Data-Driven Dynamical Systems.

$$
\text { about } x^{\prime}=f(x, t)
$$

On Koopman Operator - On DMD

For a spatiotemporal process -
POD is the best basis

- best measured in most energy successively per mode, in time average
=fastest decaying time average power spectrum
=usually the best approximation when truncating that finite series approximation to a few terms

DMD is the best description of the process
-best in that it looks most like a simple process
-looks like the linear process
-describes even a nonlinear system as having connections to a linear one
-so Fourier applies in the interpretation and the modes are "interesting"

Intermission of Fun Glitz Things Slides - Lots of Great Information to exploit in eigenfunction and values

Spectral partitioning of transfer operators by directed graph Laplacian following work of F. Chung - leaning on Raleigh-Ritz quotient concept

$$
B=P A P^{\top}
$$

Koopman Operator as Composition Operator

- $\dot{x}=F(x), \quad F: R^{d} \rightarrow R^{d} \quad$-or-
- (semi-) flow $S_{t}: M \rightarrow M$ each $t \in M \subset R^{d}$
K is lancet.
- Let \mathfrak{J} be set of "observation" functions (measurable). E.g.

$$
\mathfrak{J}=L^{2}(M)=\left\{g: \int_{M}|g|^{2} d \mu<\infty\right\}
$$

$$
\begin{aligned}
& k\left[a_{1} g_{1}+c_{2} g_{2}\right](x) \\
& =a_{1} k\left[g_{1}\right]^{(x)}+a_{c} \varepsilon\left[g_{2}\right]^{(x)}
\end{aligned}
$$

So measure/observe g not at x but downstream at $S_{t}(x)$

$K: \mathfrak{I} \rightarrow \mathfrak{I}$
operator

Koopman is adjoint of Frobenius-Perron
$\ldots g, P[f]\rangle_{\mathcal{F}^{*} x \mathcal{F}}=<K[g], \mathrm{f}>_{\mathcal{F}^{*} x \mathcal{F}}$

- $\quad P[f](x)=\int \delta\left(x-S_{t}(y)\right) f(y) d y$

Vs. $K[g](x)=\int \delta\left(x-S_{t}(y)\right) g(x) d x$
$A_{v}=t^{t}$ An Eigenfunction of K satisfies

$$
\begin{aligned}
K_{i}[g](x)=g \circ S_{t}(x) & =\quad b^{t}=e^{d t} \\
& =b^{t} g(x)=e^{\lambda^{\prime}} g(x)
\end{aligned}
$$

$u=A \vartheta \quad$ eigenvalue λ eigenfunction g
K is liner - erector even though $\int \frac{\text { ct } n \text { have }}{3 x^{2} \leftarrow 7 x^{3} d x=3 \int x^{2} d x}$ $+7 \int x^{3} d x$

$\forall a_{i}$ sealer, v_{i} in vector speos.

How to find eigenfunction of Koopman operator of flow of $\dot{x}=f(x))_{-1}^{2} z=f(z)$

$$
\dot{g}=\lambda g
$$

demand,
Why? Given, $\mathcal{K}_{t}[g](z)=e^{\lambda t} g(z)$

$$
A_{\mathcal{H}} g(x)=\lim _{t \rightarrow 0} \frac{g\left(S_{t}\left(x_{0}\right)-g\left(x_{0}\right)\right.}{t}=\lim _{t \rightarrow 0} \frac{g(x(t))-g\left(x_{0}\right)}{t}
$$

If g is continuously differentiable
which follows from the definition of the operator
If g is continuo
theorem to obtain

$$
\begin{aligned}
A_{\mathcal{K}} g(x) & =\sum_{i=1}^{d} \frac{\partial g}{\partial x_{i}} F_{i}(x) \\
& =\nabla g \cdot F(x)
\end{aligned}
$$

Theorem Given a domain $\mathbb{X} \subseteq M \subseteq \mathbb{R}^{d}, z \in \mathbb{X}$, and $\dot{z}=F(z)$ with $F: \mathbb{X} \rightarrow \mathbb{R}^{d}$, then the corresponding Koopman operator has eigenfunctions $g(z)$ that are solutions of the linear PDE,

$$
\begin{equation*}
\nabla g \cdot F(z)=\lambda g(z) \tag{8}
\end{equation*}
$$

if \mathbb{X} is compact and $g(z): \mathbb{X} \rightarrow \mathbb{C}$ is in $C^{1}(\mathbb{X})$, or alternatively, if $g(z)$ is $C^{2}(\mathbb{X})$.
where ϕ_{k} and λ_{k} are the eigenvectors and eigenvalues of \mathbf{A} and \mathbf{b} contains the coefficients of the initial condition \mathbf{x}_{1} in the eigenvector basis so that $\mathbf{x}_{1}=\boldsymbol{\Phi} \mathbf{b}$. The DMD algorithm produces a low rank eigendecomposition of \mathbf{A} that optimally fits the measured trajectory \mathbf{x}_{k} for $k=1,2, \ldots, m$ in a least-squares sense so that

