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ABSTRACT

Classical methods of solving spatiotemporal dynamical systems include statistical approaches such as autoregressive integrated moving aver-
age, which assume linear and stationary relationships between systems’ previous outputs. Development and implementation of linear methods
are relatively simple, but they often do not capture non-linear relationships in the data. Thus, artificial neural networks (ANNs) are receiving
attention from researchers in analyzing and forecasting dynamical systems. Recurrent neural networks (RNNs), derived from feed-forward
ANNs, use internal memory to process variable-length sequences of inputs. This allows RNNs to be applicable for finding solutions for a vast
variety of problems in spatiotemporal dynamical systems. Thus, in this paper, we utilize RNNs to treat some specific issues associated with
dynamical systems. Specifically, we analyze the performance of RNNs applied to three tasks: reconstruction of correct Lorenz solutions for a
system with a formulation error, reconstruction of corrupted collective motion trajectories, and forecasting of streamflow time series possess-
ing spikes, representing three fields, namely, ordinary differential equations, collective motion, and hydrological modeling, respectively. We
train and test RNNs uniquely in each task to demonstrate the broad applicability of RNNs in the reconstruction and forecasting the dynamics
of dynamical systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088748

Learning non-linear systems in nature requires researchers to
solve complicated mathematical equations that often involve
both high computational complexity and less computational
precision.1 Artificial neural networks (ANNs) are a class of algo-
rithms that model underlying relationships of a set of data
through a process that mimics the way the human brain operates.
Data-driven approaches, such as ANNs, are capable of afford-
ing such nonlinear systems with both high efficiency and good
accuracy. ANN models are increasingly popular for two reasons.
First, they guarantee that arbitrary continuous dynamical sys-
tems can be approximated by ANNs with a sufficient amount of
sub-models, which are called hidden layers.2 Second, ANNs them-
selves can be viewed as discretizations of continuous dynamical
systems, which make them suitable for studying dynamics.3 A
recurrent neural network (RNN) is a class of ANNs where the con-
nections between nodes form a directed graph along a temporal

sequence where the output of a hidden node at the current time
step is sent to the corresponding hidden node for the next time
step. Among all the ANN architectures, RNNs are considered
to be the most faithful candidates for modeling and forecasting
temporal data sequences such as time series data. Thus, here, we
implement RNN to reconstruct and forecast data generated by
several nonlinear dynamical systems.

I. INTRODUCTION

Dynamical systems may exhibit dynamics that are highly sen-
sitive to initial conditions, which is referred to as the butterfly effect.
As a result of this sensitivity, which often manifests itself as an
exponential growth of perturbations in the initial conditions, the
behavior of dynamical systems is sophisticated.4 From a historical
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point of view, reconstruction or forecast of dynamical systems, espe-
cially those with spatiotemporal solutions, has been based on the
techniques like linear parametric autoregressive models, moving-
average models, autoregressive moving-average models, etc. All
these models are linear and some of them possess the assumption
that the data is stationary; thus, these models are not able to cope
with complex relationships in the data.5

In recent decades, deep learning based frameworks have shown
superior performance in the reconstruction or forecast of dynam-
ical systems.54,55 Among them, RNNs,6 long short-term memories
(LSTMs),7 neural ordinary differential equations (neural-ODEs),8

and temporal convolutional neural networks (temporal-CNNs)9 are
prominent. RNNs have been successfully applied in diverse research
fields for more than four decades in learning patterns in sequential
data, especially spatiotemporal, that are observed in dynamical sys-
tems. Each RNN unit has one gate to regulate the information flow
to perform recurrent connections between units. RNNs are simple
and less computationally expensive, with respect to both memory
and space, deep learning tools compared to the aforesaid deep learn-
ing tools that were developed during the recent decades. LSTMs are
an extension of RNNs where each LSTM unit has four gates to effi-
ciently regulate the information flow to offer short-term memory
into the ANN.7 LSTMs are widely used in learning spatiotemporal
dynamics of physical systems; however, they are computationally
expensive and easy to overfit the training data due to their four-gate
architecture.10 The general structure of a neural-ODE consists of an
RNN encoder, an ODE solver, and a decoder.11 Neural-ODEs share
some structural similarities to RNNs but they are more computa-
tionally expensive than RNNs, as an RNN is just one module out of
the three modules in a neural-ODE. The main functional difference
between the neural-ODEs and RNNs is that neural-ODEs are capa-
ble of processing uneven time sampling of the data whereas RNNs
are not capable of processing such data.11

A temporal-CNN is a two-step convolutional process such that,
first, it computes low-level features using a CNN that encodes spa-
tial–temporal information, and, second, it passes these low-level fea-
tures into a classifier that captures high-level temporal information
using an RNN.9 Temporal-CNNs offer better control of memory as
they are more flexible in changing their receptive field size by either
stacking more convolutional layers, using larger dilation factors, or
increasing filter size.12 Moreover, a temporal-CNN has a backpropa-
gation path different from the temporal direction of the sequence
which avoids exploding or vanishing gradient problem.12 Since a
temporal-CNN consists of both RNN and CNN modules, it is highly
computationally expensive than an RNN itself. In general, temporal-
CNNs suffer the following deficiencies: (1) they require more mem-
ory during the evaluation as they take in the raw data sequence up
to the effective history length, and (2) it is difficult to change their
parameters for a transfer of the domain. Among all the advantages
and drawbacks pertaining to each of the discussed deep learning
methods above, we emphasize the computational complexity (both
memory and space) and simplicity; thus, we utilize RNNs to perform
reconstructions/forecasts on dynamical systems in this paper.

We utilize RNNs with unique routings of training and testing
to model a general class of dynamical systems since they are con-
sidered to be state-of-the-art machine learning methods for sequen-
tial data. Applications of RNNs include image classification, object

recognition, object detection, speech recognition, language transla-
tion, voice synthesis, etc.13 An ANN usually involves a large number
of parallelly operating processing units that are arranged in layers.
The first layer receives the raw input information analogous to optic
nerves in human visual processing. Each successive layer receives the
output from both the layer preceding it and the same layer, rather
than from the raw input, as analogous to the way that the neurons
further from the optic nerve receive signals from those closer to it.13

The last layer produces the output of the system. RNN possesses
an internal state or short-term memory due to the recurrent feed-
back connections, as seen by directed loops in Fig. 1. This makes
RNN is suitable for modeling sequential data, especially time series.
Moreover, these connections allow well-trained RNNs to regener-
ate dynamics of any temporal nonlinear dynamical system up to a
satisfactory accuracy. Thus, RNN models are widely used to analyze
diverse time series problems including dynamical systems.14 Most of
the complex RNN architectures, such as LSTM7 and Gated Recur-
rent Unit,15 can be interpreted as a variation or as an extension of
the basic RNN scheme.16

The objective of this study is to demonstrate how well RNNs
learn spatiotemporal dynamics of multi-scale dynamical systems.
Our focus is either reconstruct or forecast short-term or long-term
trajectories of a dynamical system of interest with given initial con-
ditions. We use three exemplary datasets that are generated from
three dynamical systems, namely, the Lorenz attractor,17 a general-
ized Vicsek model,18 and a stream flow model, which represent three
diverse fields, ordinary differential equations, collective motion, and
hydrological modeling, respectively. For given orbits that are gen-
erated from a Lorenz system with a formulation error, we train an
RNN to eliminate the formulation error and reconstruct the correct
system’s responses. Then, we generate a collective motion dataset

FIG. 1. Standard single-layer recurrent neural network (RNN), i.e., one-stacked
RNN, architecture. The right-hand side schematic is the unrolled version, with
respect to time, of the left-hand side RNN architecture where the directed loop
represents recurrent feedback between different states of the same layer. Here,

X , whh, and Ŷ represent input, the weights of the recurrent connections, and the
output, respectively. Moreover, for the tth state, while h(t) represents the hidden

state, w
(t)

ih , w
(t)

hh , and w
(t)

ho represent weights between input and hidden layer, states
of the hidden layer, and hidden layer and output, respectively. Note that each state
itself is a conventional artificial neural network; however, the RNN is formed by
linking consecutive states within each layer with a directed edge. This recurrent
feedback accords memory for an RNN through its states (i.e., time steps).
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using the generalized version in Ref. 18, of the classic Vicsek model
in Ref. 19, and create two copies of that, one by imposing some addi-
tive Gaussian noise and the other by deleting some segments of the
trajectories. Here, our goals in these experiments are to eliminate
the additive noise from the noisy trajectories. Finally, we forecast
streamflow data that are naturally highly volatile and consist of
frequent spiky fluctuations.

