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Abstract: Reduced order modelling relies on representing complex dynamical systems using
simplified modes, which can be achieved through the Koopman operator(KO) analysis. However,
computing Koopman eigenpairs for high-dimensional observable data can be inefficient. This paper
proposes using deep autoencoders(AE), a type of deep learning technique, to perform nonlinear
geometric transformations on raw data before computing Koopman eigenvectors. The encoded data
produced by the deep AE is diffeomorphic to a manifold of the dynamical system and has a significantly
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embedding is presented as a preprocessing technique. The paper concludes by presenting examples of
these techniques in action.
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1. Introduction

There has been a rapid advancement of computing machinery, scientists acquiring the capability to
analyze large data sets and extract information and data-driven techniques have gathered momentum
with this recent growth. The modern discipline of data-driven sciences can be viewed as a combined
outcome of available advanced mathematical techniques and high performance computing. According
to [1] data-driven discoveries are revolutionizing the modeling, prediction, and control in a diverse
range of complex systems found in turbulence, the brain, climate, epidemiology, finance, robotics, and
autonomy.

As opposed to analyzing the behaviors of complex dynamical systems in terms of the examining
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single trajectories, it has become possible to empirically discuss global questions in terms of evolution
of density. Apart from the traditional analysis using geometrical techniques, we can analyze the
evolution of dynamical systems using the Frobenius-Perron transfer operator [2]. The left-adjoint
of the Frobenius-Perron operator is the Koopman operator(KO). KO produces the values produced
by a measurement function applied to the dynamical system. Instead of producing the value of the
measurement, it produces a value in future.

The perspective of data-oriented KO analysis for analyzing dynamical systems has recently become
extensively popular and relevant in science and engineering [3–6], and it can be used to interpret
dynamical systems irrespective of them being linear or nonlinear [3]. However, the compromise is
that the finite dimensional nonlinear system may or may not require infinitely many dimensions to
be represented as a linear system. For most of the computation requirements, a small error could be
tolerated. Therefore the infinite dimensionality can be truncated at the cost of reduced accuracy [3].
Furthermore, it explains why the low dimensional dataset could be used to do the same. This paper
brings out a machine learning technique, to reduce the dimensionality of the dataset produced by a
dynamical system using deep autoencoders(AEs).

A good dictionary in this context refers to a set of eigenvectors for an efficient representation of
the dynamical system. When representing arbitrary observable functions by a series of eigenvectors,
there is freedom to define an efficient representation. Choosing the best from the rich and infinite
eigenvectors develops a good dictionary of eigenvectors. The reader is referred to [7–10] for Koompan
mood decomposition as a global analysis of dynamical systems. This can be used for forecast, as well
as to do descriptive decompositions such as growing, fluctuating and decaying components.

The utility of the initial Dynamic Mode Decomposition(DMD) and exact DMD methods as
numerical techniques for computing Koopman eigenpairs persists, as evidenced by their continued
use in research [3, 5, 11, 12]. Several variants of DMD exist, including sparse DMD [13], extended
DMD (EDMD), and those that employ basis vectors to interpret data flow [14, 15]. In machine
learning nomenclature, these basis vectors are commonly referred to as a dictionary of features [3].
Following this direction [16] describes an extended dynamic mode decomposition with optimal
dictionary learning (EDMD-DL). DMD with control laws are introduced in [5,17] and are emphasized
on developing control laws.

In this paper we are developing a computationally efficient way of computing a good dictionary of
Koopman eigenpairs. The technique of computing eigenpairs is based on [3]. Computational efficiency
gain was induced by making a geometric transformation to the data manifold by means of deep learning
techniques. In section 2 we will be presenting the mathematical and numerical foundations that the
Koopman eigenpairs computed. In section 3 the machine learning technique is introduced and in
section 4 examples are presented using the technique. In section 5 the conclusions are derived with a
direction for future developments.

