$\mathcal{E F}_{520}$ Data Driven Analysis of Complex Systems

Erik Bollt

2

On Matoix Multiplication

- a redor has length 3 birection.
$A_{2 \times 2}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Matas linear algebre

$$
z^{\prime}=A z \quad{ }^{\prime} \stackrel{A}{\longrightarrow}
$$

new directim, aew length.
Eiy for syuore -

$$
\text { - } \quad A_{2 \times 2}=\lambda v
$$

Cheracterize netrices by knowing just these - eig. special D irections

$$
\text { - } \begin{aligned}
A u=A\left(a_{1} v_{1}+a_{2} v_{2}\right) & =a_{1} A v_{1}+a_{2} A r_{2} \operatorname{det}(A-\lambda I \mid=0 \\
& =a_{1} \lambda_{1} v_{2}+a_{2} \lambda_{2} v_{2} \quad(A-c I) \mid r
\end{aligned}
$$

Matrix tome circle $=$
? Matrix x circle? Buymatcix times vector. $\lambda=$

$$
\stackrel{\overbrace{2}}{\stackrel{R^{n}}{2}} \frac{A}{A x}
$$

Theorem 2.1.1 - Singular Value Decomposition. Let A be an $m \times n$ matrix whose entries come from the field \mathcal{K}, which is either the field of real numbers or the field of complex numbers. Then the singular value decomposition of A exists, and it takes the form of a product of matrices:

$$
\begin{equation*}
A_{m \times n}=U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{*} \tag{2.5}
\end{equation*}
$$

where

- U is an $m \times m$ unitary matrix.
- Σ is a diagonal $m \times n$ matrix with non-negative real numbers on the diagonal.
- V is an $n \times n$ unitary matrix, and V^{*} is the conjugate transpose of V.

The singular values are the nonegative values: $\sigma_{i} \geq 0, i=1, \cdots, n$,
The left singular vectors: u_{i} are the columns of $U=\left[u_{1}, u_{2}, \ldots, u_{m}\right]$.
The right singular vectors: v_{i} are the columns of $V=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ Definition $\mathbf{2} 1.1$ - Singular values and singular vectors. The singular val-

The left singular vectors: u_{i} are the columns of $U=\left[u_{1}, u_{2}, \ldots, u_{m}\right]$
o \cup, tAtary \leftrightarrows The left singular vectors: u_{i} are the columns of $U=\left[u_{1}, u_{2}, \ldots, u_{m}\right]$.

Fri 08/21/20

Full \$

The Economy SVD, and Reduced Rank SVD

The general SVD, Eq. (2.5) may be written in terms of submatrices.
Definition 2.1.3 - The Economy SVD. For any matrix $A \in \mathbb{R}^{m \times n}$, the general SVD Eq. (2.5) can be written in terms of smaller matrices,

$$
\begin{equation*}
A_{m \times n}=\hat{U}_{m \times n} \hat{\Sigma}_{n \times n} V_{n \times n}^{*}, \tag{2.21}
\end{equation*}
$$

and $U=\left[\hat{U}_{m \times n} \mid \hat{U}_{(n-m) \times n}\right]$, written in terms of an orthogonal "buffer" matrix

Definition 2.1.4 - Rank Deficient SVD. For a matrix $A \in \mathbb{R}^{m \times n}$ such that the SVD results in singular values
then the SVD can be written in terms of an economy form as smaller matrices,

$$
\begin{equation*}
A_{m \times n}=\hat{U}_{m \times r} \hat{\Sigma}_{n \times n} V_{n \times r}^{*} \tag{2.23}
\end{equation*}
$$

and related to the general SVD Eq. (2.5) by $U=\left[\hat{U}_{m \times r} \mid \hat{U}_{(n-r) \times n}\right]$, but $r<n$.

