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Data as an array
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Bunny Compression

Covariance – notice the demean step























On PCA Principal Component Analysis, Eigenface

-On Raleigh Ritz Quotient

-On Spectral Decomposition Theorem

-On Data Clouds















The Eigs of C=B’B give optimal projection – thus PCA and…. KL















Which functions are most efficient?













Eigenface 08/31/20













On basis, functions, and Hilbert space.
Fourier, Taylor, Wavelet, POD-KL







On basis, 
functions, 
and Hilbert 
space.
Fourier, 
Taylor, 
Wavelet, 
POD-KL





On Compressed Sensing and on to Sparsity





On Moore Penrose Pseudo Inverse, Matrix Least Squares, Geometric Least Squares.



















Least Squares
Definition and Derivations

We have already spent much time finding solutions to 

        Ax  =  b 

If there isn't a solution, we attempt to seek the x that gets closest to being a solution. 
The closest such vector will be the x such that

        Ax  =  projWb 

where W is the column space of A.  

        

Notice that b - projWb is in the orthogonal complement of W hence in the null space of
AT.  Hence if x is a this closest vector, then

        AT(b - Ax)  =  0        ATAx  =  ATb 

Now we need to show that ATA nonsingular so that we can solve for x.  

Lemma

If A is an m x n matrix of rank n, then ATA is nonsingular.  

 

















Tikhonov Regularization for inverse problems and preventing over fitting

-Ridge regression

-Lasso regression



K-fold leave 1 out cross validation – A version cross validation

Then average scores of testing out of training sample



K-fold leave l out cross validation



Compressed sensing and L1 regularization – Sparse Signal Recovery













































Convex function

Convex Domain

Convex Optimization – optimize a convex objective function 
over a convex domain



















Another view on where all the random goes …geometry of data in high dimensions
highly important topic in Machine Learning, Data Science, and ROM

-story one – random gets soaked up by time.
-story two – its about random projection (Johnson-Lindenstrass) which is an application of concentration of measure

a strip of width h (width of the) strip around the equator that contains 90% of the area 

Matousˇek’s book [Mat02] 

Several different important concepts follow from this simple idea
-Markov inequalities, Chernoff inequality

-for us – in high dimensions, samples of data ”look” almost like they live in a “flatter” space – Johnson-Lindenstrass theorem

See Ortega for CoM/JL random projection interpretation of RC



Random Projection 

Source: https://perso.uclouvain.be/laurent.jacques/uploads/Main/buffon-present-120314-MLG.pdf



Random Projection – on projection and approximate isometry

110

● The random projection method is based on the Johnson-Lindenstrauss lemma.

[Johnson et. al, 1984]

[Papadimitriou et. al., 1998]





CS and linprog


