
!"##"$ %&'()!"##"$*+, · -./0"+,1)2/34, !*506+*, 7**8)7/9*, :+"$;"<0+/=60* >="60

!"#$%&'($)*+,$(-.$/"%#+012'%)
&/-2+34-)5)

?*9)>35+ >6@)A'B)AC'D · &)E/<)+*5.

!/@6+*)F'G);5,8*+)0H*)!+/*<.#I):H",0)J,"6+3*G
H008,GKK9/@<*00*L$/4/5L<"3""4/*L<*0K3H+/,0E5,,8*3/5#,K/E5@*,K*K*DK;5,8*+LM8@K+*9/,/"<K#50*,0N

3=OAC'A'C'PCQQQ'RS

Having more by having less… Easy! This machine learning method will

help you store more information in smaller sizes with only some linear

algebra fundamentals. By that, we will recover human faces from some

ghost shaped messes.

You must have been told, independent vectors create spaces in abstract

ways. Now, imagine for real. All the spaces are formed by the vectors and so

are the things inside those spaces. Some of these vectors contribute to some

of the things more than the others. The others may be negligible besides

them and maybe we don’t need to know about those because we basically

don’t care and don’t want to carry their problems with us. This is exactly

what I will show you to do about eigenfaces in this post.

!/@6+*)FAG)<"0)0H/,),853*)=60)5#,")0H/,),853*)J,"6+3*G
H008,GKK/E@L86+3HL3"EK$KTTCK5UVC37"9WQ.Q.I%,5XY#3A?8YZ%MY[%M=AC95Z'HYA\]WA49^7>$W]>%?ID%

?_39=Q`8YA#6aZ$93QbHaAc65<b<S

Our principle topic is PCA. It is a widely used algorithm in variety of

subjects. Using it on faces makes it more human interpretable so it is one of

the most popular applications. Eigenfaces is a method that is useful for face

recognition and detection by determining the variance of faces in a

collection of face images and use those variances to encode and decode a

face in a machine learning way without the full information reducing

computation and space complexity. Even though it was firstly used in 1991

by Turk and Pentland and has limitations compared to today’s tech, its

basics are still highly beneficial for new practices.

!/@6+*)FQG)W!Z)J,"6+3*G)H008GKK9/,d$$$L3,L6E5,,L*.6K#e$K[/fg!53*g25<*#,g,ELM8@S

Before moving onto implementation, I’d like to give you a little introduction

about basic concepts mentioned. Also, you can find full script and dataset (a

small fraction of LFW_cropped) I used here.

!"#$%&$'()*+,-%.,!"#$%&-/0$+

We all know how eigenvectors and eigenvalues exactly work. Maybe not

exactly but we’ve heard of them, like, many times. Here is an explanation

for the minority like me who keep forgetting.

Let’s have a square A matrix. Almost all vectors change direction when they are

multiplied by A as we expect. However, there are certain vectors x which have

the exact same direction as Ax. Soo… Guess what? Those are our eigenvectors.

Special ones… Even if they are in the same direction, Ax and x still might be

two different vectors by their magnitudes. Here is a familiar equality. Ax=λx.

What makes those two equal is λ, our magnitude equalizer scalar, eigenvalue.

This will tell us how our eigenvector changed after the multiplication

From above, you can tell why they are useful in practice. For a deeper

understanding and probably appreciation go to MIT’s Eigenvalues and

Eigenvectors Chapter.

1*"%'"2-/,3)42)%$%(,5%-/6+"+,71358

The main goal of PCA is dimensionality reduction. It has many applications

in visualisation, feature extraction, data compression, etc. The idea behind

it is to linearly project original data onto a lower dimensional subspace

offering the principal components (eigenvectors) maximum variance of the

projected data and/or minimum distortion error from the projection.

Eventually, both lead to the same result which is the best reconstruction

formula. As a side note, this subspace is called principal subspace.