2. Mathematical foundations

2.1. Koopman analysis

First, we review the underlying mathematics of Koopman analysis. Let,

Ẋ = F(X), F : M → R (2.1)
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be a dynamical system. The flow can be stated as a function for each t ∈ R, such that X(t) = ρt(X0)
where X0 = X(0) ∈ M. This means that the trajectory starts at X0 when t = 0. A KO describes the
evolution of observables along the flow [3, 4, 18]. This study is based on analyzing these observables.
Let us call these observables observation functions. With reference to [3], in this work we consider the
observation function to be

g : M → C, (2.2)

where

g ∈ L2(M) =
{

g :
∫

M
|g(s)|2ds < ∞

}
. (2.3)

The scalar observation functions introduced here can be stacked to form vector observations. KO
defines how the observation functions evolve over time along the orbits of the dynamical system.

Definition 2.1. Let ρt be a semiflow. That is, ρt is defined for t ≥ 0. Then, the KO Kt is defined for
L2(M) such that

Kt[g](X) = g ◦ ρt(X), (2.4)

where ρt(X0) = Xt.

In lehman’s terms, for each X we observe the value of an observable g(x), not at x itself, but after
a time t at ρt(X). The KO is linear on L2(M). This may be at the cost of it being infinite dimensional.
Eigenvectors and eigenvalues are studied under the spectral analysis of the KO [4, 18, 19].

Definition 2.2. Suppose ϕλ is an eigenvector of Kt and λ is the corresponding eigenvalue. Then the
eigenpair should satisfy the equation

Kt[ϕλ](X) = btϕλ(X) = eλtϕλ(X), (2.5)

or
Kt[ϕλ](X) = eλtϕλ(X). (2.6)

For each eigenvalue λ there are uncountable eigenvectors. In general, these are not linearly
independent. It is interesting to explore how an observable function can be decomposed into
eigenvectors of the KO.

Definition 2.3. Let g(X) be a vector of observable functions gk(X).

g(X) =
[
g1(X), . . . , gD(X)

]
: M → CD. (2.7)

Suppose g(X) could be written as follows,

g(X) =
∞∑
j=1

ϕλ j(X)v j. (2.8)

Then it follows that,

g(X0) =
∞∑
j=1

ϕλ j(X0)v j. (2.9)
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Apply KO to both sides of the equation,

Kg(X0) = K
∞∑
j=1

ϕλ j(X0)v j (2.10)

g ◦ ρt(X0) =
∞∑
j=1

K
[
ϕλ j

]
(X0)v j, (2.11)

where Xt = X(t).
Since eigenvectors are not unique, the authors are interested in finding an efficient representation

using eigenvectors.

Definition 2.4. In [3], a k-efficient finite set of Koopman eigenpairsare defined as follows. Let{
ψλi(X)

}k
i=1 and

{
ϕλi(X)

}k
i=1 be sets of k unit eigenvectors.

Further, let q be an observable function,

q : M → C. (2.12)

If

min
a
∥

k∑
i=1

aiψλi(X) − q(X)∥ ≤ min
b
∥

k∑
i=1

biϕλi(X) − q(X)∥. (2.13)

then
{
ψλi(X)

}k
i=1 is a set of k-efficient Koopman eigenvectors.

2.2. Computational technique of determining Koopman eigenpairs

The following definition of the eigenvector was rephrased from [3].

Theorem 2.5. Let the Koopman eigenfunciton Partial Differential Equation(PDE) is defined for an
Ordinary Differential Equation(ODE) Ẋ = F(X), with a flow X(r) = ρr(X0) : M × R → M. Assume a
co-dimension 1 [20] initial data manifold Λ ⊂ M is non-recurrent for some time epoch r ∈ [t1, t2], that
contains 0, and is transverse to the flow. Further let U = ∪t∈[t1,t2]ρt(Λ) be the resulting non-recurrent
closed domain. Furthermore, let h : Λ → C be an initial data function, then the Koopman eigenpair
(λ, ϕλ(X)) ϕλ : U→ C has the form

ϕλ(X) = h ◦ s∗(X)eλr∗(X). (2.14)

Now, we present a computational explanation of Theorem 1 of [3]. This is the mathematical
infrastructure of the work presented in this paper.

Suppose Ẋ = F(X) is an ODE satisfying the Koopman eigenvector PDE. Let the corresponding flow
be given by X(r) = ρr(X0) : M × R → M. Further, let Λ ⊂ M be a co-dimension-1 data manifold. We
should pick a time interval where the data values are non-recurrent. Let us call Λ a non-recurrent data
manifold, and Let us assume that the non-recurrent time span is [t1, t2] and 0 ∈ [t1, t2].

