
Physica D 411 (2020) 132603

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Ensemble-basedmethod for the inverse Frobenius–Perron operator
problem: Data-driven global analysis from spatiotemporal ‘‘Movie’’
data
Naratip Santitissadeekorn a,⇤, Erik M. Bollt b

a Department of Mathematics, University of Surrey, Guildford, Surrey, UK
b Clarkson University, Potsdam, NY, USA

a r t i c l e i n f o

Article history:
Received 6 December 2019
Received in revised form 20 May 2020
Accepted 1 June 2020
Available online 3 June 2020
Communicated by B. Hamzi

Keywords:
Frobenius–Perron operator
Inverse problem
Transfer operator
Coherent structures
Aggregate data

a b s t r a c t

Given a sequence of empirical distribution data (e.g. a movie of a spatiotemporal process such as a fluid
flow), this work develops an ensemble data assimilation method to estimate the transition probability
that represents a finite approximation of the Frobenius–Perron operator. This allows a dynamical
systems knowledge to be incorporated into a prior ensemble, which provides sensible estimates in
instances of limited observation. We demonstrate improved estimates over a constrained optimization
approach based on a quadratic programming problem. The estimated transition probability then
enables several probabilistic analysis of dynamical systems. We focus only on the identification of
coherent patterns from the estimated Markov transition to demonstrate its application as a proof-of-
concept. To the best of our knowledge, there have not been many works on data-driven methods to
identify coherent patterns from this type of data. While here the results are presented only in the
context of dynamical systems applications, this work we present here has the potential to make a
contribution in wider application areas that require the estimation of transition probabilities from a
time-ordered spatio-temporal distribution data.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

This work focuses on an ensemble-based technique to esti-
mate a Markov transition matrix, which is a finite approximation
of the Frobenius–Perron (or transfer) operator, from a sequence
of empirical distribution data. For instances, in a fluid experiment
where droplets of dye are introduced into the fluid surface and
their evolution is recorded as a sequence of images or in some PIV
imagery, a sequence of a large number of ‘‘unlabelled particles’’
are recorded, in which case it would be difficult or even infeasible
to track individual particle trajectory. However, these particles
can be aggregated (perhaps after experiments) to provide em-
pirical distribution data. In particular, the conditional transition
probability of the transition matrix is estimated and the ensemble
of these parameters can be used to understand the uncertainty
of the estimate as well. The algorithm in this work modifies the
formulation of the ensemble Kalman filter (EnKF) but it is not
used in the filtering application. Instead, the entire data is used at
once for the estimation and, EnKF is iteratively applied to improve
the estimate; hence iterative EnKF (IEnKF). This approach is a
Bayesian framework in nature, so the prior ensemble of the
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parameters is updated according to Bayes’ rule to obtain the pos-
terior ensemble. The flexibility of prior ensemble construction can
be critical to obtaining realistic results in the case where available
data is non-informative. Recent works with a similar goal [1,2]
have studied the approximation of the transition matrix in the
context of the so-called inverse Frobenius–Perron problem [3]
where the estimated transition matrix is subsequently used to
reconstruct the underlying one-dimensional map. The estimation
method is simply a gradient-based constraint optimization. How-
ever, the approach in [1,2] was demonstrated only for a specific
set of initial distributions, each of which is highly concentrated
on individual Markov state, instead of arbitrary distributions.
The estimation of the Markov transition probability is also of
interest in a wider context such as econometric where the esti-
mation problem is set up to allow for the quadratic programming
[4–6]. A fully Bayesian approach was developed in [7] assuming
that the rows of the transition matrix are independently dis-
tributed as the Dirichlet distribution. The posterior distribution is,
however, analytically intractable. The structure of such a prior is
also restrictive in the sense that the covariance between any two
elements in the same row is always negative. Since the number
of parameters is N2 for N Markov states, it can be practically
infeasible to use a sampling method such as Markov chain Monte
Carlo in this fully Bayesian setting. Therefore, uncertainty analysis
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is usually ignored and only the posterior mode is computed
by solving a constrained nonlinear equation using, for example,
a nonlinear programming approach. Note that in the limit of
‘‘large’’ samples, an approximation of the covariance matrix is
available but for a large number of Markov states, the number
of available observations is usually too small to be considered as
large samples.

In obtaining an estimated transition matrix, several proba-
bilistic analyses of the data are made possible. For example, it
allows an identification of coherent patterns (e.g. [8–12]), an
approximation of transition probabilities from a basin to another
(e.g. the stochastic basin hopping in [13,14] or computation of
probabilistic transport pathway [15]. This work will focus only
on the application of coherent structure or pattern identifica-
tion. Understanding large-scale persistent patterns or coherent
structures emerging from a chaotic dynamical system has been
a subject of research interest since it is fundamental to gain
insight both quantitatively and qualitatively into a study of trans-
port problems. Thus several advanced algorithms to extract the
large-scale persistent structure have been developed. Most re-
cent algorithms are either geometric-based techniques [16–24],
which rely on advanced theories of Lagrangian manifolds, or
set-oriented methods, which can be considered as probabilistic
approaches [8–12,25]. In cases where equations of the underlying
dynamical system are known or their (numerical) approxima-
tions are available, Lagrangian coherent structures, which are
transport barriers roughly moving along with the flow, can be
constructed from analytic geometric-based methods based on
theoretical concepts such as lobe dynamics, finite-time material
manifolds, shape coherence, and braiding. On the other hand, the
set-oriented methods use transfer operator (or Frobenius–Perron
operator) theories to identify a large-scale almost invariant set
for autonomous or periodic systems or finite-time coherent sets
for non-autonomous systems, which minimizes transport across
their boundaries. An extensive comparison between the two ap-
proaches as well as highlights of recent applications can be found
in [26].