For calculations of maximizing variance and minimizing distortion error,

you can go to ANU’s lecture notes about PCA. Also, another video on

youtube called Principal Components Analysis -Georgia Tech-Machine

Learning helped me understand the concepts much better.

942/4%(-(")%

Ok! Everyone ready for implementation. First, we’ll import the required

libraries. I assume you all know what they are for. I’ll focus on the

explanation part of algorithms. If you have any other questions about the

code, leave a response below.

Then, we need a function to visualise the images from our dataset in a

good-looking way. Here it is.

Let’s put it on our dataset lfwcrop_grey.zip. Here, I only take first 1000 of

the faces because of the computational complexity but it really doesn’t

matter. If you want to go full house then go for it. I also transformed images

into numpy array (shaped 1000, 64, 64) for processing.

!/@6+*)F%G)E*5<)e53*

The table on the right is the one I will actually use. I basically visualised first

16 images from the dataset of 1000. The one on the left was a dataset that I

collected from the original one when I had no idea what I was doing. Yet, I

noticed it is better to have more data to explain the concepts more clearly.

Going on, the next step is to define PCA. Its arguments are X which is

vectors of images and n_pc which is the number of principal components.

As a little reminder, principal components define an orthonormal basis that

can extract the maximum variance in the original data. In our case, its

shape is (1000, 4096) since we needed to transform the images into vectors

for PCA. Then, we find the mean and subtract it from our data to center it

around the origin. After that, we need to perform Singular Value

Decomposition on the centered data to find those principle components

called eigenfaces.

[)E50+/f)H5,)0H*),/<@6#5+)95#6*,)5#"<@)0H*)./5@"<5#)$H/#*)c)5<.)\)5+*),/<@6#5+)9*30"+,

(SVD is difficult to get and much more complex than that. For a helpful

illustration, go to that MIT OpenCourseWare video.)

By the way, here is our mean

face of all 1000 faces in the

dataset. We are trying to find

the features that makes

individuals different than the

others. I hope subtracting the

mean face from everyone and

maximising variance make

more sense now. Look at that.

Carefully! It’s a bit scary, isn’t it?

The next steps are to

manipulate our images to

become vectors, call PCA

function and manipulate our

eigenfaces to become images again.

!/@6+*)FTG)b6<3H)"e)@H",0),H58*.)/E5@*,L)W""4)50)0H*E)/<)0H*)*I*,L

First parameter named n_components determines how many eigenfaces we

want to create. Those are our principal components from which we will

recover our data that is human face. Changing it won’t change this table

unless it is less than 16. However, I can guarantee there are only 50 images

that we can trust rather than 1000 as it was the case at the beginning.

(eigenfaces.shape = (50, 64, 64))

For reconstruction, we will use those eigenfaces. Each face is a weighted

combination of those eigenfaces as you might say. To find weights, we

should dot multiply our centered data and eigenfaces. Then, we should

weight eigenfaces which gives us the centered face and add it up to the

mean face again. After all, we are ready to take a look at the recovered faces

compared to original ones.

Wow! Not looking good! But, don’t forget we came from 1000 x 64 x 64 to

50 x 64 x 64. In this way, we get to keep 20 times less data than before. Still,

I won’t fool anybody. Those are not good enough. It is clear we still have

some important principal components we took out. Let’s see what we can

do. I’ll try to use the first 100 components.

Getting better but still, not good enough. 250…

This one is totally satisfying for me. With only quarter of what we have we

recovered totally distinguishable faces. It’s totally pointless but you can

actually use 1000 eigenface components and get the exact original results.

Just to show you that, I’ll run some computation and space complexity.

Still running… Hold on… It’s coming.

The results have come. Pretty sweet!!!

This post actually showed you having good enough information with very

small size of data and this is one of our most important expectations from

machine learning. I hope you see something beyond this application and

start thinking about new innovations. I stated the references as I used or

above.

Once again, hope you enjoyed my post. Don’t hesitate to ask your questions

about it or give any type of feedback.

