An RC is meant to — Predict Future from the Past — (supervised) trained on example data
A Reservoir Computer is some kind of crazy random RNN - for time series forecasting -
It works GREAT!

My question is - why does it work at all with all sorts of random parameters
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Turns out that A Reservoir Computer is some kind of crazy - a random RNN - but it is actually something
very classical - a classical VAR(k) — z star from Fconometrics - and stochastic processes

an autoregressive model of order p can be written as

Yi = C+ Q1Yp—1 + oYy + - - -

So what? There is a very well developed theory for
AR and VAR - notably an existence of representation
Theorem by WOLD
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Figure 8.5: Two examples of data from autoregressive models with different parameters. Left: AR(1)
with y, = 18 — 0.8y, + &;. Right: AR(2) with y;, = 8 4+ 1.3y;—; — 0.7y, + &;. In both cases, &; is
normally distributed white noise with mean zero and variance one.

For an AR(1) model:

e when ¢, = 0, y; is equivalent to white noise;

e when ¢ = 1andc = 0, y; is equivalent to a random walk;

e when ¢y = 1and ¢ # 0, y; is equivalent to a random walk with drift;
e when ¢, < 0, y; tends to oscillate around the mean.



What-Why — Reservoir computing —forecast the future from time series data from some chaotic process or stochastic process

Statistical analysis and time-series models
for minimum/maximum temperatures

in the Antarctic Peninsula (@ 0-
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Figure 1. (¢) Minimum monthly temperatures and (b) boxplot of minimum monthly temperatures
at the Faraday station (January 1951-December 2004).



What-Why — Reservoir computing —forecast the future from time series data from some chaotic process or stochastic process

e Wind speed prediction, steps = 50, PCC = 0.593 - _
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Fig. 3 Wind speed prediction in Wakkanai, Japan. Based on the time-course data of D =155 sampling sites in Wakkanai, Japan, ARNN was applied to
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What-Why — Reservoir computing —forecast the future from time series data from some chaotic process or stochastic process

Wikner, Alexander, et al. "Combining
machine learning with knowledge-based
modeling for scalable forecasting and
subgrid-scale closure of large, complex,
spatiotemporal systems." Chaos: An
Interdisciplinary Journal of Nonlinear
Science 30.5 (2020): 053111.



What-Why — Reservoir computing —forecast the future from time series data from some chaotic process or stochastic process
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What-Why — Reservoir computing —forecast the future from time series data from some chaotic process or stochastic process
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What-Why — Reservoir computing —forecast the future from time series data from some chaotic process or stochastic process

04

02

x(t)

-0.2 02 —
-0.4 “ 04 -
-06 -
-0‘6 1 1 1 1 1 1 1 1 L —0.6
0 1000 2000 3000 4000 5000 6000 7000 8000 Q000 10000
t
{Xt :t e T'}

Example 1. First we numerically simulate a
“noisy” dynamical system by adding white noise
to the Mackey—Glass differential delay equations
[Mackey & Glass, 1977],

az(t — tq)
1+ [.’II(t — td)]c

() = —be(t) +e,  (18)

which has become a standard example in time-series



(@) full sim, blue is true
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Bt e Ty e process
z = o(y—z)

y — T —Y—TZ

z = my—bz
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Reservoir computing — a special case of RNN

Input Layer , Readout layer
spec case ANN, Jaeger-Hass 2004, ESN-Jaeger 2001. il —/ @ . N @ Ve
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W™ d, xd, read in matrix q(s) =
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e 96) = 7=
» . - — Threshold Function
d, x d, trained read-out matriz matrix W4 / S ————

Question — HOW can randomly chosen A and randomly chosen 'W* but ONLY trained W°u!
Still have enough flexibility/freedom to yield a successful method?!



Reservoir computing — a special case of RNN —
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Reservoir computing — a special case of RNN -
spec case ANN, Jaeger-Hass 2004, ESN-Jaeger 2001. o Il —F
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A little backround about
Neural Nets/Deep Learning

What-why? A Reservoir “Computer” — a special case of RNN
An RNN - a special case of an ANN — but good for time/sequential data processes

First a little background about ANN and Deep Learning

-what is an ANN? — useful for some kind of weird regression (supervised learning).

