An RC is meant to – Predict Future from the Past – (supervised) trained on example data A Reservoir Computer is some kind of crazy random RNN – for time series forecasting -It works GREAT!

My question is - why does it work at all with all sorts of random parameters

Turns out that A Reservoir Computer is some kind of crazy - a random RNN – but it is actually something very classical - a classical VAR(k) – a star from Econometrics - and stochastic processes

an autoregressive model of order p can be written as

Theorem by WOLD

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t,$$

AR(1)
AR(1)
AR(2)
$$x_{t-1} + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t,$$

AR(1)
$$x_{t-1} + \phi_1 y_{t-1} + \phi_1 y_{t$$

40

60

Time

Figure 8.5: Two examples of data from autoregressive models with different parameters. Left: AR(1) with $y_t = 18 - 0.8y_{t-1} + \varepsilon_t$. Right: AR(2) with $y_t = 8 + 1.3y_{t-1} - 0.7y_{t-2} + \varepsilon_t$. In both cases, ε_t is normally distributed white noise with mean zero and variance one.

100

15.0 -

Ó

20

40

60

Time

80

100

For an AR(1) model:

Ó

20

- when $\phi_1 = 0$, y_t is equivalent to white noise;
- when $\phi_1 = 1$ and c = 0, y_t is equivalent to a random walk;
- when $\phi_1 = 1$ and $c \neq 0$, y_t is equivalent to a random walk with drift;

80

• when $\phi_1 < 0$, y_t tends to oscillate around the mean.

Figure 1. (a) Minimum monthly temperatures and (b) boxplot of minimum monthly temperatures at the Faraday station (January 1951–December 2004).

Fig. 3 Wind speed prediction in Wakkanai, Japan. Based on the time-course data of D = 155 sampling sites in Wakkanai, Japan, ARNN was applied to

Wikner, Alexander, et al. "Combining machine learning with knowledge-based modeling for scalable forecasting and subgrid-scale closure of large, complex, spatiotemporal systems." *Chaos: An Interdisciplinary Journal of Nonlinear Science* 30.5 (2020): 053111.

The mean absolute error for the 6 week forecast

Points in the Ocean

Points on Land

A substantial and spatiotemporally complex data set of significance – SST Earth

Walleshauser, Bollt. "Predicting Sea Surface Temperatures with Coupled Reservoir Computers."

Nonlinear Processes in Geo Disc(2022): 1-19.

Market A	nalysis
-----------------	---------

Search the site ...

REPORTS ABOUT SPONSOR CONTACT

Reservoir Computing Market Analysis

December 25, 2019

The report covers reservoir computing niche market segments in selected verticals where reservoir computing is a game changer. 2020 is set to shatter reservoir computing spending records across R&D, applications, verticals and especially government sector.

Interested in more of this research and a chance to learn about opportunities in the reservoir computing market? The report features data-driven insights from our market intelligence platform.

Reservoir Computing Market Analysis, December 2019, Single User License: \$5,950.00

Reports are delivered in PDF format within 48 hours.

The report provides quantitative market analysis in a concise tabular format. The tables/charts present a focused snapshot of market dynamics.

Buy from 2CO

2CheckOut.com Inc. (Ohio, USA) is an authorized retailer for goods and services provided by Market Research Media Ltd.

Reservoir Computing Market Analysis, December 2019, Global Site License: \$9,950.00

Reports are delivered in PDF format within 48 hours.

The report provides quantitative market analysis in a concise tabular format. The tables/charts present a focused snapshot of market dynamics.

Buy from 2CO

2CheckOut.com Inc. (Ohio, USA) is an authorized retailer for goods and services provided by Market Research Media Ltd.

