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We present a numerical method to identify regions of phase space that are approximately retained in a mobile
compact neighbourhood over a finite time duration. Our approach is based on spatio-temporal clustering of
trajectory data. The main advantages of the approach are the ability to produce useful results (i) when there
are relatively few trajectories and (ii) when there are gaps in observation of the trajectories as can occur with
real data. The method is easy to implement, works in any dimension, and is fast to run.
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Coherent features in time-dependent dynamical

systems are difficult to identify, and consider-

able effort has been put into the development

of identification algorithms. Most approaches re-

quire knowledge of the dynamical system or high-

resolution trajectory information, which in ap-

plications may not be available. We present a

trajectory-based method that is aimed squarely

at the situation where the available information is

poor: there are few trajectories, the available tra-

jectories do not span the full time duration under

consideration, and there are missing observations

within trajectories. As our method is very simple

to implement and fast to run, it also provides a

rapid “first cut” coherent structure analysis even

in situations where the full dynamical system or

high-resolution trajectory data is available.

I. INTRODUCTION

There are a number of different concepts that describe
the notion of coherent behaviour in time-dependent dy-
namical systems. Probabilistic approaches define finite-
time coherent sets12,17,18 as regions of phase space that
minimally mix with the surrounding phase space during
a specified time duration of finite length. Lagrangian co-
herent structures can be defined as material lines that
extremize a certain stretching or shearing quantity20,21,
while another approach tries to identify curves on which
local dynamics approximates local rigid-body motion25.
There are also topological1 and ergodicity-based6 de-
scriptions of coherence, although these are not designed
for aperiodic dynamics. Finally, a recent geometric
characterisation11 defines finite-time coherent sets as
those sets with boundary to volume ratios that remain
minimal under the evolution of the dynamics, and proves
that such a characterisation arises naturally as the advec-
tive limit of the probabilistic approaches12,18.
In the present paper we develop cluster-based tech-

niques to highlight distinct groups of trajectories that
remain in compact, approximately spherical subregions
of phase space over a finite time duration. Let Φ :
R

d × [0, T ] → R
d denote the flow of a continuous time

dynamical system on R
d, i.e. Φ(x, t) denotes the state of

the system at time t with initial value x (at time 0). We
define a dynamic metric

D(x, y) :=

∫ T

0

ρ(Φ(x, t),Φ(y, t))2dt, (1)

based on some metric ρ on R
d. For example, if ρ is the

Euclidean metric, then x and y are close according to D

provided they remain close in a Euclidean sense averaged
over the time interval [0, T ].
In this general setup, one is free to choose ρ and also

how the terms ρ(Φ(x, t),Φ(y, t)), t ∈ [0, T ] are combined
to form D(x, y). Setting ρ to be the Euclidean metric is a
natural choice if the trajectory data lies in R

d and shortly
we will give geometric reasons for why this is a good
choice. The sum-of-squares combination is a convenient
form for the specific numerical clustering approach pro-
posed below. One could alternatively define, for exam-

ple, D(x, y) :=
∫ T

0 ρ(Φ(x, t),Φ(y, t))pdt, for 1 ≤ p < ∞,
or D(x, y) := maxt∈[0,T ] ρ(Φ(x, t),Φ(y, t)).
In practice, suppose we have n trajectories given at

discrete times {0, 1, . . . , T }, denoted xi,t ∈ R
d, i =

1, . . . , n, t = 0, . . . , T . We wish to cluster the initial
points xi,0 ∈ R

d according to D. The discrete-time ver-
sion of (1) is

D(xi,0, xj,0) =

T
∑

t=0

ρ(xi,t, xj,t)
2, (2)

for 1 ≤ i, j ≤ n. At this point, one could calculate
n(n − 1)/2 interpoint distances D(xi,0, xj,0), 1 ≤ i <
j ≤ n. This general approach of clustering using the dy-
namic metric (1) or (2) is very flexible and in principle
one could employ any suitable (according to the three
properties outlined below) clustering method on R

d from
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the vast number available (see e.g. Ref. 34): centroid-
based algorithms like k-means3,24 and fuzzy c-means4,5,
spectral methods9,37, density-based clustering2,8, and
methods based on community detection10 (for example,
modularity30).
The sum-of-squares form of D and choice of Euclidean

metric for ρ allows us to further rewrite (2) as

D(xi,0, xj,0) =
T
∑

t=0

ρ(xi,t, xj,t)
2 = ‖Xi −Xj‖

2, (3)

for 1 ≤ i, j ≤ n, where Xi = (xi,0, xi,1, . . . , xi,T ). Thus,
we have a convenient representation of the dynamic met-
ric D on R

d as the squared Euclidean distance between

trajectories in
∏T

t=0 R
d = R

d(T+1).
As elaborated in the next section we use the fuzzy c-

means clustering algorithm4,5 on R
d(T+1). Our reasons

for using fuzzy c-means are threefold (but not necessarily
exclusive to fuzzy c-means):

1. When searching for K clusters31, fuzzy c-means
produces K auxilliary “centres” and aims to allo-
cate data to clusters by reducing the total squared
distance from the data to their corresponding cen-
tre. If ρ is the Euclidean metric, then fuzzy c-
means will favour clusters that are close to spherical
at each time instant. Such clusters therefore will
not “spread out” in phase space, will remain in an
approximately tubular region in lower-dimensional
space-time (phase space plus one time coordinate,
see Figure 1), and will on average have low bound-
ary size to volume at each time instant. The low
boundary size relative to volume property is com-
patible with probabilistic approaches12,18 and geo-
metric approaches11 to finite-time coherent sets.

2. Fuzzy c-means provides feedback in the form of the
membership value describing the likelihood that a
trajectory belongs to a cluster. Because finite-time
coherent sets do not necessarily fully partition the
phase space, we can identify non-coherent collec-
tions of trajectories as those with a low membership
for all clusters.

3. Fuzzy c-means is computationally efficient, partic-
ularly for large numbers of trajectories.

Finally, we note that once the initial points {xi,0}1≤i≤n

have been clustered, the full trajectories are also clus-
tered, as by definition trajectories remain within the
same cluster for all t = 0, . . . , T .
Clustering trajectory data is a recent problem in the

analysis of spatio-temporal datasets, with many contri-
butions found in the data mining literature. We refer the
reader to Ref. 23 for a recent review and to the literature
review in Ref. 22 for a brief summary of the different
approaches used for spatio-temporal clustering. Ref. 22
proposes an augmented fuzzy c-means algorithm, with
different weights for the temporal and spatial compo-
nents. Ref. 29 and the thesis 28 introduce a distance

measure essentially identical in form to (1). Ref. 29 uses
this metric with density-based algorithms2 to cluster tra-
jectories in geo-referenced data sets and to find optimal
time intervals for clustering. The papers 22, 28, and
29 do not consider how to treat incomplete trajectory
data. Other distance measures have been proposed to ac-
count for application-specific purposes, e.g. for studying
movement patterns in traffic32,33. However, to the best
of our knowledge, spatio-temporal clustering approaches
have not been employed for studying transport phenom-
ena and coherent behaviour in time-dependent dynami-
cal systems and an exploration of the tuning of clustering
methods to this application has not been undertaken.

