Solve only two problems. If solutions involve an iterative process multiple iterations are not necessary.

Problem 1 (Conduction): An aluminum saucepan has a handle that is riveted to its wall. The handle itself is made of cast aluminum ($\mathrm{k}=164 \mathrm{w} / \mathrm{mK}$) and is to have attached a plastic grip that is comfortable to grasp. Before selecting a plastic, it is necessary to have information on the temperature of the aluminum handle. The aluminum handle can be considered as a rod 11 mm in diameter and 45 mm long. When being used over a stove burner, the ambient temperature is $44^{\circ} \mathrm{C}$, and the temperature at the base of the handle reaches $110^{\circ} \mathrm{C}$. For a convection heat transfer coefficient (h) of $8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, determine
(1) The temperature profile if the tip is insulated.
(2) The temperature profile if the tip is not insulated.
(3) (Bonus) The heat transferred by the handle for both cases.

Problem 2 (Free Convection/Conduction): A vertical wall that is shown here. The outside brick is 10 cm thick, and the inside panel is 1.3 cm -thick plaster board. The brick and plasterboard are separated by 9.5 cm of glass-fiber insulation. On the brick side is air at $2^{\circ} \mathrm{C}$, while on the plasterboard side is air at $27^{\circ} \mathrm{C}$. The wall is 2.5 m tall. How much heat is transferred through wall per unit width?
(15 points)
(Hint: Assume $\mathrm{T}_{\mathrm{w}, 1}$ and $\mathrm{T}_{\mathrm{w}, 2}$ as $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$, respectively.)

-Properties of air at
$\mathrm{T}=275 \mathrm{~K}: \rho=1.295 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}=0.02426 \mathrm{w} / \mathrm{mK}, \mathrm{C}_{\mathrm{p}}=1005.5 \mathrm{j} / \mathrm{kg} / \mathrm{K}, \alpha=0.17661 \mathrm{e}-4 \mathrm{~m}^{2} / \mathrm{s}, \operatorname{Pr}=0.713, v=$ $12.59 \mathrm{e}-6 \mathrm{~m}^{2} / \mathrm{s}$
$\mathrm{T}=300 \mathrm{~K}: \rho=1.177 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}=0.02624 \mathrm{w} / \mathrm{mK}, \mathrm{C}_{\mathrm{p}}=1005.7 \mathrm{j} / \mathrm{kg} / \mathrm{K}, \alpha=0.2216 \mathrm{e}-4 \mathrm{~m}^{2} / \mathrm{s}, \operatorname{Pr}=0.708, v=$ $16.68 \mathrm{e}-6 \mathrm{~m}^{2} / \mathrm{s}$
-Thermal conductivity of the brick, glass-fiber and plaster: $0.45,0.035$, and $0.814 \mathrm{w} / \mathrm{mK}$, respectively.

Problem 3 (Radiation): A very long broiler whose proposed design is to be evaluated is shown here. The oven cross section is an equilateral triangle with one side insulated. The heater surface is maintained at 555.56 K while the bottom is at 277.78 K . Find
(1) The view factor for each surface in all directions (F11, F12, F13, F22, ...)
(2) The temperature of the insulated surface.
(3) The heat that must be supplied to each of the isothermal surfaces.

Problem 1.
Pin fin Problem.
Steady state Conduction

$$
\begin{aligned}
& D=11 \mathrm{~mm}=0.011 \mathrm{~m}, L=45 \mathrm{~mm}=0.045 \mathrm{~m} \\
& T_{\infty}=44^{\circ} \mathrm{C}, T_{m}=110^{\circ} \mathrm{C}, \quad \bar{h}_{c}=8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, K=164 \mathrm{~W} / \mathrm{mK} \\
& m=\sqrt{\frac{h_{c} P}{K A_{c}}, \quad P=\pi D=\pi(0.011)=0.03456 \mathrm{~m}} \\
& \Rightarrow m=\pi 0^{2 / 4}=\pi(0.011)^{2 / 4}=9.5 \times 10^{-5} \mathrm{~m}^{2} \\
&
\end{aligned}
$$

(1) insulated tip (Table 3, Case B)

$$
\begin{aligned}
& \frac{\theta}{\theta_{b}}=\frac{\cosh m(L-x)}{\cosh m L}=\frac{\cosh [4.212 \times(0.045-x)]}{\cosh (4.212 \times 0.045)} \\
\rightarrow & \frac{T-T_{\infty}}{T_{b}-r_{\infty}}=\frac{\cosh (0.1898-4.212 x)}{1.018}
\end{aligned}
$$

$$
\rightarrow \frac{T-44}{110-44}=\frac{\cosh (0.19-4.21 X)}{1.02} \text { or }(T=44+64.83 \cosh (0.19-4.21 x
$$

(2) Uninsulated tip (Table 3.4, Case A)

$$
\frac{\theta}{\theta_{b}}=\frac{\cosh m(L-x)+\frac{h}{m k} \sinh (L-x)}{\cosh m L+h / m k \sinh m L}
$$

or

$$
\frac{T-44}{110-44}=\frac{\cosh (0.19-4.21 x)+\frac{8}{(4.212)(164)} \operatorname{Sinh}(0.19-4.21 x)}{\cosh (4.212 \times 0.045)+\frac{8}{4.212 \times 64} \sinh (4.212 \times 0.0 .5)}
$$

or $T=44+64.69[\cosh (0.19-4.21 x)+0.01158 \sinh (0.19-4.21 x)]$
Ans.