> is minimized across all points for $k=1,2, \ldots, m-1$.
> Given m snapshots of data, each of length n,

$$
X^{\prime} \approx \underset{A X}{ } A_{\sim \operatorname{sat} z}
$$

The best-fit A matrix is given by

$$
\left\|\mathbf{X}^{\prime}-\mathbf{A} \mathbf{X}\right\|_{F}
$$

$$
\mathbf{A}=\mathbf{X}^{\prime} \mathbf{X}^{\dagger}
$$

\qquad
where ${ }^{\dagger}$ denotes the Morse-Penrose pseudoinverse.

$\mathbf{X} \approx \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{*}$

$\mathbf{U} \in \mathbb{C}^{n \times r}, \boldsymbol{\Sigma} \in \mathbb{C}^{r \times r}, \mathbf{V} \in \mathbb{C}^{m \times r}$ and r is the rank

$$
\mathbf{A}=\mathbf{X}^{\prime} \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{*} \quad \text { BUT CAREFUL! Inverse usually dne - use penrose pseudo inverse }
$$

The left singular vectors \mathbf{U} are POD modes.

On DMD (and the many variants) - (which these turn out to be some kind of estimator of Koopman).
Dynamic Mode Deconpoistion Date Driven version of Koopman.

Given data collected from some dynamical system

With initial condition $\mathbf{x}(0)$, this system has

where ϕ_{k} and ω_{k} are the eigenvectors and eigenvalues of Aand the coefficients b_{k} are the coordinates of the initial condition $\mathbf{x}(0)$ in the eigenvector basis.

It is possible to describe a discrete time analog of the dynamical system above by taking time samples every Δt yielding,

$$
\rightleftharpoons \quad \mathbf{x}_{k+1}=\mathbf{A} \mathbf{x}_{k}
$$

where

$$
\mathbf{A}=\exp (\mathcal{A} \Delta t)
$$

This system has the following solution:

$$
\begin{gathered}
\mathbf{x}_{k}=\sum_{j=1}^{r} \phi_{j} \lambda_{j}^{k} b_{j}=\boldsymbol{\Phi} \boldsymbol{\Lambda}^{k} \mathbf{b} \\
\chi \frac{\alpha q}{\text { for each } k .}
\end{gathered}
$$

$$
\mathbf{A}=\mathbf{X}^{\prime} \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{*}
$$

For computational efficiency, $\widetilde{\mathbf{A}}$, which is the $r \times r$ projection of the full matrix \mathbf{A} onto POD modes, is typically used:

$$
\widetilde{\mathbf{A}}=\mathbf{U}^{*} \mathbf{A} \mathbf{U}=\mathbf{U}^{*} \mathbf{X}^{\prime} \mathbf{V} \boldsymbol{\Sigma}^{-1}
$$

The matrix $\widetilde{\mathbf{A}}$ defines a low-dimensional linear model of the dynamical system on POD coordinates:

$$
\widetilde{\mathbf{x}}_{k+1}=\widetilde{\mathbf{A}} \widetilde{\mathbf{x}}_{k}
$$

Next we compute the eigendecomposisiton of $\widetilde{\mathbf{A}}$:

$$
\widetilde{\mathbf{A}} \mathbf{W}=\mathbf{W} \mathbf{\Lambda},
$$

where the columns of \mathbf{W} are the eigenvectors and $\boldsymbol{\Lambda}$ is a diagonal matrix containing the

The eigenvalues of A are given by $\operatorname{diag} \boldsymbol{\Lambda}$ and the eigenvectors of \mathbf{A} (the
DMD modes) are given by the columns of $\boldsymbol{\Phi}$:

$$
\boldsymbol{\Phi}=\mathbf{X}^{\prime} \mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{W}
$$

The projected future solution can be given by the low-rank approximation to

$$
\begin{aligned}
& \mathbf{x}(t)=\sum_{k=1}^{r} \phi_{k} \exp \left(\omega_{k} t\right) b_{k}=\boldsymbol{\Phi} \exp (\boldsymbol{\Omega} t) \mathbf{b} \\
& \quad \text { where } \omega_{k}=\ln \left(\lambda_{k}\right) / \Delta t
\end{aligned}
$$