Low-rank matrix completion (LMC) is a family of linear alge-
braic tools in the domain of machine learning that can be adopted
for low-rank completion of a given partially observed data matrix.
Our previous works in Refs. 18 and 20 present that LMC methods
have significant performance in the reconstruction of fragmented
trajectories because the coordinate matrix representing agents’ tra-
jectories of collective motion is often low-rank due to mutual inter-
actions and dependencies between the agents. Moreover, the orbits
generated from a differential dynamical system, such as a Lorenz
system, by changing the initial conditions are similar to the afore-
said collective motion agents’ trajectories in terms of the low-rank
nature. Thus, we conjecture that LMC can also be used to recon-
struct corrupted orbits of this differential dynamical system. The
state-of-the-art LMC framework given in Ref. 21 guarantees that the
observed segments of the trajectories/orbits in the input coordinates
matrix remain the same as those in the reconstructed dataset while
each unobserved segment of a trajectory is approximated between
given upper and lower bounds. In a similar vein, we have also shown
in Refs. 22 and 23 that the LMC framework in Ref. 21 attains supe-
rior performance in topology recovery of both partially observed
directed graphs and partially observed uncorrected graphs since
graphs are naturally low-rank. In this paper, we employ the afore-
said LMC framework as an alternative technique to RNNs for the
task of corrupted orbits and trajectory reconstruction and then use
its results as a baseline to compare the reconstruction performance
of RNNs.

This paper is structured as follows: In Sec. II A, we present
the architecture and the optimization routine of RNNs for analyz-
ing and forecasting data generated from spatiotemporal dynamical
systems. In Sec. III, we validate the performance of RNNs applied to
three dynamical system datasets representing three fields, ordinary
differential equations, collective motion, and hydrological model-
ing. The analysis conducted using RNNs addresses three unique
issues and solutions for them. Section IV states the discussion that
includes key findings, limitations, future work, and conclusions.
Table I represents the notations used in this paper along with their
descriptions.

II. METHODS

We utilize the deep learning framework RNN available in Ref. 6
to reconstruct and forecast the dynamics of diverse systems, and
then compare RNNs’ reconstruction performance with that of the
LMC framework available in Ref. 21. Thus, first, we present the for-
mulation of RNNs in Sec. II A and, then, present the LMC technique
in Sec. II B.

A. Recurrent neural networks

RNNs are a major class of machine learning tools that are
particularly well suited to work on sequential data. Connections

TABLE I. Notations used in this paper and their descriptions.

Notation Description

Ni Number of nodes in the input layer of an RNN
Nh Number of nodes in the hidden layer of an RNN
No Number of nodes in the output layer of an RNN
N1 Total number of training orbits, trajectories, and

agents
N2 Total number of testing orbits, trajectories, and

agents
K Total number of layers
t Index for time steps where 1 ≤ t ≤ T
k Index for the RNN’s layers where 1 ≤ k ≤ K
n Index for orbits, trajectories, or agents where

1 ≤ n ≤ N
σ , ρ, β Parameter in Lorenz
T Number of total time steps
δ Step size of the generalized Vicsek model
η Corruption level of orbits
σ Standard deviation of Gaussian noise distribution
t Index for time steps where 1 ≤ t ≤ T

ε
(t)
i Noise parameter imposed to the ith agent at the

tth time step

θ
(t)
i Orientation of the ith agent at the tth time step

rd Radius of interaction
r(t) Radius of spiral example
k(t) Angle of rotation of the a spiral at time t from the

initial position

N(t)
i r-radius neighborhood of the ith agent at the tth

time step

x(t) Input vector at time step t

h
(t)
k Hidden state of the kth layer for the tth time step

y(t) Label vector at time step t
bi Bias vector for the input layer
bh Bias vector for the hidden layer

x(t)
n Input vector of nth orbit at time step t (tth point

of nth orbit)
y(0)

n Initial condition of nth orbit

y(t)
n Label vector of the nth orbit at time step t

ŷ
(t)
n Output vector of the nth orbit at time t

corresponding to x(t)
n

u
(t)
i Average direction of motion of the agents in the

neighborhood of N(t)
i

c(t) The tth point on the centroid of the spiral

v
(t)
i Velocity of the ith agent at the tth time step

X Set of all input data

Ŷ Set of all output
Y Set of all label

f Linear transformation in RNN
g Non-linear transformation in RNN
L( · ) Loss function
> Matrix transpose

Chaos 33, 013109 (2023); doi: 10.1063/5.0088748 33, 013109-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

TABLE I. (Continued.)

Notation Description

Wih Weight matrix between the input layer i and the
hidden layer h

Whkhk′
Weight matrix between the hidden layer hk and

the hidden layer hk′

Who Weight matrix between the hidden layer h and
the output layer o

R(t)
j Rotation matrix of the jth agent at the tth time

step

between nodes form a directed graph along a temporal sequence that
can be used to learn nonlinear dependencies of a system over time.24

In its most general form, an RNN can be seen as a weighted directed
graph that contains three different kinds of nodes, namely, the input
nodes, hidden nodes, and output nodes.25 As seen in Fig. 1, where
we represent the structure of a simple RNN with one layer, input
nodes do not have incoming connections and output nodes do not
have outgoing connections, but hidden nodes have both. By RNN’s
design, two different nodes that are either at the same time level or
at different time levels can be connected by an edge, as seen in Fig. 2.

FIG. 2. Standard stacked recurrent neural network (RNN) architecture of hav-
ing three layers, i.e., three-stacked RNN. The right-hand side schematic is the
unrolled version, with respect to time, of the left-hand side RNN architecture where
directed loops represent recurrent feedback between different states of the same
layer. Here, X , whkhk

, and Y represent input, the weights of the recurrent connec-
tions of the kth layer, and the output. For the tth state, where 1 ≤ t ≤ T for some

T , x(t), h
(t)

k , and ŷ(t) represent the input vector, the hidden state of the kth layer

where 1 ≤ k ≤ K for some K, and the output vector, respectively. Moreover, w
(t)

ih1
,

w
(t)

hkhk′
, and w

(t)

h3o
are the weights between input and hidden layer 1, hidden layer

hk and hidden layer hk′ , and hidden layer 3 and output, respectively. For the kth

layer, w
(t)

hkhk
represents the weight between two consecutive states.

An RNN has a memory that stores knowledge about the data
sequence that it has already seen, however, its memory of inter-
nal states through iterations is short-term.26 By applying activation
functions (also called, transfer functions) to previous states and
inputs, RNNs compute new states. Typical activation functions in
RNNs include sigmoid, hyperbolic tangent, and ReLU; however, sig-
moid and hyperbolic tangent encounter vanishing of the gradient
in the optimization step.27 Properly customized RNNs with the best
activation function and the best number of hidden nodes can cap-
ture the dynamic of any nonlinear system up to a high precision.28

The model capacity and flexibility for learning non-linear systems
can be increased by a multi-layer recurrent structure.29 By this
multi-layer structure, the hidden output of one recurrent layer can
be propagated through time and is used as the input data to the
next recurrent layer. In our study, we used three-stacked RNNs (or
recurrent layers) as seen in Fig. 2.

