decreases with increasing separation distance r2 .  From Eq. (3), note that dω2-1

and, hence G2, vary inversely as the square of the separation distance.  For any fixed separation distance,
G2 is a maximum when θ2 = 0° and decreases with increasing θ2, proportional to cos θ2.

COMMENTS:  (1) For a diffuse surface, the intensity, Ie, is independent of direction and related to the

emissive power as Ie = E/ π. Note that π has the units of [ ]sr  in this relation.

(2) Note that Eq. 12.5 is an important relation for determining the radiant power leaving a surface in a
prescribed manner.  It has been used here on a total rather than spectral basis.

(3) Returning to part (b) and referring to Figure 12.10, the irradiation on A2 may be expressed as

1 1
2 i,2 2 2

2

A cos
G I cos

r

θθ=

Show that the result is G2 = 2.76 W/m
2
.  Explain how this expression follows from Eq. (12.15).



PROBLEM 12.9

KNOWN:  Emissive power of a diffuse surface.

FIND:  Fraction of emissive power that leaves surface in the directions π/4 ≤ θ ≤ π/2 and 0 ≤ φ  ≤ π.

SCHEMATIC:

ASSUMPTIONS:  (1) Diffuse emitting surface.

ANALYSIS:  According to Eq. 12.12, the total, hemispherical emissive power is

( )2 / 2
,e0 0 0

E I , , cos sin d d d .
π π

λ λ θ φ θ θ θ φ λ
∞

= ∫ ∫ ∫
For a diffuse surface Iλ,e (λ, θ, φ) is independent of direction, and as given by Eq. 12.14,

eE I .π=

The emissive power, which has directions prescribed by the limits on θ and φ , is

( ) /2
,e0 0 /4

E I d d cos sin d
π π

λ π
λ λ φ θ θ θ∞    ∆ =       ∫ ∫ ∫

[ ] [ ] ( )
/22

2
e e0

/4

sin 1
E I I 1 0.707

2 2

π
π

π

θφ π
   ∆ = × = −      

eE 0.25 I .π∆ =

It follows that

e

e

0.25 IE
0.25.

E I

π
π

∆ = = <

COMMENTS:  The diffuse surface is an important concept in radiation heat transfer, and the
directional independence of the intensity should be noted.



PROBLEM 12.10

KNOWN:  Spectral distribution of Eλ for a diffuse surface.

FIND:  (a)  Total emissive power E,  (b)  Total intensity associated with directions θ = 0o and θ = 30o,
and (c) Fraction of emissive power leaving the surface in directions π/4 ≤ θ ≤ π/2.

SCHEMATIC:

ASSUMPTIONS:  (1)  Diffuse emission.

ANALYSIS:  (a)  From Eq. 12.11 it follows that

5 10 15 20

0 0 5 10 15 20
E E ( ) d (0) d (100) d (200) d (100) d (0) dλ λ λ λ λ λ λ λ

∞ ∞
= = + + + +∫ ∫ ∫ ∫ ∫ ∫

E = 100 W/m2 ⋅µm (10 − 5) µm + 200W/m2 ⋅µm (15 − 10) µm + 100 W/m2 ⋅µm (20−15) µm

E = 2000 W/m2 <
(b)  For a diffuse emitter, Ie is independent of θ and Eq. 12.14 gives

2

e
E 2000 W m

I
srπ π

= =

2
eI 637 W m sr= ⋅ <

(c)  Since the surface is diffuse, use Eqs. 12.10 and 12.14,

2 / 2
e0 / 4

e

I cos sin d dE( 4 2)

E I

π π
π

θ θ θ φπ π
π

→
=

∫ ∫

/ 2 2

/ 4 0
cos sin d dE( 4 2)

E

π π
π

θ θ θ φπ π
π

→
=

∫ ∫ / 22
2
0

/ 4

1 sin

2

π
π

π

θ
φ

π
=

 
 
  

2 2E( 4 2) 1 1
(1 0.707 )(2 0) 0.50

E 2

π π
π

π
→

= − − = 
  

<

COMMENTS:  (1) Note how a spectral integration may be performed in parts.

 (2)  In performing the integration of part (c), recognize the significance of the diffuse emission
assumption for which the intensity is uniform in all directions.



PROBLEM 12.16

KNOWN:  Isothermal enclosure of surface area, As, and small opening, Ao, through which 70W
emerges.