Given input data — predict output. y=f(x).



A little backround about

What-why? A Reservoir “Computer” — a special case of RNN
Neural Nets/Deep Learning

An RNN — a special case of an ANN — but good for time/sequential data processes
-what is an ANN? — some kind of weird regression (supervised learning).

Given input data — predict output. y=f(x).

A Classic Supervised Learning Problem

Hidden layers

Input layer Output layer

“Deep” Feedforward Neural Network

SLFN — Single Layer Feedforward Net



What does that graph notation mean — and how do you “train?” A little backround about
Neural Nets/Deep Learning
Training means finding the best weights to accommodate your given data

Layer 2 Layer 3 Layer 4

2 = tanh(Z{) = tanh(X, x W}, + X X W}, + X x W} +b)
ay’ = tanh(Z;”) = tanh(X; x W, + X x W), + X x Wy +b)

al) = tanh(Z) = tanh(X; x W), + X x W) + X3 x W), + b)

Gradient descent

The function J (W) gives us the error of our network regarding our inputs X and the weights of our
network. If we replace ¢ by its calculations, our function is:

J(W) = ’Zl %(y — tanh(tanh(tanh(X. Wy). Wy). W3))?

Wit — Wy — 6VJw(W,)

3*3+3+3%242+2+1=23 parameters here vs
Say 2 (or 3).



ANN may have MANY weights — so a very high dimensional space of weights and a crazy loss function landscape to navigate
With your optimization method — can be very very expensive.
Two technologies to the rescue —

1) GPU
2) Stochastic gradient descent

Gradient descent

The function J (W) gives us the error of our network regarding our inputs X and the weights of our
network. If we replace ¢ by its calculations, our function is:

J(W) = i -;—(y — tanh(tanh(tanh(X. Wy). W). W3))?

Wit — Wy — 6VJw(W,)



Naw back te cur main stony abieut resewaeir computing
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My question is — why does it work at all with all sorts of random parameters
Answer: time soaks up the random

Things people do ad-hoc to make it work better

-distribution of A (e.g. by sparsity and scaling) to control spectral radius
-better read in distribution

-better read out matrix fitting method

-better threshold function q(s).

we will allow ourselves to make it worse! But in a way we can analyze.

Strip away as much of the idea as possible so while it still works to some degree to interpret what is happing more analytically.
-choose simple distributions for W_in and A. -We choose a linear - identity threshold q(s)=s

Punchline is now it become directly comparable to a vector autoregressive process — VAR —
-and with the VAR comes VMA which allows a representation theorem by WOLD
-also it has a bit like DMD-Koopman.



Input Layer

Fitting the readout matrix by (regularized) least squares o B @
xi2 [l 1N "V /) |

X = [xk+1|xk+1| wxase |XN] = [Vrk+1|Vrk+2| «o |VI’N] - VR, k > 1
N

Wou = argmin |[X — VR||p = argmin Y ||x; — Vri||s,

VeRdm Xdp VeRdm X dp ik
(Tikhonov regularized — ridge regression) least squares solution pseudo-inverse with the notation,
weout .= XRT(RRT + A1)~ R! := RT(RRT + \I)~!

regularized singular value decomposition (SVD) in terms of regularized singular values such as o;/(c? + \)



RC With A Fully Linear Activation, ¢(s) = s, Yields a VAR(k)

Note: q(s) = tanh(s) ~s—s°/3 ...,

For small S, for small r, what if weJust choose? q(s) = s.

|\l !’ﬂ

wmn]

| I(WI

1“

M1" ) HM»
Vﬂ’ }NJW W w J“[

U‘ (1)

Example RC for
Mackey-Glass

"\'

H M\

r'H W H

q(s) = tanh(s)
> q(s)=s v

Readout layer

riyi = (1—a)r;+aq(Ar;+u; +b)



u; = mel, but also we choose, r{ = 0. Then just iterate— RC is a simple linear iteration with q(s)=s

rs
rs
Iy
With just linear activation
als)=s
Then just iterate
That hidden variable
Ig+1