Problem 1(cont'd)
(3) Using Table 3,4 for cases " B "and " A " you can find q_{p}.

$$
\begin{aligned}
M & =\sqrt{h_{c} P K A_{c} \theta_{b}}=\sqrt{8(03456)\left(9,5 \times 10^{-5}\right)(164)}[110-44] \\
\Rightarrow M & =4,33
\end{aligned}
$$

\longrightarrow Insulated $q_{f, i}=M \tanh m \mathrm{~mL}=4,33 \times \tanh (4.212 \times 0.045)$

$$
\Rightarrow q_{f_{1}}=0.813 \mathrm{~W}
$$

\rightarrow Uninsulated

$$
\begin{aligned}
& \text { ted } \quad \begin{aligned}
q_{f, u} & =M \frac{\sinh m L+\frac{h}{m k} \cosh M L}{\operatorname{coshmL}+\frac{h}{m k} \sinh m L} \\
& =4.33 \frac{\sinh (0.19)+\frac{8}{\cosh (0.12 \times 164)+\frac{8}{4.212 \times 164} \cosh (0.19)} \sinh (0.19)}{}
\end{aligned} \\
& \Rightarrow q_{p, \mu}=0.86 \mathrm{~W}
\end{aligned}
$$

Problem 2.
The circuit is shown here,

$$
\begin{aligned}
& L_{1}=0.1 \mathrm{~m}_{1} L_{2}=0.095 \mathrm{~m}_{1} L_{3}=0.013 \mathrm{~m} \\
& k_{1}=0.45 \mathrm{w} / \mathrm{mk}, K_{2}=0.035 \mathrm{~W} / \mathrm{m} / \mathrm{W} \quad k_{3}=0.814 \mathrm{w} / \mathrm{mk} \\
& U_{\otimes_{1}}=U_{\alpha_{2}}=0 \rightarrow \text { rec Convection }
\end{aligned}
$$ we need to find $R_{a_{2}}$ for both sides $\frac{L_{3} *}{K_{3} A}$ but we need to know $T_{w_{1}}$ and $T_{w_{2}}$, using the suggested $T_{w_{1}}=10^{\circ} \mathrm{C}, T_{w_{2}}=20^{\circ} \mathrm{C}$ we have,

$$
\begin{aligned}
& R_{a_{L, 1}}=\frac{g \beta\left(T w_{1}-T_{\infty}\right)}{\nu \alpha} L^{3}=\frac{9.81\left(\frac{1}{275}\right)(10-2)(2.5)^{3}}{\left(12.59 \times 10^{-6}\right)\left(0.17661 \times 10^{-4}\right)} \\
& \Rightarrow R_{a_{2,1}}=2.02 \times 10^{10}>10^{9} \quad \text { Turbulent } \\
& R_{a_{L, 2}}=\frac{g \beta\left(-T w_{2}+T_{\infty_{2}}\right) L^{3}}{\nu \alpha}=\frac{9.81\left(\frac{1}{300}\right)(-20+27)(2.5)^{3}}{\left(15,08 \times 10^{-6}\right)\left(0.2216 \times 10^{-4}\right)} \\
& \rightarrow R_{a_{L, 2}}=1.044 \times 10^{10}>10^{9} \quad \text { Turbulent }
\end{aligned}
$$

to find the convection heat transfer coefficent we need to use Eq. $(8,26)$

$$
\overline{N_{u_{L}}}=\left[8.25+\frac{0.387 R a_{L}^{1 / 6}}{\left[1+\left(\frac{0.492}{P_{r}}\right)^{9 / 16}\right]^{8 / 27}}\right]^{2}
$$

For $R_{a_{L_{1}}}$ we get $\quad N_{u_{L_{1}}}=316.26$ and $\bar{h}=3,069 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and for $R_{a_{L_{2}}}$ we get $\bar{N}_{n_{L_{2}}}=255.24, \bar{h}_{2}=2.679 \mathrm{~W} / \mathrm{m}$

Since wee guessed for. $T_{w 1}$ and $T_{w_{2}}$ wee need to correct these. from Conduction for a composite wall wee have

$$
q^{\prime \prime}=\frac{\Delta T}{R A}=\frac{T_{\infty_{1}}-T_{\infty_{2}}}{\sum R A}=\frac{2-27}{\frac{1}{3.069}+\frac{0.1}{0.45}+\frac{0.095}{0.035}+\frac{0.013}{0.814}+\frac{1}{2.77}}
$$

