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So much great work about how well ANN works - WOW they sure do “work™ we can all agree.
When I first saw “multi-layer perceptrons’ over 25 years ago - as a student —

I thought - wow that’s dumb. So much over fitting. So much computation — surely there 1s a
better way.

Somehow along the way it emerged as a leader

Great Salesmanship
— machine learning, neural nets, deep learning, Al, so many variants...

OK OK - let me in — I want to understand why it works
Random ANN variants, RC, and here ELM.
All the great things you can do with RC, ELM, Feedforward DNN, etc.

Here focused on how/why does it work — with random parameters - it still works?!!



Extreme Learning Machines — ELM
ELM-1

hidden layers

For supervised learning tasks like —
-classification
-regression
-incl forecasting

Here’s the crazy part — all but output layer has random parameters

D={(XY))}iis CRY xR = D.
f:R% > R®
XM = [:r(ll);:z:gn; ...;1:((,11)] e R,

x@ — [:r(lz);:r(22}; ...;J:‘(i)] c R%2,

I want to explain why it works anyway.



hidden layers

Deep Learning
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How to train? Lots of parameters, massive nonlinear optimization problem? Massively
parallel computers. Stochastic gradient descent, etc — not what we are studying here.



What’s old is new again



- bz(t) Glass-Mackey

az(t —7)
1+ z10(t —1)

2=

Alan Lapedes

Robert Farber
Theoretical Division
Los Alamos National Laboratory

How Neural Nets Work

|

Los Alamos, NM 87545

American Institute of Physics 1988

©

Figure 6. A pseudo-bump.

Figure 5. A ridge.

Main idea

You can make bump functions and with bump functions

you can make general functions including a flow.

Figure 4. A sigmoidal surface.

Figure 7. A bump.




Thanks Constantinos

Random Projection Neural Networks

e Schmidt et al. (1992): fixing the weights between the input and
the hidden layer at random values, and by solving a linear
problem for the output weights the approximation accuracy is
equivalent to that obtained with back-propagation.

e Random Vector Functional-Link Networks (RVFLNs) were
addressed in Pao et al. (1992) in which the input layer is directly
connected also to the output layer, the internal weights are
chosen randomly in [—1, 1]: the output weights are estimated in
one step by solving a system of linear equations.

e Igelnik et al. (1995) proved that RVFLNs are universal
approximators for continuous functions on bounded
finite-dimensional sets.



A Reservoir Computer, RC

Is a kind of neural network - for forecasting dynamical systems
but most of the (millions of) parameters are chosen randomly.

Clearly its cheap
Surprisingly - it actually works!
And surprisingly, it works really well.

(This talk is not about neat things you can do with RC)
(This talk is about how/why/bridge-equivalent to something else)

Last years lall. ...

ESN-Jaeger 2001, Jaeger-Haas, 2004.



Reservoir computing — a special case of RNN Input Layer _
“i2 [l /)

{x;}V, CR% dr > dy
u, = Wx,, r; € R
riy1 = (1—o)r;+oag(Ar;+u; +b),
Yitr = W,

W:» ~U(0,7) d,xd, read in matrix

>q(s)=s v
A;; ~U(—pB,pB), with B to scale the spectral radius o3t

. 2 — . Yis1,1

d, %X d, trained read-out matriz matrix W4 /5
Surprise — A and W™ are random but it still works!

Notable Litt: Gonon - Ortega 19’, 20’ — RC enjoys a universal approximation theorem.

Even if linear with nonlinear readout.



NG-RC works very well, with very few points,

ground truth

NG-RC prediction
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Forecasting a dynamical system using the NG-RC.
Lorenz63 strange attractors.

almost no tunable parameters
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Forecasting the double-scroll system using the NG-RC



forecasted dynamics

ground truth dynamics Traditional Reservoir Computer
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is implicit

Next Generation Reservoir Computer
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The “usual” FFNN (Feedforward Neural Network)— DNN (Deep Neural Network)
Full training vs ELM

hidden layers
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ELM-1 it’s a random SLFN hidden layers

—random parameters except output layer.
- Nonlinear threshold function to hidden layers
- ldentify function threshold function output

TRAIN only output layer,
Done by simple (linear — OLS regression/regularized)

f:R% - R®
regression of a

D ={(X;,V;))}V, c R% x R® = D

Based on observed data




Counting Parameters- Full Training. Vs SLFN
q hldden layers, |9| — dDdl = dldg + dl + dg,

=L O
|6| = dody + dyd> + d;

e'" o {{w;'.,k };l;;j,kozll ’ {b;c+ : }zr:.l‘ . hidden layers

(o) ——=)
AN
Dve

q9
|| = dody + dydz + dads + ... + dydg 1 +dy = dy + | | didi
=0

output
layer
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[W)sie = wiy, and, [B+']y = bj,j =1, .., dp k= 1, .., drsa,

Fro.(X") = o, (W'X" + B™+!)
Composition
F(X1 e) = Fq,e., o Fq_lveq—l ©...0 FO_.GO(X)