In some situations, however, theoretical or computational
models are not available. When only spatio-temporal observa-
tional data is available, coherent structures have to be inferred
based solely on relevant data. Numerous works have been pro-
posed to extract coherent structures from the Lagrangian trajec-
tory data such as a collection of trajectories of ocean drifters.
In [13,22,27–31], the coherent structures are motivated by the
finite-time coherent sets represented by the eigenvector of the
Frobenius–Perron operator, which are shown to approximately
minimize the conditional probability of the transport in and
out of the coherent sets. A variety of data-driven methods are
used in these works such as those motivated by spectral cluster-
ing [22,27,29,30], diffusion map method [28], and finite-element
methods [31]. In [32,33], the coherent structures are the slow-
dynamics mode of the Koopman operator, which is the adjoint
of the Frobenius–Perron operator. To our best knowledge, how-
ever, this is the first study that uses empirical distribution (or
aggregate) data to infer coherent structures.

2. Background

2.1. Approximation of Frobenius–Perron operator

This section briefly describes a basic formulation of the
Frobenius–Perron operator approximation and how it can be
used to find the coherent sets associated with an autonomous,
deterministic dynamical system on a bounded domain. Thus the
notion of coherent sets is simplified to the almost invariant sets
as studied by several works [10,12,34,35]. A generalization to the

stochastically perturbed autonomous system or non-autonomous
systems is given in [11,31]. However, we will focus only on the
simplified case, which is adequate to provide a formulation of the
problem required to demonstrate our main contribution.

Consider a discrete-time dynamical system on a bounded set
⌃ ⇢ R

d

zn+1 = �(zn), (2.1)

where � : ⌃ ! ⌃ is a measurable and non-singular trans-
formation. A concrete example of � will be given as part of
our numerical experiments in the subsequent sections. If our
knowledge of zn is described by a probability density fn 2 L1(⌃),
the Frobenius–Perron operator F associated with � is given by

fn+1(zn+1) := F fn =
Z

⌃

�(zn+1 ��(zn))fn(zn)dzn, (2.2)

where � is the Dirac delta function and serves as a (determinis-
tic) transition kernel in this context. The Ulam–Galerkin method
seeks a finite-dimensional approximation of F in a form of r ⇥
r Markov transition matrix P over the r-disjoint cells ⌃r =
{R1, . . . , Rr} such that ⌃ = Sr

i=1 Ri. Note the Frobenius–Perron
operator can be represented exactly by a finite-state Markov
transition matrix if � is a piecewise-linear and expanding semi-
Markov map. The ith row and jth column element (denoted by
pij) of P can be probabilistically interpreted as a conditional prob-
ability that xn+1 2 Rj given that xn 2 Ri. The Ulam approximation
uses a finite sample Zn = {z(1)n , . . . , z(Nz )

n }, in which z(k)n 2 Ri, to
approximate pij by

pij ⇡ #{�(Z (k)
n ) 2 Rj}
Nz

, (2.3)

where #{�(Z (k)
n ) 2 Rj} counts the number of points of �(Zk

n ) 2 Rj.
The projection of fn onto the finite basis function {⌅j(Rj)}rj=1 and
give fn ⇡ {q1(n), . . . , qr (n)} where

qj(n) =
Z

Rj
fn(zn)dzn. (2.4)

Under the above approximation, the evolution of q(n) = [q1(n),
. . . , qr (n)] follows a linear equation q(n+1) = Pq(n), which gives
an approximation f (n + 1) ⇡ qn+1.

The above discretization introduces an error into the approx-
imation of F in a way that P would be ‘‘closer’’ to the following
operator:

F✏ fn =
Z

⌃

K (x ��(y))fn(y)dy, (2.5)

where K (x � �(y)) is a stochastic transition kernel, satisfying
K � 0 almost everywhere and

R
⌃
K (x � �(y))dy = 1. An in-

depth discussion of this error can be found in [10]. The clustering
problem in this context then aims to find a finite union of sets in
⌃r , say A, such that ��1(A) ⇡ A. We use the spectral partitioning
method in [10] in this work to identify A. In what follows, we
will describe a data-driven reconstruction of P in the case that �
is unavailable and the available data is a time-ordered empirical
distribution.

2.2. Problem statement

Motivated by the Galerkin–Ulam approximation, we are inter-
ested in a discrete-time, r-state first-order Markov chain x(t) for
t = 0, 1, . . . , T associated with a (r ⇥ r) transition probability
matrix P whose the element pij describes a constant conditional
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probability associated with a change from state si to sj for i, j =
1, . . . , r . Thus pij satisfies the following conditions:

0  pij  1,
X

j

pij = 1. (2.6)

We will refer to the above inequality restrictions as the ‘‘non-
negativity’’ condition (despite the upper bound) and the equality
constraint as the ‘‘sum-to-one’’ condition. They will also be col-
lectively referred to as the Markov restriction. The unconditional
probability of x(t) is denoted by

qj(t) := Pr(x(t) = sj), (2.7)

and the dynamic of qj(t) follows the recursive equation

qj(t) =
X

i

pijqi(t � 1). (2.8)

Therefore, at a given time t , we may consider x(t) as a multino-
mial random variable with the probability of ‘‘success’’ qj(t).

If we are given sample paths of N repeated sample (i.e. se-
quences of states where x(t) visit at t = 0, . . . , T ), we have an
access to the number of individuals for which x(t � 1) = si and
x(t) = sj, denoted by nij(t). In some applications, nij(t) may not
always be available and only the sample aggregate proportion for
each time t are known, i.e., only

yj(t) =
X

i

nij(t)/
X

i

X

k

nik(t). (2.9)

It is clear that
X

j

yj(t) = 1. The time-ordered sequence yj(t) for

j = 1, . . . , r and t = 0, 1, . . . , T will be called proportion data.
Suppose we have a (r ⇥ 1) vector of the time-ordered propor-

tion data

y(t) = [y1(t), y2(t), . . . , yr (t)]0 2 Sr , (2.10)

where Sr denotes the r � 1 dimensional simplex. It will be as-
sumed that the time-series data yj(t) is a sample of qj(t) generated
by an unknown transition probabilities that are assumed to be
constant over the entire sample period. Therefore, this work aims
at a reconstruction of pij based on y(t).

