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Theorem 2.1.1 — Singular Value Decomposition. Let A be an m x n matrix
whose entries come from the field X, which is either the field of real numbers Y = diag(o1,02, -+ ,0p),p = min(m,n),
or 'the ﬁeld-of complex numbers. Then the singt'llar value decomposition of A 2 d( -"""'O O i i i ),
exists, and it takes the form of a product of matrices: 6

Amxn = Umxmzmxn vn‘xm (2-5) A{ u % \/ (
where . f f

* U is an m X m unitary matrix. @

» ¥ is a diagonal m x n matrix with non-negative real numbers on the T
diagonal. W v = u‘- e U ¢ °
* V is an n X n unitary matrix, and V'* is the conjugate transpose of V. — @7 ( @? @
The singular values are the nonegative values: o; > 0,1 = 1,--- | n, (7 U U @ ( e
The left smgular vectors: u; are the columns of U = [ul,uz, . u,,l] U Tu- _ 8( C o O
P Ry

T ¢ The singular values are the nonegative values: o; > 0,1 = 1,--- | n,
A’C/\ L) GFL) - U d¥ '_‘:s he left singular vectors: u; are the columns of U = [u1, u2, ..., Um).
o U U f"a, C—-) - The right singular vectors: v; are the columns of V' = [vq, vg, ..., v,).

>
A

(
U -~ u - ijl C>b L (/ ) ( \ \ \\) Since V' is orthogonal, then right multiplying Eq. (2.5) by V/,
‘ (¢ . AV =USV*V = US, 2.8



N AT - Tz
K

( = y 5) [A] [v1vz -+ - va] = [nruz - - - un] diag(o1, 02, -+, on).
) _ Mﬁ
= 7¢C ./ - @
s
- T2 3 . .
LQ = Example 2.1 LetA—<.2 4 6>2x3. By SVD of the matrix A we have:
A S ';?‘qua. A = UsSV?
S V70 0 0 /m Vi v
=<§\f) 0 00 s 0 HK| ey
5 VB 0 00 =1 .[5 =3
V35 T V35

We see that the second singular value, o2 = 2, meaning that number of non-zero
singular values » < min{rn, n}. Such matrix is called rank deficient matrix. If we

take the economy version (with » = 1) of the SVD we will have: ~
L. —
T V5 1 2° 3
wod = (4) () (Vi )
V5
1 2 3
= ( 2 4 6 T (2'2(-)

[A] [vive - - - vy] = [wrug - - - uy,] diag(o, 02, - - , o).
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The Economy SVD, and Reduced Rank SVD
The general SVD, Eq. (2.5) may be written in terms of submatrices.

Definition 2.1.3 — The Economy SVD. For any matrix A € R™*", the gen-
eral SVD Eq. (2.5) can be written in terms of smaller matrices,

Am.x-n = Umxn Elerl‘/y:x n? (2.21)
A~ -~ -
and U = [Upxn|U(— ) x> Written in terms of an orthogonal “buffer" matrix

G 7 €&7/“‘;ér“7 éq_‘(-b

Definition 2.1.4 — Rank Deficient SVD. For a matrix A € R™*" such that
the SVD results in singular values

oy > 0,41 = 0, for some r < n. (2.22)
T —
then the SVD can be written in terms of an economy form as smaller matrices,

Amxn - 0mx'ri-nxnv-,:x,~, (223)

and related to the general SVD Eq. (2.5) by U = [(},,,x,-ll}("_,ﬂ)xn], but r < n.
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Figure 2.3: m > n tall skinny
Recall that,
Apxn = Gmxnﬁnxn‘z;l)‘(n A
opr 0 0 -
I I I I 0 a9 0 —_
= Uy U2 ... Un .
[ T ; B
0 0 on -
but V7'V = I, orthogonality allows:
A’I"XH‘A/"XH = amxnﬁnxn
S0,
(23] 0
o FE 19T a &
Apsxn | V1 2 ... vy | = w uz ... u, 5
I I I %
| | o =
but this just states n-matrix times vector statements:
Av1 = oju

sz = 0OqUusy

Avy, = onun

of

N

Uy

st

(2.27)
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Unit Sphere P AP =UXVTP

A-0L° Geometry:.
- 1. V* rotates to a standard configuration. ! ‘ AZ /
A Y - g é_ &= 2. ¥ stretches each orthogonal axis to the major covariance axis of the >
Vz \

And ROM

disp(A) 1

corresponding ellipsoid, and
P‘\/ o F Ol (/3. U rotates results back to the configuration that associates with A. T USV*Z
VZ @

0.8212 0.5951 0.0000 1 A
5 0
(U,5,V] = svd(A) A T B =

U=
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Bunny Compression %

Covariance — notice the demean step

[ % % : -4 n—1
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I = imread('Bunny.jpg');

figure

subplot (1,2,1)
imshow (I)

xticks({}); yticks({});
pbaspect ([1 1 1])

title ('RGB Image')

18
5

([

im2double (I); %Convert integer value to double
from 0 to 1)

subplot (1,2, 2)

imshow (I)

xticks ({}); yticks({});

pbaspect ([1 1 1]) \
title('Grayscale Image')

rgb2gray (I); %Convert the 3D RGB color to 1D grayscale
(scaled ...
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Code 2.1: Read, convert, and display images.