1. Architecture of RNNs

For simplicity, we formulate an RNN with only one hidden
layer, i.e., a one-stacked RNN, as shown in Fig. 1. We denote the
number of nodes in the input layer, hidden layer, and output layer
as Ni, Nh, and No. For the tth state, the weight matrix from input to

hidden layer is denoted as w(t)
ih ∈ R

Ni×Nh , the weight matrix between

hidden layer as w(t)
hh ∈ R

Nh×Nh , and the weight matrix from the hid-

den layer to the output layer as w(t)
ho ∈ R

Nh×No . Moreover, for the tth

state, we denote the bias vector for the input layer as b
(t)
i ∈ R

Ni and

the bias vector for the hidden layer as b
(t)
h ∈ R

Nh . Here, we develop
the formulation for the tth state, where 1 ≤ t ≤ T for some T, i.e., for
the tth ANN, in the RNN. The input x(t) of the tth state is multiplied

with w(t)
ih , and summed that with b

(t)
i , i.e., w(t)

ih x(t) + b
(t)
i , to get the

flow of information from the input to the hidden layer. Similarly, the
information flow by the recurrent feedback from the hidden node of

the (t − 1)th state to that of the tth state is w(t−1)
hh h(t−1) + b

(t−1)
h . The

hidden state h(t) of the tth state is the sum of the above two informa-
tion flows passing through a nonlinear transformation, say f, such
that

h(t) = f
(

w(t)
ih x(t) + b

(t)
i + w(t−1)

hh h(t−1) + b
(t−1)
h

)

, (1)

where f is the activation function of the neurons which is usually sig-
moid or hyperbolic tangent. The information flow from the hidden

layer of the tth state to its output, i.e., w(t)
hoh(t) + bo, is composed with

another transformation, say g, to get the output, say ŷ
(t)

, of the RNN
such that,

ŷ
(t)

= g
(

w(t)
hoh(t) + b(t)

o

)

, (2)

where g is linear in general. For all t’s, h(t) is usually initialized with
a vector of zeros. The explicit correspondence of Eqs. (1) and (2)
with the RNN’s architecture, helps us adopt spatiotemporal notion
of RNNs using so-called finite unfolding in time with shared weight
matrices.30
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By learning the formulation pattern in Eqs. (1) and (2), we
derive the formulation for a stacked RNN with K hidden layers. Note
that Fig. 2 provides the architecture for such an RNN with K = 3,

i.e., three-stacked RNN. For the tth time step, let x(t), h
(t)
k , and y(t)

represent the input vector, the hidden state of the kth layer, and the
output vector, respectively. We denote the number of nodes in the
input layer, kth hidden layer, and output layer as Ni, Nhk

, and No.

Moreover, w(t)
ih1

∈ R
Ni×Nh1 , w(t)

hkhk′
∈ R

Nhk
×N

h′
k , and w(t)

h3o ∈ R
Nh3

×No

are the weights between the input and hidden layer 1, hidden layer hk

and hidden layer hk′ , and hidden layer 3 and the output, respectively.
Similar to Eq. (1), the tth state of the first hidden layer of the RNN
is sent through a nonlinear activation function f along with both the

input x(t) and the (t − 1)th state of the first hidden layer, h
(t−1)
1 , as

h
(t)
1 = f

(

w(t)
ih1

x(t) + b
(t)
i + w(t−1)

h1h1
h

(t−1)
1 + b

(t−1)
h1

)

, (3)

where b
(t)
i is the bias vector for the input at the tth state and b

(t−1)
h1

is

the bias vector for the first hidden layer at the tth state. The hidden

state, h
(t)
k for k = 2, 3, . . . , K of the tth state is based on both its tth

state at the previously hidden layer, i.e., h
(t)
k−1, and the (t − 1)th state

of the same hidden layer, i.e., h
(t−1)
k , as

h
(t)
k = f

(

w(t)
hk−1hk

h
(t)
k−1 + b

(t)
hk−1hk

+ w(t−1)
hkhk

h
(t−1)
k + b

(t−1)
hkhk

)

, (4)

where b
(t)
hk−1hk

is the bias vector for the (k − 1)th hidden later at the

tth state and b
(t−1)
hkhk

is the bias vector for the kth hidden layer at the

(t − 1)th state. The output of the tth state, say ŷ
(t)

, is only based on
its Kth hidden layer such that,

ŷ
(t)

= g
(

w(t)
hKoh

(t)
K + b

(t)
hKo

)

, (5)

where b
(t)
hKo is the bias vector for the Kth hidden layer at the tth

state. The stacked RNN’s initial hidden states h
(0)
k , . . . , h(T)

k should
be initialized for each layer k. All the weight matrices and bias vec-
tors are optimized using the gradient descent method according to a
straightforward backpropagation through time (BTT) procedure.31

2. Optimization of RNNs

Training an RNN is mathematically implemented as a mini-
mization of a relevant reconstruction error, widely called the loss,
function with respect to weights and bias vectors of Eqs. (3)–(5).
This optimization is carried out in four steps: first, forward prop-
agation of input data through the neural network to get the out-
put; second, calculate the loss between forecasted output and the
expected output; third, calculate the derivatives of the loss function
with respect to the ANN’s weights and bias vectors using BTT; and
fourth, adjusting the weights and bias vectors by gradient descent
method.32

BTT unrolls backward all the dependencies of the output on the
weights of the system,33 which is represented from the left side to the
right side in Figs. 1 and 2. We train the RNN by one data instance,
say instant n, at a time; thus, we formulate the loss function of
RNNs as a normalization over all the training data instances, say N1.
We denote the nth input data instance as xn = [x(1)

n , . . . , x(T)
n ] ∈ X,

where X represents the set of all the input data, and the correspond-

ing output as ŷn = [ŷ
(1)
n , . . . , ŷ

(T)

n ] ∈ Ŷ, where Ŷ represents the set
of all the outputs. We denote the label of the nth input data as
yn = [y(1)

n , . . . , y(T)
n ] ∈ Y, where Y represents the set of all the labels

for the input data. The loss function, denoted by L, is defined as the
normalized squared difference between labels and RNN’s output,

L
(

Ŷ, Y
)

=
1

|Y|

∑

yn∈Y

(ŷn − yn)
2
, (6)

where the cardinality |Y| is defined as the number of data instances
in the set Y. We use BTT to compute the derivatives of Eq. (6) with
respect to the weights and bias vectors. We update the weights using
the gradient descent based method, called Adaptive Moment Esti-
mation (ADAM).34 ADAM is an iterative optimization algorithm
that is widely used in modern machine learning algorithms to min-
imize loss functions where it employs the averages of both the first
moment gradients and the second moment of the gradients for com-
putations. ADAM generally converges faster than standard gradient
descent methods and saves memory by not accumulating the inter-
mediate weights. After the training is over, we input the erroneous
testing orbits or noisy testing trajectories, a total of N2, and compute
their corresponding true representations.

B. Low-rank matrix completion

Here, we present the formulation of the LMC technique avail-
able in Ref. 21 since it is the baseline for comparison against RNNs.
In this study, each training orbit, i.e., the true orbit, or each training
trajectory, i.e., the true trajectory, of a total of N1, consists T total
time steps such that the nth orbit or trajectory at the tth time step

is denoted by y(t)
n =

[

y(t)
n,1, y

(t)
n,2, y

(t)
n,3

]

∈ R
3. The vector representing all

the coordinates of an orbit or a trajectory is denoted as

yn =
[

y(1)
n , . . . , y(T)

n

]>
∈ R

3T×1, (7)

where > denotes the transpose. The dataset of all the true orbits or
the true trajectories is given as

Y =
[

y1| · · · |yN1

]

∈ R
3T×N1 , (8)

which are the training labels for the RNNs in Sec. II A. Similarly, we
denote the total set of N2 erroneous testing orbits or noisy testing
trajectories as X such that

X =
[

x1| · · · |xN2

]

∈ R
3T×N2 , (9)

which is the input test data for the RNN in Sec. II A. The data matrix
for LMC that we denote as D consists of both the true data given in
Eq. (8) and erroneous data given in Eq. (9) such that

D = [X|Y] ∈ R
3T×(N1+N2). (10)