3. Ensemble least squares framework

3.1. Basic setup

To estimate the transition matrix, we make the following
model assumption:

yj(t) =
X

i

yi(t � 1)pij + ✏j(t), t = 0, 1, . . . , T � 1, (3.1)

where the error from replacing the unconditional probabilities
qj(t) in (2.8) by proportion data yj(t) is accounted for by a random
variable ✏j(t). We assume that E[✏j] = 0, Var[✏j] = � 2

j and
E[✏i✏j] = 0 for i 6= j, hence the name ‘‘independent scheme’’.
The model (3.1) can be expressed as a linear model using the
following notations: yj = [yj(1), yj(2), . . . , yj(T )]0 is a (T ⇥ 1)
vector of the observed proportion of the state j, pj is a (r ⇥ 1)
vector of the jth column of the unknown transition matrix P, ✏j =
[✏j(1), ✏j(2), . . . , ✏j(T )]0 is a (T ⇥1) vector of random perturbation
and Xj is the (T ⇥ r) matrix given by

Xj = [y(0) y(1) · · · y(T � 1)]0, (3.2)

where y(t) is defined in (2.10). Note that X1 = X2 = · · · = Xr . For
any j = 1, . . . , r , the linear model based on the relation (3.1) is

separately given by

yj = Xjpj + ✏j j = 1, . . . , r. (3.3)

Without a constraint on pj, the solution of (3.3) can be easily ob-
tained by the least-square method, which yields the minimizing
solution of the normal equation

p̃j = (X 0
j Xj)†X 0

j yj, (3.4)

where (X 0
j Xj)† is the pseudo-inverse of (X 0

j Xj). Note that we only
have to solve for p̃j for each j = 1, . . . , r � 1 in isolation and
then deduce p̃r from the sum-to-one constraint. This solution,
however, neglects the non-zero correlation between pij for each
fixed i required as a result of the sum-to-one condition.

To generalize (3.3) to allow for a correlation structure, the
equation systems (3.3) are first combined into the following
form:
2

664

y1
y2
...

yr�1

3

775

| {z }
:=y

=

2

664

X1
X2

. . .

Xr�1

3

775

| {z }
:=X

2

664

p1
p2
...

pr�1

3

775

| {z }
:=p

+

2

664

✏1
✏2
...

✏r�1

3

775

| {z }
:=✏

. (3.5)

This gives a linear system

y = Xp + ✏, (3.6)

where X is a ((r � 1)T ⇥ (r � 1)r) matrix. We assume that
E[✏] = 0 and E[✏✏0] = R is a ((r � 1)T ⇥ (r � 1)T ) observation
covariance matrix. Note that the rth term is suppressed to deal
with the inherent collinearity due to the sum-to-one restriction.
The estimate of pr is readily obtained from that of p and the sum-
to-one restriction. In general, another component instead of the
rth component can be suppressed. This raises an obvious issue
that the estimate may not be the same for a different choice of
the suppressed component. For example, if yr (0) � yj(0) for
j = 1, . . . , r � 1, the suppression of yr as in (3.5) may lead to
a significant loss of information of underlying pij. Therefore, a
choice of the suppressed state must be carefully made; if yi(t) ⌧
yj(t) for all i 6= j at any time t , suppression of the ith state would
be reasonable. Thus, the suppression of rth component in (3.5) is
arbitrary (as long as keeping in mind the above comment) since
the permutation of the states does not alter the Markov Chain.

We consider the estimate that minimizes the cost function

�(p) = (y � Xp)0R�1(y � Xp) + (p � p
o)0B�1(p � p

o), (3.7)

where p
o is an initial guess of p and the ((r � 1)r ⇥ (r � 1)r)

covariance matrix B gives a prior covariance structure between
pij and R is a ((r � 1)T ⇥ (r � 1)T ) covariance matrix of y. Note
that the cost function (3.7) can also be written by

�(p) / 1
2
p

0(X 0
R

�1X + B
�1)p + (X 0

R
�1

y + B
�1

p
o)p. (3.8)

Without the Markov constraints on p, the generalized least
squares solution for (3.7) is given by

p
⇤ = p

o + BX 0(XBX 0 + R)�1(y � Xpo). (3.9)

Thus, the least squares solution is confined within the subspace
spanned by the basis vectors of B. Since y is a proportion data, we
may assume that R has the covariance structure of a multinomial
distribution. For the current arrangement of the vector y, R has
the following structure:

R =

2

64
R1,1 R1,2 · · ·R1,r�1
...

. . .
...

Rr�1,1 Rr�1,2 · · ·Rr�1,r�1

3

75 , (3.10)



4 N. Santitissadeekorn and E.M. Bollt / Physica D 411 (2020) 132603

where Ri,i is a T ⇥ T diagonal matrix with ↵yi(t)(1 � yi(t)) for
t = 1, . . . , T on the diagonal, Ri,j is a T ⇥ T diagonal matrix with
�↵yi(t)yj(t) on the diagonal for some 0 < ↵ < 1.1

We assume that each row of the transition matrix is inde-
pendent and has a Dirichlet prior distribution. Under the current
arrangement of the vector p, B will have (r � 1)2 diagonal-blocks
Bi,j for i, j = 1, . . . , r � 1, each of which has a size of (r ⇥ r).
Denote the Dirichlet parameter for the l�th row of the transition
matrix by [al,1, . . . , al,r ]. Let al,0 = Pr

i=1 al,i. The sub-block Bi,i
is a diagonal matrix with elements ak,i(1 � a(k, i))/(ak,0 + 1) for
k = 1, . . . , r . The sub-block Bi,j for i 6= j is diagonal with elements
�ak,iak,j/(ak,0 + 1) for k = 1, . . . , r .

