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One-Dimensional Continuous-Time Quantum Walks
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We survey the equations of continuous-time quantum walks on simple
one-dimensional lattices, which include the finite and infinite lines and the finite
cycle, and compare them with the classical continuous-time Markov chains. The
focus of our expository article is on analyzing these processes using the Laplace
transform on the stochastic recurrences. The resulting time evolution equations,
classical vs. quantum, are strikingly similar in form, although dissimilar in behav-
ior. We also provide comparisons with analyses performed using spectral methods.
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1. INTRODUCTION

The theory of Markov chains on countable structures is an important area
in Mathematics and Physics. A quantum analog of continuous-time Mar-
kov chains on the infinite line is well studied in Physics (for example,
it can be found in Ref 12, Chapters 13 and 16). More recently, it was
studied by Aharonov et al® and by Farhi and Gutmann.(') The latter
work placed the problem in the context of quantum algorithms for search
problems on graphs. Here, the symmetric stochastic matrix of the graph
is viewed as a Hamiltonian of the quantum process. Using Schrodinger’s
equation with this Hamiltonian, we obtain a quantum walk on the under-
lying graph, instead of a classical random walk.
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Recent works on continuous-time quantum walks on finite graphs
include the analyses of mixing and hitting times on the n-cube, (1619 of
mixing times on circulant graphs and Cayley graphs of the symmetric
group,(6’13) and of hitting times on path-like graphs.(8’9) Most of these
are structural results based on spectral analysis of the underlying graphs,
such as the n-cube, circulant and Cayley graphs, and (weighted) paths. For
example, Moore and Russell(!®) proved that the mixing time of a quan-
tum walk on the n-cube is asymptotically faster than a classical random
walk; Kempe(!¥) proved that the hitting time for vertices on opposite ends
of the n-cube is exponentially faster than in a classical random walk. Ah-
madi et al©® and Gerhardt and Watrous('? proved that circulants and the
Cayley graph of the symmetric group lack the uniform mixing property
found in classical random walks.

A recent work of Childs et al.® gave intriguing evidence that contin-
uous-time quantum walk is a powerful method for designing new quantum
algorithms. They analyzed diffusion processes on one-dimensional struc-
tures (finite path and infinite line) using spectral methods. Another work
by Childs and Goldstone(!? explored the application of continuous-time
quantum walks to perform Grover search on spatial lattices.

There is an alternate theory of discrete quantum walks on graphs,
which we will not discuss here. This alternate model was studied in
Aharonov ef al® and Ambainis et al,) but had appeared earlier in
work by Meyer.(!> The work by Ambainis et al® had also focused on
one-dimensional lattices. Recently, Ambainis(") developed an optimal (dis-
crete) quantum walk algorithm for the fundamental problem of Element
Distinctness. This offers another idea for developing quantum algorithms.

We survey and (re)derive equations for the continuous-time classical
and quantum walks on one-dimensional lattices using the Laplace trans-
form that works directly with the recurrences. The Laplace transform is a
well-known tool in stochastic processes (see Ref. 7) and it might offer a
useful alternative to the Fourier transform in certain settings.

1.1. Stochastic Walks on Graphs

Let G = (V,E) be a simple (no self-loops), countable, undirected
graph with adjacency matrix A. Let D be a diagonal matrix whose jth
entry is the degree of the jth vertex of G. The Laplacian of G is defined
as H=A—D. Suppose that P(¢) is a time-dependent probability distribu-
tion of a stochastic (particle) process on G. The classical evolution of the
continuous-time walk is given by the Kolmogorov equation

P (t)=HP(). )
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Fig. 1. Examples of some one-dimensional lattices. From left to right: Z, Pyg, Zs.

Graph Classical walk Quantum walk
P;(t) = probability on vertex j at time ¢ 3;(t) = amplitude on vertex j at time ¢
Z 8_21|j|(t) (—Z)IJ|J|]|(t)
Zn et (t) (=1)%Ja(t)
a=+j(modN) a=+j(modN)
Py e 1a(t) (=1)*Ja(?)
a=+j(mod 2N) a=:=+j{(mod 2N}

Fig. 2. The equations of the continuous-time classical vs. quantum walks on the infinite
line, finite cycle, and the finite line, assuming the particle starts at position 0.

The solution of this equation, modulo some conditions, is P(r)=¢"1P(0),
which can be solved by diagonalizing the symmetric matrix H. This spec-
tral approach requires full knowledge of the spectrum of H.