Filed Under: Reports

Tagged With: AI, deep learning, machine learning, machine learning technology, neural network, Reservoir Computing

P

Market Analysis

Market Research Media Ltd

			U	ISD 🗸 English 🗸
Reports about sponsor contact	Reservoir Computing Market Analysis, Single User License Reservoir Computing: Government Markets, Single User License		- 1 + \$5,950.00 🗊	
December 25, 2019			- 1 +	\$5,950.00
The report covers reservoir computing niche market segments in selected verticals where reservoir computing is a computing spending records across R&D, applications, verticals and especially government sector.				Total : \$11,900.00
Interested in more of this research and a chance to learn about opportunities in the reservoir computing market? Th market intelligence platform.	Pay securely with		VISA 😂 Cr	edit card
Reservoir Computing Market Analysis, December 2019, Single User License: \$5,950.00 Reports are delivered in PDF format within 48 hours. <i>The report provides quantitative market analysis in a concise tabular format. The tables/charts present a focused s</i> . Buy from 2CO	Billing details		Card details	
2CheckOut.com Inc. (Ohio, USA) is an authorized retailer for goods and services provided by Market Research Medi	Personal	Company	Card number*	
Reservoir Computing Market Analysis, December 2019, Global Site License: \$9,950.00 Reports are delivered in PDF format within 48 hours. <i>The report provides quantitative market analysis in a concise tabular format. The tables/charts present a focused s</i>	Email address*		Expiration date* Security code* Name on card*	
Buy from 2CO 2CheckOut.com Inc. (Ohio, USA) is an authorized retailer for goods and services provided by Market Research Medi	City*			
Filed Under: Reports Tagged With: AI, deep learning, machine learning, machine learning technology, neural network, Reservoir Computing	Zip / Postal code*	h 🗸	Plac	e order

$\{X_t:t\in T\}$

Example 1. First we numerically simulate a "noisy" dynamical system by adding white noise to the Mackey–Glass differential delay equations [Mackey & Glass, 1977],

$$x'(t) = \frac{ax(t - t_d)}{1 + [x(t - t_d)]^c} - bx(t) + \varepsilon, \qquad (18)$$

which has become a standard example in time-series

Question – HOW can randomly chosen A and randomly chosen W^{in} but ONLY trained W^{out} Still have enough flexibility/freedom to yield a successful method?!

Question – HOW can randomly chosen A and randomly chosen \mathbf{W}^{in} but ONLY trained \mathbf{W}^{out} Still have enough flexibility/freedom to yield a successful method?!

Question – HOW can randomly chosen A and randomly chosen \mathbf{W}^{in} but ONLY trained \mathbf{W}^{out} Still have enough flexibility/freedom to yield a successful method?!

A little backround about Neural Nets/Deep Learning

What-why? A Reservoir "Computer" – a special case of RNN An RNN – a special case of an ANN – but good for time/sequential data processes

First a little background about ANN and Deep Learning

-what is an ANN? - useful for some kind of weird regression (supervised learning).

Given input data – predict output. y=f(x).

What-why? A Reservoir "Computer" – a special case of RNN An RNN – a special case of an ANN – but good for time/sequential data processes -what is an ANN? – some kind of weird regression (supervised learning).

A little backround about Neural Nets/Deep Learning

Given input data – predict output. y=f(x).

A Classic Supervised Learning Problem

SLFN – Single Layer Feedforward Net

"Deep" Feedforward Neural Network

What does that graph notation mean – and how do you "train?"

 W_{11}^2

 W_{21}^2

W22

W232

W231

 W_{12}^2

Layer 1

X

X2

X₃

 W_{11}^1

W121

W₃₁

 W_{12}^{1}

W¹₃₂

W13

W122

W123

W133

Training means finding the best weights to accommodate your given data

a⁽³⁾

a⁽³⁾

W³₁₁

W21

Gradient descent

 $a_{1}^{(4)}$

3*3+3+3*2+2+1=23 parameters here vs Say 2 (or 3).