so,

$$
A_{m \times n}\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
v_{1} & v_{2} & \ldots & v_{n} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
u_{1} & u_{2} & \ldots & u_{n} \\
\mid & \mid & \mid & \mid
\end{array}\right]\left[\begin{array}{cccc}
\sigma_{1} & 0 & \ldots & 0 \\
0 & \sigma_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \sigma_{n}
\end{array}\right]
$$

but this just states n-matrix times vector statements:

$$
\begin{aligned}
A v_{1} & =\sigma_{1} u_{1} \\
A v_{2} & =\sigma_{2} u_{2} \\
& \vdots \\
A v_{n} & =\sigma_{n} u_{n}
\end{aligned}
$$

$G \subset \rightarrow \varepsilon>b c t$
\sim

Bunny Compression

Figure 2.8: (Left) Singular Values. (Right) Energy

Rank $r=20$
Rank $r=10$
2,2
$2 e-3$

Rank $r=100$

Distance $\left\|I-I_{r}\right\|_{F}$, where I_{r} is the recovered image using the reduced

Code 2.1: Read, convert, and display images.

```
I = imread('Bunny.jpg');
figure
subplot (1, 2, 1)
5 imshow(I)
xticks({}); yticks({});
pbaspect([llll}11
title('RGB Image')
10 I = rgb2gray (I);
I %Convert the 3D RGB color to 1D grayscale
I}=\frac{\mathrm{ im2double(I); %Convert integer value to double (scaled ... }}{\mathrm{ from 0 to 1)}
    from 0 to 1)
subplot (1,2,2)
14 imshow(I)
xticks({}); yticks({});
pbaspect ([\begin{array}{lll}{1}&{1}&{1}\end{array}])
title('Grayscale Image')
```


History

APR CALIFORNIR 2005) PROF SVD

Gene Golub's license plate, photographed by Professor P. M. Kroonenberg of Leiden University.Gene Howard Golub (February 29, 1932 - November 16, 2007), Fletcher Jones Professor of Computer Science at Stanford University. His work made fundamental contributions that have made the singular value decomposition practical as one of the most powerful and widely used tools in modern matrix computation.

Lot's of Machine learaing \$ Date Analysis
is solu-ing an ill-posed

- optinize a cost function.

$$
\begin{aligned}
A A^{\top} & =U \varepsilon V^{\top}\left(V \varepsilon^{\top} U^{\top}\right) \\
& =U \Sigma \varepsilon^{\top} U^{\top} \\
\left(A A^{\top}\right) \bar{U} & =U\left(\varepsilon \varepsilon^{\top}\right)=\left(\varepsilon \varepsilon^{\top}\right) \underline{U} \\
\bar{U} & =\left(\dot{U}_{1} \dot{U}_{\underline{L}} \ldots \dot{U}_{M}\right)
\end{aligned}
$$

Definition 2.1.2 - Induced Norm. Suppose a vector norm $\|\cdot\|$ on \mathcal{K}^{m} is given. Any matrix $A_{m \times n}$ induces a linear operator from \mathcal{K}^{n} to \mathcal{K}^{m} with respect to the standard basis, and one defines the corresponding induced norm or operator norm on the space $\mathcal{K}^{m \times n}$ of all $m \times n$ matrices as follows:

$$
\begin{equation*}
\|A\|_{p}=\sup _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}} \tag{2.14}
\end{equation*}
$$

or, taking a vector x such that $\|x\|_{p}=1$, then we have

Some Special (Simple) Matrix Norms
The first 3 of these are induced norms, but the 4th is not.

- For $p=1$:

$$
\begin{equation*}
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right| \tag{2.16}
\end{equation*}
$$

- For $p=\infty$:

$$
\begin{equation*}
\|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right| \tag{2.17}
\end{equation*}
$$

- A special case is the spectral norm when $p=2$, in which we have:

$$
\begin{equation*}
\|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}=\sigma_{\max } \tag{2.18}
\end{equation*}
$$

where $\sigma_{\max }^{\bullet}$ is the maximum singular value of the matrix A.