In general, the optimal solution (3.9) may not satisfy the
Markov restriction. A constrained optimization approach such as
quadratic programming may be used instead based on the cost
function (3.8), which requires computation of R�1 and B

�1. If R
is chosen as above, the inversions can be derived analytically as
explained in Appendix A. If we require [al,1, . . . , al,r ] to be the
same for all l (i.e. using the same Dirichlet parameters for all
rows), B can be analytically inverted in a similar manner.

Alternatively, we can address the issue of the Markov restric-
tion by using the additive log ratio (alr) transformation:

hij := alr(pij) = ln pij � ln pir , i = 1, . . . , r, j = 1, . . . , r � 1.
(3.11)

Thus we have a nonlinear observation operator

y = H(h) := X � alr�1(h), (3.12)

where the element of the vector h is arranged in the same order
as p as described in (3.5) and the inverse transformation alr�1 is
given by

pij = alr�1(hij) = ehij

1 + Pr�1
k=1 ehik

, i = 1 . . . , r, k = 1 . . . , r�1.

(3.13)

The element pir can be obtained by pir = 1 � Pr�1
j=1 pij. The cost

function in term of h is given by

'(h) = (y � H(h))0R�1(y � H(h)) + (h � h
o)0S�1(h � h

o). (3.14)

If H(h) is linearized at the point h
o, the optimal solution of the

linearized system of (3.14) over the subspace spanned by a set of
basis vector  such that   0 = S is

h
⇤ = ho +  V

0(VV0 + R)�1(y � H(ho)), (3.15)

where V = H is a (r � 1)T ⇥ (r � 1)r matrix and H is the
(r � 1)T ⇥ (r � 1)r Jacobian matrix of H evaluated at h

o. For
the alr transformation, the Jacobian H can be exactly computed.
In addition, with the linearized system H the choice of ho and S
can be statistically inspired. If we assume that the prior term is
normally distributed as N(ho, S), the posterior distribution of h

will then be N(h⇤, Sa), where

S
a = (H 0

R
�1H + S

�1)�1. (3.16)

Note that if H(h) is linearized at a point h
f 6= h

o, the optimal
solution is

h
⇤ = ho +  V

0(VV0 + R)�1(y � H(ho)) + S
a
S

�1(ho � h
f ). (3.17)

1 The random process governing how observations are created is described
by the multinomial experiment leading to (2.9). However, if the number of trials
and qj(t) as defined in (2.8) are unknown, we must make some assumptions to
approximate the variance and covariance of the observation process. We make
a simplification by using yj(t) instead of qj(t). Also, if we were to know the
number of trials, we would then use it for ↵�1. However, we lack this knowledge
in practice, so we arbitrary choose 0 < ↵ < 1 instead.

A brief description of the derivation of (3.17) is given in
Appendix B. The formulation (3.17) could potentially increase a
significant computational expense relative to (3.15). Thus, our
work will focus only on (3.15). In the next section, we will
describe an ensemble-based approach that adopts (3.15) to it-
eratively update the ensemble. This approach will allow us to
circumvent the derivation of the H in general cases; hence en-
abling a gradient-free algorithm. It also provides an assessment of
uncertainty around the estimate through the sample covariance.

3.2. Ensemble-based algorithm

We now consider an ensemble-based algorithm that approx-
imates the solution of (3.14) through sample statistics. The
key idea in this section follows closely the ‘‘stochastic’’ formu-
lation of the ensemble Kalman filter (EnKF) developed for data
assimilation problem [36]. Other formulations such as Ensem-
ble transform Kalman filter (ETKF) [37] or Ensemble Adjustment
Kalman filter (EAKF) [38], which can be classified as a ‘‘determin-
istic’’ formulation, are also possible for a similar development but
our development below will be pivoted to the stochastic EnKF.

Suppose that we have an ensemble such that each of its
members will be denoted by h

(i)
e for i = 1, . . . ,Ne, where Ne is the

number of ensemble members. We can construct a r(r � 1) ⇥ Ne
matrix of scaled deviation

He = 1p
Ne � 1

[h(1)
e � h̄e, . . . ,h

(Ne)
e � h̄e], (3.18)

where h̄e is the ensemble mean, i.e., h̄e = N�1
e

PNe
j=1 h

(j)
e . We

assume that h̄e ⇡ ho. Also, we assume that the covariance matrix
S in (3.15) is approximately given by

S ⇡ Se = HeH
0
e. (3.19)

In light of (3.15), we wish to assimilate observation y to construct
a new ensemble from the initial ensemble such that the new
ensemble mean would satisfy the following map:

h̄
⇤
e = h̄e + HeV

0
e(VeV

0
e + R)�1(y � H(h̄e)), (3.20)

where Ve = HHe is a (r � 1)T ⇥ Ne matrix. It is clear that
the update term in (3.20) is pre-multiplied by He, so the update
term is confined to the subspace spanned by the column of He
(i.e. the initial guess ensemble). In other words, the algorithm
lacks necessary information to update any terms that has a non-
zero projection onto the space orthogonal to the column space
He. This issue can be difficult to avoid in a large-dimensional
problem where the ensemble size tends to be much less than
the dimension of the problem. Nevertheless, the above update
gives the optimal solution in the subspace spanned by He, but in
general not optimal in the model space.