If Λ is transverse to the flow, we can define U as follows.

U = ∪t∈[t1,t2]ρt(Λ). (2.15)
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That is, U is the collection of all the trajectories starting from Λ. This includes reverse trajectories
as well. Furthermore, let h : Λ → C be an initial data function. Then, an eigenpair (λ, ϕλ(X)) satisfies
the equation 2.14 where

r∗(X) = {t : ρ−t(X) ∩ Λ , ϕ} (2.16)

and
s∗ = s ◦ ρ−r∗(X)(X), (2.17)

where s is the parametrization of Λ. That is, s is the data function available on Λ.
The exercise of [3] was to introduce this formulation and introduce the algorithm to numerically

compute h and optimal λ for a given stream of data.
Following is a summary of the numerical algorithm described in [3].
Suppose q ∈ L2(U) be an arbitrary data function. q : U→ C. Let,

ψ = argminλ,h∥ϕλ,h − q∥2L2(U) (2.18)

be the eigenvector that closely estimates q. ψ : U→ C. It is worth noting that the optimization is over
both λ and h. Furthermore,

argmaxλ,h
(
q, ϕλ,h

)
= argminλ,h∥ϕλ,h − q∥2L2(U), (2.19)

where
∥ f ∥L2(U) =

∫
U

f (X)dX (2.20)

and
( f , g) =

∫
U

f (X)g(X)dX (2.21)

for any f , g ∈ L2(U).
Let us explain an example scenario for a 2-dimensional dynamical system. The algorithm can

be generalized to larger dimensions limited only by the computational resources, then Λ becomes 1-
dimensional since it should be co-dimension 1. Let s0 < s1 < · · · < sn be a uniform partition of Λ. The
data function h : Λ→ C could be indexed accordingly as

hi := h(si), (2.22)

We will consider a uniform grid of time as well, r0 = 0 < r1 < · · · < rm . That is, m + 1 is the
number of equal time steps. Then, the grid points can be identified as follows: si, j = ρr j ◦ x(si), 0 ≤ i ≤
m, 0 ≤ j ≤ m.

In terms of the grid, the optimization problem in equation 2.18 for the function ψ(x) represented on
the grid ψ ◦ x(si, j) is approximated by solving the finite rank least squares problem,

ψ̃ = argminh∥ϕλ,h ◦ x(si, j) − q ◦ x(si, j)∥2F = argminhi

m∑
j=1

n∑
i=1

|eλr jhi − qi, j|
2. (2.23)

On this grid, both functions q and p̃siλ,h can be sampled at ρr j ◦ x(si).
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Let qi, j = q(si, j) for 0 ≤ i ≤ n, 0 ≤ m. In [3], for distance the Frobenius norm [21] is used.
We can rewrite the optimal initial data as an n × 1 vector h0(λ) ∈ Cn. The problem restatement is as

follows.
Let us define the m × 1 vector E(λ) as E(λ) =

[
eλr0 eλr2 . . . eλrm

]
∈ Cm.

Then, A(λ) = E(λ)⊗ In where ⊗ is the Kronecker product. Furthermore, let b be the vector received
by reshaping the matrix q ∈ Cn×m into a vector of shape mn × 1. That is, b = reshape(q,mn, 1).

Then h0(λ) is computed by solving the least squares problem,

h0(λ) = argminh∥A(λ)h − b∥2. (2.24)

It is noticed that q = q(si, j) is a grid of values. It follows that

p0(λ) = A(λ)h0(λ). (2.25)

Thus, ψ̃0
1 = reshape(p0(λ), n,m).

That is, in order to produce the optimal eigenvector, p0(λ) is being reshaped.
ψ̃0

1 is the eigenvector computed by carrying out the computation once. This can be successively
done to reduce the residuals.

Therefore, we can call the residue at the kth iteration Rk,
then

Rk = b −
k∑

i=1

p0
i , (2.26)

and the successive eigenpairs can be computed by using

(λ0
k+1, λ

0
k+1) = argminλ,h∥A(λ)h − Rk∥2, (2.27)

ψ̃0
k+1 = reshape(p0

k , n,m), (2.28)

3. Manifold learning

In [20] and [22], a manifold is described as a collection of charts called an atlas. Each chart maps
a subset of the manifold to the Eucledean Space with an invertible map and these subsests could
have intersections that are not empty. The invertible maps should be consistent in the nonempty
intersections. Furthermore, a manifold is a topological space that is Locally Eucledean [20].