_ B 2 activation
Ari+u;=u; =W"'"xy
Ar2 + us
AW""xl + WinXQ
AI‘3 -+ Us

A(Ar; + uz) + u3
Azwmxl + A ian -+ WinX3

Arj + ug
A(Aryp_1 +ug—1)+ ug
AF'Winx, + AP 2W™x, + ... + AW™x;,_; + Wx,

k k
ZAj_luk—j-H = ZAj_lexk—j-Ha A’ =1

j=1 =1



A linear RC, linear readout = implicit vector autoregressive

t
Ye+1 = we |

k
— Z Aj_lwi"xk_jﬂ
4=1
WoutAk—lwinxl I WoutAk—2Winx2 T WOUtAWinXk_l i WoutWinxk
= QX1 t+0p_1X2+ ...+ aQ2Xg—1 + A1Xg,

with notation,

: a; = WOUAITITW™ 5 =12 . k. :

coefficients a; are d, X d, matrices

Conclude:
A linear RC - linear readout = vector autoregressive of k-delays estimator of a stochastic process —

a classical VAR(k) — a star from Econometrics and stochastic processes

: Yi41 =C+ apX) + ap_1Xo + ...+ aoXp_1 + @1Xg + i1 :

And this already this works “pretty well”



Naturally — Fading memory — time scale re A

WoutAj—lwin ”*
WL AL W™
WL IAL W™,

la;ll.

A




The explicit Bridge:
RC= A Lovely VAR(k)
a ymr/?am Fconometrics

| | I
Ye+1 Yi+2

[[as]
| o

Y = aX =vAX

[a2]

| | |
Xk Xk+1 XN-1
| | |
Xp—1 Xk XN-2
lax]] | | | |
| | |
X1 X9 XN—-k-1
|| | |

: ; o : - : Randomly stir operator — with delays for memor
A = [Wzn|szn| o |Ak 2wzn|Ak lwzn] Yy P Yy V'

a* = XXT(XXT 4+ AL := XXI

WUt .= v* = a*Al = XX Al

The directly fitted VAR coefficients

The Relationship between var coefficients and RC readout



EXISTENCE of the representation: Wold theory about zero mean covariance stationary vector processes
-there is a VMA - possibly infinite history => for invertible delay processes described by a VAR and approx by a VAR(k).

Theorem 1 (Wold Theorem, A zero mean covariance stationary vector pro-

cess {X;} admits a representation,
Xt = C(L)gt T M,

where C(L) = >°5°, C;L" is a polynomial delay operator polynomial, the C; are the moving average matri-
ces, and L*(&) = &;_;. The term C(L)£ is the stochastic part of the decomposition. The p; term is the
deterministic (perfectly predictable) part as a linear combination of the past values of X;. Furthermore,

o I, is a d-dimensional linearly deterministic process.
&, ~ WN(O, 2) is white noise.
Coefficient matrices are square summable,

|: 1 1+Li| |:1 1:| |:0 l—‘
o0 c=| 1. 1 = 1+ 1
Z”Ci“2<00. I e B A7 B R
i=0 0 0] .z
L=Cy+C,L, and C; = 0 0 ifdssd;

Clarifying notation of the delay operator polynomial, with an
example, let

Co = I is the identity matrix.

o Foreacht, u, is called the innovation or the linear forecast errors. therefore if, for example, x, € R?,
1 I+1 X1, + X0 + Xo e
X, =ClL)é = B(L)X;=E§&, cox=| 1. 1 I:xl’t] _ |, Lt 2,{ 2,(t-1)
“EL 5 — L | [x2t Exl,(t—l) 9 Exz" — X2,(t—1)