The LMC scheme in Ref. 21 inputs a low-rank partially
observed or unobserved feature matrix, coordinates matrix D in
our case here, and reconstructs the partially observed or unobserved
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entries of that matrix by utilizing optimization techniques. Using
this LMC technique, we are interested in a low-rank reconstruc-
tion of erroneous orbits and noisy trajectories. The LMC scheme
in Ref. 21 decomposes the data matrix D into a low-rank matrix,
denoted as L, and a sparse matrix, denoted as S, by imposing that the
reconstructed matrix, i.e., (L + S), satisfies user-input lower bound

matrix Bl =
[

bl
1| · · · |b

l
n| · · · |b

l
(N1+N2)

]

3T×(N1+N2)
and upper bound

matrix Bu =
[

bu
1 | · · · |b

u
n| · · · |b

u
(N1+N2)

]

3T×(N1+N2)
. Specifically, while

we set the lower bound equal to the upper bound for the true orbits
or true trajectories, we set carefully chosen unequal upper and lower
bounds for the erroneous orbits or noisy trajectories. In this setup,
the recovered matrix consists of the same coordinates for the true
orbits or trajectories while it consists of LMC approximated the true
versions for the erroneous orbits or noisy trajectories. Let λ ∈ R is
a regularization parameter, the optimization scheme of this LMC
technique is

arg min
L,S

‖L‖∗ + λ‖S‖1, s.t. Bl � D − L − S � Bu, (11)

where ‖ · ‖∗, ‖ · ‖1, and � denote nuclear norm given in
Definition 2, L1 norm given in Definition 3, and pointwise inequal-
ity, respectively.21 The optimization problem in Eq. (11) is convex
and can efficiently be solved for a big number of orbits or tra-
jectories with many time steps on commodity computing hard-
ware using splitting techniques and iterative matrix decomposition
algorithms.21 Numerical implementation of the optimization prob-
lem in Eq. (11) is performed in two steps. First, we write the
augmented Lagrangian function of Eq. (11). Second, we optimize
the augmented Lagrangian function using the Alternating Direction
Method of Multipliers.35

Definition 1 Consider that Diag(σ1, . . . σmin(n,m)) represents
a diagonal matrix formed by the vector (σ1, . . . σmin(n,m)) as
its diagonal. Let L ∈ R

n×m be a real-valued matrix, and Um×m

and Vn×n are two unitary matrices such that U>U = I and V>

V = I, respectively. Then, singular value decomposition (SVD) of
L is L = U6V>, where 6m×n = Diag(σ1, . . . σmin(n,m)). Here, for
j = 1, . . . , min(n, m), σj represents jth singular value (SV) of L and
σj ≥ σj+1; ∀j.

Definition 2 For a given real-valued matrix L ∈ R
m×n, the

nuclear norm of L, denoted by ‖L‖∗, is defined as

‖L‖∗ =

n
∑

j=1

σj, (12)

where σj denotes the jth SV of L computed using Definition 1.
Definition 3 Let S = [sij] ∈ R

m×n is a real-valued matrix,
then the L1 norm of S, denoted by ‖S‖1, is defined as the max of
the column sums such that

‖S‖1 = max
j

n
∑

i

|sij|. (13)

This research focuses on the reconstruction of the true orbits or
trajectories from their corrupted ones. We only retain L of Eq. (11)
while ignoring S since orbits or trajectories are only low-rank and
do not present the sparse component. Thus, we set λ = 0 when we
implement the LMC algorithm in Ref. 21. The last N2 columns of the

recovered matrix L represent the approximations of the true trajec-
tories for the corresponding erroneous orbits or noisy trajectories.
We use these reconstructions to compare the performance of the
RNNs’ reconstructions.

III. PERFORMANCE ANALYSIS

In this section, we seek the solutions for the following three
diverse problems using RNNs: (1) a Lorenz system having a
formulation error, (2) denoising of noisy trajectories of particle
swarms in collective motion, and (3) forecasting of groundwater
streamflow of hydrologic catchments. These three problems, in that
order, represent three fields, ordinary differential equations, collec-
tive motion, and hydrological modeling. The RNN’s solutions for
the first and the second problems are compared with the solutions
generated by an LMC technique available in Ref. 21. The RNN’s
solution for the third problem is compared with the solutions of a
hydrological modeling scheme called GR4J available in Ref. 36.

Here, we use the RNN model available in the machine learn-
ing library Pytorch,37 which requires the parameter inputs sequential
length, input size, learning rate, output size, number of RNNs, and
number of hidden nodes. The sequential length is the length of the
input data sequence, which is T in Fig. 2. The input size is the num-
ber of features or dimensions in the dataset, which is the length of the
vector x(t) in Fig. 2. The learning rate is associated with the ADAM
optimization routing where a large learning rate allows the RNN
to learn faster at a cost of arriving into a sub-optimal final set of
weights. A smaller learning rate may allow the RNN to learn further
optimal or even globally optimal set of weights but may take sig-
nificantly longer time to train. The number of RNNs is the number
of basic RNN units that are stacked together which is equal to the
number of hidden layers, where it is K = 3 in Fig. 2. The number of
hidden nodes is the user input number of nodes at each hidden layer
of the RNN, which is Nhk

for kth hidden layer of Fig. 2. Finding both
the optimal number of RNNs and the optimal number of hidden
nodes could prevent possible over-fitting or under-fitting scenarios
of the RNN’s training process.

A. Lorenz system with a formulation error

The Lorenz system is a chaotic dynamical system38 that is for-
mulated as a set of ordinary differential equations, which is known
for having chaotic solutions for certain parameter values and ini-
tial conditions.39 Here, we assume that we are given a Lorenz system
with a formulation error so our task is to make an ANN to generate
the true solutions related to the input erroneous solutions generated
by the system with the formulation error. The standard Lorenz sys-
tem of the temporal variable t and three spacial variables y1, y2, and
y3 is given by

dy1

dt
= σ(y2 − y1),

dy2

dt
= y1(ρ − y3) − y2,

dy3

dt
= y1y2 − βy3,

(14)
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where σ , ρ, and β ∈ R are parameters. To mimic a formulation
error, we eliminate the term −y2 from Eq. (14) as

dx1

dt
= σ(x2 − x1),

dx2

dt
= x1(ρ − x3),

dx3

dt
= x1x2 − βx3.

(15)

Note that, we replaced the variable y in Eq. (14) with variable x
to distinguish data from two systems. We set σ = 3, ρ = 28, and
β = 8/3 in both Eqs. (14) and (15) since the solutions with these
parameters are well-known for showing chaotic behaviors. For dif-
ferent initial conditions, we solve the system in Eq. (14) and treat
them as training labels for the RNN. Now, we generate the erroneous
solutions for Eq. (15) based on Eq. (14) to use as training data as we
will explain in the sequel. We use the trained RNN to generate the
true solutions for the input erroneous solutions.

We generate 500 random initial conditions, y(0)
n =

(

y(0)
n,1, y

(0)
n,2,

y(0)
n,3

)

where 1 ≤ n ≤ 500, from the uniform distribution U[−15, 15].

We solve Eq. (14) and generate 500 orbits, denoted as N with the
step size, denoted as δ, is 0.01, and the total time steps, denoted as T,
is 5000 (i.e., t ∈ [0, 50] of Eqn. (14)). Here, the nth orbit is given

as yn =
[

y(0)
n , . . . , y(t)

n , . . . , y(5000)
n

]

, where y(t)
n =

[

y(t)
n,1, y

(t)
n,2, y

(t)
n,3

]>

.

Now, we explain the process of generating the erroneous orbit
xn =

[

x(0)
n , . . . , x(t)

n , . . . , x(5000)
n

]

from the above true orbit. For some

t, we treat y(t)
n in the nth orbit as an initial condition for the system in

Eq. (15) and solve it for some time steps, denoted as η, where η < T,
with the same values for the parameters σ , ρ, β , and δ as above. The
parameter η governs the corruption level of the orbits such that a
big value of η contributes a big level of corruption to the orbits. We
treat the last point of the solution set, that is, the ηth point, as the
erroneous solution relevant to the correct point y(t)

n , that we denote
by x(t)

n (see Fig. 3). We carry out this process for each n and generate
the entire erroneous orbit

[

x(0)
n , . . . , x(t)

n , . . . , x(5000)
n

]

. Similarly, we
compute the erroneous orbits corresponding to each of the 500 true
orbits that we generated by changing initial conditions. The first 400
orbits of the system in Eq. (15) are chosen as the training set, and
the corresponding 400 orbits that are derived from the system in
Eq. (14) are chosen as their corresponding labels.