- The Frobenius norm is given by:
$\leadsto\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}=\sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}}$

Theorem 2.1.2 For a matrix A, the product of the singular values of A, equals the absolute value of its determinant:

$$
\begin{equation*}
|\operatorname{det}(A)|=\prod_{i=1}^{n} \sigma_{i} \tag{2.20}
\end{equation*}
$$

per : 1 \& $x_{1} x_{1}=1 x_{c}+x_{2}$

Definition 2.1.2 - Induced Norm. Suppose a vector norm $\|\cdot\|$ on \mathcal{K}^{m} is given. Any matrix $A_{m \times n}$ induces a linear operator from \mathcal{K}^{n} to \mathcal{K}^{m} with respect to the standard basis, and one defines the corresponding induced norm or operator norm on the space $\mathcal{K}^{m \times n}$ of all $m \times n$ matrices as follows:

$$
\begin{equation*}
\|A\|_{p}=\sup _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}} \tag{2.14}
\end{equation*}
$$

or, taking a vector x such that $\|x\|_{p}=1$, then we have

$$
\begin{equation*}
\|A\|_{p}=\sup _{\|x\|_{p}=1}\|A x\|_{p} \tag{2.15}
\end{equation*}
$$

Some Special (Simple) Matrix Norms

The first 3 of these are induced norms, but the 4th is not.

- For $p=1$:

$$
\begin{equation*}
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right| \tag{2.16}
\end{equation*}
$$

- For $p=\infty$:

$$
\begin{equation*}
\|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right| \tag{2.17}
\end{equation*}
$$

- A special case is the spectral norm when $p=2$, in which we have:

$$
\begin{equation*}
\|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}=\sigma_{\max } \tag{2.18}
\end{equation*}
$$

where $\sigma_{\max }$ is the maximum singular value of the matrix A.

- The Frobenius norm is given by:

$$
\begin{equation*}
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}=\sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}} \tag{2.19}
\end{equation*}
$$

Theorem 2.1.2 For a matrix A, the product of the singular values of A, equals the absolute value of its determinant:

$$
\begin{equation*}
|\operatorname{det}(A)|=\prod_{i=1}^{n} \sigma_{i} \tag{2.20}
\end{equation*}
$$

Fun fauts about matrix astrination (latax estionation)) If $A_{1}, \quad 6_{1} \geqslant \ldots \geqslant \sigma_{r}>6_{r+1}=0$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { - } \operatorname{range}(A)=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{\sigma}\right) \\
\therefore \operatorname{rull}(A)=\operatorname{span}\left(v_{r+c}, v_{r+2}, \ldots, r_{n}\right)
\end{array}\right\} 0^{A} \sigma_{\sigma_{2}}=0 \\
& r=1 \\
& \text { - }\|A\|_{2}=\sigma_{1} ;\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{r}^{2}} \quad \mathbb{K} \\
& \text { - } A=\sum_{i=1}^{\infty} \sigma_{i} u_{i} V_{i}^{*}=\sigma_{1} u_{1} v^{+}+\sigma_{2} u_{2} v_{2}^{+}+\cdots+6_{r} v_{r}^{+} \text {, } \\
& A=U \Sigma V^{\top} \text { rank-1 outer provucts, } \omega_{1}^{\top} \omega_{2}=\omega_{c} \cdot \omega_{c}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
\end{aligned}
$$

Matrix Estimation I Data Extinction. A Amen

- let $0 \leq N \leq r$ and $A_{N}=\sum^{N} b_{i} u_{i} v_{i}^{*}$

C so we may be skipping some of them ... $\sum_{i=N+1}^{r}$
Then $\left\|A-A_{N}\right\|_{2}=\sigma_{N+1} \quad$ (first one stopped)
(what of it zero ?