Koopman Konnection - The RC can be written as a DMD regression

| | = | | I |
Xk+1 Xg4+2 ... XN Xk Xk+1 .- XN-1
: : K= argmin||X’ —KX”F,
| | | | | | K
Xk Xk+1 ... XN-1 XEk—1 Xk ) XN-—-2
| | ; | =K] | | : | ; K = X'XT,
| | : | | | : | “exact DMD” solution
X2 X3 eoo. XN—k X1 X9 eee XN—k—1
L | | | - - I [ | | |
| Xk Xk+1 XN-1
! L |
/ —
X — ’CX, | | | | Xp_1 Xk XN-—2
VS [Yk|+1 Yk:|+2 | Y|N] = [[a1] [a2] lak]] | | | |
| | |
X1 X9 vee XN—k-—1
L | |




And already this works “pretty well” Works Great! — linear RC training with nonlinear readout

(@) full sim, blue is true (a) full sim, blue is true
20 T T T T T T T T T 20 T T T T T T T T T
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error(t)
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20

Fully linear RC, g(x)=x, d_r=1000



Naturally — Fading memory — time scale re A
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In practice — train the linear RC Ri=[n Ing |- Iey], | Hadamard product
to polynomial readout R, = [ or |ruor | " \ér l
and not just to hidden variable r BT IR R AN
Rl wout _
R= _Rz] : Wout == [W%ut] Wout = XRT(RRT + )\.I) !

Turns out this yields not a VAR but an NVAR — works much better! — Just like before — iterate......
Bw o Bw = (w;b; + w,b, + - - - + w,b,) o (w;b; + wyb, + - - - + w,b,) r,or, = (W"x) o (W"x,)

“key trick” [ wi ] = P (W™, W")p2(x1),
Palz 1; 013 = (AW™"x, + W"x,) o (AW™x, + W"x,)
: = P,(AW", AW™)p,(x1,%1) + P,(AW", W")p, (x1, %)
- e Watn o— in in in in
=[bioby|by oby|---[byob,]l L] = Pa(B, B)p; (W, ). + P, (W™, AW™)p, (X3, X1) + P2 (W™, W™)p, (x5, X2),
A W2 A
2
| : I
I . |
| W, |
|

2

P, : R™" x R™" — R™",
m X n* matrix of Hadamard products n n n 2 . .

p2(v,w) : R" x R" = R", n* x 1 vector of quadratic monomials

T
(V, W) > [viwi|[viwz| - - - [viwg|vawr [vawa| - - - [vawn]



r,or, = (W"x)) o (W"x;)
= P,(W", Wm)Pz (x1)»
r; or; = (AW™x, + W"x,) o (AW™x; + Wx,)
= (AW"x;) o (AW"x)) + (AW"x;) 0 (W"x,)
+ (W"x,) 0 (AW™x)) + (W"xp) 0 (W"'x,)
= P,(AW™, AWin)Pz (X1,X1) + P,(AW™, Win)Pz (x1,X2)
+ P, (W™, AW™)p, (X2, X1) + P2 (W™, WP, (X,, X,),

i=1 j=1

k k
ey OXgy = Z(Ai_lwinxk+l—i) © (ZAj_lwinxk+l—j)

k
= Z P, (Ai_lWin,Aj_le)Pz (Xkt-1-is Xkt1-)

ij=1

= AZ[XZ]k'

The iteration thing again,
Now gives monomials

Ay = [P,(W™, W™)|P,(AW™, W") | P,(A’W", W")]| - -
. lPZ(Ak—IWin,Win)|P2(win,Awin)|P2(Awin’Awin)
X |P,(A*W", AW™)] - - -
. IPZ(Ak—Zwin’Ak—lwin)|P2(Ak—lwin’Ak—lwin)]

isad, x kd® matrix.



Now explicit connection between | | : | Stack the monomials

P2 Xk Xi) P2(Xr15Xk41) o0 Pa(Xn—1>XN-1)

NVAR=Ilinear RC w’ nonlinear readout | | : |
P2 (Xk—15Xx) P2 (X Xkt1) oo pr(Xn—2,XN-1)

TR | | : |

Xk X1 v XN . : :

I | | : |
Xii X A X P2(X1, Xx) P2(X2,Xkp1) - Pr(XN—k—1,XN-1)

X, = | | | » Xy = | | |
: : : PXoXe1)  pa(RitXk) oo pa(Xn—1,XN—2)