A quantum analog of this classical walk uses the Schrodinger
equation in place of the Kolmogorov equation. Let ¢ : V(G)— C be the
time-independent amplitude of the quantum process on G. Then, the wave
evolution is

. d _
zﬁa;t/f(t)—Hw(t). ¥)

Assuming % =1 for simplicity, the solution of this equation is ()=
e~itH 4 (0), which, again, is solvable via spectral techniques. The classical
behavior of this quantum process is given by the probability distribution
P(r) whose j th entry is Pj(t)=|1[/j(t)|2, where 1//j(t)=(j|1//(t)). The aver-
age probability of vertex j is defined as P(j)=limr_c —}- fOT Pj(t)dt (see
Ref. 4) (Fig. 1).

The table in Fig. 2 shows the known equations for continuous-time
stochastic walks on the infinite (integer) line Z=1{..., -2, -1, 0,1,2,...1,
the finite cycle Zy ={0,... ,N —1} on N vertices, and the finite path
Py ={0,...,N} on N +1 vertices, in terms of the two kinds of Bessel
functions I(-) and J(-). We assume here that the particle is initially at O.
The plots in Figs. 3 and 4 show the dissimilar behavior of the classical ver-
sus quantum walks.
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Fig. 3. Stochastic walks on the infinite line Z: (a) plot of Py(¢) in the continuous-time ran-
dom walks for ¢ € [0, 50]. (b) plot of [%o(r)1? in a continuous-time quantum walk for ¢ €
[0, 50). Both processes exhibit exponential decay, but with the quantum walk showing an

oscillatory behavior.
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Fig. 4. Stochastic walks on the finite cycle Zs, each approximated using 21 terms: (a) plot
of Py(r) in the continuous-time random walks for ¢ € [0, 50]. (b) plot of lx//o(t)|2 in the con-
tinuous-time quantum walk for ¢ € [0, 500]. The classical walk settles quickly to 1/5, while
the quantum walk exhibit a short-term chaotic behavior and a long-term oscillatory behav-

ior below 0.1.
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1.2. Laplace Transform
_ The Laplace transform of a time-dependent function P(t), denoted
P(s)=L{P(t)}, is defined as
o0
[:{P(r)}:/ e P() dr. (3)
0

The only basic properties of the Laplace transform which we will need are
(see Ref. 3):

e Linearity: L{aP(t)+b Qgt)} = aﬁ(s) + bQ(s)
e Derivative: L{P'(2)}=sP(s)— P(0)
o Shifting: L{e* P(¢)}=P(s —a)

The relevant inverse Laplace transform involving the Bessel functions are
(for v>—1):

(s —Vs2—a?y
/2 _ a2

P(s)= — P@)=a"I,(at), (Eq. (29.3.59) in Ref. 3)

4)

(Vs2+a?—s)¥
/52 +(12

P(s)= — P(t)=a"Jy(at). (Eq. (29.3.56) in Ref. 3)

&)

2. THE INFINITE LINE

2.1. Classical Process
The Kolmogorov equation for the infinite line is
P}(f)=le—1(t)— Pi(t)+ 3 Pj11(), (6)
with initial value P;(0)=4p ;. The Laplace transform of Eq. (6) is
Bi1(5) = 2(s + DPj(s) + Pj_1(s) =~ P;(0). (7)

The solution of g2 —2(s +1)g+1is gr=(G+DE£V/(s+ )2 —1. A natural
guess of the solution is

A qu if j<0
Pi(s)= + 8
i) {Aqi if j>0. ®
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When j =0, we get A:(1+s—q_)’1. Thus, for j€Z,

"' s+ -+ D21V

Pi(s)= =

(I+s—q-) Je+D2-1

Using the inverse Laplace transform Eq. (4), after shifting S=s+ 1, we get

®

Pi(t)=e" I ;(0). (10)

This is a probability function, since €'/ 2t/ =50 K@), if 2#0
(see Eq. (9.6.33) in Ref. 3).

2.2. Quantum Process

The Schrodinger equation for the infinite line is
Wi =4vj-10) + 3911 0. (11
The Laplace transform of Eq. (11) is
P41(5) = 205 () = ¥ (0) + Pj-1(5) =0. (12)

The solutions of g —2isq +1 are g+ =i(s £+v/s>+1), where g4g-=1. A
guess for the solution is

" Agl if j<O
(5) = . 13
vi(s) {Aqi if j>0. 13)
When j=0, we get A=(s+ig_)"'. Thus,
2 ql_]‘ l]|(vsz+1—S)U|
vi(s)=——=CD'—mm— (14)
(s +1g-) s2+1
The inverse Laplace transform Eq. (5) yields, for je€Z,
ORI COEVITON (15)

This is a probability function, since 1 = Jg(z) + 232, sz(z)
(see Eq. (9.1.76) in Ref. 3).
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2.3. Spectral Analysis

Let H be a Hamiltonian defined as (j|H k) :% if j=k=+1, and 0 oth-
erwise. For each p e[—n, ], define |p) so that

1 .
(jIP)=me””~ (16)

The eigenvalue equation H|p)=2,|p) has the solution Ap,=cos(p). Thus,
the amplitude of position j when the particle starts at position 0 is

i 1 ("
(jle—thl()) _ Er_ elPieg™1 cos(p) dp
—7

= (=) J;(1). (see Eq. (9.1.21) in Ref. 3) (17

Childs et al® gave a more generalized analysis along these lines.