3.1. Manifold hypothesis

The manifold hypothesis is the assumption that higher dimensional data lies on lower dimensional
manifolds embedded within the high-dimensional space [23, 24]. This is due to the belief that high
dimensional data could be generated from a low-dimensional dynamical system. Specifically in the
context of a dynamical systems, orbit data may be attracted to a stable invariant manifold, which
occurs in certain systems where dissipation leads to the potential of a reduced order model. A
collection of techniques developed to identify such a low-dimensional manifold using the available
high-dimensional data is called manifold learning. For a comprehensive study of the manifold
hypothesis and its mathematical consequences, the reader is referred to [23].
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3.2. Manifold learning

Among the handful of manifold learning techniques, there are techniques such as isometric feature
mapping (ISOMAP), locally linear embeddings (LLE), Laplacian eigenmaps, diffusion maps, nonlinear
principal component analysis which stand out from the rest. While introducing manifold learning, [25]
introduces it as an algorithmic technique for dimensionality reduction. In paper [26], a geometric
framework for nonlinear dimensionality reduction is introduced. The authors claim that their technique
efficiently computes the global optimal and is guaranteed to converge asymtotically to the true
structure. For a comprehensive study of LLE, the reader is referred to [27]. For treatment of ISOMAP
algorithms and Laplacian Eigen Maps the interested reader is referred to [28] and [29], respectively.
However, this investigation is more concerned about manifold learning using deep learning techniques.
Following is a concise empirical study of deep learning based manifold learning in various engineering
applications. For a more descriptive treatment on the topological point of view of manifold learning,
refer to [22].

3.3. Mathematical foundations of manifold learning

Dimensional reduction of the data is the main application of manifold learning. The data, which is
to be dimensionally reduced, is assumed to be generated from a lower dimensional submanifold [30].
A d-dimensional manifold M has the property that for all x ∈ M, there is a neighborhood Xx ⊂ M
of x such that Xx is homeomorphic to an open set Θx ⊂ R

d, where Rd is the d-dimensional Euclidean
space [31]. Then, Θx can be called a local coordinate of Xx [31].

Since M =
⋃

x∈M
Xx where {Xx|x ∈ M} is an open covering of M, we can find a homeomorphism

ϕx : Xx → Θx for all x ∈ M. Then, for all x ∈ M, we have ϕx(Xx) = Θx. Therefore,
{Θx|x ∈ M} can be represented as {(Xx,Θx)|x ∈ M}. The set of homeomorphisms {ϕx}x∈M need not
be unique [31]. This leads to the observation that learnt manifolds need not be unique. Suppose
X = {X1, X2, . . . , XN} ⊂ M ⊂ Rd′ be the set of observable data vectors. Let Y = {Y1,Y2, . . .YN} ⊂ R

d be
the reduced dimensional vectors where d′ > d. It can then be concluded that the observable data was
generated by a d-dimensional dynamical system. We find the homeomorphism ϕ : X → Y , such that
ϕ(Xi) = Yi for 1 ≤ i ≤ N is the process of manifold learning.

Even though the previously surveyed techniques can be used for manifold learning, this
investigation is interested in deep learning techniques. The deep learning techniques are favorable
in real time computing and the learnt deep neural network can be used to uncover the intrinsic local
coordinates. This ability comes as a consequence of the results of this investigation.

Following is a concise survey of applications of deep manifold learning. While introducing the
phrase deep manifold learning (DML) for the deep learning of hidden lower dimensional manifolds,
[32] represents a framework of DML for action recognition using convolutional neural networks. In
their paper on image set classification, [33] introduces a technique for Riemannian manifold deep
learning. This paper also provides a summary of previous efforts on Riemmanian manifold learning.

3.4. Autoencoders

AEs have become a standout machine learning method to find a reduced order model in an invariant
manifold within an artificial neural network framework, including dynamical systems with stable
reduced order models [34, 35]. Figure 1 depicts a basic neural network topology of a deep AE.
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Figure 1. Graphical depiction of a simplified deep AE.