First, we set η = 1 and generate 500 true and erroneous orbits
each with the 5000 time steps as explained above, where the first 400
orbits are used for training while the last 100 orbits are used for test-
ing. In order to avoid both the over-fitting and the semi-convergence
of RNN, the best number of training epochs was chosen by running
the RNN twice as follows: first, we run the RNN with a fixed, but big,
number of epochs to find the epoch number that gives the minimum
loss; second, we re-run the RNN for that many epochs to complete
the training. For the Lorenz system, based on the corruption level
η, the optimum number of epochs ranges between 179 and 930.
We utilize the activation function ReLU as it improves the recon-
struction error about 10 times than that of the hyperbolic tangent
activation function. In order to find the optimal parameters, which
are learning rate, number of RNN, number of hidden nodes; first, we

FIG. 3. For some t′, where 1 ≤ t′ ≤ T , we treat y
(t′)
n in the nth true orbit as the

initial condition for the erroneous Lorenz system and solve it for some time steps,
denoted as η, with the same parameter values used for solving the true Lorenz

system. We consider the last point η, denoted by x
(t′)
n , of the solution set as the

erroneous solution relevant to the true point y
(t′)
n . We carry out this process for

each t′ to generate the corrupted orbit
[

x
(0)
n , . . . , x

(t)
n , . . . , x

(T)
n

]

. Here, η can

be considered as the corruption level of the orbit where a big η contributes a high
corruption.

discretize the parameter space; then, we train and test the RNN with
those discretized parameter combinations; finally, we select the best
values for the parameters that give the least reconstruction error. In
all the experiments, a data batch is equal to the entire dataset. We set
the other parameters of RNN as follows: sequential length to 5000
since each orbit has 5000 time steps; input size to three since each
orbit is three-dimensional; output size to three since the output is
also three-dimensional; the learning rate of the Lorenz orbits to 0.01.

We set the RNN to three hidden recurrent layers with 256
nodes each. For each 1 ≤ n ≤ 400, we input each xn into the RNN
one at a time and generate the corresponding output of the RNN,
denoted as ŷn. We compute the reconstruction error L between
the outputs and the labels using Eq. (6). We use BTT to com-
pute the derivatives of Eq. (6) with respect to the weights and the
bias vectors and update the weights and the bias vectors using
ADAM as explained in Sec. II A 2. The remaining 100 test orbits,
xn where 401 ≤ n ≤ 500, are fed into this trained RNN one orbit at
a time and obtain the recovered solutions, ŷ

(t)
n ; 401 ≤ n ≤ 500. We

repeat the same experiment nine more times with η = 2, 3 . . . , 9.
Figures 4(a)–4(i) show two-dimensional projections of the three-
dimensional true, erroneous, and RNN’s recovered orbits for the
cases η = 1, 5, and 9.
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FIG. 4. Recovery of the true solution of an erroneous Lorenz system using RNNs. Here, all the figures are two-dimensional (y-z plan) projections of the three-dimensional
orbits and η represents the corruption level. Here, while (a)–(c) show three arbitrarily chosen true orbits, (d)–(f) show the erroneous orbits corresponding to them, respectively,
where the green disks represent the starting point and red disks represent the ends. First, we train an RNN and then we pass the erroneous orbits through the RNNs and
recover them as shown in (g)–(i); then, we use LMC and recover the erroneous orbits as shown in (j)–(l). The start and the end points of the recovered orbits by RNN are
close to those of the true orbits whereas the start and the end points of the recovered orbits by LMC are far apart from those of the true orbits. Root mean square errors of
the reconstructions are (RNN, LMC) = (0.07, 0.09), (0.15, 0.32), and (0.27, 0.65) for the corruption levels η = 1, 5, and 9, respectively.

As the baseline for the comparison against the orbit recon-
structed by RNNs, we recover the same erroneous orbits using
LMC that we presented in Sec. II B. For that, the first step is

to prepare the lower bound matrix Bl =
[

bl
1| · · · |b

l
n| · · · |b

l
(N1+N2)

]

and the upper bound matrix Bu =
[

bu
1 | · · · |b

u
n| · · · |b

u
(N1+N2)

]

of

Eq. (11). For a column, say dn, representing a true orbit in

D =
[

d1| · · · |dn| · · · |d(N1+N2)

]

of Eq. (10), i.e., a column in Y, we set

the corresponding columns of Bl and Bu to be equal, i.e., bl
n = bu

n.
Conversely, for a column, say dn, representing an erroneous orbit

in D of Eq. (10), i.e., a column in X, we set a lower bound bl
n as

dn − ζ and an upper bound bu
n as dn + ζ , where ζ ∈ R

+ is a param-
eter that guarantees the true orbit is between dn − ζ and dn + ζ .
Since the orbits generated from the same dynamical system are
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low-rank and our goal is to recover the true orbits correspond-
ing to the erroneous orbits, this problem is considered to be a
low-rank matrix completion problem. Thus, we only require the
low-rank component L of Eq. (11), which we implement by set-
ting the regularization parameter λ to zero. For each corruption
level η, we implement this LMC technique a few times with differ-
ent ζ ’s until we find the best ζ giving the best reconstruction. The
columns in L corresponding to the erroneous columns in D are the
low-rank reconstructions. Figures 4(j)–4(l) show two-dimensional
projections of the three-dimensional LMC’s recovered orbits for the
cases η = 1, 5, and 9.

We observe in Figs. 4(d)–4(f) that due to the formulation error
of the Lorenz system, the erroneous orbits show some shifting of the
initial and the end points from their true locations. This shift does
not only occur at the two extremes but all the intermediate points
are also shifted along the orbit in the same direction. We observe in
Figs. 4(g)–4(i) that the recovered orbits by RNNs have their extreme
points around their true locations. However, Figs. 4(j)–4(l) show
that the recovered trajectories by LMC have extreme points away
from their true locations. Moreover, the LMC’s recovery quality gets
worse than that of RNN’s recovery quality, as η increases. To ana-
lyze the recovery performance with increasing corruption levels, we
compute the normalized root mean square error, denoted by RMSE,
between the recovered and the true orbits as

RMSE =

√

√

√

√

1

|Y|

∑

∀yn∈Y

‖yn − ŷn‖
2
F, (16)

where |Y| denotes the carnality, i.e., the number of observations

FIG. 5. Root mean squared error (RMSE) of the reconstructions, of corrupted
Lorenz orbits, performed by RNNs (blue) and LMC (yellow) vs different levels of
corruption (η). When the corruption level increases, while the RMSE associated
with RNN increases slowly that of LMC increases rapidly.

in the test set, and F denotes the Frobenius norm. Figure 5 shows
the RMSE of the recovery of both RNN and LMC with respect
to the corruption level. Here, we see that the reconstruction error
increases rapidly for LMC with respect to the increase of the cor-
ruption level whereas that increment is not much significant for the
reconstruction by RNNs.