3. THE FINITE CYCLE

3.1. Classical Process

If A is the adjacency matrix of the finite cycle, let H = %A —1 be its
Laplacian matrix. The Kolmogorov equation for the finite cycle is

P,’-(l)=%Pj—1(t)—Pj(t)+%Pj+1(t)~ (18)
Applying the Laplace transform to Eq. (18), we get
s+ DPi(s)— Pi(O) =3P 1()+ 3 Bj1(s). (19)
For convenience, define the extra condition P_1(s) = Py_1(s)+2, so that
Pl't‘ (5) = 2(s+1)Pj(s)+ P;_1(s)=0 holds for je€Zy. The cycle condition
is Py(s)= Py(s). We guess the solution to be

B;(s)=Aql +Bq’, (20)

where g+ is the solution to X2 =26+ Dx+1=0, ie, ge=(+1)=*
J(G+1D2—1, with g.¢q- =1. Using the cycle condition, we get

AgY +BgN=A+B = A@)-1)=B(1-¢!) = B=AgY. (21)
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Using the extra condition and Eq. (21), we get A=2((g+ —q_)(qf —1)~L
Thus, for jeZy,

R . A o
Pj(s) = Aq} +Bq’ =A(q] +4% )

2 (qf+qf'_j) 2 o [ kN+j | (FDN—j
= - —_ + —_

gy —q-) (A—g") 4+—9q-) g( e )
_i (+D=VE+DI =D (+ D=+ D2 DTV
B G+1DI-1 s+D2-1 '

k=0

The inverse Laplace transform Eq. (4), after shifting, yields, for j€Zy,

Pi=Y e [LneiO+larynv—j0]= Y L. (22

k=0 a==j(modN)
3.2. Quantum Process
Since the finite cycle is a regular graph, instead of the Laplacian, we
use the adjacency matrix directly. In a continuous-time quantum walk, this

simply introduces an irrelevant phase factor in the final expression. The
Schrédinger equation, in this case, is

Wi =310+ 3941 0). (23)
The Laplace transform of Eq. (23) is
j1() = 2i(s95(9) = ¥ 0) +¥j-1(5) =0. (24)
The cycle boundary condition is 1/7N (s)=1/}0(s). For convenience, define
F_1(s)=Vn_1(5) =2i. (25)

The solutions of g2 —2isq + 1 are g+ =i(s £+/s?+1), with g4 g_=1. A
solution guess, for j€Zy, is

¥i(s)=Aq] + Bq’. (26)
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The cycle boundary condition yields B = Aq’+v . By Eq. (25), we get
A=2i((g+ —q-)(g¥ —1))~!. Thus, for jeZp,
¥i(s) = Agl+Bql =A@l +ai ")
_ 2 (¢l +4") _ 2i i (qu+j +q(k+1)N—j)
(@+r—q-) (-q)  @+—aq-) 35N B
E [(Ds2HT=sPMHT (D541 =) @DV
= Z + )
Vst+1 Vst+1

k=0
The inverse Laplace transform Eq. (5) gives, for j eZn,

Yt = Z [(—i)kNH Jin+j (f)+(_i)(k+l)N—jJ(k+l)N—j(t)]
k=0
= Z (=D T, (D). (27)

o ==+j(modN)

3.3. Spectral Analysis
The normalized adjacency matrix H of Zy is the circulant matrix
0 12 0 0 172
12 0 1/2... 0 O
H= 0 1/2 0 0 0 | (28)

120 0 ...1/2 0

It is well known that all N x N circulant matrices are unitarily diag-
onalized by the Fourier matrix F = —iﬁV(wN), where oy = e¢*™/N and
V(wy) is the Vandermonde matrix defined as V(a)N)[j,k]=w{f, for j, ke
{0,1,...,N — 1}. The ecigenvalues of H are A; = %(wﬁv + wljv(N—l)) =
cos(2nj/N), for j=0,1,..., N —1. Thus, the wave amplitude at vertex j
at time ¢ is
PN ‘
1//] (t) — ﬁ Z e-—ltCOS(Zﬂk/N)w;Vk_ (29)
k=0

From carlier analysis, we get the following Bessel equation

z

-1
1_1,_ eiteos@E/MTKIN = 5 (i) U,). (30)
0 a==xj(mod N)

=~
Il
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It is an open question if there exists a time t € R* such that for all je

Zy we have |y (r)|*=1/N, i.e., uniformity is achieved at time t. For N =

2,3.4, it is known that instantaneous exact uniform mixing is achieved (see
Refs. 6 and 16).