AEs were first proposed and formulated by the PhD thesis of Y. LeCun [36]. These are traditionally
used for dimensionality reduction [37]. Based on the formulation of [38], the mathematical foundation
of an AE can be viewed as the recursive formula 3.1. The mathematical foundation of the neural
networks can be found in [39].

x(l) = g
(
b(l−1) +W (l−1)x(l−1)

)
(3.1)

Let K(l) denote the number of neurons in each layer where l = 1, 2, 3, . . . , L. Let the output of
neuron k in layer l be x(l)

k , and the vector of all outputs for this layer be x(l) =
(
x(l)

1 , x
(l)
2 , x

(l)
3 , . . . , x

(l)
K(l)

)′
. In

each node, a nonlinear activation function g(·) is applied further to the linear operation. In the recursive
equation 3.1, W (l−1) is a K(l) × K(l−1) matrix of weight parameters and b(l−1) is a K(l) × 1 vector of bias
parameters [38]. For this work, ”sigmoid” and ”ReLu” [40] were proven to be acceptable activation
functions. We decided to do our experiments with sigmoid consistently.

AEs, in general, takes the form Z = h(X) and X̂ = g(Z), where X̂ is the output of the neural
network. Vector value Z is known as the latent vector, which is the encoded/transformed form of X.
Transformation g is meant to invert the transformation h. Therefore, ideally, g = h−1. The loss function
of the neural network is a function of ∥X̂ − X∥. We used the mean squared error as the loss function,

L =
1
N

N∑
i=1

∥X̂ − X∥2. (3.2)

Subsequently, L is minimized using the gradient descent over a multitude of iterations.

3.5. AEs for reduced order modeling

Full order models require increased utilization of resources. The main goal of a reduced
representation is to capture the essential physical features of a system and project them onto a lower-
dimensional space or manifold in a way that preserves as much information as possible, while still

AIMS Mathematics Volume 9, Issue 1, 998–1022.



1006

allowing for meaningful comparisons to be made with a full-order model (FOM). This approach is
therefore called reduced order modeling (ROM) [41]. There have been many attempts in developing
ROMs for dynamical systems [42–44]. Compiling a ROM for a complex dynamical system can be an
exceedingly arduous task due to the inherent complexity of the system. The projection-based ROM is
one of the earliest and most widely used techniques for ROM. This method involves transforming the
original space into a lower-dimensional space using the governing PDEs of the physical system [45].
For an elaborate introduction of the dimensionality of the ROM, the reader is referred to [46].

Proper orthogonal decomposition (POD) is a widely used projection-based ROM technique,
particularly in the field of computational fluid dynamics. It involves decomposing the original data
into a set of orthogonal modes that capture the dominant dynamics of the system. For those interested
in delving deeper into the topic of POD, we recommend referring to the following seminal works:
[47–49]. Principal component analysis (PCA) [50] is a comparable method to POD, which gathered
momentum due to the availability of the computing resources. Empirical orthogonal functions [51],
Karhunen-Loeve expansion [52] are also similar techniques for ROM. According to [53] these ROM
techniques utilize the eigen-decomposition of the snapshot matrix using singular value decomposition
(SVD).

DMD is a ROM technique, that is popular in modeling physics-based systems using their spatio-
temporal coherent structures [11]. DMD is being used for a wide range of applications [1], image-
processing [54], neuroscience [55], and Robotics [56] to name a few. Koopman operator theory (KOT)
itself has direct connections to DMD. Initially KOT was used for the characterization of the dynamics
of the Hamiltonian functions [57]. EDMD was used in [16] to decompose the KOT for the analysis of
a nonlinear dynamical system. A matching dynamical system was formed using the Koopman operator
by decomposing the operator using EDMD in [58].

4. Examples

Now, we provide a couple of worked examples of the developed theory.