——
_C oo NN B W N -

—_— e
NN AW

I = imread('Bunny.jpg"');

figure

subplot (1,2,1)
imshow (I)

xticks ({}); yticks({});
pbaspect ([1 1 1])
title('RGB Image')

I = rgb2gray(I); %Convert the 3D RGB color to 1D grayscale
I = im2double(I); %Convert integer value to double (scaled

from 0. to.1)

subplot (1,2, 2)

imshow (I)

xticks ({}); yticks({});
pbaspect ([1 1 11])
title('Grayscale Image')
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Gene Golub’s license plate, photographed by

Professor P. M. Kroonenberg of Leiden University.Gene Howard Golub
(February 29, 1932 — November 16, 2007), Fletcher Jones Professor of
Computer Science at Stanford University. His work made fundamental con-
tributions that have made the singular value decomposition practical as one
of the most powerful and widely used tools in modern matrix computation.
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Definition 2.1.2 — Induced Norm. Suppose a vector norm ||- || on ™ is given.

Any matrix A, xn induces a linear operator from X' to ™ with respect to the
standard basis, and one defines the corresponding induced norm or operator
norm on the space X™*™ of all rn x n matrices as follows:

p 142le

lA]l, = (2.14)
P o0zl
or, taking a vector z such that ||z, = 1, then we have
[[All, = | srp | Az||, (2.15)
[I p:]
Some Special (Simple) Matrix Norms
The first 3 of these are induced norms, but the 4th is not.
e Forp = 1:
m
4l = max lea-ij] (2.16)
* For p = oo:
n
| Alloc = llsniz;cuzl |aij] @.17)
J:

» A special case is the spectral norm when p = 2, in which we have:

”A”2 = \V ’\mu;c(ATA) = Omax (2.18)
where oy, is the maximum singular value of the matrix A.
* The Frobenius norm is given by:
m n min{m,n}
lAlLr = zzw > o 2.19)

i=1 j=1 i=1

Theorem 2.1.2 For a matrix A, the product of the singular values of A, equals
the absolute value of its determinant:

|det(A)| =[] o
=il

(2.20)
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Definition 2.1.2 — Induced Norm. Suppose a vector norm ||- || on K™ is given.

Any matrix A, xn induces a linear operator from K™ to '™ with respect to the
standard basis, and one defines the corresponding induced norm or operator
norm on the space K™*" of all rn x n matrices as follows:

Az
| A]l, = sup IlAzl]y (2.14)
£#0 [l
or, taking a vector z such that ||z, = 1, then we have
lAll, = sup |l Az, (2.15)
llzllp=1
Some Special (Simple) Matrix Norms
The first 3 of these are induced norms, but the 4th is not.
e Forp=1:
m
4] = é‘fs"zl |aij| 2.16)
=
* For p = oo:
n
| Alloo = lgzg,Zl Jass| 2.17)
J:

» A special case is the spectral norm when p = 2, in which we have:

||A||2 =y ’\max(ATA) = Omax (2.18)

where o,,,,,. is the maximum singular value of the matrix A.
* The Frobenius norm is given by:

min{m,n}

|AllF = > a? (2.19)
="

Theorem 2.1.2 For a matrix A, the product of the singular values of A, equals
the absolute value of its determinant:

|det(A)| = [ o (2.20)
=1
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* EigenFace 15 Present
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Eigenfaces for Face Detection/Recognition

(M. Turk and A. Pentland, "Eigenfaces for Recognition", Journal of Cognitive Neuroscience, vol.
3.no. 1, pp. 71-86, 1991, hard copy)

* Face Recognition

- The simplest approach is to think of it as a template matching problem:

N x N image

2
N x 1 vector

- Problems arise when performing recognition in a high-dimensional space.

- Significant improvements can be achieved by first mapping the data into a lower-

dimensionality space.

- How to find this lower-dimensional space?

* Main idea behind eigenfaces

- Suppose I'is an N 2x1 vector, corresponding to an NxN face image /.