On PCA Principal Component Analysis, Eigenface
-On Raleigh Ritz Quotient
-On Spectral Decomposition Theorem
-On Data Clouds

Data for PCA. "Pretend tota lorbs cive on ellipsoiz"
Ex. X: ~ 4F00x (gene expression $\$ 2 b l e$ for eech i.

$$
x_{i}=\left(\begin{array}{l}
x_{i}^{1} \\
x_{i}^{2} \\
\dot{x}_{i}^{2} \\
\dot{x}_{\text {tud }}
\end{array}\right]
$$

$y_{i}=0$ or l "O" if not concer "i"" if cencerer.

$$
\mathbb{Z}_{2}=\{0,1 \xi .
$$

- Supervised us. unsupervised.
jost ${ }^{3}$ unsupervised - just input - just stivecturel 2 geonethy geonetry.
 $R \cdot V \cdot x \sim \frac{\bar{X}}{C^{K}}$
$x: x \rightarrow C_{\text {Ces }}$

Let A be a $n \times n$ symmetric matrix. From the spectral theorem, we know that there is an orthonormal basis u_{1}, \cdots, u_{n} of \mathbb{R}^{n} such that each
 corresponding to u_{j}, that is,

$$
\left.A u_{j} \neq \lambda_{j}\right)_{j} . \measuredangle \operatorname{rec}(
$$

Then

$$
A=P D P^{-1}=P D P^{\top}
$$

where P is the orthogonal matrix $P=\left[\begin{array}{lll}u_{1} & \cdots & u_{n}\end{array}\right]$ and D is the diagonal matrix with diagonal entries $\lambda_{1}, \cdots, \lambda_{n}$. The equation $A=\underline{P D P}^{\top}$ can be rewritten as:

PCA as algorithm

- Dater $\bar{E}=\left(\begin{array}{llll}\dot{x}_{1} & x_{2} & x_{2} & x_{n}\end{array}\right)_{m \times 1}^{\text {th }}$
- whatif $x: \sim \underline{n}(\bar{x}, \varepsilon)_{\text {covena }}$

$$
\bar{x}_{i}=\frac{1}{n} \sum_{i=1}^{n} \bar{X}_{i j}
$$

$B=U \varepsilon v^{\top} ; u=\left\{u_{1}, v_{2} \ldots u_{1}\right]$

sige Note:
Th is slowest comvery ing to zero 6: ive. İ is slowest unvergung bi
$\sum_{i=1}^{\infty} \frac{1}{i+}<\infty$ if pore baid $_{p<1} \quad b_{i} \leq \frac{1}{i}$

$$
=1+\frac{1}{2}+\frac{1}{s}+\frac{1}{c^{p}} t \ldots p=1
$$

$$
\begin{aligned}
& B=I \bar{x}^{\top} \quad j \quad \text { let } C=\frac{1}{n-i} B^{\tau} B \text { engoder } \\
& B=U \Sigma V^{\tau} \quad \$ W^{\top} V_{1} \text { is covoriance notren - }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore U_{2}=\begin{array}{c}
\operatorname{argmax} u^{\top} B^{\top} B u \\
\|\cup\|=1 \\
v \perp u .
\end{array}
\end{aligned}
$$

The Eigs of $C=B^{\prime} B$ give optimal projection - thus PCA and.... KL

$$
\text { o } C V=V D
$$

ergenvectorg of C all stacked.

$$
\begin{aligned}
& A x \text { optinize } x^{\top} A x \text {, Maxisicze } \\
& x=\left(\begin{array}{l}
x^{\prime} \\
\vdots \\
\vdots \\
x^{n}
\end{array}\right) ; r(x)=\frac{x^{\top} A x}{x^{\top} x} \text { \& } \quad\binom{A=B^{\top} B}{x-0} \\
& \frac{\partial \Gamma}{\partial x^{j}}=\frac{\partial}{\partial x^{\top}}(c(x))=\frac{\frac{\partial}{\partial \bar{x}}\left(x^{\top} A x\right)-x^{\top} A x \frac{\partial}{\partial x^{\top}}\left(x^{\top} x\right)}{\left(x^{\top} x\right)^{2}} \\
& =\frac{2(A x)_{j}}{x^{\top} x}-\frac{\left(x^{\top} A x\right)^{\left(x^{\top} x x^{2}\right.}}{\left.x^{\top} x\right)^{2}}=\frac{2}{x^{\top} x}\left(A x-\Gamma(x) x_{j}\right) \\
& \nabla r(x)=\frac{2}{x^{\top} x}\left(A x-r(x)(x)=\frac{x}{x^{\top} x}(A-r(x))^{2} x=0\right.
\end{aligned}
$$