Our main contributions are (i) posing the problem
of identifying finite-time coherent sets as an objective
trajectory-based clustering problem, (ii) developing a
methodology for handling incomplete data that consis-
tently uses all available data, and (iii) indicating some
rules of thumb for applying these techniques in practice.

An outline of the paper is as follows. We describe
our approach first in the situation where there are a fi-
nite number of trajectories available, sampled at a finite
number of times. We then consider combinations of a
continuum of trajectories and a continuum of observa-
tion times. Section II concludes by showing that our
clustering framework for coherent sets is objective and
independent of isotropic scaling of space and time. Our
method handles missing trajectory data naturally and we
discuss this in Section III. A discussion of false positives,
possibly inaccurate results, and how to identify these is
in Section IV; we also outline some rules of thumb for
parameter choices. Section V illustrates the approach
for several examples: firstly in one-dimensional dynam-
ics, where the geometry of the spatio-temporal clustering
is more transparent, secondly for the well-known double-
gyre flow and the transitory double gyre flow for compar-
ison with existing coherent set identification approaches,
and thirdly on ocean surface drifter data. We demon-
strate how reasonable results can be achieved even when
large percentages of trajectory observations are missing,
and when the trajectory dataset is comprised of trajec-
tories much shorter than the full time duration under
analysis.

II. FULL DATA CASE

We first describe the case where all trajectories span
the finite time duration and there are no missing observa-
tions. We begin by describing our setup in the situation
where there are a finite number of trajectories sampled
at a finite collection of time instances, this means that
all trajectories are sampled at all time instances; we then
follow with versions that are continuous in space and/or
time.
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A. Discrete setting: a finite number of finitely-sampled

trajectories.

Suppose we have n trajectories of maximum length
T + 1, denoted xi,t ∈ R

d, i = 1, . . . , n, t = 0, 1, . . . , T .
We consider each trajectory {xi,t}0≤t≤T as a point Xi =

(xi,0, xi,1, . . . , xi,T ) ∈ R
d(T+1), which we also refer to as

a trajectory. We imagine R
d(T+1) as

∏T
t=0 R

d, where
the product of copies of our phase space R

d is or-
dered in increasing time t. The fuzzy c-means clustering
algorithm4,5 is a soft clustering based on the calculation
of a centre for each cluster and a likelihood of member-
ship of each data point to each centre. Suppose we have
identified K cluster centres Ck ∈ R

d(T+1), k = 1, . . . ,K.
We may decompose the Ck as (ck,0, ck,1, . . . , ck,T ) ∈

R
d(T+1), so that each ck,t ∈ R

d can be regarded as a
point in phase space R

d at time t. Associated with each
trajectory Xi is a likelihood 0 ≤ uk,i ≤ 1 of Xi being
associated with the cluster centre Ck.
Given trajectories Xi, i = 1, . . . , n, cluster centres

Ck, k = 1, . . . ,K, and membership likelihoods uk,i, i =
1, . . . , n, k = 1, . . . ,K, the total “goodness of fit” of the
memberships of trajectories in clusters is measured by
likelihood-weighted intracluster distances, which we wish
to minimise:

K
∑

k=1

n
∑

i=1

um
k,i‖Xi − Ck‖

2 =

K
∑

k=1

n
∑

i=1

um
k,i

T
∑

t=0

‖xi,t − ck,t‖
2.

(4)
This minimisation is subject to the constraints that (i)
∑K

k=1 uk,i = 1 for i = 1, . . . , n and (ii) uk,i ≥ 0 for
all k = 1, . . . ,K, i = 1, . . . , n. The parameter m > 1
is the fuzziness exponent. Increasing m corresponds to
softer clusters, while as m approaches 1, the member-
ship likelihoods converge to either 0 or 1, resulting in
a hard clustering5 (this latter effect is most easily seen
from the update rule (6) below). The basic fuzzy c-means
algorithm4,5 in our notation above proceeds as follows.

Algorithm 1:

1. Initialize membership values uk,i either randomly
or computed via step 3 based on an initial seeding
of K centres (e.g. randomly or by the k-means++
algorithm3)

2. Calculate centres:

Ck =

∑n
i=1 u

m
k,iXi

∑n
i=1 u

m
k,i

, (5)

k = 1, . . . ,K.

3. Update membership values:

uk,i =
1/‖Xi − Ck‖

2/(m−1)

∑K
j=1

(

1/‖Xi − Cj‖2/(m−1)
)
, (6)

k = 1, . . . ,K, i = 1, . . . , n.

4. Evaluate objective (4). If the improvement in the
objective is below a threshold, go to step 5; other-
wise go to step 2.

5. Output cluster centres Ck ∈ R
d(T+1), k = 1, . . . ,K

and membership likelihoods uk,i ∈ [0, 1], k =
1, . . . ,K, i = 1, . . . , n.

The update rule in step 2 is constructed by fixing the uk,i

and choosing Ck so that the gradient of the objective (4)
is zero. Similarly, the update rule in step 3 is constructed
by fixing the Ck and choosing the uk,i so that the gradient
of the Lagrangian incorporating (4) and the constraint
∑K

k=1 uk,i = 1 is zero.

Implementation in MATLAB: If X is an n×d(T+1)
array of n trajectories in R

d (i.e. the rows of X are the
vectors Xi, i = 1, . . . , n discussed above), Algorithm 1
is implemented in MATLAB by the function fcm in the
Fuzzy Logic Toolbox:

opts(1)=m;

[c,u]=fcm(X,K,opts);

If fcm is called without opts, the default value of m is 2.
For d = 2, to display the membership values for cluster
k at time slice t ∈ {0, 1, . . . , T }, one can use

scatter(X(:,2*t+1),X(:,2*t+2),[],u(k,:),’.’);

For d = 3, one can similarly use scatter3.
We remark that the centres Ck = (ck,0, ck,1, . . . , ck,T ),

k = 1, . . . ,K, are generally not true trajectories of the
dynamical system, although they may be remarkably
close to true trajectories in some cases. For each k =
1, . . . ,K, one can identify the maximum likelihood tra-
jectory Xi∗

k
for the kth cluster, where i∗k = argmaxi uk,i.