- The idea is to represent I (®=I" - mean face) into a low-dimensional space:

A

D — mean = wjuy + wolly + -+

cWrlg (K<<N2)



Computation of the eigenfaces
Step 1: obtain face images 1}, I, ..., I ; (training faces)

(very important: the face images must be centered and of the same size)

Step 2: represent every image /; as a vector I';

Step 3: compute the average face vector W':

Mz

1
T;

Whew = ST
ME

Step 4: subtract the mean face:
O, =T, -V e
Step 5: compute the covariance matrix C:
=i § ®, 0! = AAT (N*xN?* matrix)
> Mo~
where A =[D; O, --- D,] (N*xM matrix)

-— —
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Step 6: compute the eigenvectors u; of AAT

The matrix AA” is very large --> not practical !!

Step 6.1: consider the matrix ATA (M xM matrix)
Step 6.2: compute the eigenvectors V; of ATA
ATAV,‘ = HiVi

What is the relationship between us; and v;?

ATAvi = W;v; => AATAv,- = y;Av; =>
CAv; = u;Av;or Cu; = p;u; whereu; = Av;

Thus, AAT and AT A have the same eigenvalues and their eigenvec-
tors are related as follows: u; = Av; !!

Note 1: AAT can have up to N 2 eigenvalues and eigenvectors.
Note 2: AT A can have up to M eigenvalues and eigenvectors.
Note 3: The M eigenvalues of ATA (along with their corresponding
eigenvectors) correspond to the M largest eigenvalues of AAT (along
with their corresponding eigenvectors).
Step 6.3: compute the M best eigenvectors of AAT: u; = Av;
(important: normalize u; such that lu,ll = 1)

Step 7: keep only K eigenvectors (corresponding to the K largest eigenvalues)



Representing faces onto this basis

0 C
X‘ - Each face (minus the mean) ®; in the training set can be represented as a linear \L T N j 65 C L 3 l

U 2 l/ -Z’ combination of the best K eigenvectors:
(Di_mean—j% Wikie ()= 4B % i ftg\,‘c/c U(' ( \)( P’ 7)

V= L0} vele (Vs 1y

(we call the u ;’s eigenface
Ry n/
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* On PCA

e Optimal



On PCA Principal Component Analysis, Eigenface

-On Raleigh Ritz Quotient

-On Spectral Decomposition Theorem

-On Data Clouds
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DNA Microarrays

Gene Expression

Microarray results that have
been analyzed such that the
colors were linked with
expression and then similar
gene profiles were grouped
Together — budding yeast

o

‘\3& & TCCTTTCCGG AACGGTTGGC GTCTGCGCAC GGCGGTGTGG GGCATGACAT
Hows: 0 %28 7011 & i GCCGCCCCAG GAACAACCCC GACACGGCTT TAAGCCTCTC AAATCGCTGT

AGACATCATC TTTACGTGCT TGGCTTGCCC TGCCACCATT AGGGCTGTTC
CCGCGACGAC TCGCCATTCA ACCTCAGTCC TTCGGGTTGA GCGAGTGGGT
CGCGCGCAAG GTGCGAATGG GTCGCGCGCA AAGTGTTGCG CTGGCTGTAT
TATATGCTGC CTATAGCGAG ACTAACGACC CACACTTTCA CACAAGGATT
TCCCGCTAAT GGGTACCTCG CGTCAGGACC TTGACGCAAG CGCGCCTTCG

cartoon illustrating an array of DNA snippets  STISGCCCCA AGCTISCTAG GACTACTTAT CTIGAGCTCA TTTAACATCC
on a Chlp The tOp portlon deplcts a pOSS|b|e TTGACAAAG CGTGGAGACA TCGATACCTC TGTGTCAGCG GCCACAAATC
nucleotide sequence for the DNA segment

immobilized in the position indicated.

Far& Metabolic
-

Farl; Il

Early Middle

DNA Microarray chip containing the entire
yeast genome
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Morphological

* Height

* Weight

* Footsize

 Belt (waist) size
* Hand size

e Forearm size

h

* Head circumference
* Femur length

Interpreting as an ellipsoid in the high dimensional space is the simplest geometric
interpretation of the data cloud and leads to simplification as major and minor axis, and even
Reduced order model (ROM) (meaning a lower dimensional representation).