B. Noisy trajectories of collective motion

Analysis of the trajectories of collectively moving agents, such
as fish40 and birds,41 is a highly active field in computer vision.
Tracked trajectories of such agents are often contaminated with
noise due to the causes like insufficient camera precision and lack of
accuracy of the tracking method.20 Here, we use RNNs to reconstruct
the true collective motion trajectories from observed noisy trajecto-
ries. We simulate the collective motion trajectories using a modified
version of a classic self-propelled particle model, named the Vicsec
model.19

Collective motion is defined as a spontaneous emergence of the
ordered movement in a system consisting of many self-propelled
agents. The Vicsek model given in Ref. 19 is one of the widely used
models that describe such behavior. This model performs simula-
tions on a square-shaped region with periodic boundary conditions.
We generate a synthetic collective motion dataset by using the gen-
eralized version presented in Ref. 18 of the classic Vicsek model
where we incorporated a rotational matrix, denoted as R(t)

n . The
agent-wise temporal rotation matrix R(t)

n imposed on the nth agent at
the tth time step allows us to simulate interesting collective motion
scenarios while ensuring the intra-group interactions between the
agents. Based on the average direction of motion of all the particles
in a neighborhood, denoted by N(t)

n , within a radius rd of the nth
particle, the generalized Vicsek model updates the orientation of the
nth particle at the tth time step, denoted by θ (t)

n ∈ [−π , π). There-
fore, the orientation of the nth agent at the tth time step, defined as
θ (t+1)

n , is computed as

θ (t+1)
n = arg

(

u(t)
n

)

+ ε(t)
n , (17)

where ε(t)
n is a noise parameter imposed to the orientation of the nth

agent at the tth time step, and

u(t)
n =

1
∣

∣

∣
N(t)

n

∣

∣

∣

∑

j∈N
(t)
n

R(t)
j





cos
(

θ
(t)
j

)

sin
(

θ
(t)
j

)



 . (18)

The position vector of the nth agent at the tth time step is given as

y(t+1)
n = y(t)

n + v(t)
n R(t)

n

[

cos
(

θ (t)
n

)

sin
(

θ (t)
n

)

]

δ, (19)

where v(t)
n denotes the speed of the nth agent at the tth time step and

δ is the step size. Equations (17)–(19) with R(t)
n = [1, 0; 0, 1] for all

n’s and t’s imply the classic Vicsek model.
We use this rotational matrix to formulate a spiral collective

motion scenario since spiral collective motion is often observed
in nature ranging from biology, such as bacteria colonies,42 to
astronomy, such as spiral galaxies.43 Here, first, we formulate an
anticlockwise Archimedean spiral that rotates at an angle of 3π
and then compute the agent-wise temporal rotational matrix based

Chaos 33, 013109 (2023); doi: 10.1063/5.0088748 33, 013109-9

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

on that spiral. We assume that the two-dimensional coordinates
[

c(1); . . . ; c(t); . . . ; c(T)
]

where c(t) ∈ R
2 represent this spiral such that

c(t) = r(t)

(

cos
(

κ (t)
)

sin
(

κ (t)
)

)

, where

r(t) = 1 +
3

T − 1
(t − 1) and κ (t) =

3π

T
(t − 1)

(20)

for t = 1, . . . , T. Here, r(t) is the variable radius of the spiral where it
changes from 1 to 4 and κ (t) is the angle of rotation with respect to
the origin that varies from 0 to 3π . The rotation angle with respect

to the (t − 1)th coordinates, c(t−1) = [c(t−1)
1 , c(t−1)

2 ]Tr , of this spiral,
denoted by γ (t), is

γ (t) = tan−1

(

c(t)
2 − c(t−1)

2

c(t)
1 − c(t−1)

1

)

, t = 2, . . . , T. (21)

Thus, the two-dimensional rotational matrix for the ith agent at the
tth time step is given by

R(t)
n =

(

cos
(

−γ (t)
)

− sin
(

−γ (t)
)

sin
(

−γ (t)
)

cos
(

−γ (t)
)

)

. (22)

Equations (17)–(19) with the rotational matrix in Eq. (22) pro-
vide the complete formulation of the system generating the spiral
collective motion dataset.

We generate 30 agents {y(t)
n |n = 1, . . . , N; t = 1, . . . , T} using

Eqs. (17), (18), (19), and (22) with 201 for the time steps (T), a rect-
angular domain with periodic boundary conditions. We set two for

the radius of interaction (rd), 0.05 for the speed of the particles (v(t)
i

for all t and i), 0.05 for the noise on the orientation (ε(t)
i for all t and

i), and one for the time step size (δ) [see Figs. 6(a)–6(c)]. Then, we
impose three noise levels sampled from the Gaussian distribution
N (0, σ 2), where σ = 0.2, 0.4, and 0.6, into the original dataset and
make three copies of that [see Figs. 6(d)–6(f)].

Similar to the Lorenz experiment, in order to avoid both the
over-fitting and the semi-convergence of RNNs, the best number of
training epochs was chosen by training an RNN with a fixed, but
big, number of epochs to find the epoch number that gives the min-
imum loss, and then training another RNN with that many epochs.
Based on the noise level of the collective motion trajectories, the
best number of epochs is between 6548 and 14 032. We tested both
the hyperbolic tangent and ReLU as activation functions and found
that the loss with the hyperbolic tangent is smaller than the one
with ReLU. Thus, we set the activation function of the RNN to a
hyperbolic tangent. Similar to Lorenz experiment, to find the opti-
mal parameter values for the learning rate, the number of RNNs, and
the number of hidden nodes, first, we discretize the parameter space,
then, we train and test the RNN with those discretized parameter
combinations, and, finally, we select the best values for the parame-
ters that give the least reconstruction error. Thus, the best learning
rate is 0.0005, the best number of RNNs is two, and the best number
of nodes is 64. Moreover, the other parameters of the RNN are set as
follows: a batch to one trajectory, sequential length to 201 since each
trajectory has 201 time steps, input size to two since each trajectory
is two-dimensional, and output size to two since the output is also
two-dimensional.

For each noise level, we train one RNN with 80%, i.e., 24, of the
trajectories, and test with the rest of them. We input each trajectory
xn into the RNN one at a time and generate the corresponding out-
put of RNN, denoted as ŷn. We compute the reconstruction error
between ŷn and the label yn using Eq. (16). We use BTT to com-
pute the derivatives of Eq. (6) with respect to the weights and update
the weights using ADAM as explained in Sec. II A 2. The remaining
20%, i.e., six, of the noisy trajectories are fed into the corresponding
trained RNN one trajectory at a time and obtain the reconstructions,
ŷn [see Figs. 6(g)–6(i)]. Root mean square errors of the reconstruc-
tions, computed using Eq. (16), are 0.05, 0.08, 0.10 for the noise
levels σ = 0.2, 0.4, and 0.6 of N (0, σ 2), respectively. This test justi-
fies that the RNN’s trajectory reconstruction performance decreases
as the noise level increases.

Similar to the erroneous Lorenz system, we use LMC as the
baseline for the comparison of the reconstruction performance of

RNNs. For the lower bound matrix Bl =
[

bl
1| · · · |b

l
n| · · · |b

l
(N1+N2)

]

and the upper bound matrix Bu =
[

bu
1 | · · · |b

u
n| · · · |b

u
(N1+N2)

]

in

Eq. (11), we set the lower bound bl
n and the upper bound

bu
n as dn − ζ and dn + ζ , respectively, if the trajectory dn of

D =
[

d1| · · · |dn| · · · |d(N1+N2)

]

is a noisy trajectory. Note that
ζ ∈ R

+ is a parameter that guarantees the true trajectory is between

dn − ζ and dn + ζ . Conversely, we set bl
n = bu

n if dn is noise-free tra-
jectory. Here, our goal is to recover the noise-free representations
to the noisy trajectories; thus, this problem is considered to be a
low-rank matrix completion problem as collective motion trajec-
tories are low-rank, which we impose by setting λ = 0 in Eq. (11).
For each noise level σ = 0.2, 0.4, and 0.6 of N (0, σ 2), we implement
this LMC technique a few times with different ζ ’s until we find the
best ζ giving the best reconstruction. The columns in L correspond-
ing to the noisy trajectories in D are the low-rank reconstructions.
Root mean square errors of the reconstructions, computed using
Eq. (16), are 0.05, 0.10, 0.17 for the noise levels σ = 0.2, 0.4, and
0.6 of N (0, σ 2), respectively. Figures 6(j)–6(l) show LMC’s recov-
ered trajectories for the noise levels σ = 0.2, 0.4, and 0.6. The
results evidence that the LMC’s performance decreases than RNN’s
performance as the noise level increases.