a⁽²⁾

a⁽²⁾

a⁽²⁾

$$egin{aligned} &J(W) = \sum_1^n rac{1}{2}(y- anh(anh(anh(X,W_1),W_2),W_3))^2 \ &W_{n+1} \leftarrow W_n - \delta
abla J_W(W_n) \end{aligned}$$

$$a_{1}^{(2)} = \tanh(Z_{1}^{(2)}) = \tanh(X_{1} \times W_{11}^{1} + X_{2} \times W_{21}^{1} + X_{3} \times W_{31}^{1} + b)$$

$$a_{2}^{(2)} = \tanh(Z_{2}^{(2)}) = \tanh(X_{1} \times W_{12}^{1} + X_{2} \times W_{22}^{1} + X_{3} \times W_{32}^{1} + b)$$

$$a_{3}^{(2)} = \tanh(Z_{3}^{(2)}) = \tanh(X_{1} \times W_{13}^{1} + X_{2} \times W_{23}^{1} + X_{3} \times W_{33}^{1} + b)$$

$$a_{2}^{(2)} = \tanh(Z_{2}^{(2)}) = \tanh(X_{1} \times W_{12}^{1} + X_{2} \times W_{22}^{1} + X_{3} \times W_{32}^{1}$$
$$a_{3}^{(2)} = \tanh(Z_{3}^{(2)}) = \tanh(X_{1} \times W_{13}^{1} + X_{2} \times W_{23}^{1} + X_{3} \times W_{33}^{1}$$

Layer 2 Layer 3 Layer 4

ANN may have MANY weights – so a very high dimensional space of weights and a crazy loss function landscape to navigate With your optimization method – can be very very expensive.

Two technologies to the rescue -

GPU
 Stochastic gradient descent

Gradient descent

The function J(W) gives us the error of our network regarding our inputs X and the weights of our network. If we replace \hat{y} by its calculations, our function is:

$$egin{aligned} &J(W) = \sum_1^n rac{1}{2}(y- anh(anh(anh(X,W_1),W_2),W_3))^2 \ &W_{n+1} \leftarrow W_n - \delta
abla J_W(W_n) \end{aligned}$$

Now back to our main story about reservoir computing

Question – HOW can randomly chosen A and randomly chosen \mathbf{W}^{in} but ONLY trained \mathbf{W}^{out} Still have enough flexibility/freedom to yield a successful method?!

My question is – why does it work at all with all sorts of random parameters Answer: time soaks up the random

Things people do ad-hoc to make it work better

-distribution of A (e.g. by sparsity and scaling) to control spectral radius
-better read in distribution
-better read out matrix fitting method
-better threshold function q(s).

we will allow ourselves to make it worse! But in a way we can analyze.

Strip away as much of the idea as possible so while it still works to some degree to interpret what is happing more analytically. -choose simple distributions for W_in and A. -We choose *a linear* - *identity threshold* q(s)=s

Punchline is now it become directly comparable to a vector autoregressive process – VAR – -and with the VAR comes VMA which allows a representation theorem by WOLD -also it has a bit like DMD-Koopman. Fitting the readout matrix by (regularized) least squares

$$\begin{aligned} \mathbf{R} &= [\mathbf{r}_{k+1} | \mathbf{r}_{k+1} | \dots | \mathbf{r}_N], \ k \ge 1. \\ \mathbf{X} &= [\mathbf{x}_{k+1} | \mathbf{x}_{k+1} | \dots | \mathbf{x}_N] = [\mathbf{V} \mathbf{r}_{k+1} | \mathbf{V} \mathbf{r}_{k+2} | \dots | \mathbf{V} \mathbf{r}_N] = \mathbf{V} \mathbf{R}, \ k \ge 1 \\ \mathbf{W}_{out} &= \operatorname*{arg\,min}_{\mathbf{V} \in \mathbb{R}^{d_x \times d_r}} \| \underline{\mathbf{X}} - \mathbf{V} \mathbf{R} \|_F = \operatorname*{arg\,min}_{\mathbf{V} \in \mathbb{R}^{d_x \times d_r}} \sum_{i=k}^{N} \| \mathbf{x}_i - \mathbf{V} \mathbf{r}_i \|_2, \end{aligned}$$

(Tikhonov regularized – ridge regression) least squares solution $\mathbf{W}^{out} := \mathbf{X} \mathbf{R}^T (\mathbf{R} \mathbf{R}^T + \lambda \mathbf{I})^{-1}$

pseudo-inverse with the notation,

$$\mathbf{R}^{\dagger}_{\lambda} := \mathbf{R}^T (\mathbf{R}\mathbf{R}^T + \lambda \mathbf{I})^{-1}$$

regularized singular value decomposition (SVD) in terms of regularized singular values such as $\sigma_i/(\sigma_i^2 + \lambda)$