The trajectory Xi∗
k
is the most likely to belong to the

kth cluster and may be thought of as a “probabilistic
centre” of the cluster. The probabilistic centers can be
interpreted as “low dimensional representations” of the
macroscopic behavior of the system, as they describe the
coherent motion of trajectories in the corresponding clus-
ter. We illustrate both the centre and maximum likeli-
hood trajectory in Figure 1.
Note that there is potential for one to include weights

as coefficients for the terms ‖xi,t − ck,t‖
2 in (4), which

could depend on i, t, or k. A particularly important ex-
ample is the inclusion of weights qi ≥ 0 corresponding
to the “mass” assigned to a point xi,0. For example, if
one is searching for coherent regions in an oil or chemical
spill in the ocean, one is likely interested in the behavior
of the oil or chemical, rather than the water. In order to
obtain clusters that focus on the nonuniform distribution
of oil or chemical, one can replace um

k,i with qiu
m
k,i in (4)

and (11).
Also note that at present, clustering into spheres

is preferred by the Euclidean norm. If one wishes
to favour clustering into ellipsoids, with orthogonal
semi-axis vectors v1, . . . , vd and corresponding semi-axis
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FIG. 1: Result of clustering of the double-gyre flow with
n = 512, K = 2, m = 2, d = 2, T = 50 (corresponding
to the real-time interval [0, 5] in time steps of 0.1).
Trajectories Xi with membership values uk,i > 0.9,

k = 1, 2 are shown. Note that in this figure we display
space-time using time as a third coordinate, whereas the
clustering computations in Algorithm 1 occur in R

102.
One sees that the red and black trajectories remain in a
compact region as time evolves. The probabilistic centre
of the cluster corresponding to the red trajectories is

shown as a meandering black curve, the light blue curve
is the centre as computed by Algorithm 1.

lengths ℓ1, . . . , ℓd, then one may simply scale the xi,t data
in R

d along each vj by 1/ℓj, j = 1, . . . , d, use the Eu-
clidean norm in the objective above, and then rescale the
data along each vj by ℓj , j = 1, . . . , d. Other distance
functions could be used to replace Euclidean distance,
but in the absence of specific replacement motivations
based on known properties of the underlying dynamical
system, Euclidean distance represents a natural isotropic
default distance metric.
Sections II B–IID outline extensions of the above setup

to situations where either one or both of the spatial data
or temporal data are on a continuum. These construc-
tions are mainly of a theoretical nature, but have been
included to (i) demonstrate what the analogous objects
are in a continuum setting if e.g. a full dynamical systems
model were available, and (ii) indicate how the discrete
“finite data” setting above is a special case (constructed
by subsampling in space and/or time) of the continuum
“full model” setting. Sections II B–IID could be omitted
on a first reading.

B. Semi-continuous setting #1: a continuum of initial

points, with trajectories finitely-sampled in time.

Suppose we have a continuum of initial points in a
set A ⊂ R

d. We now write trajectories as x(x0, t) ∈
R

d, x0 ∈ A, t = 0, 1, . . . , T . Individual trajectories
{x(x0, t)}0≤t≤T for fixed x0 ∈ A are still regarded as

elements of R
d(T+1) as before, and we write an indi-

vidual trajectory as X(x0) ∈ R
d(T+1). Note that the

likelihoods ux0,k are also continuously parameterised by
x0 ∈ A, and we write these in functional form as uk(x0),
so that uk : A → [0, 1], k = 1, . . . ,K. In the finite-
trajectory setting, the initial points of trajectories need
not be uniformly distributed over the phase space, nor
be given a uniform weight. If one wishes to model the
evolution of a passive tracer field with nonuniform den-
sity, one will either have a greater density of points in
areas of high tracer density or apply weights to points
with higher tracer concentration. To capture this ef-
fect in the continuum setting, we need a density func-
tion q : A → R, satisfying

∫

A
q(y) dy = 1. We interpret

∫

Bǫ(x0)
q(y) dy as the fraction of initial points that belong

to an ǫ-neighbourhood of x0. For example, if the initial
x0 are uniformly sampled over A, then q ≡ 1/vol(A).

Equation (4) now reads

K
∑

k=1

∫

A

uk(x0)
m‖X(x0)− Ck‖

2q(x0) dx0

=

K
∑

k=1

T
∑

t=0

∫

A

uk(x0)
m‖x(x0, t)− ck,t‖

2q(x0) dx0 (7)

Here is a simple example to help visualise what is go-
ing on. Let phase space be [0, 1], and consider trajec-
tories of length two, generated by a map S : [0, 1] 	.
Geometrically, we look for clusters in data of the form
(x(x0, 0), x(x0, 1)), for all x0 ∈ [0, 1], which is nothing
but the (weighted, if q is not constant) graph of S con-
sidered as a one-dimensional subset of [0, 1]2; see Fig-
ure 2(a). Figure 2(b) shows clusters in data of the form
(x(x0, 0), x(x0, 2)).

x
0.2 0.4 0.6 0.8

S
(x

)

0.1

0.2

0.3

0.4

0.5

0.6
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0.8

0.9

x
0.2 0.4 0.6 0.8

S
2 (x

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) (b)

FIG. 2: Graphs of the interval map S (15), which
permutes the intervals [0, 1/3], [1/3, 2/3], [2/3, 1]. (a) x
vs S(x); (b) x vs S2(x). Considered as a time series of
length 2, Algorithm 1 would seek clusters in these

graphs, considered as a subset of [0, 1]2.
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C. Semi-continuous setting #2: a finite number of

continuously-sampled trajectories.

Suppose now that instead of a continuum of finitely-
sampled trajectories, we now have a finite collection of
trajectories observed continuously in time: xi(t), i =
1, . . . , n, t ∈ [0, T ], with optional weights qi, i = 1, . . . , n,
representing the mass of the point xi(0). We consider
xi : [0, T ] → R

d, i = 1, . . . , n as a finite number of con-
tinuous mappings from [0, T ] to R

d. Similarly, the cluster
centres ck : [0, T ] → R

d, k = 1, . . . ,K are a finite num-
ber of (not necessarily continuous) mappings from [0, T ]
to R

d. The RHS of (4) becomes

K
∑

k=1

n
∑

i=1

um
k,i

∫ T

0

‖xi(t)− ck(t)‖
2qi dt. (8)

To visualise the integral, imagine we have a one-
dimensional (time-dependent) flow in a phase space R,
and xi(t) is one trajectory from t = 0 to t = T . The
integral (8) computes the total (q-weighted) squared dis-
tance between the graphs of the functions xi and ck in
[0, T ] × R; or in other words, the squared L2 distance
‖xi − ck‖

2
L2([0,T ]).

D. Fully continuous setting: a continuum of initial points,

continuously-sampled trajectories.

Combining the constructions from the previous two
paragraphs, we now have functions x : A × [0, T ] → R

d.
Our likelihood functions remain as uk : A → R

+,
k = 1, . . . ,K. The RHS of (4) becomes

K
∑

k=1

∫ T

0

(
∫

A

uk(x0)
m‖x(x0, t)− ck(t)‖

2q(x0) dx0

)

dt.