C. Spiky time series of rainfall-runoff

We use RNNs to forecast on hydrology data, especially rainfall-
runoff time series that tend to be spiky. Then, compare the RNN’s
results with another forecast produced by a widely used hydrological
model named as GR4J available in Ref. 36. Hydrology data, espe-
cially rainfall-runoff, is highly volatile with frequent spikes so the
hydrologists have been struggling over the past decades to improve
modeling of them.44 GR4J is a daily lumped rainfall-runoff model
proposed to understand hydrologic catchments’ behaviors.36 This
model is characterized by two independent variables, namely, pre-
cipitation (denoted by p) and potential evapotranspiration (denoted
by PET), a dependent variable, namely, streamflow (denoted by q),
and four parameters, namely, the capacity of the production store
(denoted by ν1), ground exchange coefficient (denoted by ν2), the
capacity of the nonlinear routing store (denoted by ν3), and unit
hydrograph time base (denoted by ν4). The GR4J model was used
in combination with the degree-day snowmelt module available in
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FIG. 6. Reconstruction of noisy collective motion trajectories using RNNs. (a)–(c) An original trajectory dataset of 30 agents is generated using a generalized version of the
Vicsek model (all three datasets in a–c are identical). We make three copies of the original dataset by corrupting it with three levels of Gaussian noises with σ = 0.2, 0.4,
and 0.6 of N (0, σ 2) where (d)–(f) show 20% of the noisy trajectories chosen for the testing. We pass the noisy test trajectories in each (d–f) through the corresponding
RNN and denoise them as shown in (g)–(i) where the denoised trajectories are shown in continuous lines while the corresponding original trajectories are shown in dashed
lines with the same colors. Similarly, the noisy trajectories are denoised using LMC as shown in (j)–(l) where the denoised and noisy trajectories are shown in the same color
continuous and dashed lines, respectively. Root mean square errors of the reconstructions are (RNN, LMC) = (0.05, 0.05), (0.08, 0.10), and (0.10, 0.17) for the noise levels
σ = 0.2, 0.4, and 0.6 ofN (0, σ 2), respectively.
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Ref. 45, to account for snow in northern latitudes. This degree-day
snowmelt module has four parameters, namely, threshold temper-
ature (denoted by TT), degree-day factor (denoted by CFMAX),
refreezing factor (denoted by CFR), and water holding capacity of
the snowpack (denoted by CWH). GR4J requires tuned values for
eight parameters in order to produce accurate forecasts. We use
ten years of recent precipitation, evapotranspiration, and stream-
flow data from three arbitrarily chosen U.S. catchments, which
we denote as Site 1 (MOPEX ID is 2365500), Site 2 (MOPEX ID
is 2492000), and Site 3 (MOPEX ID is 7378000), of the model
parameter estimation Experiment (MOPEX) database.46

From the ten recent years, we use the first seven years, i.e.,
day 1–day 2557, for the training and the last three years, i.e., day
2558–day 3653, for the forecasting. For all three hydrological sites,
we follow the same training and forecasting routings and use the
same parameter values in RNNs. Similar to the previous experi-
ments, we utilize hyperbolic tangent as the activation function and
0.001 as the learning rate. We use three-stacked RNNs with 512
nodes at each hidden layer. We utilize a special training and fore-
casting approach here using sliding windows as it aids in sampling
of adequate amount of training data just from the given time series.
We make overlapping windows of the data such that each window
is L days long for some L < 2557 where two consecutive windows
are misaligned by only one day (see Fig. 7 for a special case of

L = 5). Since we vary window size in this experiment such that
L = [5, 15, 30, 45, 60, 10, 240, 365], we train one RNN for each case
of L. Thus, the sequential length parameter of the RNNs is set to the
corresponding value for L one at a time. Since RNN’s input is two
one-dimensional vectors and the output is a single one-dimensional
vector, the input size parameter is set to two and the output size
parameter is set to one. Similar to the previous experiments, in order
to avoid both the over-fitting and the semi-convergence of the RNN,
the best number of training epochs was chosen by running the RNN
with a fixed, but big, number of epochs to find the epoch number
that gives the minimum loss, and then re-running the RNN with
that many epochs to get the results. Based on L, the best number
of epochs is between 99 178 and 99 994. We set 0.001 for the learn-
ing rate, 99 200 for the number of epochs, tanh for the activation
function.

We denote ten years of MOPEX data by
{

xt = [pt, PETt, qt]
>
∣

∣

t = 1, . . . , 3653
}

, where pt, PETt, and qt denote precipitation,
evapotranspiration, and streamflows, respectively, for the tth day.
In this study, [p1, . . . , p2557] and [PET1, . . . , PET2557] are used as
the inputs to the RNN and [q1, . . . , q2557] is used as the labels
during the training process. Specifically, for the first iteration,
we train the RNN with X1 = [p1, . . . , pL; PET1, . . . , PETL]2×L as
the input and Y1 = [q1, . . . , qL]1×L as the labels. Similarly, for
all t ∈ [2, 2558 − L], we train the same RNN with all such Xt’s,

FIG. 7. Using a sliding window approach to train and forecast on RNNs with ten recent years of MOPEX data. Let the data be denoted as
{

xt = [pt , PETt , qt ]
>
∣

∣ t = 1, . . . , 3653
}

where pt , PETt , and qt are precipitation, potential evapotranspiration, and streamflow, respectively, for the tth day. We train
an RNN such that the first seven years of data, i.e., x1 – x2557 (2557 days), is used for the training so that the RNN makes forecasting for the last three years, i.e., x2558 – x3653
(1096 days). We make overlapping windows of the data such that each window is L time steps long for some L < 2557 where this figure shows a special case of L = 5.
Here, p’s and PET ’s are the inputs to the RNN, and q’s are the labels during the training process (see the blue color-bar pairs). For t ∈ [1, 3654 − L], we pass each window
Xt through the trained RNN and model streamflow windows Yt (see the blue-green color-bar pairs). For each t ∈ [1, 3653], the daily modeled streamflow is computed as
the average of the streamflows between the overlapping windows corresponding to the tth day (see the red color-bar). The modeled streamflow for t ∈ [1, 2557] is used to
validate the training performance of the RNN and the modeled streamflow for t ∈ [2558, 3653] is considered the streamflow forecast.
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FIG. 8. RMSE of Site 1 (MOPEX ID is 2365500) for varying window sizes (L)
where the RMSE is computed between the true streamflow and RNN’s forecasted
streamflow. We observe that the least RMSE is attained around L = 50.

where Xt = [pt, . . . , pt+L−1; PETt, . . . , PETt+L−1], and Yt’s, where
Yt = [qt, . . . , qt+L−1] (see the blue color-bar pairs in Fig. 7). Now, we
use this trained RNN to model the streamflow corresponding to pre-
cipitation and evapotranspiration during both the training period
and the forecasting period where the modeled streamflow on the
training period is used to validate the training performance. For that,
we pass each window Xt, where t ∈ [1, 3654 − L], through the RNN
and model the streamflow windows Yt (see the blue-green color-bar
pairs in Fig. 7). For each t ∈ [1, 3653], modeled daily streamflow is
computed as the average of the streamflows between the overlapping
windows corresponding to the tth day. The modeled streamflow for
t ∈ [1, 2557] is used to validate the training performance of the RNN
and the modeled streamflow for t ∈ [2558, 3653] is considered as the
streamflow forecast (see the red color vectors in Fig. 7).