 $\mathbf{u}_1 = \mathbf{W}^{in} \mathbf{x}_1$, but also we choose, $\mathbf{r}_1 = 0$. Then just iterate- RC is a simple linear iteration with q(s)=s activation ${\bf r}_2 = {\bf A}{\bf r}_1 + {\bf u}_1 = {\bf u}_1 = {\bf W}^{in}{\bf x}_1$ $\mathbf{r}_3 = \mathbf{A}\mathbf{r}_2 + \mathbf{u}_2$ $= A\mathbf{W}^{in}\mathbf{x}_1 + \mathbf{W}^{in}\mathbf{x}_2$ $r_4 = Ar_3 + u_3$ With just linear activation = A(Ar₂ + u₂) + u₃ q(s)=s= $\mathbf{A}^2 \mathbf{W}^{in} \mathbf{x}_1 + \mathbf{A} \mathbf{W}^{in} \mathbf{x}_2 + \mathbf{W}^{in} \mathbf{x}_3$ Then just iterate That hidden variable $\mathbf{r}_{k+1} = \mathbf{A}\mathbf{r}_k + \mathbf{u}_k$ $= \mathbf{A}(\mathbf{Ar}_{k-1} + \mathbf{u}_{k-1}) + \mathbf{u}_k$ $= \mathbf{A}^{k-1}\mathbf{W}^{in}\mathbf{x}_1 + \mathbf{A}^{k-2}\mathbf{W}^{in}\mathbf{x}_2 + \ldots + \mathbf{A}\mathbf{W}^{in}\mathbf{x}_{k-1} + \mathbf{W}^{in}\mathbf{x}_k$ $= \sum_{j=1}^{k} \mathbf{A}^{j-1} \mathbf{u}_{k-j+1} = \sum_{i=1}^{k} \mathbf{A}^{j-1} \mathbf{W}^{in} \mathbf{x}_{k-j+1}, \quad \mathbf{A}^{0} = I$

$$\mathbf{y}_{k+1} = \mathbf{W}^{out} \mathbf{r}_{k+1}$$

$$= \sum_{j=1}^{k} \mathbf{A}^{j-1} \mathbf{W}^{in} \mathbf{x}_{k-j+1}$$

$$= \mathbf{W}^{out} \mathbf{A}^{k-1} \mathbf{W}^{in} \mathbf{x}_{1} + \mathbf{W}^{out} \mathbf{A}^{k-2} \mathbf{W}^{in} \mathbf{x}_{2} + \ldots + \mathbf{W}^{out} \mathbf{A}^{W^{in}} \mathbf{x}_{k-1} + \mathbf{W}^{out} \mathbf{W}^{in} \mathbf{x}_{k}$$

$$= a_{k} \mathbf{x}_{1} + a_{k-1} \mathbf{x}_{2} + \ldots + a_{2} \mathbf{x}_{k-1} + a_{1} \mathbf{x}_{k},$$

with notation,

$$a_j = \mathbf{W}^{out} \mathbf{A}^{j-1} \mathbf{W}^{in}, \ j = 1, 2, ..., k.$$

coefficients a_j are $d_x \times d_x$ matrices

Conclude:

A linear RC - linear readout = vector autoregressive of k-delays estimator of a stochastic process – a classical VAR(k) – a star from Econometrics and stochastic processes

$$\mathbf{y}_{k+1} = c + a_k \mathbf{x}_1 + a_{k-1} \mathbf{x}_2 + \ldots + a_2 \mathbf{x}_{k-1} + a_1 \mathbf{x}_k + \boldsymbol{\xi}_{k+1}$$

And this already this works "pretty well"