With ReLu Activation Something Simple Happens —configuration of fallen lines

or(8) = ReLu(s) = maxz(s,0),r < q,04(s) = s



The Joys of not training
SLFN vs ELM-1

hidden layers

Ooutl = 01| = dyds, output

|Oout| = dida << |O| = dody + dyd2 + dy + da,
And for DFN vs ELM-q, g>1

q
Oout| = dgdgs1 << |8] = dg41 + | [ didis1-

1=(0

Less parameters to train - training easy - OLS - or - Ridge-T

X = [X{|1X5]...| X%], Y = [1|Ya]... Y =8X
W9 := argmin|Y — 8X||r + A||8]|F, [t's Cheap!-Butdoes it work?!!!
;3

Story of configurations of randomly fallen lines in plane
8* = YxT(xxT n ,\I)—l i YXL. And randomly fallen hyperplanes in space.



ELM-1 - single layer FNN — SLFN
- here simplified to a really small, one input dimension, one output dimension
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ELM-1 - single layer FNN — SLFN
- here simplified to a really small, one input dimension, one output dimension
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ELM-1 - single layer FNN — SLFN
- here simplified to a really small, one input dimension, one output dimension

@ (y
@ \ @ o \ @ b‘l’l reiw“‘ .L'l )
y & wy Ls‘o.
b & g )
x-intercept

1

_bg )
C; = (0) 3

Wy ;

Produce piece-wise linear spline spline in 3 knots — more with larger d_1

L Y
o St (@) = (@) + wia(o) + s (o).

C Fe Ay = span({d), d2(a), d5(@)))



Universal Approximation Theorem ELM as a picture
(_65',9(((’31)\

Given lots of data,

D ={(X;,Y)}iL; CR® xR% =D (3,560

My take:

-random hidden layer _

(the c_i are placed randomly) ’ N L5,9s)
between data points x_i there are c_i

-a linear spline can run through data.

|
General piecewise linear splines are ” 1
Dense in CAO.
d

Vs Stone-Weierstrass ALf\,0)

Cite Huang, ELM as universal approximation theorem.



A One-D ELM-1 experiment — with noise — and increasing data set size

Black Noiseleas Reference Fusction. Blue Data Pointa. N~100

unmmmrmqm. Blue Data Poimts. N-500
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A One-D ELM-1 experiment — with noise — and increasing data set size
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ELM-1 - single layer FNN — SLFN
- here simplified to a really small, TWO input dimension, one output dimension

hidden layers

Consider the i*P neuron in the hidden layer, but before the threshold is applied,

zm WP -XO 48V i=1,2,..,d.

llequation of a line in 2-d! Or a plane in 3-d, or a hyperplane in n-d.

Still ReLu activation function:
o.(8) = ReLu(s) = maz(s,0),r < q,04(s) = s

half plane ReLu does nothing, and for other half plane, you get zero.

22> WP, - X© 4V,




ELM-1 - single layer FNN — SLFN

- here simplified to a really small, one input dimension, one output dimension

Consider the i*h neuron in the hidden layer, but before the threshold is applied,

z=W0,-XO 4+ b{",i=1,2,..,d,.

For half plane Relu, you get zero.

22 WP, - XO 450, .
A
1]
1]
[

L L1
100

a) Notice Symbology

Still end up with
Linear combinations of phi_i(x)

¢1(x)







Neural Nets in
The Middle Ages!



Larger d_1 means more randomly placed lines, - finer random partition =>
more precision of piecewise linear cts fn.
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Story summary —

ELM-1 — bigger hidden layer,
-more random lines
-finer fitting of piecewise linear fn
-piecewise linear dense in C*0

ELM-q — g>1
-even though for fully trained — deep

Is good. More expressive

-for ELM not any better
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Theory of Random Configurations of Lines in the Plane

Of (hyper)Planes in Space.

M. < n(n +1)

Notice:
M; =2,Ms =4, but M3 =17 w ~0,0,1 .
Aﬁ L»30.0,0 V‘

L2

+ 1 = # of cells in an arrangement of n-lines in 2-dimensional space.

N

4

Fewer than you might guess — due to occlusion

n(n2+1) +1 << 2™, 1.o.'6/

L1

011 is missing.

Mm+1 S Mm -1 (m+ 1),M1 = 2



Theory of Random Configurations of Lines in the Plane Of (hyper)Planes in Space.

recursion relationship. This time,

M(do,n) S M(do,’n— 1) +M(d0,n— 1)

B(dp,n) < ( nd— . ) = # of bounded cells in an arrangement of n-hyperplanes in dy-dimensional space,
0

e As the size of the hidden laver increases, di 1. then the number of linear domains increases.

e As d; 1, the size of these domains decreases. This is a random refinement.

e As d; T, the number of basis elements in A,, increases, and the fit accuracy improves.



ELM for Forecasting Chaos | 15 “!” \|| ”
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t

% = f(z), for a given initial condition in its phase space z(ty) = zyp € M C R%,

Flow—FUNCTION ¢o: M xR — M Orbit DATA
(t,20) +—  2(t) = p(t; 20). D = {(2k, zZk41}0; .