The formulation (3.20) still needs a computation of the Jaco-
bian H of H. To obtain a full ensemble-based algorithm, we want
to approximate this by an ensemble of the predicted observation
y
(i)
e = H(h(i)

e ). To this end, let ȳe be the ensemble mean and Ye be
a T (r�1)⇥Ne matrix of scaled deviation constructed as in (3.18).
If we make a linear approximation Ye ⇡ Ve and ȳe ⇡ H(h̄e), we
may update each ensemble member by

h
⇤(i)
e = h

(i)
e + HeY

0
e(YeY

0
e + R)�1(y � y

(i)
e ), (3.21)

where the new ensemble mean will approximate the desired
ensemble mean in (3.20). It follows that the new matrix of scaled
deviation, denoted by He satisfies

H
⇤
e = (I � KeX)He, (3.22)

where Ke = HeY
0
e(YeY

0
e+R)�1. Thus, the new ensemble covariance

matrix is given by

S
⇤
e = (I � KeX)Se(I � KeX)0, (3.23)
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which is considered to be too small by a factor of (I � KeX) if
compared with the theoretical covariance S

⇤
e = (I�KeX)Se found

from the Bayesian principle for normal inference of population
mean.

To address this inconsistency, the so-called Ensemble Kalman
filter (EnKF) used the virtual observation in the innovation in-
stead of the actual observation to correct the underestimate co-
variance matrix. In particular, it replaces y � y

(i)
e in (3.21) by

y
(i) � y

(i)
e , where y

(i) is randomly drawn from a distribution with
mean y and covariance R. In this paper, we will draw a virtual
observation y

(i)(t) independently for i = 1 . . . ,Ne at each time
t = 0, . . . , T from a Dirichlet distribution with a parameter vector
↵(y1(t), . . . , yr (t)). The factor 0 < ↵ < 1 is used to control the
magnitude of variance and covariance of the distribution. Given
the virtual observation y

(i), we may construct the scale deviation
matrix based on y

(i), called Rs such that R ⇡ RsR
0
s. We can also

avoid a construction of the matrix R by replacing it with its
ensemble approximation and rewrite (3.21) by

h
⇤(i)
e = h

(i)
e + HeY

0
e(YeY

0
e + RsR

0
s)

�1(y(i) � y
(i)
e ). (3.24)

There is another advantage of using Rs in (3.24) to reduce com-
putational workload, which will be discussed in the subsequent
section. The above estimation is repeated iteratively until the
outcome stabilizes under a stopping criterion; the new ensemble
at the k�th iterative step becomes an initial ensemble for the
(k + 1)th. The iteration may be stopped when a norm of the
relative discrepancy of the two successive estimates is less than
a given threshold.

In general, the solution in (3.15) and the ensemble mean
of (3.24) can be very different. When using (3.15), the matrix
S has to be designed on the alr-coordinate, i.e., eliciting the
correlation structure of h instead of p. However, it is difficult to
determine the correlation of h due to a lack of possible distri-
butions on the alr-coordinate. This issue is circumvented in the
ensemble approach in which the ensemble can be drawn for p

(e.g. from Dirichlet distribution) and then alr-transformed to an
ensemble of h without a need for linearization of H. The sample
covariance can then be used instead of S. To deal with this issue of
implementing (3.15), we first determine p

o and obtain h
o through

alr transformation and then assume S to have a correlation struc-
ture of the Dirichlet distribution with parameters h

o. However,
h
o and S constructed this way may not agree with the initial

sample of the ensemble approach, i.e., ho can be different from
the sample mean and S may not even have the same structure as
the sample covariance in general.

3.3. Implementation

The inversion in (3.21) is the main computational cost. To
allow for computational feasibility in a large-scale problem, we
make an approximation that YeR

0
s ⇡ 0 (i.e. Ye is nearly orthogonal

to Rs). This approximation is reasonable on the ground that as
long as our random sample of h(i)

e is independent of the sample
y
(i), HeR

0
s will tend to zero for a large ensemble size, so does

YeR
0
s, following on the above comments led us to (3.21). With this

approximation in mind, we have

(YeY
0
e + R) = (YeY

0
e + RsR

0
s) ⇡ (Ye + Rs)(Ye + Rs)0. (3.25)

We can find the singular value decomposition (SVD) Ye + Rs =
U⇤V 0 and the required pseudo-inverse of (YeY

0
e + R) is approxi-

mated by

(YeY
0
e + R)�1 = U(⇤⇤0)�1U 0. (3.26)

In practice, the ensemble size tends to be much smaller than the
total number of observations, so we usually have Ne ⌧ T (r � 1).
Therefore, this approximation avoids a large computer storage

and matrix product of YeY
0
e, which can, in general, be non-sparse.

More importantly, it reduces an inversion of an T (r�1)⇥T (r�1)
matrix to a computation of SVD for an T (r � 1) ⇥ Ne, where
the former requires O((T (r � 1))3) and the latter requires only
O((T (r � 1))2Ne). The update equation (3.21) now becomes

h
⇤(i)
e = h

(i)
e + HeY

0
eU(⇤⇤0)�1U 0(y(i) � y

(i)
e ). (3.27)

It is easy to check that the largest matrix required to be stored to
implement (3.27) is of the size r(r�1)⇥Ne. For a very large r , the
required memory access can be a practical concern that cannot be
overlooked.

Several iterative schemes have also been studied for vari-
ous implementation of EnKF. We follow the simple iteration as
first used [39], where stochastic EnKF was applied iteratively
to combat a strong nonlinearity in their reservoir engineering
problem. Theoretical aspects of this approach in the context of
regularization have been recently studied in [40]. In some prac-
tical applications, e.g. considered by Emerick and Reynolds [41],
the observation error covariance matrix (i.e. R in our context) is
inflated by the number of iterations to avoid overfitting in the
experiment where ground-truth posterior density is accessible
through the Metropolis–Hasting sampler and the observation
error is normal. In Sakov [42,43], the ensemble-based formulation
is developed via a linearization at a point h

f 6= h
o as explained

in (3.17) and the observation error covariance matrix is inflated
in the same fashion suggested by [41]. This change, however,
requires a user to use one of the deterministic versions of EnKF in-
stead of the stochastic formulation. In [44], a comparison between
the implementation of [41] and [42] approaches in the context of
the bio-irrigation has recently shown an improved result when
using [41]. It also explains in [44] why the method in [42] tends
to stop updating ensemble after just a few iterations, which can
lead to a poor result in some cases. In [45], iterative ETKF was
employed based on a ‘‘residual nudging’’ method which requires
the computationally expensive task of approximating a Jacobian
of the nonlinear observation operator.