Naturally – Fading memory – time scale re A

$$||a_{j}||_{\star} = ||W^{out}A^{j-1}W^{in}||_{\star}$$

$$\leq ||W^{out}||_{\star}||A||_{\star}^{j-1}||W^{in}||_{\star}.$$

$$(a)^{20}$$

The explicit Bridge:
RC= A Lovely VAR(k)
a star from Econometrics

$$\begin{bmatrix} | & | & \vdots & | \\ \mathbf{x}_k & \mathbf{x}_{k+1} & \cdots & \mathbf{x}_{N-1} \\ | & | & \vdots & | \\ \mathbf{x}_{k-1} & \mathbf{x}_k & \cdots & \mathbf{x}_{N-2} \\ | & | & \vdots & | \\ \mathbf{x}_{k-1} & \mathbf{x}_k & \cdots & \mathbf{x}_{N-2} \\ | & | & \vdots & | \\ \vdots & \vdots & \vdots & \vdots \\ | & | & \vdots & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_{N-k-1} \\ | & | & \vdots & | \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{a} \mathbb{X} = \mathbf{v} \mathbb{A} \mathbb{X}.$$

 $\mathbb{A} = [\mathbf{W}^{in} | \mathbf{A} \mathbf{W}^{in} | \dots | \mathbf{A}^{k-2} \mathbf{W}^{in} | \mathbf{A}^{k-1} \mathbf{W}^{in}] \ ^{\mathsf{Randomly stir operator - with delays for memory}}$ $\mathbf{a}^* = \mathbf{X} \mathbb{X}^T (\mathbb{X} \mathbb{X}^T + \lambda I)^{-1} := \mathbf{X} \mathbb{X}_{\lambda}^{\dagger}$ $\mathbf{W}^{out} := \mathbf{v}^* = \mathbf{a}^* \mathbb{A}^{\dagger}_{\lambda} = \mathbf{X} \mathbb{X}^{\dagger}_{\lambda} \mathbb{A}^{\dagger}_{\lambda}$

The directly fitted VAR coefficients

The Relationship between var coefficients and RC readout

EXISTENCE of the representation: Wold theory about zero mean covariance stationary vector processes -there is a VMA - possibly infinite history => for invertible delay processes described by a VAR and approx by a VAR(k).

Theorem 1 (Wold Theorem, A zero mean covariance stationary vector process $\{\mathbf{x}_t\}$ admits a representation,

$$\mathbf{X}_t = C(L)\boldsymbol{\xi}_t + \boldsymbol{\mu}_t,$$

where $C(L) = \sum_{i=0}^{\infty} C_i L^i$ is a polynomial delay operator polynomial, the C_i are the moving average matrices, and $L^i(\boldsymbol{\xi}_t) = \boldsymbol{\xi}_{t-i}$. The term $C(L)\boldsymbol{\xi}$ is the stochastic part of the decomposition. The $\boldsymbol{\mu}_t$ term is the deterministic (perfectly predictable) part as a linear combination of the past values of \mathbf{X}_t . Furthermore,

- μ_t is a d-dimensional linearly deterministic process.
- $\boldsymbol{\xi}_t \sim WN(0, \Omega)$ is white noise.
- Coefficient matrices are square summable,

$$\sum_{i=0}^{\infty} \|C_i\|^2 < \infty.$$

- $C_0 = I$ is the identity matrix.
- For each t, μ_t is called the innovation or the linear forecast errors.

$$\mathbf{X}_t = C(L)\boldsymbol{\xi}_t \implies B(L)\mathbf{X}_t = \boldsymbol{\xi}_t,$$

Clarifying notation of the delay operator polynomial, with an example, let

$$C(L) = \begin{bmatrix} 1 & 1+L \\ -\frac{1}{2}L & \frac{1}{2}-L \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & \frac{1}{2} \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ -\frac{1}{2} & -1 \end{bmatrix}$$
$$L = C_0 + C_1L, \text{ and } C_i = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ if } i > 1;$$

therefore if, for example, $\mathbf{x}_t \in \mathbb{R}^2$,

$$C(L)\mathbf{x}_{t} = \begin{bmatrix} 1 & 1+L \\ -\frac{1}{2}L & \frac{1}{2}-L \end{bmatrix} \begin{bmatrix} x_{1,t} \\ x_{2,t} \end{bmatrix} = \begin{bmatrix} x_{1,t} + x_{2,t} + x_{2,(t-1)} \\ \frac{1}{2}x_{1,(t-1)} + \frac{1}{2}x_{2,t} - x_{2,(t-1)} \end{bmatrix}$$