Recall that \mathbf{b} contains the initial condition of the observable in the eigenvector basis so that $\mathbf{x}_{1}=\mathbf{\Phi b} . \boldsymbol{\Phi}$ need not be square so we use its pseudoinverse to find the vector \mathbf{b} :

$$
\mathbf{b}=\boldsymbol{\Phi}^{\dagger} \mathbf{x}_{1}
$$

Think VandermondeMatrix. - "the movie player"

$$
\begin{aligned}
& 1 / \\
& \Psi_{0}:=\left[\psi_{0} \psi_{1} \cdots \psi_{N-1}\right] \in \mathbb{C}^{M \times N}, \quad<\Psi_{1}=\left[\psi_{1} \psi_{2} \cdots \psi_{N}\right] \\
& -\Psi_{1}:=\left[\begin{array}{llll}
\psi_{1} & \psi_{2} \cdots & \psi_{N}
\end{array}\right] \in \mathbb{C}^{M \times N}, \quad=\left[\begin{array}{llll}
A \psi_{0} & A \psi_{1} & \cdots & A \psi_{N-1}
\end{array}\right]- \\
& =A \Psi_{0} . \\
& \text { - } \psi_{t+1}=A \psi_{t}, \quad t=\{0, \ldots, N-1\} . \\
& \text { koopnmen - blrb Mores }
\end{aligned}
$$

- Oinen $D-\left\{\psi_{0}, \psi_{1}, \ldots, \psi_{N}\right\}, \psi_{i} \in \mathbb{C}^{M}$
- Assume Ansate $\psi_{++1}=A \psi_{+}$- shlue for A^{2}
- Convience sdit deta Deta mutrices. $\mathbb{\Psi}_{n}=A \mathbb{F}_{0}$

$$
\begin{aligned}
& \underline{\Psi}_{1}=\left[\psi_{1} \mid \psi_{2}\left(\ldots, \psi_{N}\right]_{M+N}\right.
\end{aligned}
$$

- Exact DMD $\frac{\text { Ooal }}{\text { optind reporsatatinn }} \frac{1}{A_{\text {DMD }}^{\text {M+N }} \mathbb{C}^{\text {rer }}}$ cank r approx of aetrix A in the basis penned $r<N$-Ron-singlits by the POD Modes

What loss goes that Mean to project A an in to BOD bash?

- Presume Ψ_{0} al reed y deneonit. $\Psi_{0}=\frac{V_{r}}{T} \sum V^{+}$
 column of are POD basisMijlat be zero.
choose r bo the $6 \subset>\varepsilon$
$6 c k<\varepsilon$.

$$
\underline{U}_{r}=\left[0_{1}, \ldots 1 U_{r}\right] \rightarrow \underline{\bar{U}}
$$

$$
\begin{aligned}
& \begin{aligned}
A_{\text {DMD }} & =\frac{U^{+} \bar{\Psi}, \bar{V} \sum_{i}^{-}\left(\bar{U}+\frac{U^{I}}{T}\right)}{} \\
& =U^{+} \Psi, \bar{\Psi} \Sigma_{c}^{-}
\end{aligned}
\end{aligned}
$$

ADMDrane is a low-rank, rank-r estandor of motrix $A_{\text {ren }}$ which in an estimetor of koogmen opor-hers
Wortes well to fint he renk estinder when

- typically I dont celly wat to ure * kee, A or Apmo (est roctors os X) eisen rolues.
- Typical Betuviors in fynemic sense eig's oif An Actors.

Using Admd

- Ootad amplatvets of DMD modes.

- let $\left\{w_{1}, w_{2}, \ldots, w,\right\}$ be eigervectors of $\frac{A_{\text {DMD }}^{r x c}}{} \rightarrow\left\{\lambda_{1}, \ldots, d r\right\}$ cigeardves $\Leftrightarrow A_{0 M D} r_{i}=\left\langle\mu_{i}\right.$
- But I wart to vorbe in rxl scele which surt artificcèl ahere In Doing casy canpte - went is re-interpert beck in Mx space where ny noturd meosurements are.
$\frac{\Psi_{1}}{q_{1}} \approx \mathbb{U}^{x^{+}}$not eegen recter of AOMD not on eigenveckir of A
- Bit than X_{+}may be a cincar ceubo of ecigonvectios of ADmD, $W_{I} c r a r$

$$
\begin{aligned}
& \begin{array}{l}
x_{1}=A_{D M D} x_{0} C \\
x_{0}=a_{2} w_{1}+a_{2} w_{2}+\ldots+a_{-} w_{1}- \\
A_{D M D}\left(a_{1} w_{1}+a_{2} w_{2}+\ldots+a_{1} w_{1}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =a_{2} d_{1} w_{1}+a_{2} \lambda_{2} w_{2}+\cdots+a_{r} d_{1}+x_{r} \\
& \begin{aligned}
x_{+} & =a_{2} \lambda_{1}^{+} w_{1}+a_{2} \lambda_{2}{ }^{+} w_{2}+\cdots+a_{r} \lambda_{r}{ }^{+} W_{r} \\
& =\Gamma_{5} a_{i} \lambda_{r}+r_{i}
\end{aligned} \\
& =\sum^{\Sigma} a_{i} \lambda_{i}{ }^{+} r_{i}
\end{aligned}
$$