(9)

E. Isotropic scaling of space and time has no effect

Given that our clustering is occurring in the product
space formed from as many copies of our phase space as
there are time instants, it is pertinent to consider the
effect, if any, of isotropically scaling space and time. We
show that in fact, there is no real effect caused by such
scaling.
In the fully discrete setting, by (4) if space were scaled

isotropically by a factor α and time by a factor β, then
(4) would simply increase by α2. Thus the cluster cen-
tres and likelihood functions that minimise (4) are simply
isotropically scaled and unchanged, respectively, under
this isotropic scaling of space and/or time.
In the continuum setting, we again consider scaling

space isotropically by a factor α and time by a factor
β. This amounts to defining new “primed” variables:
x′
0 = αx0, t′ = βt, A′ = αA, T ′ = βT , x′(x′

0, t
′) =

αx(x0, t), c
′
k(t

′) = αck(t), u
′
k(x

′
0) = uk(x0), and q′(x′

0) =
q(x0)/α

d. Then changing variables from x0 to x′
0 and

from t to t′ we have

(9)

=

K
∑

k=1

∫ βT

0

(
∫

αA

uk(x
′
0)

m‖x(x′
0, t

′)− ck(t
′)‖2

q(x′
0) α

−dβ−1 dx′
0

)

dt′

= α−2β−1
K
∑

k=1

∫ T ′

0

(
∫

A′

u′
k(x

′
0)

m‖x′(x′
0, t

′)− c′k(t
′)‖2

q′(x′
0) dx

′
0) dt′.

Thus, switching to the primed coordinates will simply
increase the objective (9) by a constant factor α2β over
the original unprimed coordinates. Again, the cluster
centres and likelihood functions that minimise (9) are
isotropically scaled and unchanged, respectively, under
this isotropic scaling of space and/or time. In particular,
the clustering algorithm does not care how space is scaled
against time.

F. Frame-independence

To check frame-independence of an algorithm, one ap-
plies the algorithm to an original dataset, then subjects
the dataset to a (possibly time-dependent) affine trans-
formation, where the linear part is orthogonal. If the
algorithm applied to the transformed dataset yields the
transformed output of the original dataset, then the al-
gorithm is frame-independent; see Ref. 38 for details.
We consider the situation where we have a finite collec-

tion of finitely-sampled trajectories; the arguments pre-
sented apply equally to the other situations discussed in
Sections II B–IID.

Proposition: Algorithm 1 is frame-independent.

Proof: Let {xi,t}1≤i≤n,0≤t≤T be an original collection
of trajectories. Apply Algorithm 1 to {xi,t} to obtain

centres Ck = (ck,0, . . . , ck,T ) ∈ R
d(T+1), k = 1, . . . ,K

and likelihoods uk,i, k = 1, . . . ,K, i = 1, . . . , n that min-
imise (4). Denote the transformed trajectories yi,t :=
Otxi,t + ot, where Ot is an orthogonal d × d matrix and
ot ∈ R

d. Form transformed centres c′k,t := Otck,t + ot.

Notice that (4) has the same value when evaluated with
{xi,t}, {ck,t} and {uk,i}, and with {yi,t}, {c′k,t} and

{uk,i}. This is because the transformation x 7→ Otx+ ot
is an isometry with respect to the Euclidean norm for
each t = 0, 1, . . . , T . Because {ck,t} and {uk,i} minimise
(4) for the dataset {xi,t}, one has {c′k,t} and {uk,i} min-

imise (4) for the dataset {yi,t}. �
If we use a non-standard inner product 〈·, ·〉′ := x⊤Qx

for some symmetric positive-definite d × d matrix Q to
define a norm ‖ · ‖′ on each phase space slice Rd, then an
analogous proposition would hold under transformations
x 7→ Otx+ ot provided O∗

t = Q−1O⊤
t Q = O−1

t .
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III. TREATMENT OF MISSING DATA

Missing data can be treated naturally in our spatio-
temporal clustering framework. Taking the finitely sam-
pled, finite trajectory setting of Section IIA, by missing

data, we mean a trajectory {xi,t}0≤t≤T where the values
xi,t are available only on a strict subset of time instances
Ti ⊂ {0, . . . , T }; that is, only {xi,t}t∈Ti

is available. In
terms of the abstract dynamic norm (3), we handle this
by leaving out those terms in the sum over t in equation
(3) that correspond to times at which data is unavail-
able. Thus, the treatment of missing data we propose is
not specific to fuzzy clustering. In the fuzzy clustering
framework, this corresponds to excluding those time in-
stants t ∈ T c

i for which xi,t is unavailable from both the
centre update and membership likelihood update rules.
Thus, only data that is available at a particular time in-
stant t is used to calculate cluster centre coordinates at
that time t.
To do this efficiently, we consider the known portion of

trajectory i, namely {xi,t}t∈Ti
, as a point in the lower-

dimensional space R
d|Ti| for the purposes of computing

Euclidean distances in the clustering algorithm. This
projection to a lower-dimensional space is easily incor-
porated into Algorithm 1. For i = 1, . . . , n, we define πi :
R

d(T+1) → R
d(T+1) by πiXi = X̂i = (x̂i,0, x̂i,1, . . . , x̂i,T ),

where

x̂i,t =

{

xi,t, if t ∈ Ti;
0, if t /∈ Ti.

(10)

To exclude unavailable observations from centre up-
dates, for each time instant t = 0, 1, . . . , T , we define
It = {i : t ∈ Ti} ⊂ {1, . . . , n}, namely the indices of all
trajectories with observations available at time t.

Algorithm 2: Clustering with missing data

1. Initialize membership values uk,i.

2. Calculate centres:

ck,t =

∑

i∈It
um
k,ixi,t

∑

i∈It
um
k,i

, (11)

k = 1, . . . ,K, t = 1, . . . , T . Note that we take
a convex combination over only those observations
available at time t.

3. Update membership values:

uk,i =
1/‖πiXi − πiCk‖

2/(m−1)

∑K
j=1

(

1/‖πiXi − πiCj‖2/(m−1)
)
, (12)

k = 1, . . . ,K, i = 1, . . . , n. Note that when com-
puting Euclidean distances, we project onto only
those temporal copies of phase space in which tra-
jectory data for Xi is available.

4. Evaluate the objective

K
∑

k=1

n
∑

i=1

um
k,i‖πiXi − πiCk‖

2. (13)

If the improvement in the objective is below a
threshold, go to step 5; otherwise go to step 2.

5. Output cluster centres Ck ∈ R
dT , k = 1, . . . ,K and

membership likelihoods uk,i ∈ [0, 1], k = 1, . . . ,K,
i = 1, . . . , n.

Algorithm 2 is also frame-independent; the proof is iden-
tical to the proof of frame-independence of Algorithm 1.
We remark that Algorithm 2 will have a preference

for clusters that each contain a similar total amount of
data; for example, one cluster comprising 20 trajecto-
ries of length ten and another comprising 40 trajectories
of length five both contain the same amount of data.
In some problems, one may wish Algorithm 2 to have a
preference for clusters with similar numbers of trajecto-
ries, irrespective of the amount of available data in each
trajectory. To achieve this, one can replace um

k,i with

um
k,i/|Ti| in (11) in Step 2 and (13) in Step 4. The reason-

ing behind this replacement is that with the factor 1/|Ti|,
(13) computes the average weighted squared distances
from centres (per trajectory), whereas without this fac-
tor, the total squared distances from centres is computed.
With this altered objective function, one constructs the
correspondingly altered update rules (11)–(12) as out-
lined below Algorithm 1. We tested Algorithm 2 with
and without this factor in the examples in Section V and
found little difference; we report the results without this
factor.

