
-bolltem@clarkson.edu,
-http://www.clarkson.edu/~bolltem

Erik Bollt

http://www.clarkson.edu/~bolltem

-bolltem@clarkson.edu,
-http://www.clarkson.edu/~bolltem

https://arxiv.org/pdf/2008.06530.pdf

How Neural Networks Work:
Unraveling the Mystery of
Random Projection Networks
For Functions and Chaotic Dynamical Systems

http://www.clarkson.edu/~bolltem

So much great work about how well ANN works - WOW they sure do “work” we can all agree.

When I first saw “multi-layer perceptrons” over 25 years ago - as a student –
I thought - wow that’s dumb. So much over fitting. So much computation – surely there is a
better way.

Somehow along the way it emerged as a leader

Great Salesmanship
– machine learning, neural nets, deep learning, AI, so many variants…

OK OK – let me in – I want to understand why it works

Random ANN variants, RC, and here ELM.

All the great things you can do with RC, ELM, Feedforward DNN, etc.

Here focused on how/why does it work – with random parameters - it still works?!!

ELM – Guang-Bin Huang, 2005 – main champion introduction

Extreme Learning Machines – ELM
ELM-1

For supervised learning tasks like –
-classification
-regression
-incl forecasting

Here’s the crazy part – all but output layer has random parameters

I want to explain why it works anyway.

Deep Learning

How to train? Lots of parameters, massive nonlinear optimization problem? Massively
parallel computers. Stochastic gradient descent, etc – not what we are studying here.

What’s old is new again

Main idea:
You can make bump functions and with bump functions

you can make general functions including a flow.

Thanks Constantinos

A Reservoir Computer, RC

Is a kind of neural network - for forecasting dynamical systems
but most of the (millions of) parameters are chosen randomly.

Clearly its cheap
Surprisingly - it actually works!
And surprisingly, it works really well.

(This talk is not about neat things you can do with RC)
(This talk is about how/why/bridge-equivalent to something else)

ESN-Jaeger 2001, Jaeger-Haas, 2004.

Last year’s talk….

Reservoir computing – a special case of RNN
spec case ANN, Jaeger-Hass 2004, ESN-Jaeger 2001.

à

-4 -2 2 4

-1.5

-1.0

-0.5

0.5

1.0

1.5

Surprise – A and are random but it still works!

Notable Litt: Gonon - Ortega 19’, 20’ – RC enjoys a universal approximation theorem.
Even if linear with nonlinear readout.

Forecasting a dynamical system using the NG-RC.
Lorenz63 strange attractors.

Forecasting the double-scroll system using the NG-RC

NG-RC works very well, with very few points, almost no tunable parameters

A traditional RC
is implicit
in an NG-RC

The ”usual” FFNN (Feedforward Neural Network)– DNN (Deep Neural Network)
Full training vs ELM

vs

ELM-1 it’s a random SLFN

– random parameters except output layer.
- Nonlinear threshold function to hidden layers
- Identify function threshold function output

TRAIN only output layer,
Done by simple (linear – OLS regression/regularized)

regression of a

Based on observed data

Counting Parameters- Full Training. Vs SLFN

With ReLu Activation Something Simple Happens –-configuration of fallen lines

Composition

SLFN vs ELM-1

And for DFN vs ELM-q, q>1

Less parameters to train - training easy - OLS - or - Ridge-T

The Joys of not training

It’s Cheap! - But does it work?!!!

Story of configurations of randomly fallen lines in plane
And randomly fallen hyperplanes in space.

Untrained - Random Parameters.

ELM-1 - single layer FNN – SLFN
- here simplified to a really small, one input dimension, one output dimension

x-intercept

Quotient distribution

Untrained - Random Parameters.

ELM-1 - single layer FNN – SLFN
- here simplified to a really small, one input dimension, one output dimension

x-intercept

x-intercept

Produce piece-wise linear spline spline in 3 knots – more with larger d_1

ELM-1 - single layer FNN – SLFN
- here simplified to a really small, one input dimension, one output dimension

Universal Approximation Theorem ELM as a picture

Given lots of data,

With a large hidden layer of the SLFN

My take:
-random hidden layer
(the c_i are placed randomly)

between data points x_i there are c_i
-a linear spline can run through data.

General piecewise linear splines are
Dense in C^0.

Vs Stone-Weierstrass

Cite Huang, ELM as universal approximation theorem.

A One-D ELM-1 experiment – with noise – and increasing data set size

Some of the phi_i(x)

A One-D ELM-1 experiment – with noise – and increasing data set size

half plane ReLu does nothing, and for other half plane, you get zero.

!!equation of a line in 2-d! Or a plane in 3-d, or a hyperplane in n-d.

Still ReLu activation function:

ELM-1 - single layer FNN – SLFN
- here simplified to a really small, TWO input dimension, one output dimension

For half plane ReLu, you get zero.

Notice Symbology

Still end up with
Linear combinations of phi_i(x)

ELM-1 - single layer FNN – SLFN
- here simplified to a really small, one input dimension, one output dimension

ELM-1 in
2-input dimensions
Lots of hidden layer nodes

Church Windows!

Neural Nets in
The Middle Ages!

Fitting a function with an ELM-1 and increasing hidden layer size

Larger d_1 means more randomly placed lines, - finer random partition =>
more precision of piecewise linear cts fn.

Story summary –
ELM-1 – bigger hidden layer,

-more random lines
-finer fitting of piecewise linear fn
-piecewise linear dense in C^0

ELM-q – q>1
-even though for fully trained – deep

Is good. More expressive

-for ELM not any better

Thank you!

Theory of Random Configurations of Lines in the Plane

Of (hyper)Planes in Space.

Notice:

Fewer than you might guess – due to occlusion

011 is missing.

Theory of Random Configurations of Lines in the Plane Of (hyper)Planes in Space.

ELM for Forecasting Chaos Lorenz

Differential Equation

Flow – FUNCTION Orbit DATA