How to connect DMD modes to $\bar{W}=\left[\omega_{1} \mid \omega_{21} \ldots\left(\omega_{r}\right]\right.$ POD modes
W are figs of $A_{-} D M D$
ϕ_{i} are Mks lifted wi are rx eigenvectors of Ar $_{\text {DMD }}$

- lifer ba $\phi_{i}=\underline{U}_{r} \omega_{i}-r_{\text {mar }}, i=1, \ldots$
$\phi_{T}=\underline{U_{r}} V_{i} \left\lvert\, \begin{aligned} & \text { eiguect of } A_{\text {OM }} \text { cots } \\ & \text { by POD bases to be }\end{aligned}\right.$ $==1-r=$ DMD nodes.
- λ_{i} of $A_{\text {DMD }}$ eigarulues ore taken as the eiggenodues of A estondor, f what goes of $7 人$.

$$
\begin{aligned}
& \Psi_{0}=\underline{V}_{r_{0}}=\bar{V}_{r}\left(a_{2} w_{1}+a_{2} w_{2} r+a_{r} \omega_{r}\right) \\
& \Omega \bar{\Psi}_{0} a_{1} \underline{\Psi}_{-} \omega_{1}+a_{2} \underline{U}_{r} w_{2}+\cdots+a_{r} \underline{U}_{r} \omega_{r}
\end{aligned}
$$

What's moving? Thought experiment - The stadium wave.

```
D YouTube
```

Search

Steps.

- Experment, collect data ψ_{i} at time snapshots ti, than collect eta matrices $: \psi_{0}=\left[1, \ldots, \psi_{m-1}\right] ; \psi_{i}=\left[\psi_{2}, \ldots, \psi_{M}\right]$
- Arsctz $\psi_{1}=A \psi_{0}$, lojucted onto POD modes

- $A_{\text {aM Q }}=U^{+} \mathbb{\Psi}_{0} \underline{\underline{D}} \Sigma^{-1} \cot \tilde{\psi}_{0}=\psi_{0}-\bar{\psi}_{0}$

DMD for Strait of Gibraltar Data

Previous slides link

Authors: Kanaththa Priyankara, Sathsara Dias, Sudam
Surasinghe, with E. Bollt and M.
Budišić (all at Clarkson
University)

Larry's ppt

Modes

Full				
table Index	HLT	Period	$\begin{aligned} & \text { MeanL2N } \\ & \text { orm } \end{aligned}$	$\|\mathrm{b}\|$
1	668.10	Inf	144.84	155.63
3	19.91	-73.47	82.44	259.25
5	35116.86	-12.31	71.23	71.33
7	18.90	-57.93	70.85	228.63
9	32.88	228.92	70.24	172.08
11	4.33	19.87	68.73	463.55
13	36.37	-11.74	43.56	101.58
15	172.44	-24.65	36.32	47.04
17	29.34	26.61	25.94	67.23
19	22.42	21.34	22.97	68.08
21	43.32	-13.04	18.94	40.59
23	9.99	-7.48	16.99	75.44
25	1.34	3.55	16.71	202.43
27	25.96	37.70	14.85	40.91
29	12.87	4.02	11.52	45.04
31	29.35	-10.86	11.32	29.33
33	124.52	8.17	11.07	15.61
35	296.88	-6.24	10.78	12.60
37	64.91	8.37	9.81	17.51
39	59.96	4.06	8.45	15.61
41	28.69	-7.57	8.02	21.03
43	10.38	4.54	7.99	34.78
45	5.29	3.21	7.74	47.21
47	273.20	6.06	7.65	9.07
49	29.82	-17.42	7.42	19.08

Time Dynamics: $\mathfrak{R}\left(b e^{\omega t}\right)$

Tidal modes: low decay rate, concentrated, isolating tidal frequencies

DMD mode 1 reveals the Western Alboran Gyre(WAG) and secondary gyre that sits between the Ceuta and the WAG.

$|b|: 155.63$

Mean L2 : 144.84 (order by L2)

L2 of vertical velocity :

Mode 4: (semidiurnal) HLT: 35116.86 h PERIOD: 12.31 h

DMD mode 4(Previous Mode 2\&4) reveals the semidiurnal Tidal mode with many qualitative features, including disorganized patches or swirls of high surface speed in the western Alboran Sea.

$$
S=\sqrt{u^{2}+v^{2}}
$$

DMD mode 14(Previously Known as mode 6) reveals the diurnal Tidal mode. One of the most striking features of this mode is the set of well defined bands of alternating surface velocity in the vicinity of the Atlantic Jet (AJ).