4. Numerical experiments

Two numerical experiments are carried out in the subsequent
sections. We will use the Hellinger distance to quantify the dif-
ference between two discrete probability measures. It is given
by

h(w1, w2) = 1p
2

��p
w1 � p

w2
��
2. (4.1)

The constant term is used for scaling so that the Hellinger dis-
tance varies between 0 and 1. In what follows, we evaluate the
error for each row of the estimated transition matrix and report
an average of all rows of the transition matrix.

4.1. Toy problem

In this test experiment, the ground truth is a 16 ⇥ 16 Markov
transition matrix (indexed by {1, . . . , 16}) with a structure of
nearly two 8 ⇥ 8 diagonal sub-matrices, see Fig. 1. The true
distribution qi(t) is generated from the ground truth for t =
0, 1, . . . , 12 with the initial distribution qi(0) = 1/2 for i = 2 and
i = 15 and zeros otherwise. The noisy test data at a time step t is
then drawn from a multinomial distribution with parameters Nm
and qi(t). The level of ‘‘noise’’ is therefore controlled by Nm where
we examine two cases: Nm = 105 (‘‘small’’ noise) and Nm =
104 (‘‘large’’ noise). The random samples are then aggregated by
averaging to produce noisy observation. To avoid dividing by zero
when computing the inverse of R and S, one sample is added to
those Markov states without a sample from the above draw.
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Fig. 1. Ground truth and true initial intensity for the toy problem in Section 4.1.

We compare the ensemble-based method (3.24), quadratic
programming (3.8) under the Markov constraints and linearized
approach (3.15). We use the ensemble mean as a point estimate
of the ensemble-based method.

Initialization: We now explain the initialization of these meth-
ods.

• The ensemble method requires the initial ensemble of p.
For this experiment, we construct an initial ensemble by
independently drawing an ensemble for each row of matrix
with Dirichlet distribution with parameter a1 = a2 = · · · =
a16 = 1. That is our initial guess for each row is the uniform
measure. The ensemble drawn for each row is then arranged
into the format of p as described in (3.5). Each ensemble
member is then alr-transformed into h as required by (3.24).

• The quadratic programming approach requires a prior guess
p
o and B. We can let p

o be the mean of the Dirichlet dis-
tribution used to initialize the ensemble approach. Thus, all
elements of p is 1/16. Similarly, B is a covariance matrix
corresponding to the parameter a1 = a2 = · · · = a16 = 1
arranged in the format explained in the previous section.

• For the linearized approach, ho and S are required. To make
the initial guess consistent with the ensemble approach, ho

is a zero-vector (i.e. all elements are zeros). It is unclear how
to make S consistent with the initial sample covariance of h.
Nevertheless, we can insist S to have the structure of the co-
variance matrix of the Dirichlet distribution. In other words,
S is the same as B used in the quadratic programming.

The virtual observations for (3.24) are drawn from the multi-
nomial distribution using ↵ = 1/Nm. This implies that we have a
rough understanding of the level of noise in the data but the exact
knowledge of Nm is still assumed to be unknown. We compare
errors based on the Hellinger distance for various methods in
Fig. 2.

The ensemble-based estimate (for a large ensemble size Ne =
6400) shows smaller errors than the other methods. However,
for this particular case, the error from the ensemble method
increases for a smaller Nm (i.e. larger noise) while the errors for
the other methods are nearly the same for both large and small
noises. The error analysis with respect to the ensemble size is
shown in Fig. 3. This shows that the ‘‘optimal’’ ensemble size,
which provides substantially improved estimates, could be much
larger than the number of parameters. Nevertheless, it is possible
to have Ne < r and still obtain an improved estimate over other
methods.

An uncertainty analysis can also be investigated for the en-
semble method using the prior and posterior sample covariance
structures as shown in Fig. 4. To aid interpretability, the sample
covariance matrix is permuted so that the entries are arranged in
the following order,

p1,1, p1,2, . . . , p1,16, p2,1, p2,2, . . . , p2,16, . . . , p16,1, p2,16, . . . , p16,16.

Thus, instead of having the structure similar to (3.10), the prior
sample covariance has the block-diagonal structure indicating
the independence between the rows of the transition matrix.
It is clear that the ensemble approach updates the posterior
sample covariance to allow correlations between the rows of the
transition matrix, which agrees with the bi-partite structure of
the ground truth. This structure, however, becomes less evident
in the large-noise case. As pointed out above, the linearized
approach (3.15) can also provide covariance structure through
a normal assumption of the prior distribution of h, see (3.16).
However, as shown in Fig. 5, the covariance structure fails to
capture the correlation induced by the block-diagonal structure
of the ground truth, despite the correct block-diagonal structure
shown in the estimated transition matrix. Therefore, when the
initial ensemble is constructed from the simplex coordinate for p
and transformed into the alr-coordinate, the ensemble method is
not generally an approximation of (3.15).