$$
A x=r_{i x 1} x \Rightarrow A x=\lambda x
$$

The x thet optines $\Gamma(x)=\frac{x^{\top} A x}{x^{\top} x}$ is on ergenvector ad rexi is is eigerrelue.

- S.B.T. for $A=B^{\top} B=\sum_{i=1}^{n} \lambda_{i} U_{i} U^{T}$
let $B=\left(U \Sigma V^{\frac{\pi}{c}} s v^{2}\right.$

$$
\begin{aligned}
& B^{\top} B=V \Sigma^{\top} U T O L V^{\top}=V \Sigma^{\top} \sum^{\top} V^{\top}
\end{aligned}
$$

Eigenfaces for Face Detection/Recognition

(M. Turk and A. Pentland, "Eigenfaces for Recognition", Journal of Cognitive Neuroscience, vol , no. 1, pp. 71-86, 1991, hard copy)

- Face Recognition

- The simplest approach is to think of it as a template matching problem:

- Problems arise when performing recognition in a high-dimensional space.
- Significant improvements can be achieved by first mapping the data into a lowerdimensionality space.
- How to find this lower-dimensional space?
- Main idea behind eigenfaces
- Suppose Γ is an $N^{2} \mathrm{x} 1$ vector, corresponding to an $N \times N$ face image I.
- The idea is to represent $\Gamma(\Phi=\Gamma$ - mean face $)$ into a low-dimensional space:

$$
\hat{\Phi}-\text { mean }=w_{1} u_{1}+w_{2} u_{2}+\cdots w_{K} u_{K}\left(K \ll N^{2}\right)
$$

Computation of the eigenfaces

Step 1: obtain face images $I_{1}, I_{2}, \ldots, I_{M}$ (training faces)
(very important: the face images must be centered and of the same size)

Step 2: represent every image I_{i} as a vector Γ_{i}
Step 3: compute the average face vector Ψ :

$$
\Psi=\frac{1}{M} \sum_{i=1}^{M} \Gamma_{i}
$$

Step 4: subtract the mean face:

$$
\Phi_{i}=\Gamma_{i}-\Psi
$$

Step 5: compute the covariance matrix C :

$$
\begin{aligned}
& C=\frac{1}{M} \sum_{n=1}^{M} \Phi_{n} \Phi_{n}^{T}=A A^{T} \quad\left(N^{2} \mathrm{x} N^{2} \text { matrix }\right) \\
& \text { where } A=\left[\Phi_{1} \Phi_{2} \cdots \Phi_{M}\right] \quad\left(N^{2} \mathrm{x} M \text { matrix }\right)
\end{aligned}
$$

Step 6: compute the eigenvectors u_{i} of $A A^{T}$
The matrix $A A^{T}$ is very large --> not practical !!
Step 6.1: consider the matrix $A^{T} A$ ($M \times M$ matrix)
Step 6.2: compute the eigenvectors v_{i} of $A^{T} A$

$$
A^{T} A v_{i}=\mu_{i} v_{i}
$$

What is the relationship between $u s_{i}$ and v_{i} ?
$A^{T} A v_{i}=\mu_{i} v_{i} \Rightarrow A A^{T} A v_{i}=\mu_{i} A v_{i}=>$
$C A v_{i}=\mu_{i} A v_{i}$ or $C u_{i}=\mu_{i} u_{i}$ where $u_{i}=A v_{i}$
Thus, $A A^{T}$ and $A^{T} A$ have the same eigenvalues and their eigenvectors are related as follows: $u_{i}=A v_{i}!!$

Note 1: $A A^{T}$ can have up to N^{2} eigenvalues and eigenvectors.
Note 2: $A^{T} A$ can have up to M eigenvalues and eigenvectors.
Note 3: The M eigenvalues of $A^{T} A$ (along with their corresponding eigenvectors) correspond to the M largest eigenvalues of $A A^{T}$ (along with their corresponding eigenvectors).