FIND:  (a) Temperature of the interior enclosure wall if the surface is black, (b) Temperature of the
wall surface having ε  = 0.15.

SCHEMATIC:

ASSUMPTIONS:  (1) Enclosure is isothermal, (2) Ao << As.

ANALYSIS:  A characteristic of an isothermal enclosure, according to Section 12.3, is that the radiant
power emerging through a small aperture will correspond to blackbody conditions.  Hence

( ) 4
rad o b s o sq A E T A Tσ= =

where qrad is the radiant power leaving the enclosure opening.  That is,

1/41/4
rad

s 2 8 2 4o

q 70W
T 498K.

A 0.02m 5.670 10 W / m Kσ −

  
 = = =   × × ⋅   

<

Recognize that the radiated power will be independent of the emissivity of the wall surface.  As long as
Ao << As and the enclosure is isothermal, then the radiant power will depend only upon the
temperature.

COMMENTS:  It is important to recognize the unique characteristics of isothermal enclosures.  See
Fig. 12.12 to identify them.



PROBLEM 12.20

KNOWN:  Various surface temperatures.

FIND:  (a) Wavelength corresponding to maximum emission for each surface, (b) Fraction of solar
emission in UV, VIS and IR portions of the spectrum.

ASSUMPTIONS:  (1) Spectral distribution of emission from each surface is approximately that of a
blackbody, (2) The sun emits as a blackbody at 5800 K.

ANALYSIS:  (a) From Wien’s law, Eq. 12.27, the wavelength of maximum emission for blackbody
radiation is

3
max

C 2897.6 m K
.

T T

µλ ⋅= =

For the prescribed surfaces

   Hot Cool
Surface    Sun Tungsten   metal   Skin metal

(5800K)  (2500K) (1500K) (305K) (60K)

λmax(µm)    0.50    1.16    1.93    9.50    48.3 <
(b) From Fig. 12.3, the spectral regions associated with each portion of the spectrum are

Spectrum Wavelength limits, µµm

UV 0.0 – 0.4
VIS 0.4 – 0.7
IR 0.7 - 100

For T = 5800K and each of the wavelength limits, from Table 12.1 find:

λ(µm) 10
-2

  0.4   0.7    10
2

λT(µm⋅K)  58 2320 4060 5.8 × 10
5

F(0→λ)   0 0.125 0.491       1

Hence, the fraction of the solar emission in each portion of the spectrum is:

FUV = 0.125 – 0 = 0.125 <
FVIS = 0.491 – 0.125 = 0.366 <
FIR = 1 – 0.491 = 0.509. <

COMMENTS:  (1) Spectral concentration of surface radiation depends strongly on surface
temperature.

(2) Much of the UV solar radiation is absorbed in the earth’s atmosphere.



PROBLEM 12.32

KNOWN:  Metallic surface with prescribed spectral, directional emissivity at 2000 K and 1 µm (see
Example 12.6) and additional measurements of the spectral, hemispherical emissivity.

FIND:  (a) Total hemispherical emissivity, ε, and the emissive power, E, at 2000 K,  (b) Effect of
temperature on the emissivity.

SCHEMATIC:

ANALYSIS:  (a) The total, hemispherical emissivity, ε, may be determined from knowledge of the
spectral, hemispherical emissivity, λε , using Eq. 12.38.

,b b0
(T) ( )E ( ,T)d E (T)λ λε ε λ λ λ

∞
= ∫

2 m 4 m,b ,b
1 20 2 mb b

E ( ,T)d E ( ,T)d

E (T) E (T)

µ µλ λ
µ

λ λ λ λ
ε ε= +∫ ∫

or from Eqs. 12.28 and 12.30,

1 2 11 (0 ) 2 (0 ) (0 )(T) F F Fλ λ λε ε ε→ → →= + −  

From Table 12.1,

11 1 (0 )2 m, T 2000 K : T 4000 m K, F 0.481λλ µ λ µ →= = = ⋅ =

22 2 (0 )4 m, T 2000 K : T 8000 m K, F 0.856λλ µ λ µ →= = = ⋅ =

Hence,

(T) 0.36 0.481 0.20(0.856 0.481)ε = × + − = 0.25 <
From Eqs. 12.28 and 12.37, the total emissive power at 2000 K is

E(2000 K)  =  ε (2000 K) ⋅ Eb (2000 K)

8 2 4 4 5 2E(2000 K) 0.25 5.67 10 W m K (2000 K) 2.27 10 W m−= × × ⋅ × = × . <
(b)  Using the Radiation Toolpad of IHT, the following result was generated.
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Continued...