4.1. Example 1: Van der Pol Oscillator

We use the Van der Pol(VdP) oscillator as the first example for simulation. The VdP is an oscillator
with nonlinear damping [59]. The first step of the process is to simulate trajectories of the VdP. In
order to simulate geometric transformations using deep AEs, we considered a complete cycle of each
trajectory. These trajectories are similar to what was depicted in Figure 2. The original trajectories lie
on a 2 dimensional plane. We projected these trajectories to a 3 dimensional space using the mapping

x̄1

x̄2

x̄3

 =


x1

x2

x2
1 + x2

2

 . (4.1)

This transforms 2d trajectories to trajectories in 3d. These projected trajectories are depicted in Figure
2. At this, state the dynamical system is treated as a 3 dimensional system. The next step would be
to reduce the order of the model to 2. We did it using a deep-autoencoder (DAE). Following is a brief
description of the DAE that we tuned for this particular system. For implementing the deep neural
network, we used Keras, which is based on Tensorflow. Both of these were programmed using the
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python programing language. The DAE had the latent vector size of 2, consistent with our goal. We
received optimal results when the first and second hidden layers had the sizes of 100 nodes each. These
two hidden layers are the encoder. The decoder, which is the neural network after the latent vector,
has the same architecture as the encoder. Optimal results were received when Sigmoid was used as the
activation function. Comparably similar results were achieved when rectified linear unit (Relu) was
used as the activation function. tanh and softmax functions did not provide comparably similar results.
These two functions were rejected after visually inspecting the resulting reduced order trajectories, as
all the layers in the neural network were dense. As a normalized practice, the networks were trained for
2, 000 epochs throughout the study. Before feeding into the neural network for training, each stream
of data has to be scaled from 0 to 1. The scaled 2 dimensional trajectories are depicted in Figure
3. There are many trajectories, each with a different initial point. The nature of the VdP is that they
converge to a stable limit cycle. The range of initial points are depicted by the anomaly at around
points (0.9, 0.5) and (1, 0.5) in Figure 3. All the trajectories, initiated from the range of different initial
points, eventually converge to the stable limit cycle and stay on it. Therefore, it is sufficient to simulate
one initial period. The transformed trajectory is depicted in Figure 4. There is no guarantee that the
transformed trajectory will always be this. Even with the original trajectories being the same, the AE
might converge to a different local minimum of the error producing a different transformation. Finding
a geometric transformation using a DAE is a trial and error process. With the number of hidden layers,
nodes on each layer, and epochs to train, the activation function may vary with the application at hand.
Therefore, it is to be found and optimized over several iterations during the process of simulation. As
it was intended, the ROM of the VdP has 3 dimensions.

Figure 2. Trajectories from the VdP Oscillator projected onto the 3 dimensions and scaled.
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Figure 3. Scaled trajectories from the VdP Oscillator.
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Figure 4. Transformed trajectories from the VdP Oscillator.

4.2. Reduced order modeling for Koopman eigenpair computation

Now, we move into the analysis of the geometric transformation of the trajectory we used for the
Koopman eigenpair computation. For the Koopman analysis, we do not need a full cycle of a trajectory.
Therefore, the trajectories are restricted to a shorter time period. The scaled trajectory is depicted in
Figure 5. Again, this is projected to the 3 dimensional space using the same transformation as in the
complete trajectory case which is depicted by Figure 6. The same neural network architecture as for the
previous case was used to autoencode the set of shorter trajectories. The ROM trajectories are depicted
in Figure 7. A closer comparison between Figures 4 and 7 will hint the interested reader that the two
transformations are not equal to each other. For the DAE, the same architecture and hyperparameters
were used as the full trajectory DAE. This guarantees that accuracy is going to converge to a stable
value. The next step is to use the ROM to compute the Koopman eigenvectors and eigenvalues.
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Figure 5. Trajectories from the VdP Oscillator.

Figure 6. Trajectories from the VdP Oscillator projected to 3 dimensional space.
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Figure 7. Trajectories in the transformed geometry.
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4.3. Computing Koopman Eigenvectors with the ROM

The next step is to find Koopman eigenvectors as given by the equation 2.14. Given by the equation
2.17, s∗ is derived as a consequence of the flow of the dynamical system. Therefore, we only need
to determine the optimal eigenvalue λ and the corresponding h of the equation 2.14. To be consistent

with the investigation of [3] we chose the observation function to be q = 3e−
x2
1+x2

2
10 . When each xi is

replaced by zi for i = 1, 2, we get q = 3e−
z2
1+z2

2
10 . In this case, instead of using x1 and x2, we use z1 and

z2, the transformed coordinates to compute the eigen pairs. We computed the first 10 modes or the first
10 eigenvectors and their corresponding eigenvalues. For each mode the corresponding eigenvalue
is the value of λ, which minimizes the error that is depicted in Figure 8. The h(s) vectors for the
first 10 modes are depicted in Figure 9. The absolute error between the sum of eigenvectors and the
observation function decreases with the mode. This is depicted in Figure 10.
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Figure 8. Error vs λ variation through the first 10 modes.
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Figure 9. h(s) of the first 10 modes.