4.2. Double-Gyre flow

Consider a double-gyre system on a bounded domain ⌦ =
[0, 2] ⇥ [0, 1]

dx
dt

= A⇡ sin(⇡ f (x, t)) cos(⇡y)

dy
dt

= A⇡ cos(⇡ f (x, t)) sin(⇡y)
df
dx

,

(4.2)

where f (x, t) = ✏ sin(!t)x2 + (1 � 2✏ sin(!t))x. For ✏ = 0, the
flow has a fixed separatrix x = 1 and the most dominant pattern
is clearly the partition of ⌦ into two regions; one with x  1
and the other with x � 1. For ✏ > 0, the system is periodically
perturbed and the demonstration of the dominant pattern can be
found in [12]. We set A = 0.25, ✏ = 0.25,! = 2⇡ to generate
the test data. The domain ⌦ is subdivided into Nx ⇥ Ny uniform
cells of size �x = 2/Nx,�y = 1/Ny. To generate the ‘‘true’’
transition matrix, 400 uniformly distributed tracers in each cell
are propagated over 1 period and the transition probability from
cell i to j (i.e. pij) is given by the proportion of initial tracers in



N. Santitissadeekorn and E.M. Bollt / Physica D 411 (2020) 132603 7

Fig. 2. Estimated transition matrix for various cases. The top row is the small noise case and the bottom row is the large noise case. The result of the ensemble
approach is shown for the ensemble size of Ne = 6400.

Fig. 3. Error analysis for varying ensemble sizes: 64K 2 for K = 1, 2, . . . , 10. The
‘‘small’’ and ‘‘large’’ in the data labels refer to the small and large noise cases,
respectively.

cell i that goes to cell j after t = 1. A test data is generated
by an evolution of the initial distribution as shown Fig. 6 under
the test transition matrix over the time step t = 0, 1, 2, . . . , 10.
We test 3 different data set as illustrated in Fig. 6. The first
initial distribution has non-zero regions in the three important
places; left and right gyres and the separatrix. The second initial
distribution focuses on the right and left gyres. The third initial
distribution has non-zero regions on the left gyre only. As done
in the preceding experiment, a noisy observation at each time
step is aggregated from Nm = 105 random samples drawn from a
multinomial distribution with the parameters based on the true
test data.

The estimation of pij as the ensemble mean is shown in Figs. 7
and 9. The ensemble size is N = 10,000 and the ensemble
is initialized to have an ensemble mean corresponding to the
transition matrix of the unperturbed double-gyre flow; hence the
dominant pattern of this matrix is just the partition by the vertical
line x = 1. The results obtained from the ensemble approach are
compared with those from the standard quadratic programming
without a prior guess of the transition matrix. Fig. 7 clearly shows
improved accuracy when using the ensemble-based method. In

Fig. 4. Comparison between prior and posterior sample covariance for small and large noise experiments in the case of ensemble method (3.16). From the top of
the matrix to the bottom, the entries correspond to p1,1, p1,2, . . . , p1,16, p2,1, p2,2, . . . , p2,16, . . . , p16,1, p2,16, . . . , p16,16.
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Fig. 5. Comparison between prior and posterior covariance for small and large noise experiments in the case of linearized system (3.16). From the top of the matrix
to the bottom, the entries correspond to p1,1, p1,2, . . . , p1,16, p2,1, p2,2, . . . , p2,16, . . . , p16,1, p2,16, . . . , p16,16.

Fig. 6. From the top to bottom rows, the initial distributions of data set 1, 2, and 3 for the double gyre system and their corresponding evolutions at t = 5 and
t = 10 are shown.

all cases, 6 numbers of the iteration are carried out and the error
at each iteration is shown in Fig. 8.

After obtaining the estimate of the transition matrix P, the
inferred persistent pattern is computed based on the weighted
principal component analysis. In particular, the second largest
singular vector of the normalized transition matrix ⇧P, where
the diagonal elements of diagonal matrix ⇧ is the stationary
vector (i.e. the left eigenvector of P corresponding to the largest
eigenvalue), are compared in Fig. 9 at the resolution of Nx =
20,Ny = 10. Note that the normalized matrix has the largest
singular value of 1 with the uniform singular vector, see [12] for
details.

For the data set 1, the ensemble approach reveals the ‘‘in-
variant island’’ that looks similar to the true pattern. However,
the structure becomes vague in other data sets. The quadratic
programming, however, provides the pattern that is nearly un-
changed from the prior pattern in all cases. The results for other
lower resolutions are quite similar (but not shown here).

We also investigate how the error changes with the resolution,
see Fig. 10. Both errors of prior mean and the ensemble mean
increase with the resolution at a similar rate. In other words, the
error reduction ratio provided by the ensemble-based approach

appears to be roughly constant for all resolutions. The variance
reduction of the parameter pij (i.e. the ratio of the initial variance
and variance after data assimilation) is shown in Fig. 11. Note
that the top-left (bottom-right) submatrix corresponds to the
left(right) gyre. The reduction of variance depends on the initial
information in an intuitive way, see again Fig. 6. The first data set
has fairly uniform variance reduction for all parameters while for
the second data set the reduction is less achieved in the centre of
the matrix, which is the gyre boundary area, and for the third
data set the parameter corresponding to the right gyre gains
even more significant variance due to the random walk model
spreading out the ensemble in each iteration.

5. Conclusions and future works

This paper presents an ensemble-based method to estimate
the transition matrix representation of a dynamical system
through a time-series of proportion data. The algorithm takes
into account the Markov constraints on the transition matrix via
the ALR transformation. Based on the transformed variable, the
ensemble-based algorithm then follows a similar formulation to
the EnKF but it is applied iteratively to improve the estimate.
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Fig. 7. The true transition matrix is generated from running the double-gyre system over 1 period using Nx = 20 and Ny = 10. The Prior mean is generated in the
same way but using the unperturbed double-gyre flow. Estimates of the transition matrix are obtained by the quadratic programming as well as ensemble method
for the dataset 1, 2 and 3.

Fig. 8. The error (in the logarithmic scale) at each iteration for the dataset 1, 2 and 3 in the case of the ensemble method.

Fig. 9. Comparison of persistent patterns as the second singular vector of the normalized transition matrix, shown only for the case of Nx = 20,Ny = 10.