PROBLEM 12.32 (Cont.)

At T ≈ 500 K, most of the radiation is emitted in the far infrared region (λ > 4 µm), in which case ε ≈ 0.
With increasing T, emission is shifted to lower wavelengths, causing ε to increase.  As T → ∞,   ε →
0.36.

COMMENTS:  Note that the value of λε for 0 < λ ≤ 2 µm cannot be read directly from the λε
distribution provided in the problem statement.  This value is calculated from knowledge of , ( )λ θε θ  in

Example 12.6.



PROBLEM 12.35

KNOWN:  Directional emissivity, εθ, of a selective surface.

FIND:  Ratio of the normal emissivity, εn, to the hemispherical emissivity, ε .

SCHEMATIC:

ASSUMPTIONS:  Surface is isotropic in φ  direction.

ANALYSIS:  From Eq. 12.36 written on a total, rather than spectral, basis, the hemispherical
emissivity is

( )/2
0

2 cos sin d .
π

θε ε θ θ θ θ= ∫
Recognizing that the integral can be expressed in two parts, find

( ) ( )/ 4 /2
0 /4

2 cos sin d cos sin d
π π

π
ε ε θ θ θ θ ε θ θ θ θ = +  ∫ ∫

/ 4 / 2
0 /4

2 0.8 cos sin d 0.3 cos sin d
π π

π
ε θ θ θ θ θ θ = +  ∫ ∫

/ 4 / 2

0 / 4

2 2sin sin
2 0.8 0.3

2 2

π π

π

θ θε
 
 = +
  

( ) ( )1 1
2 0.8 0.50 0 0.3 1 0.50 0.550.

2 2
ε  = − + × − =  

The ratio of the normal emissivity (εn) to the hemispherical emissivity is

n 0.8
1.45.

0.550

ε
ε

= = <

COMMENTS:  Note that Eq. 12.36 assumes the directional emissivity is independent of the φ
coordinate.  If this is not the case, then Eq. 12.35 is appropriate.



PROBLEM 12.37

KNOWN:  Incandescent sphere suspended in air within a darkened room exhibiting these
characteristics:

initially: brighter around the rim
after some time:    brighter in the center

FIND:  Plausible explanation for these observations.

ASSUMPTIONS:  (1) The sphere is at a uniform surface temperature, Ts.

ANALYSIS:  Recognize that in observing the
sphere by eye, emission from the central region
is in a nearly normal direction.  Emission from
the rim region, however, has a large angle from
the normal to the surface.

Note now the directional behavior, εθ, for conductors and non-conductors as represented in Fig. 12.17.

Assume that the sphere is fabricated from a metallic material.  Then, the rim would appear brighter

than the central region.  This follows since εθ is higher at higher angles of emission.

If the metallic sphere oxidizes with time, then the εθ characteristics change.  Then εθ at small angles of
θ become larger than at higher angles.  This would cause the sphere to appear brighter at the center
portion of the sphere.

COMMENTS:  Since the emissivity of non-conductors is generally larger than for metallic materials,
you would also expect the oxidized sphere to appear brighter for the same surface temperature.



PROBLEM 12.44

KNOWN:  Temperature and spectral emissivity of small object suspended in large furnace of prescribed
temperature and total emissivity.

FIND:  (a) Total surface emissivity and absorptivity, (b) Reflected radiative flux and net radiative flux to
surface, (c) Spectral emissive power at λ = 2 µm, (d) Wavelength λ1/2 for which one-half of total
emissive power is in spectral region λ ≥ λ1/2.

SCHEMATIC:

ASSUMPTIONS:  (1) Surface is opaque and diffuse, (2) Walls of furnace are much larger than object.