Cheers,

Nev

:"#%,02,;)*,<=$,>-*"-?/$
bI)_"$5+.,)7505)[3/*<3*

-9*+I)_H6+,.5IB)0H*)\5+/5=#*).*#/9*+,)0H*)9*+I)=*,0)"e)_"$5+.,)7505)[3/*<3*G)e+"E

H5<.,d"<)060"+/5#,)5<.)3600/<@d*.@*)+*,*5+3H)0")"+/@/<5#)e*506+*,)I"6)."<10)$5<0)0"

E/,,L)_54*)5)#""4L

:*0)0H/,)<*$,#*00*+
-E5/#,)$/##)=*),*<0)0")*="##0h3#5+4,"<L*.6L
?"0)I"6N

AD% Q

^53H/<*)W*5+</<@ 7505)[3/*<3* 7505)\/,65#/]50/"< 2+"@+5EE/<@ >+0/e/3/5#)i<0*##/@*<3*

@)*$,;*)4,<)A-*.+,B-(-,:'"$%'$!"##"$

a"6+)H"E*)e"+).505),3/*<3*L)>)^*./6E)86=#/350/"<),H5+/<@)3"<3*80,B)/.*5,)5<.
3".*,L

V*5.)E"+*)e+"E)_"$5+.,)7505)[3/*<3*

>="60 Z+/0* U*#8 W*@5#

view raw

1

2

3

import.py hosted with ❤ by GitHub

import matplotlib.pyplot as plt

import numpy as np

import os

view raw

1

2

3

4

5

6

7

8

9

10

image_visualisation.py hosted with ❤ by GitHub

"""It helps visualising the portraits from the dataset."""

def plot_portraits(images, titles, h, w, n_row, n_col):

 plt.figure(figsize=(2.2 * n_col, 2.2 * n_row))

 plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.20)

 for i in range(n_row * n_col):

 plt.subplot(n_row, n_col, i + 1)

 plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)

 plt.title(titles[i])

 plt.xticks(())

 plt.yticks(())

view rawportrait_visualisation.py hosted with ❤ by GitHub

1

2

3

4

5

6

7

dir='lfwcrop_grey/faces'

celebrity_photos=os.listdir(dir)[1:1001]

celebrity_images=[dir+'/' + photo for photo in celebrity_photos]

images=np.array([plt.imread(image) for image in celebrity_images], dtype=np.float64)

celebrity_names=[name[:name.find('0')-1].replace("_", " ") for name in celebrity_photos

n_samples, h, w = images.shape

plot_portraits(images, celebrity_names, h, w, n_row=4, n_col=4)

!/@6+*)FPG)W*e0G)_H*)8*"8#*)0H50)i)0H"6@H0)/0)$"6#.)=*)</3*)0")9/65#/,*)K)V/@H0G)'T)V5<."E)!5E"6,)2*"8#*)0H50)i)."<j0
53065##I)35+*)e+"E)0H*).505,*0)"e)'CCC

view raw

1

2

3

4

5

6

7

8

9

pca.py hosted with ❤ by GitHub

def pca(X, n_pc):

 n_samples, n_features = X.shape

 mean = np.mean(X, axis=0)

 centered_data = X-mean

 U, S, V = np.linalg.svd(centered_data)

 components = V[:n_pc]

 projected = U[:,:n_pc]*S[:n_pc]

 return projected, components, mean, centered_data

view raw

1

2

3

4

5

6

eigenfaces.py hosted with ❤ by GitHub

n_components = 50

X = images.reshape(n_samples, h*w)

P, C, M, Y= pca(X, n_pc=n_components)

eigenfaces = C.reshape((n_components, h, w))

eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]

plot_portraits(eigenfaces, eigenface_titles, h, w, 4, 4)

view raw

1

2

3

4

5

6

7

8

reconstruction.py hosted with ❤ by GitHub

def reconstruction(Y, C, M, h, w, image_index):

 n_samples, n_features = Y.shape

 weights = np.dot(Y, C.T)

 centered_vector=np.dot(weights[image_index, :], C)

 recovered_image=(M+centered_vector).reshape(h, w)

 return recovered_image

recovered_images=[reconstruction(Y, C, M, h, w, i) for i in range(len(images))]

plot_portraits(recovered_images, celebrity_names, h, w, n_row=4, n_col=4)