1 2 3 4 5 6 7 8 9 10

Mode

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

M
in

im
u
m

 E
rr

o
r

Minimum Error vs Mode

Figure 10. Minimum error vs. mode.

4.4. Eigenpairs with a different observation function

Now, we change the observation function to q = z2
1 + z2

2. The variation of the error with λ and the
function h(s) for the first 10 modes are plotted in subfigures, Figure 11a and 11b, respectively. The
corresponding minimum error versus mode graph is presented in Figure 12.
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Figure 11. VdP trajectories with q = z2
1 + z2
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Figure 12. Minimum error vs. mode for q = z2
1 + z2

2.

4.5. Example 2: Reaction diffusion

Now, we apply our algorithm to a 1 dimensional reaction diffusion equation that appears in [60].

∂u1

∂t
= D

∂2u1

∂x2 +
1
ϵ

(u2 − f (u1))

∂u2

∂t
= D

∂2u2

∂x2 − u1 + α.

(4.2)
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In the system 4.2, x ∈ [0, 1] and it is subject to Dirichilet conditions,

u1 (x = 0, t = 0) = u1 (x = 1, t = 0)

u2 (x = 0, t = 0) = u2 (x = 1, t = 0) .
(4.3)

We chose to fix ϵ = 0.01 and α = 0.01 for our experiments. For the simulation we have presented,
we used D = 0.0322. The surface plots for u1 and u2 for these parameters are presented in Figure 13,
where x ∈ [0, 1] and 0 ≤ t ≤ 60. It is noted that this reaction-diffusion system produces chaotic [61]
behavior depending on the values of ϵ and D. The trajectories of u1 and u2 at x = 1/2 are graphed
in Figure 14. Even though mathematically there are unaccountably many trajectories between x = 0
and x = 1, computationally this number is countably finite. We used x to be linspace(0,1,100). This
leads to the resulting simulation having 100. When there are 100 trajectories, each for u1 and u2, there
are 200 trajectories in total. Each trajectory from these becomes an input to the DAE. In order for the
machine to learn a reduced order model, the deep neural network has to have at least 4000 nodes in
the first hidden layer. However, the network architecture with (4, 000, 4, 000) did not converge beyond
25% accuracy. Increasing the number of nodes to (10, 000, 10, 000) did not improve the accuracy
significantly. The available computing cloud resources were not sufficient to increase the number of
nodes further. Therefore, we had to look for other means of producing the reduced order model.

The solution we found was to preprocess the data using other means. In particular, we used another
embedding technique using time delayed snapshots of the trajectories.

Figure 13. Surface plots of u1 and u2 of reaction-diffusion PDE.
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4.6. Takens’ time delay embedding

Takens’ theorem provides conditions where we can reproduce the dynamical system using
sequential data from a single trajectory rather than processing all the trajectories in parallel. Since
all the trajectories from the reaction-diffusion cannot be processed together in parallel with available
computing resources, Takens’ theorem can be used to reconstruct the dynamical system using time
delay embedding with one trajectory at a time.

Takens’ time delay embedding was introduced in [62] and provided conditions under which a
smooth attractor can be reconstructed from the observations made with an observable function.
Suppose we have a d-dimensional dynamical system given by a state vector xt, which is continuous.
Further, assume that we have one observable function y(t), which is coupled to all components of xt.
Then, a k dimensional vector of observations can be created by considering k time lagged observations
with period τ of y(t), that is,

[
· · · , yt−2τ, yt−τ, yt, yt+τ, yt+2τ, · · ·

]
, so on and so forth. As k → ∞, the

system becomes deterministic and predictable. Takens’ theorem states that the dynamics of the lagged
vector become deterministic at a finite dimension. The finite dimension is given by k < 2d + 1.

Let us formally present the Takens’ embedding theorem.