IV. WHAT CAN GO WRONG?

Before we begin to outline some guidelines to avoid
potential pitfalls in sections IVB–IVE, we introduce a
quantity that (along with the likelihoods uk,i) can be
useful for assessing confidence in the clustering reported
by Algorithms 1 or 2.

A. Entropy and classification uncertainty

Each trajectory xi,t, t ∈ Ti has relative probabilities
uk,i ∈ [0, 1], of belonging to cluster Ck, k = 1, . . . ,K,
respectively. We can now define an overall measure of
certainty of cluster assignment of trajectory i via the nor-
malised entropy of the probability vector [u1,i, . . . , uK,i],
namely

hi :=
−
∑K

k=1 uk,i log uk,i

logK
. (14)

The quantity hi takes values between 0 and 1, with hi = 0
representing certain classification of trajectory i to one
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of the K clusters and hi = 1 representing complete un-
certainty of classification of trajectory i to one of the K
clusters, see also Ref. 4.
A collection of trajectories that are retained in a com-

pact region of phase space over the time duration should
correspond to a single cluster in R

d(T+1). Each of these
trajectories should therefore have a low value of hi. A
spatial plot of the field hi over the phase space R

d is
therefore useful for identifying the strength with which
trajectories belong to clusters. Finer, cluster-by-cluster
spatial information can be obtained by producing K
spatial plots of the likelihoods uk,i separately for each
k = 1, . . . ,K.

B. False positives

Algorithms 1 and 2 will always produce centres and
clusters, even if the system under consideration has no
features that could be considered to be coherent. Thus,
there is the possibility of Algorithms 1 and 2 reporting
false positives. There are some easy ways to inspect the
reported clusters and check for false positives. If the
phase space is in one, two, or three dimensions, then one
can visually inspect the clusters at each time instant to
check if the clusters do indeed mostly remain in sepa-
rate compact regions. This can be done by plotting uk,i

against xi,t for k = 1, . . . ,K and t = 0, 1, . . . , T (us-
ing e.g. the scatter command in MATLAB) to check
the certainty of classification for individual clusters. If
the phase space is not low-dimensional, one can plot uk,i

against i (or hi against i) and inspect how many tra-
jectories have high confidence of classification. A low
classification confidence is indicative of the cluster not
corresponding to a coherent set.

C. Choice of trajectory output times and choice of m

Clustering with respect to the Euclidean metric be-
comes less meaningful in high dimensions, with the dis-
tribution of interpoint distances becoming increasingly
tight. This can be partly mitigated by using an ℓp norm
rather than the Euclidean ℓ2 norm, but we have found the
following rules of thumb very helpful, and have achieved
good results with the standard Euclidean norm.
Firstly, one should choose the time between xi,t and

xi,t+1 to represent some nontrivial dynamics. If the in-
crement t → t + 1 is too short, the dynamics is close to
the identity transformation, and one adds d dimensions
to the clustering problem (making it more difficult) for
no information gain. On the other hand, the increment
from t → t+1 should not be so long that the underlying
dynamics appears random over one time step; a group of
nearby points at time t should remain in a “connected”
region at time t + 1, even though this region may be
stretched and folded. Secondly, the total time duration
T should not be so long that the entire phase space is

thoroughly mixed; for such T there is no chance of find-
ing coherent sets. Once the step t → t + 1 and total
duration T have been selected as above, one should ob-
tain reasonable results. Finally, to fine tune the value of
m to ensure robust results, we suggest the following rule.
Begin with m = 2 and decrease m. For each value of
m, record the locations of xi∗

k
,0, the maximum likelihood

trajectories at time t = 0 (the choice of t = 0 is arbi-
trary). Find a range of m for which the locations of the
maximum likelihood trajectories are stable (i.e. approx-
imately fixed). Note that the centres ck,0 at time t = 0
will tend to continue to vary with m so they are not good
indicators of cluster stability with m.

D. Centre collapse

If two or more of the reported cluster centres are all
very close to one another in space, there are at least
three possibilities. Firstly, it could be that there are no
coherent structures in the trajectory data. Secondly, it
could be that the choice of the step t → t+1 and/or T are
unsuitable. Thirdly, even if the choice of the step t → t+1
and/or T are reasonable, it could be that the value of m
is too high. In our experiments we have found that the
larger d(T + 1) is (the larger the total dimension), the
smallerm needs to be to avoid centre collapse. This is not
surprising because with higher dimension, the interpoint
distances distribution is more tight, and a lower value of
m emphasises differences in distance more. This is the
reason behind our suggestion in the previous paragraph
to start with m = 2 and decrease m until the maximum
likelihood trajectories are stable.

E. Other inaccurate results

For systems that do contain finite-time coherent sets,
there are some points to bear in mind to increase the
accuracy of the reported clusters. If a finite-time co-
herent set is small relative to the domain size and few
clusters are sought, because Algorithms 1 and 2 favour
clusters containing approximately the same number of
trajectories, the clusters may be much larger than the
true coherent region. In such a situation, an inspection
of the likelihood functions may reveal the small coherent
regions as “high likelihood”. On the other hand, if there
are few, large coherent sets, but one chooses a large value
of K, then the coherent regions will likely be subdivided
into several clusters.

These effects can be studied by varying the number
of clusters K (which is cheap to experiment with). For
each K one can visually inspect the clustering confidence
according to uk,i and hi, as discussed in Section IVB. If
a regime of cluster stability can be found for a number
of consecutive K, this gives some confidence to the re-
sults. Finally, if sufficient data is available, the results
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can be checked against the classical finite-time coherent
set identification methods12,17,18.

V. NUMERICAL EXPERIMENTS

A. One-dimensional examples

We start with three one-dimensional maps on S1,
which we think of as the unit interval [0, 1] with the end-
points identified. Because we are on S1 and not [0, 1],
the distance computation and the center updating are
modified in the obvious way. The first example is given
by

S(x) =







3x (mod 1
3 ) + 1/3, x < 1

3 ,
3x− 1

3 (mod 1
3 ) + 2/3, 1

3 ≤ x < 2
3 ,

3x− 2
3 (mod 1

3 ), x ≥ 2
3 .

(15)

The map S cyclically permutes the three intervals [0, 13 ),

[ 13 ,
2
3 ) and [ 23 , 1) and mixes each interval internally. Thus

the graph of S features three equally sized blocks that
are cyclically permuted, see Figure 2.
To test Algorithm 1 we select 1000 random initial con-

ditions from [0, 1] and iterate them nine times by the
mapping S. We want to find clusters in 1000 data points
in R

10. We choose K = 3 and a very small fuzziness
parameter of m = 1.1. The membership functions of the
three clusters are shown in Figure 3 (a). As expected, the
three coherent sets obtained are comprised of the three
intervals; the evolution of these intervals is visualized in
Figure 4. The cluster centers are the centers of the inter-
vals and the uk,i describe a very sharp trajectory-cluster
membership. Increasing the fuzziness to m = 2 gives a
fuzzier result, but still has clear clusters; see Figure 3 (b).
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FIG. 3: Membership functions for the three clusters of
the one-dimensional map (15) plotted against the initial

conditions of the trajectories under consideration.
(a) m = 1.1, (b) m = 2.