Koopman Konnection - The RC can be written as a DMD regression

Works Great! – linear RC training with nonlinear readout

Fully linear RC, q(x)=x, d_r=1000

Naturally – Fading memory – time scale re A

$$\begin{aligned} \|a_{j}\|_{\star} &= \|\mathbf{W}^{out}\mathbf{A}^{j-1}\mathbf{W}^{in}\|_{\star} \\ &\leq \|\mathbf{W}^{out}\|_{\star}\|\mathbf{A}^{j-1}\|_{\star}\|\mathbf{W}^{in}\|_{\star} \\ &\leq \|\mathbf{W}^{out}\|_{\star}\|\mathbf{A}\|_{\star}^{j-1}\|\mathbf{W}^{in}\|_{\star}. \end{aligned}$$

In practice – train the linear RC to polynomial readout and not just to hidden variable **r**

$$\mathbf{R}_{1} = \begin{bmatrix} \mathbf{r}_{k} & |\mathbf{r}_{k+1} & | \cdots & |\mathbf{r}_{N} \end{bmatrix}, \qquad | \text{ Hadamard product} \\ \mathbf{R}_{2} = \begin{bmatrix} \mathbf{r}_{k} \circ \mathbf{r}_{k} & |\mathbf{r}_{k+1} \circ \mathbf{r}_{k+1} & | \cdots & |\mathbf{r}_{N} \circ \mathbf{r}_{N} \end{bmatrix} \\ \mathbf{R} = \begin{bmatrix} \mathbf{R}_{1} \\ \mathbf{R}_{2} \end{bmatrix}, \qquad \mathbf{W}^{out} = \begin{bmatrix} \mathbf{W}_{1}^{out} \\ \mathbf{W}_{2}^{out} \end{bmatrix} \qquad \mathbf{W}^{out} := \mathbf{X}\mathbf{R}^{T}(\mathbf{R}\mathbf{R}^{T} + \lambda \mathbf{I})^{-1}$$

Turns out this yields not a VAR but an **NVAR** – works much better! – Just like before – iterate.....

is a
$$d_r \times k d_x^2$$
 matrix.

$$\vdots \mathbf{r}_{k+1} \circ \mathbf{r}_{k+1} = \sum_{i=1}^{k} (A^{i-1} \mathbf{W}^{in} \mathbf{x}_{k+1-i}) \circ \left(\sum_{j=1}^{k} A^{j-1} \mathbf{W}^{in} \mathbf{x}_{k+1-j} \right) = \sum_{i,j=1}^{k} P_2(A^{i-1} \mathbf{W}^{in}, A^{j-1} \mathbf{W}^{in}) p_2(\mathbf{x}_{k+1-i}, \mathbf{x}_{k+1-j}) := \mathbb{A}_2[\mathbb{X}_2]_k.$$

$$A_{2} = [P_{2}(\mathbf{W}^{in}, \mathbf{W}^{in})|P_{2}(A\mathbf{W}^{in}, \mathbf{W}^{in})|P_{2}(A^{2}\mathbf{W}^{in}, \mathbf{W}^{in})|\cdots$$

$$\cdots |P_{2}(A^{k-1}\mathbf{W}^{in}, \mathbf{W}^{in})|P_{2}(\mathbf{W}^{in}, A\mathbf{W}^{in})|P_{2}(A\mathbf{W}^{in}, A\mathbf{W}^{in})|\cdots$$

$$\times |P_{2}(A^{2}\mathbf{W}^{in}, A\mathbf{W}^{in})|\cdots$$

$$\cdots |P_{2}(A^{k-2}\mathbf{W}^{in}, A^{k-1}\mathbf{W}^{in})|P_{2}(A^{k-1}\mathbf{W}^{in}, A^{k-1}\mathbf{W}^{in})]$$