4. THE FINITE PATH

4.1. Classical Process

Let A be the normalized adjacency matrix of the finite path, where A
is a stochastic matrix where the probability transitions are proportional to
the degrees of the vertices. Let H=A —1I be its Laplacian. Then, the Kol-
mogorov equation, in this case, is

Pi(t)=%P;—1(1) = Pj(t) + 3 Pj+1(0), 31
for 0 < j < N, with initial condition P;(0)=4; and boundary conditions
Py(t)=Pi(t) = Po(t), Py()=Pn_1(t) = Pn(1). (32)

The Laplace transform of Eq. (31) is
Bi(9) =26+ 1)Pi(s)+ Bj_1(5)=0, 0<j<N, (33)

aAnd two boundary equations (1 + s)f’o(s) —1= 131 (s), and (14 s)f’N(s) =
Py_1(s). A guess of the solution is

Pi(s)=Aql+Bql, 0<j<N, (34)

where g+ = (s + 1) £+/(s + 1)2— 1. The boundary equations give B — A =
2/(q+—q-) and A= Bg?N. Combining these last two equations, we get

2 Y ead
T gy —g-) (1—-g2Ny

(3%

Thus, for j=0,1,...,N,

w2 @’ +q2"7)

(g+—a9-) (1—¢*")

Z( Nk+1+ 2N (k+1D— j)

Pi(s) = Aql + Bq! =A(g) +45

(q+ q)
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The inverse Laplace transform Eq. (4), after shifting, yields, for j =
0,1,...,N,

o0
Pi)=> ¢ [bwiej® + hvary- ;O] = D e, (36)
k=0 a=zj{mod 2N)

4.2. Quantum Process

The Schrédinger equation for the finite path is

Wi =3¢j- 10+ 39410, (37)
for 0 < j < N, with initial condition ¥;(0) =4 ; and boundary conditions
W) =y1(1), Wy =¢n-10). (38)

The Laplace transform of Eq. (37) is
Vjp1(s) = 2isP () + ¥ -1(s)=0, O<j<N, 39)
and two boundary equations iSl/A/()(S) —i=1/}1(s), and isx/A/N(s)=1/A/N_1(s).
The splutions of g2 —2isq+1 are g4 =i (s:t:\/sz—-i-—T). A guess of the solu-

tion is

Ui(s)=Aq]+Bgl, 0<j<N. (40)

From the boundary equations, we get B—A=2i/(g+ —q-) and B= AqiN 3
Thus,

2i 2N
P (S 1)
(g+—9g-) 1 —4q2")
For j=0,1,...,N,
> j j j o, 2N=j
Vi(s) = Aqy +Bg_=A(qy +4qy )
. i 2N—j .
_ o @'+ __ i i(gZNk+j+q2(k+l)N—j)
(g+—q-) (1—¢*M) g+—q-) B B

k=0
3 [(<—i><\/s2+ D i (ORI T csiiin
k=0 Vsi+1 241 ’
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The inverse Laplace transform Eq. (5) yields, for j=0,1,..., N,

v = 3 [0V ;0 + PV vy 0]
k=0
= Z ()% Jo (2). (42)

a=+*j(mod 2N)

4.3. Spectral Analysis

The spectrum of a path on n vertices is given by Spitzer.!” For
j€{0,1,..., N}, the eigenvalue A; and its eigenvector v; are given by

o G+ D _ 2 . ((+Dm
Aj_cos<————N+2 ) v; ()= N+251n( N2 (Z—i—l)). 43)

The probability of measuring vertex O at time ¢ is given by

_ 4 .2 (]-f—l)]l' .2 (k+1)77.' -—it().j—)\)
Po(t)_————(N+2)2jstm <—N+2 )sm (_N+2 )e Wi 44)

Since all eigenvalues are distinct, the average probability of measuring the
starting vertex 0 is

— 4 Lo fGHDTN o (k+ D
PO = (N+2)2§SIH ( N+2 )Sm ( N+2 )

1 T
x lim — / eG4~ gy
T Jo

T
(j+Drn
(N + 2)2 Z ( N+2 )’
Equating this with Eq. (42), we obtain a Bessel-like equation:

2

1T 4 < (k+ D
lim — / Yoo ] di=——— > sin® <——>
T=0T Jo |, _omod 23) (N+2° 3 N+2
(45)
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5. CONCLUSIONS

This expository survey reviews equations for the continuous-time
quantum walks on one-dimensional lattices. The focus was on analysis
based on the Laplace transform which works directly with the stochas-
tic recurrences. It would be interesting to extend this analysis to higher-
dimensional or to regular graph-theoretic settings. Another interesting
direction is to consider lattices with defects and weighted graphs.®
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