R | | : |
X, X5 e Pr(Xi—1,Xk—1)  Pa(Ks1rXk—1) o0 P2(Xn—2,XN-2)
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Then again we get a version of Yet1 = aeXy + g1 X3 + -+ - + daXe_y + a1X + Ay, 0,00 P2 (X1, Xy)

X= [%;] Y =aX said as NVAR + a,—1.0P2(X2,X1) + - - - 4 a2, P2 (Xe> X¢),

Specifically - NVAR coeff

aj = wtlmtAj_lwin,j == 1, 2, S . ,E, a2,(i,j) e Wgutpz(Ai—lwin’ Aj—lwin), l,] —_— 1; cee e-
relate to RC parameters
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Next generation reservoir computing

Daniel J. Gauthier® 2® Erik Bollt3>#, Aaron Griffith® ' & Wendson A. S. Barbosa® '
Linear RC with nonlinear readout = implicit NVAR ===> NG-RC

An implicit RC means we can skip it - NG-RC more efficient
— less data hungry — skips the middle man —
Less parameters and hyperparameters to worry about.



Leads to a more general concept | Input layer Reservoir output layer
NG-RC — Next Generation RC. ous serldate ™

Next

Generation RC 4
G

F

Facts: a good NVAR has an implicit RC
a good RC implies a good NVAR — collect as a NG-RC

Choose Linear Features vector

Oin = [x(t), x(t — dt),y(t),y(t — dt),z(t),z(t — dt))

An efficient notation collects all unique terms of high order monomials

Ouontin(t) = Ojin | ® 10y, term of quadratics monomials

[®1kO1in = [Ojin @ ... ® Oy, |, k-times repeating the &

Ototal(t) = [Otin; [ ®1204in; i [®]pO1in] (t)



Conclude: works really really well — and drastically MUCH less data hungry

-linear RC with nonlinear readout = implicit NVAR AND this leads to NG-RC
-VAR vs VMA which follows classic representation theorem by WOLD thm - also relates to DMD-Koopman

ground truth NG-RC prediction
a) : 7 e) ™
20| (A 3 201 @
N N
20 4 20 A
Notable from Literature
_'20 (') 2'0 _'20 (') 2'0 -BI”IngS and NARX
X X -Gonan-Ortega universal approx thm.
training phase testing phase Even for linear RC with nonlinear readout

b) 204 f) o]
< o\ AV = B
=201, ; ; , . . . . . .

=255

d) 40 ) 40
0.0 2.5 5.0 75 10.0 10 15 20 25 30
time time

NG-RCis 1. simple — 2. MUCH less data hungry — 3. few parameters — 4. flexible feature



A traditional
RC is implicit
in an NG-RC

Traditional Reservoir Computer

Reservoir

ground truth dynamics
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Next Generation Reservoir Computer
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Ortega, and also Bollt, move the nonlinearity from the activation function instead to a feature vector of inner state.

A linear reservoir with nonlinear output is equivalently powerful as a universal approximator with similar performance as a
Standard RC - but with reliability and simplicity advantages.

ground truth dynamics Traditional Reservoir Computer forecasted dynamics
- W 1 X Reservoir r; Yit1 Zyt
Yi-}—l - out©total,i+l’ \/.\‘\/\.. . N 14> T\/\'
T t T . : T1,i Tfit1 I ! t
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T ¥ ! di u ;“ W yf"\/:\;
R W —» | Yi 3. out Ti41= i ™
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1272, ' I'Nn ‘ ti timn 1t ti tim  ©
2 T
Ouu =t O EOBN= [Fisbysm ot Fstas w5 50 t rivn = (1= )ri + 7/ (Ari + WX; + b) v

@ represents the vector concatenation operation.
Exact equivalence RC=NVAR=NG-RC

Next Generation Reservoir Computer
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NG-RC works very well, with very few points, almost no tunable parameters

ground truth

NG-RC prediction

X X
training phase testing phase
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Forecasting a dynamical system using the NG-RC.
Lorenz63 strange attractors.
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Forecasting the double-scroll system using the NG-RC



training phase

Another fun task — look Ma! — no z! a) 20
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