$$\begin{aligned} \mathbf{r}_{2} \circ \mathbf{r}_{2} &= (\mathbf{W}^{in}\mathbf{x}_{1}) \circ (\mathbf{W}^{in}\mathbf{x}_{1}) \\ &= P_{2}(\mathbf{W}^{in}, \mathbf{W}^{in})p_{2}(\mathbf{x}_{1}), \\ \mathbf{r}_{3} \circ \mathbf{r}_{3} &= (A\mathbf{W}^{in}\mathbf{x}_{1} + \mathbf{W}^{in}\mathbf{x}_{2}) \circ (A\mathbf{W}^{in}\mathbf{x}_{1} + \mathbf{W}^{in}\mathbf{x}_{2}) \\ &= (A\mathbf{W}^{in}\mathbf{x}_{1}) \circ (A\mathbf{W}^{in}\mathbf{x}_{1}) + (A\mathbf{W}^{in}\mathbf{x}_{1}) \circ (\mathbf{W}^{in}\mathbf{x}_{2}) \\ &+ (\mathbf{W}^{in}\mathbf{x}_{2}) \circ (A\mathbf{W}^{in}\mathbf{x}_{1}) + (\mathbf{W}^{in}\mathbf{x}_{2}) \circ (\mathbf{W}^{in}\mathbf{x}_{2}) \\ &= P_{2}(A\mathbf{W}^{in}, A\mathbf{W}^{in})p_{2}(\mathbf{x}_{1}, \mathbf{x}_{1}) + P_{2}(A\mathbf{W}^{in}, \mathbf{W}^{in})p_{2}(\mathbf{x}_{1}, \mathbf{x}_{2}) \\ &+ P_{2}(\mathbf{W}^{in}, A\mathbf{W}^{in})p_{2}(\mathbf{x}_{2}, \mathbf{x}_{1}) + P_{2}(\mathbf{W}^{in}, \mathbf{W}^{in})p_{2}(\mathbf{x}_{2}, \mathbf{x}_{2}), \end{aligned}$$

The iteration thing again, Now gives monomials

ARTICLE

https://doi.org/10.1038/s41467-021-25801-2

OPEN

Next generation reservoir computing

Daniel J. Gauthier ^[],^{2⊠}, Erik Bollt^{3,4}, Aaron Griffith ^[] & Wendson A. S. Barbosa ^[]

Linear RC with nonlinear readout = implicit NVAR ===> NG-RC

An implicit RC means we can skip it - NG-RC more efficient

less data hungry – skips the middle man –
 Less parameters and hyperparameters to worry about.

Leads to a more general concept NG-RC – Next Generation RC.

Facts: a good NVAR has an implicit RC a good RC implies a good NVAR – collect as a NG-RC

Choose Linear Features vector

$$O_{lin} = [x(t), x(t-dt), y(t), y(t-dt), z(t), z(t-dt)]$$

An efficient notation collects all unique terms of high order monomials

 $\mathbb{O}_{nonlin}(t) = \mathbb{O}_{lin} [\otimes] \mathbb{O}_{lin} \text{ term of quadratics monomials}$ $[\otimes]_k \mathbb{O}_{lin} := [\mathbb{O}_{lin} \otimes ... \otimes \mathbb{O}_{lin}], k \text{-times repeating the } \otimes$

 $\mathbf{O}_{total}(t) = [\mathbf{O}_{lin}; \lceil \otimes \rceil_2 \mathbf{O}_{lin}; ...; \lceil \otimes \rceil_p \mathbf{O}_{lin}](t)$

Conclude: Works really really well – and drastically MUCH less data hungry

-linear RC with nonlinear readout = implicit NVAR AND this leads to NG-RC -VAR vs VMA which follows classic representation theorem by WOLD thm - also relates to DMD-Koopman

Ortega, and also Bollt, move the nonlinearity from the activation function instead to a feature vector of inner state.

A linear reservoir with nonlinear output is equivalently powerful as a universal approximator with similar performance as a Standard RC - but with reliability and simplicity advantages.

NG-RC works very well, with very few points, almost no tunable parameters

Forecasting a dynamical system using the NG-RC. Lorenz63 strange attractors.

Forecasting the double-scroll system using the NG-RC

Another fun task – *look Ma! – no z*!

Inference using an NG-RC. a–c Lorenz63 variables during the training phase (blue) and prediction (c, red)