PCA, SVD, SDT —is optimal
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THE SPECTRAL DECOMPOSITION

Let A be a n x n symmetric matrix. From the The expression
spectral theorem, we know that there is an
orthonormal basis uy, - - - ,u,, of R" such that each A= Mulu]T + -4+ ?\nunuTTl.
u; is an eigenvector of A. Let A; be the eigenvalue _ .
corresponding to w;, that s, is called the spectral decomposition of A. Note
that each matrix ujujT has rank 1 and is the matrix
/4) Al = AL of projection onto the one dimensional subspace
Then spanned by uj. In other words, the linear map P
A — PDP-' = PDPT defined by P(x) = ujufx is the orthogonal
jecti tg.the subs s d by ;.
where P is the orthogonal matrix P = [w; -+ ] prOJECHion OF (PSpAce Spanned by 1
and D is the diagonal matrix with diagonal o _A - < & Zj L ﬂxuzié\r i c_
entries Ay, - - - ,An. The equation A = PQPT can be
rewritten as: " 5 pc-C DC/ZVW - ‘%t-‘zaf';’r\\
T = sp P
A:[u1...u]r\] ] Lt] C <L - eleo Chvericercce
D _,,-An ul ﬂ
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=[AMuwy - Anug] |
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On Moore Penrose Pseudo Inverse, Matrix Least Squares, Geometric Least Squares.



Example ‘f
An engineer is tracking the friction index over mileage of a breaking system of a vehicle. She expects that the mileage-friction relationship is approximately linear. She collec

five data points that are show in the table below. // 5\7 ( .( B (A K . S) ( 2
— L

[Mileage 2000 6000 =~ 20,000 30,000 40,000]
— X

[Friction Index ) 18 10 6 2

().

g 10 20 Ei i Z. 2.{ - 0\‘[-; J(&

/M"ﬁﬂ\ﬂm
We are interested in the line that best fits the data. More specifftally, if b is the vector of friction index data values and y is the vector consisting of y values when we plug in lh}:

mileage data for x and find y by the equation of the line, then we want the line that minimizes the distance between b and y. If the equation of the line is ( .
«

ax+b =

LA

5 atrix equation is
20 1 [ ] 10
30 1 ‘

= A

Although this does not hb an exact solution, it does have a closest solution. We have

[z] = (ATA) 1Ay = [_0'48] &
—

— K- vs AT

We can conclude that the equation of the regression line is

y = -0.48x +20.6




Theorem

Let A be an m X n matrix or rank n, then the system .M - S 3 Wr g C\'O\A rl

TAx=b - I
X =
has the unique least squares solution =A e «
i
¢

X = (ATA) 1ATH 3' LD

L (KA Aene Wi Rkl

Find the least squares solution to : § C w '

o AX = b = -’?
L L

Ik

S SRR e

We can quickly check that A has rank 2 (the first two rows are not multiples of each r). Hence we can compute
Notice that T d

[ [z | (
3.60 7 ‘(é ( 2> ( )(
not exacyy b, but as close as we are going to get. I L 3 q C

[= N SN V]
W = L

x = (A4 B 377J




Least Squares
Definition and Derivations
We have already spent much time finding solutions to
Ax = b

If there isn't a solution, we attempt to seek the x that gets closest to being a solution.
The closest such vector will be the x such that

Ax = projwb

where W is the column space of A.

n/ :Lou/lr\)

Notice that b - projyb is in the orthogonal complement of W hence in the null space of

AT, Hence if x is a this closest vector, then

ATb-Ax) =0 ATax = ATb

Now we need to show that ATA nonsingular so that we can solve for x.

Lemma

If A is an m x n matrix of rank n, then ATA is nonsingular.
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Best Fitting Curves

Often, a line is not the best model for the data. Fortunately the same technique works if we want to use other nonlinear curves to fit the data. Here

we will explain how to find the least squares cubic. The process for other polynomials is similar. c
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A bioengineer is studying the growth of a genetically engineered bacteria culture and suspects that is it approximamlgollows a cubic model. He

collects six data points listed below ( <z
. <~

Time in Days 2 3 4 5 6 p— S

Grams @ s J42 1 Jasa 6.8

He assumes the equation has the fornf” —

axl +bxl +ox+d - y 65“5 =£L,\,“._‘,_) "6( Mc,ru( >(

This gives six equations with four unknowns

at b+ ctd =21 emem fa‘ sL‘F‘ no d‘s
8a+ 4b+2c+d =35
27a+ Ob+3c+d = 42

64a+16b+4c+d = 3.1
1252+25b+5c+d = 44 Qe

216a+36b+6c+d = 6.8 }P [ i
e
The corresponding matrix equation is 9 g” C\ Y " k @ r
&

Example

1 | 21
8 4 21| (35 - & . 2. C
Z k @ 2 -"
27 9 3 1|b|_[42 3. & ‘ .‘L ,&o
64 16 4 1| c| (31
125 25 5 1|(d) |44
216 36 6 1 6.8

We can use th@ast squares equation to find the best solution

a 0.2

b T2l AT -2.0
= (A AHADp =

c ( ) Li 6.1

d -2.3

So that the best fitting cubic is 4_ J /
y

= 02x3-20x2 +6.1x - 2.3 -
The graph is shown belom
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