!/@6+*)F&G)<g3"E8"<*<0,O%C

!/@6+*)FDG)<g3"E8"<*<0,O'CC

!/@6+*)FRG)<g3"E8"<*<0,OA%C

!/@6+*)F'CG)<g3"E8"<*<0,O'CCC

C$&,5'-*

W*5+</<@

!"##"$

AD% Q

?-\)>;>V)!kWWkZ[

`"<50H5<)U6/

;"<<"+)[H"+0*<

-]@/)_6+H5<*+

>#/)Ç/e03/

[5e54)_6e*43/

[**)5##)JQDS

https://towardsdatascience.com/?source=post_page-----17606c328184--------------------------------
https://towardsdatascience.com/followers?source=post_page-----17606c328184--------------------------------
https://towardsdatascience.com/tagged/editors-pick?source=post_page-----17606c328184--------------------------------
https://towardsdatascience.com/tagged/tds-features?source=post_page-----17606c328184--------------------------------
https://towardsdatascience.com/tagged/deep-dives?source=post_page-----17606c328184--------------------------------
https://towardsdatascience.com/how-to-get-the-most-out-of-towards-data-science-3bf37f75a345?source=post_page-----17606c328184--------------------------------
https://towardsdatascience.com/questions-96667b06af5?source=post_page-----17606c328184--------------------------------
https://towardsdatascience.com/about?source=post_page-----17606c328184--------------------------------
https://medium.com/@nevacar?source=post_page-----17606c328184--------------------------------
https://medium.com/@nevacar?source=post_page-----17606c328184--------------------------------
https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184?source=post_page-----17606c328184--------------------------------
https://medium.com/m/signin?operation=login&redirect=https%3A%2F%2Ftowardsdatascience.com%2Feigenfaces-recovering-humans-from-ghosts-17606c328184&collection=Towards%20Data%20Science&collectionId=7f60cf5620c9&newsletterV3=The%20Variable&newsletterV3Id=d6fe9076899&source=newsletter_v3_promo--------------------------newsletter_v3_promo-----------
https://towardsdatascience.com/tagged/machine-learning
https://towardsdatascience.com/tagged/data-science
https://towardsdatascience.com/tagged/data-visualization
https://towardsdatascience.com/tagged/programming
https://towardsdatascience.com/tagged/artificial-intelligence
https://towardsdatascience.com/?source=follow_footer-------------------------------------
https://medium.com/?source=post_page-----17606c328184--------------------------------
https://medium.com/@nevacar?source=post_sidebar--------------------------post_sidebar-----------
https://jonathan-hui.medium.com/?source=blogrolls_sidebar-----17606c328184--------------------------------
https://jonathan-hui.medium.com/?source=blogrolls_sidebar-----17606c328184--------------------------------
https://connorshorten300.medium.com/?source=blogrolls_sidebar-----17606c328184--------------------------------
https://connorshorten300.medium.com/?source=blogrolls_sidebar-----17606c328184--------------------------------
https://ezgi-turhaner.medium.com/?source=blogrolls_sidebar-----17606c328184--------------------------------
https://ezgi-turhaner.medium.com/?source=blogrolls_sidebar-----17606c328184--------------------------------
https://ciftciali94.medium.com/?source=blogrolls_sidebar-----17606c328184--------------------------------
https://ciftciali94.medium.com/?source=blogrolls_sidebar-----17606c328184--------------------------------
https://medium.com/@safaktufekci?source=blogrolls_sidebar-----17606c328184--------------------------------
https://medium.com/@safaktufekci?source=blogrolls_sidebar-----17606c328184--------------------------------
https://medium.com/?source=post_page-----17606c328184--------------------------------