ANALYSIS:  (a) The emissivity of the object may be obtained from Eq. 12.38, which is expressed as

( )
( ) ( )

( ) ( ) ( ) ( )
,b so

s 1 20 3 m 0 1 m 0 3 m
b

E ,T d
T F F 1 F

E T

λ λ
µ µ µ

ε λ λ λ
ε ε ε

∞

→ → →= = − + −   
   

∫

where, with λ1Ts = 400 µm⋅K and λ2Ts = 1200 µm⋅K, F(0→1µm) = 0 and ( )0 3 mF µ→  = 0.002.  Hence,

( ) ( ) ( )sT 0.7 0.002 0.5 0.998 0.500ε = + = <
The absorptivity of the surface is determined by Eq. 12.46,

( ) ( )

( )

( ) ( )
( )

,b fo o

b f
o

G d E , T d

E TG d

λ λ λ λ

λ

α λ λ λ α λ λ λ
α

λ λ

∞ ∞

∞
= =

∫ ∫
∫

Hence, with λ1Tf = 2000 µm⋅K and λ2Tf = 6000 µm⋅K, F(0→1µm) = 0.067 and ( )0 3 mF µ→  = 0.738.  It

follows that

( ) ( ) ( )1 20 3 m 0 1 m 0 3 mF F 1 F 0.7 0.671 0.5 0.262 0.601µ µ µα α α→ → →= − + − = × + × =   
    <

(b) The reflected radiative flux is

( ) ( ) ( )48 2 4 5 2
ref b fG G 1 E T 0.399 5.67 10 W m K 2000 K 3.620 10 W mρ α −= = − = × × ⋅ = × <

The net radiative flux to the surface is
( ) ( ) ( )rad b s b f b sq G G E T E T E Tρ ε α ε′′ = − − = −

( ) ( )4 48 2 4 5 2
radq 5.67 10 W m K 0.601 2000 K 0.500 400 K 5.438 10 W m−′′ = × ⋅ − = × 

  
<

(c) At λ = 2 µm, λTs = 800 K and, from Table 12.1, Iλ,b(λ,T)/σT5 = 0.991 × 10-7 (µm⋅K⋅sr)-1.  Hence,
Continued...



PROBLEM 12.44 (Cont.)

( )
2 4

57 8
,b 2

W m K W
I 0.991 10 5.67 10 400 K 0.0575

m K sr m m sr
λ µ µ

− − ⋅
= × × × × =

⋅ ⋅ ⋅ ⋅

Hence, with Eλ = ελEλ,b = ελπIλ,b,

( ) 2 2E 0.7 sr 0.0575 W m m sr 0.126 W m mλ π µ µ= ⋅ ⋅ = ⋅ <
(d) From Table 12.1, F(0→λ) = 0.5 corresponds to λTs ≈ 4100 µm⋅K, in which case,

1/ 2 4100 m K 400 K 10.3 mλ µ µ≈ ⋅ ≈ <
COMMENTS:  Because of the significant difference between Tf and Ts, α ≠ ε.  With increasing Ts →
Tf, ε would increase and approach a value of 0.601.



PROBLEM 12.50

KNOWN:  Spectral distribution of the absorptivity and irradiation of a surface at 1000 K.

FIND:  (a) Total, hemispherical absorptivity, (b) Total, hemispherical emissivity, (c) Net radiant flux to
the surface.

SCHEMATIC:

ASSUMPTIONS:  (1) αλ = ελ.

ANALYSIS:  (a) From Eq. 12.46,

2 m 4 m 6 m
0 0 2 4

2 m 4 m 6 m
0 0 2 4

G d G d G d G d

G d G d G d G d

µ µ µ
λ λ λ λ λ λ λ λ λ

µ µ µ
λ λ λ λ λ

α α λ α λ α λ
α

λ λ λ

∞

∞

+ +
= =

+ +

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

( ) ( ) ( )
( ) ( ) ( ) ( )

0 1/2 2 0 5000 0.6 4 2 5000 0.6 1/2 6 4 5000

1/2 2 0 5000 4 2 5000 1 / 2 6 4 5000
α

× − + − + × −
=

− + − + −

9000
0.45.

20,000
α = = <

(b) From Eq. 12.38,
2 m

,b ,b ,b0 0 2

b b b

E d 0 E d 0.6 E d

E E E

µ
λ λ λ λε λ λ λ

ε

∞ ∞

= = +∫ ∫ ∫

( ) ( )2 m 0 2 m0.6F 0.6 1 F .µ µε →∞ →
 = = −  

From Table 12.1, with λT = 2 µm × 1000K = 2000 µm⋅K, find F(0 → 2 µm) = 0.0667.  Hence,

[ ]0.6 1 0.0667 0.56.ε = − = <
(c) The net radiant heat flux to the surface is

4
rad,netq G E G Tα α ε σ′′ = − = −

( ) ( )42 8 2 4
rad,netq 0.45 20,000W/m 0.56 5.67 10 W / m K 1000K−′′ = − × × ⋅ ×

( ) 2 2
rad,netq 9000 31,751 W / m 22,751W/m .′′ = − = − <



PROBLEM 12.53

KNOWN:  Spectral emissivity of an opaque, diffuse surface.