If we reduce the number of desired clusters to K = 2
the algorithm will either merge the first two or the sec-
ond two clusters, depending on how the initial conditions
are distributed. Trying to approximate K = 4 coherent
sets, one of the three clusters is divided into two clusters.
Their centers are almost coinciding, an indication of false
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FIG. 4: Clustering of the 1d map (15): time evolution
of the three clusters, one of the cluster centers as

computed by Algorithm 1 in red.

positives, and the membership functions on this interval
are very much fluctuating, see Figure 5.
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FIG. 5: Seeking four clusters of trajectories from (15)
results in the partition of one of the clusters in two
clusters with centers almost coinciding and highly

fluctuating membership functions (m = 1.1).

The map S in (15) has perfectly coherent sets: there
is no transport between the three coherent sets. We now
briefly consider two further one-dimensional systems on
S1 to demonstrate the more common setting of leaking
coherent sets. The first system, which will be referred to
as (FLQ10), is a repeated cycle of three maps T1, T2, T3,
introduced in Ref. 13. It was shown in Ref. 13 that there
are two coherent sets of different sizes that are cyclically
permuted. Details of the model can be found in Ref. 13
(proof of Thm. 5.1 and Figure 1). Choosing again 1000
random initial conditions from [0, 1] and nine iterates of
the maps (three cycles of T3◦T2 ◦T1), we seek to find two
clusters in the ten-dimensional data. For this we choose
a fuzziness constant of m = 1.5. In Figure 6 we show
the two clusters in space-time, plotting only those points
with a membership value of at least 95% (according to
the uk,i) of belonging to one of the clusters. As expected,
the cluster centers approximately cycle with period 3.
We note that the two clusters at t = 0 (and thus at
t = 3, 6, 9) are consistent with the coherent sets obtained
in Ref. 13 (see in particular Figure 2 in Ref. 13, where the
supports of the positive/negative parts of the eigenvector
shown there are in good agreement with the two clusters
at t = 0).
A more general situation has been discussed in Ref. 14.
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FIG. 6: Clustering of 1000 trajectories of length 10 of
the system (FLQ10) in space-time (m = 1.5). Plotted
are only those points with uk,i > 0.95. The solid and
dashed lines indicate the centers of the two clusters as

computed by Algorithm 1.

Two coherent sets were extracted that move in an ape-
riodic manner; see Example 1 in Ref. 14 for more de-
tails of the underlying model, which we will refer to as
(FLS10) in the following. We can reproduce the coher-
ent behaviour of (FLS10) using the same setting as de-
scribed above. Figure 7 shows the two clusters in space-
time, again plotting only those points with a membership
value of at least 95% for one of the two clusters. The
results are consistent to those in Ref. 14 (see in particu-
lar Figure 8 in Ref. 14, where the supports of the posi-
tive/negative parts of the Oseledets functions shown for
iterates k = 0, . . . , 5 are in good agreement with the two
clusters at times t = 0, . . . , 5). The membership func-
tions of the two clusters (plotted for time t = 2) for the
choicem = 1.5 and m = 2 are shown in Figure 8 (one can
also compare the form of the black membership function
with the Oseledets function in Figure 8, Ref. 14 for k=2).
As anticipated, the clusters are not as clear-cut as in
Figure 3. Eventually all trajectories will spread out over
[0, 1], so that spherical compact structures as detected by
our approach cease to exist. We remark that in each of
the one-dimensional examples, the maps have a uniform
slope of 3, so that after the ninth iterate, nearby initial
points have been separated by a factor of 39 = 19683.

FIG. 7: Clustering of 1000 trajectories of the system
(FLS10) in extended space (m = 1.5). Plotted are only
those points with uk,i > 0.95. The solid and dashed
lines indicate the probabilistic centers of the two

clusters.
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FIG. 8: Membership functions for the two clusters of
the 1d map (FLS10) at time t = 2. (a) m = 1.5, (b)

m = 2.

B. Double gyre flow

We consider the time-dependent system of differential
equations36

ẋ = −πA sin(πf(x, t)) cos(πy) (16)

ẏ = πA cos(πf(x, t)) sin(πy)
df

dx
(x, t),

where f(x, t) = δ sin(ωt)x2 + (1− 2δ sin(ωt))x.
For detailed discussions of the system we refer to

Refs. 15, 17, and 36. As in Refs. 15 and 17 we fix param-
eter values A = 0.25, δ = 0.25 and ω = 2π and obtain
a 1-periodic flow. In order to be able to compare our
results with those in Ref. 17, where we have extracted
two optimally coherent sets via transfer operator-based
methods, we choose 215 initial points on a uniform grid
on the invariant set [0, 2] × [0, 1]. For each of these ini-
tial conditions we compute a trajectory on [0, τ ], where
τ = 1, 5, 10. We output the trajectory data in increments
of 0.1 time steps. Thus, for τ = 1 each trajectory is rep-
resented by a 22-dimensional vector (= (10+ 1)× 2), for
τ = 5 and τ = 10 the corresponding vectors have length
102 and 202, respectively.
We start by extracting two clusters from the short tra-

jectories (τ = 1). The upper panel of Figure 9 displays
the membership values u1,i (note that u2,i = 1 − u1,i)
with respect to the initial conditions in the two dimen-
sional phase space. To study the influence of the fuzzi-
ness exponents on the results we choose m = 1.5 (Figure
9(a)) and m = 2 (Figure 9(b)). Both plots give a clear
indication of the two coherent sets. To get a more de-
tailed picture about the certainty of cluster membership
we compute the entropy h from (14). The respective re-
sults are shown in the lower panel of Figure 9. For the
smaller fuzziness exponent m = 1.5 (Figure 9(c)) there
are large regions of high certainty to belong to one of the
two clusters, with some high uncertainty in the vicinity
of the stable manifold of the hyperbolic periodic orbit
on the x-axis. This uncertainty region increases signifi-
cantly, when m = 2 (Figure 9(d)) is used. Here only the
two regular regions (corresponding to invariant tori in
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the time-1 flow map) are highlighted as the most certain
regions.

(a) (b)

(c) (d)

FIG. 9: 2-clustering of 215 trajectories in the double
gyre flow (16) with flow time τ = 1 for m = 1.5 (left)
and m = 2 (right). (a),(b) membership values u1,i for
m = 1.5 and m = 2, respectively. (c),(d) corresponding

entropy plots using (14).