The ensemble-based approach in this work incorporates the prior
knowledge of the matrix via the construction of the initial ensem-
ble. The prior structure of the matrix can play a crucial role in

achieving a realistic result for a large under-determined problem
with noisy data. In our experiment with the double-gyre flow,
a prior structure derived from the initial guess corresponding
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Fig. 10. Comparison of errors at various resolution.

to the unperturbed flow leads to an improved estimate of the
transition matrix when compared with the estimate obtained
from the standard quadratic programming without using any
prior guess. The persistent pattern of the flow is also improved
as a consequence. This approach also enables an approximated
uncertainty analysis via the dispersion of ensemble (e.g. sample
variance and covariance). Although the usefulness of the uncer-
tainty is not extensively examined in the current work, it may be
crucial in some applications. This approach can also be applied to
real-world data available in the form of an image sequence, which
can be considered as an evolution of aggregate data in some cases.
The matrix representation that approximates the underlying flow
can be of interest in many applications. For example, in a study
of stochastic basin hopping, it will allow an approximation of the
‘‘exiting’’ probability from one basin to another. From a practical
perspective, however, a high-resolution image may have to be
sub-sampled into a low resolution due to a high computational
cost of the algorithm. Our future work will also look into com-
bining a dimensionality reduction technique with the current
approach to reduce computational complexity. The key challenge
in this direction is the required Markov constraint that has to be
satisfied when making dimensionality reduction.
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Appendix A. Inversion of R and B

First we consider an inversion of a (r � 1) ⇥ (r � 1) matrix C

of the following form:

C =

2

664

q1(1 � q1) �q1q2 · · · � q1qr�1
�q2q1 q2(1 � q2) · · · � q2qr�1

...
. . .

...
�qr�1q1 �qr�1q2 · · · qr�1(1 � qr�1)

3

775 .

C
�1 =

2

66664

1
qr

+ 1
q1

1
qr

· · · 1
qr

1
qr

1
qr

+ 1
q2

· · · 1
qr

...
. . .

...
1
qr

1
qr

· · · 1
qr

+ 1
qr�1

3

77775
.

To invert R, we first note that we can permute R into a (r �
1)T ⇥ (r � 1)T block-diagonal matrix, called D, that has T sub-
blocks of size (r �1)⇥ (r �1). In particular, if the t�th sub-block
of D, denoted by D(t), is given by

D(t) =

2

6664

y1(t)(1 � y1(t)) �y1(t)y2(t) · · · � y1(t)yr�1(t)
�y2(t)y1(t) y2(t)(1 � y2(t)) · · · � y2(t)yr�1(t)

...
. . .

...

�yr�1(t)y1(t) �yr�1(t)y2(t) · · · yr�1(t)(1 � yr�1(t))

3

7775
,

we take the (i, j) elements of each D(t) and expanding them into
a T ⇥ T diagonal sub-block Ri,j, see (3.10), in the order from
1 to T . Thus, we may write ⇧rD⇧c = R where ⇧r and ⇧c
are permutation matrices corresponding to such a permutation.
The above inversion formula given for C

�1 can be used to find
D(t)�1; hence D

�1. It follows that ⇧ 0
cD

�1⇧ 0
r = R

�1. Since D
�1 has

the same block-diagonal structure as D and R
�1 are symmetric,

we have ⇧rD
�1⇧c = R

�1. In other words, we can rearrange
the elements of D�1 to obtain R

�1 in the same fashion that we
rearrange elements of D to obtain R. To sum up, we can invert R
by

R
�1 =

2

64
R
1,1

R
1,2 · · ·R1,r�1

...
. . .

...
R
r�1,1

R
r�1,2 · · ·Rr�1,r�1

3

75 ,

where R
i,j(k, k) for i 6= j is a T ⇥ T diagonal matrix with the k�th

diagonal elements

R
i,j(k, k) = (↵yr (k))�1 k = 1, . . . , T

and R
i,i(k, k) is also a T⇥T diagonal matrix with the k�th diagonal

elements

R
i,i(k, k) = 1

↵

✓
1

yr (k)
+ 1

yi(k)

◆
k = 1, . . . , T .

Fig. 11. Variance reduction as the ratio of the initial variance and variance after data assimilation in the case of the ensemble method. The initialization for the 3
data can be found in Fig. 6.
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The inversion of B can be analytically calculated in a similar
manner.

Appendix B. Derivation of H and (3.17)

The linearized operator H for (3.15) is a T (r�1)⇥r(r�1) block-
diagonal matrix with r � 1 sub-blocks, each of which has a size
of T ⇥ r . The jth block of H , denoted by H(j), for j = 1, . . . , r � 1
is given by

H(j) =

2

664

y
0(0)

y
0(1)
...

y
0(t � 1)

3

775

2

664

`1,j
`2,j

. . .

`r,j

3

775

where y(t) is defined in (2.10) and `(i, j) is given by

`i,j = ehij (`i � ehij )
`2i

and

`i = 1 +
r�1X

k=1

ehik .

To derive (3.17), we differentiate the cost function (3.14) with
respect to h to show that the stationary point h⇤ must satisfy

S
�1(h⇤ � h

o) �
✓

¯@H
@h

◆0
R

�1(y � H(h⇤)) = 0.

The Taylor’s expansion around a point hf is then used to approx-
imate H(h⇤):

H(h⇤) ⇡ H(hf ) + H(h⇤ � h
f ),

where H is the Jacobian evaluated at the point h
f . This leads to

the stationary condition

S
�1(h⇤ � h

o) � H 0
R

�1
✓
y � H(hf ) � H(h⇤ � h

f )
◆

= 0.

After a rearrangement, it can be rewritten by

(S�1 + H 0
R

�1H)h⇤ � S
�1

h
o � H 0

R
�1(y � H(hf )) � H 0

R
�1Hh

f = 0.

By adding and subtracting out S
�1

h
f , we can rewrite the above

equation as

h
⇤ = h

f + SH 0(R + HSH 0)�1(y � H(hf ))
+ (S�1 + H 0

R
�1H)�1

S
�1(ho � h

f ).

Substituting   0 = S and V = H yields (3.17).
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