FIND:  (a)  Total, hemispherical emissivity of the surface when maintained at 1000 K,  (b) Total,
hemispherical absorptivity when irradiated by large surroundings of emissivity 0.8 and temperature 1500
K,  (c) Radiosity when maintained at 1000 K and irradiated as prescribed in part (b),  (d) Net radiation
flux into surface for conditions of part (c),  and  (e) Compute and plot each of the parameters of parts (a)-
(c) as a function of the surface temperature Ts for the range 750 < Ts ≤ 2000 K.

SCHEMATIC:

ASSUMPTIONS:  (1)  Surface is opaque, diffuse, and  (2) Surroundings are large compared to the
surface.

ANALYSIS:  (a)  When the surface is maintained at 1000 K, the total, hemispherical emissivity is
evaluated from Eq. 12.38 written as

1
,b b ,1 ,b b ,2 ,b b0 0 1

E (T) d E (T) E (T) d E (T) E (T) d E (T)
λ

λ λ λ λ λ λλ
ε ε λ ε λ ε λ

∞ ∞
= = +∫ ∫ ∫

1 1,1 (0 T) ,2 (0 T)F (1 F )λ λ λ λε ε ε− −= + −

where for λT  =  6µm × 1000 K  =  6000µm⋅K, from Table 12.1, find 0 TF 0.738λ− = .  Hence,

ε  =  0.8 × 0.738 + 0.3(1 − 0.738)  =  0.669. <
(b)  When the surface is irradiated by large surroundings at Tsur = 1500 K,  G =  Eb(Tsur).
From Eq. 12.46,

,b sur b sur0 0 0
G d G d E (T ) d E (T )λ λ λ λ λα α λ λ ε λ

∞ ∞ ∞
= =∫ ∫ ∫

1 sur 1 sur,1 (0 T ) ,2 (0 T )F (1 F )λ λ λ λα ε ε− −= + −

where for λ1Tsur  =  6 µm × 1500 K  =  9000 µm⋅K, from Table 12.1, find (0 T)F 0.890λ− = .  Hence,

α  =  0.8 × 0.890 + 0.3 (1 − 0.890)  =  0.745. <
Note that α ελ λ=  for all conditions and the emissivity of the surroundings is irrelevant.

(c)  The radiosity for the surface maintained at 1000 K and irradiated as in part (b) is
J  =  εEb (T) + ρG  =  εEb (T) + (1 − α)Eb (Tsur)
J  =  0.669 × 5.67 × 10-8 W/m2 ⋅K4 (1000 K)4 + (1 − 0.745) 5.67 × 10-8 W/m2 ⋅K4 (1500 K)4

J  =  (37,932 + 73,196) W/m2 = 111,128 W/m2 <
Continued...



PROBLEM 12.53 (Cont.)

(d)  The net radiation flux into the surface with G Tsur= σ 4  is

q″rad,in  =  αG − εE b (T)  =  G − J

q″rad,in  =  5.67 × 10-8 W/m2 ⋅K (1500 K)4 − 111,128 W/m2

q″rad,in  =  175,915 W/m2. <
(e)  The foregoing equations were entered into the IHT workspace along with the IHT Radiaton Tool,
Band Emission Factor, to evaluate F T( )0−λ  values and the respective parameters for parts (a)-(d) were

computed and are plotted below.
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Note that the absorptivity, sur( , T )λα α α= , remains constant as Ts changes since it is a function of

(or )λ λα ε  and Tsur only.  The emissivity s( , T )λε ε ε=  is a function of Ts and increases as Ts

increases.  Could you have surmised as much by looking at the spectral emissivity distribution?  At what
condition is ε = α?
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The radiosity, J1 increases with increasing Ts since Eb(T) increases markedly with temperature; the
reflected irradiation, (1 - α)Eb(Tsur) decreases only slightly as Ts increases compared to Eb(T).  Since G is
independent of Ts, it follows that the variation of rad,inq′′  will be due to the radiosity change; note the

sign difference.

COMMENTS:  We didn’t use the emissivity of the surroundings (ε = 0.8) to determine the irradiation
onto the surface.  Why?
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