Note that a maximum likelihood hard partition into
two sets gives the same result for both m = 1.5 and
m = 2. The result is shown in Figure 11 (a), with parts
of the stable manifold of the hyperbolic periodic orbit on
the x-axis superimposed. This known dominant (infinite-
time) transport barrier determines a large part of the
boundary between the two extracted coherent sets. This
compares very well to the observations made in Ref. 17
(see e.g. Figure 9.3 therein).
We now consider longer trajectories with flow times

τ = 5 and τ = 10. The respective results for m = 2
are shown in Figure 10 (a) and (b). As expected from
what we have seen in Ref. 17 the clustering of the initial
conditions is again very much influenced by the stable
manifold, see also Figure 11 (b) and (c) for the respec-
tive maximum likelihood partitions into two sets. This
transport barrier also determines the regions of highest
membership uncertainties, which is clearly visible in Fig-
ure 10 (c) and (d). We note that these entropy plots
have striking similarity to the finite-time entropy fields
obtained directly from the transfer operator16.
A visualization of the clusters in space-time for flow

time τ = 5 is presented in Figure 1, where from 512
initial conditions we have plotted those trajectories for
which the membership values uk,i > 0.9 (m = 2).
So far we have used high-resolution and complete tra-

jectory data. We now test our approach in the situa-
tion where the available information is poor. We use
512 initial conditions on a regular grid on [0, 2] × [0, 1]
and compute trajectories for flow time τ = 5. We then
destroy about 80% of the trajectory information by ran-
domly setting the particle positions to NaN. This mimicks
the situation that trajectories may not exist for the whole
time span under consideration and additionally may have
gaps in observation. Algorithm 2 produces two clusters

(a) (b)

(c) (d)

FIG. 10: 2-clustering of 215 trajectories in the double
gyre flow (16) for m = 2 and flow times τ = 5 (left) and
τ = 10 (right). (a),(b) membership values u1,i for τ = 5
and τ = 10, respectively. (c),(d) corresponding entropy

plots using (14).

(a)

(b) (c)

FIG. 11: Extraction of two clusters from 215

trajectories (m = 2) for different flow times in (16)
based on maximum likelihood of the membership values
as in Figures 9 and 10. The dominant transport barrier
is superimposed and bounds the two sets increasingly
closely as τ increases, as demonstrated in Ref. 17. (a)

flow time τ = 1; (b) τ = 5; (c) τ = 10.

from this highly incomplete trajectory data, as shown in
Figure 12. Note that even with this severe data thinning,
Algorithm 2 still classifies the remaining data points to
the correct sides of the transport barriers.

Finally, we test what happens if we set K > 2. We
restrict again to flow time τ = 5 and 215 trajectories and
choose m = 2. If K = 3 then compared to K = 2 ei-
ther the left or right cluster is subdivided as seen in the
membership values in Figure 13 (a-c). The shapes of the
resulting clusters in Figure 13 (a,b) do not have any simi-
larity with known coherent structures for this system, but
apparently the respective trajectory bundles stay coher-
ent in our sense - with the cluster centers well separated.
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(a) (b)

FIG. 12: 2-clustering of double gyre flow (16) with 80%
of the trajectory data missing, based on 29 trajectories
with flow time τ = 5 (m = 2). (a) clusters at initial

time, (b) clusters at final time. Corresponding
transport barriers are superimposed.

However, Figure 13 (c) reveals that the left cluster, which
is also present in the 2-clustering considered in Figure 10,
is characterized by much higher membership function val-
ues compared to the other two clusters. We note that for
K = 4 we get a similar picture with the former two clus-
ters both divided into two parts, and for K = 5 one of
the former two clusters is divided into two and the other
into three parts.

(a) (b)

(c)

FIG. 13: 3-clustering of 215 trajectories in the double
gyre flow for flow time τ = 5 and m = 2. (a-c)
membership functions for the three clusters.

C. Transitory double gyre flow

We consider the transitory dynamical system27

ẋ = −
∂

∂y
Ψ, ẏ =

∂

∂x
Ψ (17)

with stream function

Ψ(x, y, t) = (1− s(t))ΨP + s(t)ΨF

ΨP (x, y) = sin(2πx) sin(πy)

ΨF (x, y) = sin(πx) sin(2πy)

and transition function

s(t) =







0, t < 0,
t2(3− 2t), 0 ≤ t ≤ 1,

1, t > 1.

The nonautonomous dynamics, which rotates a double
gyre pattern counter-clockwise by 90 degrees, is restricted
to the time-interval [0, 1]. In Ref. 17 we have analysed
this system using the transfer operator based coherent
set framework. The unit square [0, 1]2 is invariant under
the flow and we choose 214 initial conditions on a regular
grid. We consider the flow on the transition interval [0, 1]
and output the trajectory data in increments of 0.1 time
steps. So T = 10 and thus we represent every trajectory
as a 22-dimensional vector.
Algorithm 1 with K = 2 and m = 1.5 returns uk,i that

take high values on the coherent sets observed in Ref. 17,
as shown in Figure 14.

(a) (b)

FIG. 14: 2-clustering of 214 trajectories in the transitory
double gyre flow (17) for the time interval [0, 1]. (a),(b)

membership values uk,i, k = 1, 2 for m = 1.5.

A visualization of the two clusters in space-time is pre-
sented in Figure 15, where from 1024 initial conditions
we have plotted those trajectories for which uk,i > 0.95
(m = 1.5) together with the probabilistic cluster centers.
We study the influence of using information along a

trajectory instead of only considering the initial and final
points of a trajectory as many other identification algo-
rithms do (i.e. taking 11 vs 2 time instances on [0, 1]).
The results of clustering 214 trajectories based only on
the initial and end points of the trajectories are shown
in Figure 16. The clusters are less smooth; an intuitive
explanation for this is that Algorithm 1 only uses point
information, as opposed to probability flow information
as in Refs. 12, 17, and 18. Algorithm 1 needs to compen-
sate for this by augmenting the point information with
additional points over time.

D. Drifter data

We demonstrate the efficacy of our approach
on real-world data, namely drifter data from
the Global Ocean Drifter Program available at
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FIG. 15: Space-time plot of the two clusters obtained
from 210 trajectories in the transitory double gyre flow.
Only trajectories with uk,i > 0.95 are shown, where
m = 1.5. The solid curves indicate the position of the

probabilistic cluster centers.

(a) (b)

FIG. 16: Membership functions for the 2-clustering of
transitory double gyre flow – using only initial and end

points of the trajectories (m = 1.5).

AOML/NOAA Drifter Data Assembly Center
(http://www.aoml.noaa.gov/envids/gld/). The
entire dataset spans the years 1979–2014, with drifter
positions given every six hours. The area of observation
is the global ocean (latitude [90,−78] and longitude
[−180, 180]). We focus on the years 2005–2009 and
restrict to those drifters that have a minimum lifetime
of one year within this five-year time span. We output
the position of these 2267 trajectories (in longitude,
latitude coordinates) every month, i.e. the length of our
trajectories is 60 months.

We note that a typical drifter does not operate over the
whole five years; that is, many terminate prior to Decem-
ber 2009 and many begin later than January 2005. There
are also gaps in observations when there is a failure in
recording the drifter location, so the data is highly incom-
plete. Figure 17 summarises two statistics: the distribu-
tion of drifter lifetimes and the number of drifters actively
recording each month. The average lifetime of a drifter
in this data set is about 23 months, with many drifters
operating only for a year and only very few drifters for
4–5 years, see Figure 17 (a). On average, 869 trajecto-
ries (or 38% of all drifters in the period 2005–2009) are
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FIG. 17: Drifter statistics. (a) histogram of the drifter
lifetimes, (b) number of drifters available at a certain

time instance.

available at a given time instant, with less data at the
beginning and the end of the considered five year time
span; see Figure 17 (b).