Step 6.3: compute the M best eigenvectors of $A A^{T}: u_{i}=A v_{i}$
(important: normalize u_{i} such that $\left\|u_{i}\right\|=1$)
Step 7: keep only K eigenvectors (corresponding to the K largest eigenvalues)

iPCA of thonay

On basis, functions, and Hilbert space.
Fourier, Taylor, Wavelet, POD-KL
leadin (2)-in 5 min. Signals a-alysis., Harmonic.

- Hertoricelly faverite basir set. $\left.B=\left\{v_{1}, w_{2},\right\}\right\}$ (us. energy kaverite besis set comes from Deit)
- Taylor Iolgnomids.
- Jourier nodes.

Chenging bas is is a soot of coord-rot.

On basis, functions, and Hilbert space. Fourier, Taylor, Wavelet, POD-KL
k. 2.1

Hilbert spae - a complete inner prodet spue.

- An inner proved cinanceís a "vector gene "A together witt a function called "inner protect" $\langle\cdots\rangle:, E \times E \rightarrow \mathbb{C}^{L \mathbb{R}}$.
toft. with propoties. - conjugate $\langle u, v\rangle=\langle v, u\rangle \quad \forall u, v \in E$
Gift: you set geometry in E
as on angle $\left\langle(u, v)=\overline{\overline{c o s}}=\frac{\langle u, v\rangle}{\|u\| v \|}\right.$
(2) and pajeder. $\quad \begin{aligned} & \text { sill }\|v\| l\end{aligned}$ vector square. \quad pos. $\begin{aligned} & \langle u, u \gg 0 \\ & \forall v \in E, v \neq 0 . \quad u_{1}, v_{2}, v \in E\end{aligned}$
set of obsafs "like vectors"."
that have $a+$ and scalar multip ticetom - indongo
 identity for scaler.

En: arrays of red number that are 2×1.

$$
3\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
30 \\
0
\end{array}\right]
$$

(Norm: $4 x \|^{2}=\langle x, x\rangle^{1 / 2}$

 $\left(L^{2}([0,1\}) \subset \overline{C(\{0,1]))}\right.$

$$
\text { let } \left.\langle f, g\rangle_{L^{2}([0,3)}=\int_{0}^{1} f(x) s(x) d x \text { \& btw }\left.u f\right|_{L^{2}(L 0, v)}=\left(\int_{0}^{1} \mid f(x)\right)^{2} g x\right)^{1 / 2}
$$

$$
\text { taxi }_{2}=\frac{a_{0}+}{l}
$$

$\phi_{k}\left(+1=\frac{2}{l} \cos \frac{k x}{l}\right.$ or $\frac{2}{l} \cdot \sin \frac{k x}{l}$.
$\sigma \sin l e r$ if $\phi_{k}(x)=c i e^{i k x}$

$$
\begin{aligned}
& \text { finite if } \\
& \text { "trig poly" }
\end{aligned}
$$

or: maybe $B^{\prime}=\xi \cdot x^{k} \cdot \xi \quad$ Taylor poly.
or maybe $B^{\prime \prime}=\sum_{2} \underbrace{}_{i}, \cdots, 1, \ldots, \ldots$ iaveleft:

Incite dimensiond inner proud, \& fenctenc. space.
and "Sinter values.". $f=0 \rightarrow \mathbb{R}$.
let $f_{i=}=f(x) \Rightarrow \vec{f}$

- connect dots if you lice.