Theorem 4.1 (Takens’s Embedding Theorem). Let Ẋ = f (X) be a dynamical system defined on the
manifold M. f : M 7→ M, and f is smooth. Suppose that the dynamics f has the strange attractor [63]
A with Minkowski-Bouligand dimension [64] dA. Using the Whitney’s embedding theorem [65, 66], A
can be embedded in k-dimensional Euclidean space with k > 2dA. That is, there is a diffeomorphism ϕ

that maps A into Rk such that the derivative of ϕ has full rank.

Building on Theorem 4.1, it is possible to construct a vector using only a single trajectory from the
flow of trajectories of 4.2. In the work presented in this paper, each of the trajectories u1 and u2 are
time embedded into a vector of size 5. It is further explained by using the trajectory at x = 1/2. The
values of the trajectory at x = 1/2 are isolated for both u1 and u2. Since the values are discrete, τ is
taken to be the time steps available. Let the time stamp we are considering be t = t0, then the scalar
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u1 (x = 1/2, t = t0) is composed to be a vector given by


u1 (x = 1/2, t0 − 2)
u1 (x = 1/2, t0 − 1)

u1 (x = 1/2, t0)
u1 (x = 1/2, t0 + 1)
u1 (x = 1/2, t0 + 2)


.

[u1 (x = 1/2, t0 − 2) , u1 (x = 1/2, t0 − 1) , u1 (x = 1/2, t0) , u1 (x = 1/2, t0 + 1) , u1 (x = 1/2, t0 + 2)]T .

When both u1 and u2 are considered, it becomes the following vector.



u1 (x = 1/2, t0 − 2)
u1 (x = 1/2, t0 − 1)

u1 (x = 1/2, t0)
u1 (x = 1/2, t0 + 1)
u1 (x = 1/2, t0 + 2)
u2 (x = 1/2, t0 − 2)
u2 (x = 1/2, t0 − 1)

u2 (x = 1/2, t0)
u2 (x = 1/2, t0 + 1)
u2 (x = 1/2, t0 + 2)



.

Then, the trajectories for different x values are fed to the neural network serially.

The first hidden layer had 3, 200 nodes while the second hidden layer had 100 nodes, with a latent
vector size of 6 the network produced an accuracy > 70%. Hence this ROM is of dimension 6. Using
this ROM, the Koopman eigenvectors were computed.

For the simulation of the eigenpair computations, q = 3e−
z2
1+z2

2+z2
3+z2

4+z2
5+z2

6
10 was taken as the observation

function. Similar to the previous experiment, we have produced the graphs corresponding to the first
10 modes.

Figure 15 displays graphs that illustrate how the error changes with the eigenvalue of the initial 10
modes. The binary nature of the graphs are observed again. While the graphs of the odd modes exhibit
a similar shape, the graphs of the even modes display a shape that is different yet similar to each other.
Figure 16 depicts the graphs of the computed h(s) functions of the corresponding modes. It is visible
that there is a “saw-tooth” nature to all the graphs even though there are two distinctive types of graphs.
Figure 17 depicts the error variation with mode. The absolute error is initially around 8.9 but decreases
to slightly below 8.4, where it then remains constant.
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Figure 15. Error vs λ variation through the first 10 modes Reaction-Diffusion PDE.
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Figure 16. h(s) of the first 10 modes reaction-diffusion PDE.
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5. Conclusions and further work

In this paper we brought out deep autoencoding as a technique for uncovering simple geometries
of complex dynamical systems. Autoencoding works as a geometric transformation. The transformed
stream of data is then used to compute a dictionary of Koopman eigenpairs. The technique used to
compute Koopman eigenpairs is different from the conventional technique introduced in the paper [3].
In that conventional technique the eigenpairs are determined, using the data streams as it is presented.
In this paper, we improved on that and computed the eigenpairs using the transformed geometry.

The transformation minimized the vector size of the input data by compressing the data driven
dynamical system into a low-dimensional manifold. This reduced the required computational resources
to compute the eigenpairs. The transformed data stream was then a reduced order model of the full-
order dynamical system.

When the ROM is formed using an AE, there is no mechanism to govern the formulation of the
model according to our need. This is because the autoencoding is an unsupervised learning technique.
To overcome this, a nontrivial loss function can be introduced. This loss function could partly depend
on the latent variables as well as the output of the neural network. Even though this is still unsupervised
learning, the ROM can be governed using a nontrivial loss function, and this will, in turn, lead to less
error in Koopman eigenpair calculations.
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