As we consider the global ocean we have to respect dis-
tances on a sphere (we assume the surface of the ocean
to be approximately spherical). We also have to en-
sure that we restrict cluster centers to the surface of this
sphere. To achieve both of these requirements we use
a cosine distance function, and update centers only on
the sphere7. Every drifter trajectory is represented as a
vector in 3× 60 = 180-dimensional space. In contrast to
our calculations in Algorithm 2, we simply display our
results in cartesian longitude-latitude coordinates.

We first look for two clusters; Figure 18 shows results of
the clustering algorithm for K = 2. Figure 18 (a) shows
all drifter positions available on January 2005, coloured
according to their maximum likelihood membership in
one of the two clusters. Figure 18 (b) shows all drifter
positions available on December 2009, again coloured ac-
cording to their most likely cluster membership. Thus,
we expect the red (resp. green) cluster in Figure 18 (a)
to evolve coherently to the red cluster in Figure 18 (b).
Of course, many of the drifters in Figure 18 (a) do not
correspond to the same physical drifter in Figure 18 (b)
because the lifetimes of many drifters are shorter than
five years. Nevertheless, as physical drifters enter and
leave the dataset over the five-year duration, the drifters
tagged red (resp. green) move as a coherent cloud. This
is illustrated in a video attached to our electronic sub-
mission, see Figure 18 (Multimedia view).

In Figure 18, one sees a separation of the Pacific Ocean
(red) from the Atlantic and Indian Oceans (green), which
are grouped together. Here, continental obstructions
play an obvious role in the dynamical separation of the
ocean surface flow. Figure 18 (a) ascribes the southern
part of the Indian Ocean to the Pacific Ocean. This is
in line with recent research19 (see Figure 6 in Ref. 19)
based on transfer operator analysis of the Ocean Gen-
eral Circulation Model for the Earth Simulator (OFES
model)26,35, and consistent with a general eastward flow
of water in high southern latitudes. One observes that
the red drifters in Figure 18 (a) have flowed eastwards to
rejoin the Pacific in Figure 18 (b).

http://www.aoml.noaa.gov/envids/gld/
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FIG. 18: 2-clustering of drifter data (m = 1.5).
(a) drifter positions January 2005, (b) drifter positions

December 2009. Animation of the cluster motion
2005–2009 in online version (Multimedia view).

Figure 19 shows the results of Algorithm 2 with K = 5
at January 2005 (a), July 2007 (b), and December 2009
(c). An animation is available online (Figure 19 (Mul-
timedia view)). We choose K = 5 in order to attempt
to delineate the five major oceans: the North and South
Atlantic Oceans, the North and South Pacific Oceans,
and the Indian Ocean. Broadly, we see that the cluster-
ing does find the appropriate equatorial separations of
the Atlantic and Pacific Oceans, and also separates the
Indian Ocean.

Some of these separations are highlighted by inves-
tigating the certainty of membership of the individual
drifters based on an entropy calculation (14). In Figure
20 those drifters (positions as of July 2007) are marked
black when their relative entropy is > 0.1, corresponding
to a maximum membership value of less than ≈ 0.96.
Figure 20 and in particular the time evolution of the
drifters (Figure 20 (Multimedia view)) shows that the
uncertain regions correspond to the major ocean barriers
in the Atlantic and Pacific, and the Southern Ocean.

Our results in Figure 19 are strikingly similar to those
shown in Figure 6 in Ref. 19, which have been derived
using transfer operator methods and the (wind-forced)
OFES model. For example in Figure 19 (a), when com-
paring with Figure 6 in Ref. 19 we see: the separation
of the Pacific Ocean becoming more southerly as one

(a)

(b)

(c)

FIG. 19: 5-clustering of drifter data (m = 1.5).
(a) drifter positions January 2005, (b) drifter positions

July 2007, (c) drifter positions December 2009.
Animation of the cluster motion 2005–2009 in online

version (Multimedia view).

proceeds westwards toward Australia; the Indian Ocean
spilling westwards at its southerly boundary; and the
South Atlantic forcing its way around the east coast of
southern Africa. As described in Ref. 19, the Ekman dy-
namics of the ocean surface circulation guarantees that
each of the five major oceans contains an attracting re-
gion associated to the great oceanic gyres and their corre-
sponding garbage patches. The separations seen in Fig-
ure 19 (a) and Figure 6 in Ref. 19 and the features de-
scribed above are associated with the basins of attraction
of these five attracting regions.

We remark that while the results in Ref. 19 are of a
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FIG. 20: Difficult to classify drifters (positions as of
July 2007) are marked black when their relative entropy
is h > 0.1. Animation of the cluster motion 2005–2009

in online version (Multimedia view).

higher spatial resolution than those obtained here, the
experiments in Ref. 19 used just over 106 trajectories,
recorded every eight weeks for a period of 48 weeks (a
total of 6.14 × 106 data points), while here we have
869 × 60 = 5.2 × 104 data points, comprised of 2267
incomplete trajectories. We also remark that while we
have drawn comparisons between Ref. 19 and the present
study, the former computed ocean boundaries as basins
of attraction based on a repeating 48-week ocean circula-
tion, while our present study seeks to compute estimates
of coherent sets based on five years of non-repeating
drifter data.

VI. DISCUSSION

We have introduced a “rough-and-ready” general
cluster-based approach for analysing coherent structures
in time-dependent dynamical systems. Our method as-
signs individual trajectories membership in regions that
retain a compact extent over a specified finite time du-
ration. Our approach has several advantages.
First, the ability to work directly with a small number

of trajectories, including the situations where the trajec-
tories do not span the entire time duration of interest
and where observations may be missing from within tra-
jectories. Second, initial implementation is rapid (using
e.g. the built-in MATLAB function fcm to perform the
fuzzy clustering for the case of complete data), and the
runtimes are fast (on the order of fractions of seconds for
the one-dimensional maps in Section VA to less than 10
seconds to cluster a dataset of 32768 trajectories in 202
dimensions, as in the case of the double gyre flow with
flow duration τ = 10 in Section VB). Third, our method
considers entire trajectories (not just the endpoints) and
automatically outputs clusters at every time instant in
the trajectory data; thus a frame-by-frame description of
the temporal evolution of the clusters is immediately ob-
tained. Fourth, the use of fuzzy clustering provides feed-
back in the form of membership likelihoods and entropy,

which provide the user with an estimate of confidence
with which a trajectory has been assigned to a particular
compact region. Finally, the soft clustering approach is
relatively insensitive to noise in the data. We note that
the same methodology can be used to estimate coherent
regions for SDEs, by simply generating stochastic trajec-
tories and applying Algorithm 1.
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