Ex. $\rightarrow \sum_{i} \rightarrow$ this inner product apace is "isomorphic" to vectors in \in.
End $\left\langle\phi_{i}, \phi_{5}\right\rangle=\left\{\begin{array}{l}\text { in } \\ \text { and }\left\|\phi_{i}\right\| l\end{array}\right\}$

$$
v=\sum_{i} a_{i} \phi_{i}
$$

$$
E=L^{2}([0,1]) \text { ra } L^{2}(\mathbb{R})
$$

$\otimes B=\xi-, \sim_{1}, M_{-}, \sim_{1}$
Fourver $=\{1, \sin x, \operatorname{sos} x, \sin 2 x, \cos 2 x, \cdots \xi$

$$
\Rightarrow
$$

o $\left.\left.B^{\prime}=\{-1\},,\right\}, V, \ldots\right\}=\left\{1, x, \frac{x^{2}}{4}, \frac{x^{3}}{q^{c}}, \cdots\right\}$
Tuglordre,

$$
-B^{\prime \prime}=
$$

wavelet.

$$
\begin{aligned}
& f(x) \in C^{2}(\mathbb{R}) \text {. } \\
& f(x)=\sum a_{i} \phi_{i}(x) ; \quad a_{i}=\frac{\left\langle f_{1} \phi_{i}(x)\right\rangle}{-\phi_{i}(x) \mid l}
\end{aligned}
$$

On Compressed Sensing and on to Sparsity
x

$$
f=\sin x+3 \sin 3 x+\underline{y}
$$

- a vector $r \in E$ is k-asperse, if $[v]$ has exactly k-nonzero values, a $k<\partial_{\dot{\Sigma}} \operatorname{Jin}_{\text {on }}(E)$

On Moore Penrose Pseudo Inverse, Matrix Least Squares, Geometric Least Squares.

Least Squares
Definition and Derivations
We have already spent much time finding solutions to

$$
\mathrm{Ax}=\mathbf{b}
$$

If there isn't a solution, we attempt to seek the \mathbf{x} that gets closest to being a solution.
The closest such vector will be the \mathbf{x} such that

$$
A \mathbf{x}=\operatorname{proj}_{W} \mathbf{b}
$$

where W is the column space of A .

Notice that \mathbf{b} - $\operatorname{proj}_{W} \mathbf{b}$ is in the orthogonal complement of W hence in the null space of A^{T}. Hence if \mathbf{x} is a this closest vector, then

$$
\mathrm{A}^{\mathrm{T}}(\mathbf{b}-\mathrm{A} \mathbf{x})=0 \quad \mathrm{~A}^{\mathrm{T}} \mathrm{~A} \mathbf{x}=\mathrm{A}^{\mathrm{T}} \mathbf{b}
$$

Now we need to show that $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ nonsingular so that we can solve for \mathbf{x}.

Lemma
If A is an mxn matrix of rank n , then $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ is nonsingular.

$$
\begin{aligned}
& \vec{A}=b \quad \Rightarrow x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+x_{n} \vec{a}_{n}=\vec{b} \\
& A \tilde{x}=\operatorname{proj}_{\omega} b \\
& \begin{array}{l}
j_{\theta} \tilde{x}=\underset{\sim}{\operatorname{argmin}}\left\|\tilde{A}_{x-b}\right\|_{2}^{2} \\
\Rightarrow L S \text { solution }
\end{array}
\end{aligned}
$$

Recull $U \perp V$ iff $u \cdot r=U^{\top} V=0$
$\Rightarrow(A \tilde{x}-b) \perp$ every vector in $\operatorname{Col}(A) \Longleftrightarrow$ Solve "normal ofns" aтT ATA

LS soln $=$ solve normal equations

$$
A^{\top} A \tilde{x}=A^{\top} b
$$

When inverse exists
Moore-

$$
\begin{aligned}
\mathscr{x} & =\left(A^{\top} A\right)^{-1} A^{2} b \\
& \equiv A^{+} b
\end{aligned}
$$

Pentose
j Pseudo -Inverse
$A x=l$

- In terms of SUD?
- and what if inverse Docsít exist.