Then $q^{\prime \prime}=-6.85 \mathrm{w} / \mathrm{m}^{2}$
now "q" is constant throughout the circuit
it means

$$
q^{n}=\frac{T_{\infty},-T_{w_{1}}}{\frac{1}{n_{1}}} \Rightarrow-6.85=\frac{2-T_{w_{1}}}{\frac{1}{3.009}} \Rightarrow T_{w_{1}}=4.23^{\circ} \mathrm{C}
$$

and

$$
q^{4}=\frac{T_{w_{2}}-T_{\infty 0_{2}}}{\frac{1}{\bar{h}_{2}}} \rightarrow-6.85=\frac{T_{w_{2}}-27}{\frac{1}{2.679}} \rightarrow T_{w_{2}}=24.4^{\circ} \mathrm{C}
$$

Now you can the corrected $T_{w_{1}}$ and T_{2} values and find the properties. You will get
for $T_{w_{1}}=4.23^{\circ} \mathrm{C}, \quad T_{w_{2}}=24.4^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
R_{a_{L_{1}}}=5.5 \times 10^{9}, & R_{a_{L_{2}}}=3.88 \times 10^{9} \quad \text { Still Turbucul } \\
\bar{h}_{1}=2.04 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, & h_{2}=1.96 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
\end{array}
$$

new $\quad q^{\prime \prime}=\frac{-2742}{\frac{1}{2.04}+0.222+2.71+0.016+\frac{1}{1.96}}=6.33 \mathrm{w} / \mathrm{m}^{2}$
Then $\quad T_{w 1}=\frac{6.33}{2.04}+2=5.1^{\circ} \mathrm{e}$

$$
\text { and } T_{w_{2}}=27-\frac{6.33}{1.96}=23.8^{\circ} \mathrm{C}
$$

you can repeat more until converges to the Final Solution, Finally you will get

$$
T_{w_{1}}=4.8^{\circ} \mathrm{C}, \quad T_{w_{2}}=23.9^{\circ} \mathrm{C}, \quad q^{4}=6.46 \mathrm{~W} / \mathrm{m}^{2}
$$

The $q^{\prime}=q^{\prime \prime} \times L=6.46 \times 2.5=16.2 \mathrm{~N} / \mathrm{m}$

Problem 3:
Sumation rule for (1)

for surface (2)

$$
\left.\begin{array}{c}
F_{22}+F_{21}+F_{23}=1 \\
F_{22}=0
\end{array}\right\} F_{21+} F_{23=1}
$$

for surface (3)

$$
\left.\begin{array}{c}
F_{33}+F_{31}+F_{32}=1 \\
F_{33}=0
\end{array}\right\} \leadsto F_{31+} F_{32}=1
$$

The surface areas are the same, $A_{1}=A_{2}=A_{3}$ then

$$
\begin{aligned}
& F_{2} A_{1}=F_{21} A_{2} \rightarrow F_{12}=F_{21} \\
& F_{13} A_{1}=F_{31} A_{3} \rightarrow F_{13}=F_{31} \\
& F_{23} A_{2}=F_{32} A_{3} \rightarrow F_{23}=F_{32}
\end{aligned}
$$

Comparing with these, equations wet

$$
\begin{aligned}
F_{12} & =F_{21}=F_{13}=F_{31}=F_{23}=F_{32}=1 / 2 \\
\text { and } F_{11} & =F_{22}=F_{33}=0
\end{aligned}
$$

Now using energy bolare for surface (2) we h ave [or we Eq. (13.14)]

$$
q_{2}=q_{21}+q_{23}=F_{21} A_{2}\left(T_{2}^{4}-T_{1}^{4}\right)+F_{23} A_{2}\left(T_{-2}^{4}-T_{3}^{4}\right)
$$

and $o_{2}=0 \quad$ (insulated).

Problem 3(cont'd)
we get

$$
0=0.5 \times A_{1}\left(T_{2}^{4}-555.56^{4}\right)+0.5 \times A_{2}\left(T_{2}^{4}-277.78^{4}\right)
$$

(1) or $T_{2}=474,303 \mathrm{~K}$ Ans,
(2) for the triangle we have

$$
\hat{a}_{a}^{a} \int^{4} \mathrm{ft}
$$

$$
q_{1}=q_{12}+q_{13} \quad a^{2}=\left(\frac{a}{2}\right)^{2}+4^{2} \rightarrow a=4.62
$$

$$
=F_{12} A_{1}\left(T_{1}^{4}-T_{2}^{4}\right)+F_{13} A_{1}\left(T_{1}^{4}-T_{3}^{4}\right)
$$

Then $q_{1}^{\prime}=0.611 \mathrm{Kw} / \mathrm{m}$ Ans. and

Enengy balance for side 3

$$
q_{3}^{\prime}=-q_{1}^{\prime}=-.611 \quad \mathrm{KW} / \mathrm{m} \quad \text { Ans. }
$$