We compute RMSEs between the true and the forecasted
streamflows using Eq. (16) for each widow size L. Figure 8 shows
RMSEs vs window size for Site 1 where we observe the least RMSE
at L = 45. The orange color plots of Figs. 9(a), 9(c), and 9(e) show
the true streamflows and the red color plots of those figures show
the modeled streamflow by RNNs. The RMSEs, computed using

FIG. 9. Comparison of streamflow (q = [qt| ∀t]) forecasting performance between RNN and GR4J for three hydrological sites, named as Site 1 (MOPEX ID is 2365500),
Site 2 (MOPEX ID is 2492000), and Site 3 (MOPEX ID is 7378000). We use ten recent years of data for the study where the first seven years, i.e., day 1–day 2557, are used
for training and the last three years, i.e., day 2558–day 3653, are used for forecasting. Orange color plots in (a), (c), and (e) show the true streamflows, and the red color plots
therein (red color is not much visible as it is underneath of the orange color) show the streamflows modeled by RNN where the vertical black color line separates training
and forecasting periods. The blue color plots in (a), (c), and (e) show the streamflows modeled by GR4J. For a better visual comparison between the modeled streamflows,
we compute the normalized absolute difference between the true and the modeled streamflows that we show by red color plots in (b), (d), and (f) for RNN, and by blue color
plots in (b), (d), and (f) for GR4J. The RMSE between forecasted and observed streamflows of Sites 1, 2, and 3 are 0.9, 1.1, and 2.0 for RNNs, respectively, and are 1.0, 1.3,
and 2.7 for GR4J, respectively.
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TABLE II. Parameter values used in the RNN for each datasets.

Dataset
Sequential

length
Input
size

Output
size

Learning
rate

No. of
RNNs

No. of hidden
nodes

No. of
epochs

Activation
function

Lorenz system with a formulation error 5000 3 3 0.01 3 128 179–930 ReLU
Noise trajectories of collective motion 201 2 2 0.0005 2 64 6548–14 032 tanh
Spiky time series of rainfall-runoff 5–365 2 1 0.001 4 512 99 178–99 994 tanh

Eq. (16), between the true and forecasted streamflows are 0.9, 1.1,
and 2.0 for Sites 1, 2, and 3, respectively.

The eight parameters of GR4J have the recommended ranges as
follows: ν1 ∈ [0, 1000], ν2 ∈ [−5, 5], ν3 ∈ [0, 300], ν4 ∈ [0.5, 5], TT
∈ [−3, 3] , CFMAX ∈ [0, 20], CFR ∈ [0, 1], and CWH ∈ [0.0.8].36,44,45

We uniformly discretize GR4J’s parameter space of the eight param-
eters into 50 000 points, where each point represents a combination
of parameter values. We run GR4J with all of the parameter com-
binations for first seven years of the data where the best param-
eter combination with respect to RMSE is ν1 = 571, ν2 = −0.03,
ν3 = 48, ν4 = 2, TT = −0.20, CFMAX = 4.41, CFR = 0.36, and
CWH = 0.23, for the Site 1. We set the same values for the param-
eters of Site 2 and Site 3 since their optimum parameter values are
either the same or sufficiently close to those of Site 1. We calibrate
the GR4J model with the data for each site and model the streamflow
qt for t ∈ [1, 3653] that we show by blue color plots in Figs. 9(a), 9(b),
and 9(c). The RMSEs between the true and the forecasted stream-
flows are 1.0, 1.3, and 2.7 for Sites 1, 2, and 3, respectively. We
observe that the RMSEs associated with the RNN’s modeled stream-
flows are less than that of the GR4J’s modeled streamflows. GR4J is
a widely used streamflow modeling scheme;47 however, the perfor-
mance of RNN in forecasting of streamflow is capable of exceeding
the performance of GR4J.

For a better visual comparison between the streamflows mod-
eled by RNN and GR4J, we carry out a normalization procedure.
For that, first, for each of the three sites and each of the two meth-
ods RNN and GR4J, we compute the absolute difference between
the true and the modeled streamflows. Then, for each site, we com-
pute the overall maximum of the streamflow modeled by RNN,
denoted as qRNN, and the streamflow modeled by GR4J, denoted as
qGR4J, i.e., max{qall

t ∀t | qall = [qRNN, qGR4J]}. Finally, for each site, we
divide each separate streamflow vector by the site’s overall maxi-
mum which we show in Figs. 9(b), 9(d), and 9(f). We see in this plot
that both RNN and GR4J encounter high errors during the same
time steps; however, the performance of RNN is better than that of
GR4J.

Table II summarizes the parameter values used in RNNs for
each of the datasets.

IV. CONCLUSION

In this paper, we have utilized RNNs for three diverse tasks,
namely, correction of a formulation error, reconstruction of cor-
rupted particle trajectories, and forecasting of streamflow data, in
three diverse fields of dynamical systems, namely, ODEs, collective
motion, and hydrological modeling, respectively. The traditional
approaches to solving spatiotemporal dynamical systems may not

capture non-linear and complex relationships in the data since they
are mostly either linear or non-linear model-based. Such spatiotem-
poral nonlinear systems can effectively be learned by nonlinear and
model-free machine learning techniques such as RNNs as RNNs
possess internal memory that enhances the learning ability.

We used the ODE model Lorenz system to produce two sets
of data such that one consists of the solutions for a correct model
whereas the other consists of the solution for an erroneous Lorenz
model. We observed that, when the erroneous solution was pro-
vided, the trained RNN was capable of producing the corresponding
correct solution better than that of a state-of-the-art LMC technique
available in Ref. 21. This approach can be used for eliminating errors
associated with ODE solvers even when only an imprecise closed-
form solution is available. Future work in this context is to use a
further advanced neural network tool such as LSTM presented in
Ref. 7 as it is composed of three gates that regulate a better informa-
tion flow through the unit. Such an approach enhances the learning
process of spatiotemporal data so that it better aid in eliminating the
formulation error even for longer corrupted orbits.

We used a generalized version of the classic Vicsek model
to generate trajectories imitating a spiral collective motion sce-
nario. We diagnosed the influence of noise contamination on RNN’s
denoising performance. Such noise contamination in collective
motion trajectories can occur due to the causes like less precision
in video cameras and less robustness of the tracking methods.48 The
results evidenced that RNNs are capable of denoising noisy trajecto-
ries while preserving the pattern of the underlying collective motion.
In particular, RNNs performed better than LMC, which has shown
evidence of trajectory reconstruction in the literature.18,20 Thus, such
ANN-based denoising methods can be integrated into multi-object
tracking methods to generate smooth trajectories. As future work,
we are planning to use RNN’s denoised trajectories for the sub-
sequent collective motion analysis tasks, such as phase transition
detection as we presented in Ref. 49.

Streamflow modeling is a sophisticated task in the field of
hydrology due to its high volatility and frequent spikes. GR4J is
a popular tool for streamflow modeling since it has shown trust-
worthy streamflow modeling performance. However, we use RNNs
to model streamflow with a sliding window approach. The slid-
ing window approach is capable of generating a big amount of
homogeneous data from a given time series. Moreover, the sliding
window approach can be used to find the effective sequential length
of the data sample that captures most of the features of the given
time series. Thus, we trained an RNN with sliding windows of the
empirically tested best length and then model streamflow for the
entire time duration. We observed that the RNN’s training process
involves less reconstruction error than that of GR4J. The reason for
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that is RNN is model-free whereas GR4J is model-based, so RNN
has more tendency to adjust to any natural system than that of GR4J.
The observation that the streamflow forecast of RNN is better than
that of GR4J justifies the applicability of RNN for real-life time series
forecasting. We are planning to model streamflow using other well-
known models such as HBV50 and Simhyd51 and then compare those
results with that of RNNs.

Reconstruction or forecasting of high-dimensional time series
data is considered to be a challenging task since learning the pat-
terns underlying the high-dimensional data is rigorous. In this
study, while the spiky rainfall-runoff time series and Lorenz tra-
jectories were three-dimensional each, the collective motion time
series was 48-dimensional. Increasing dimensionality of the time
series reduces the learning performance of RNNs and then it reduces
the reconstruction/forecasting performance. Manifold learning is
a linear algebraic approach for dimensionality reduction that has
shown promising results in machine learning and computer vision.52

Thus, as future work, we propose a manifold learning based dimen-
sionality reduction step in advance to the implementation of the
RNN to reduce the dimensionality of the data. Then, the time
series of reduced dimensions is utilized in the RNN for the recon-
struction/forecast process. We, the authors, have developed diverse
manifold learning based nonlinear dimensionality reduction tools
(see Refs. 40, 52, and 53), which we plan to prepend onto this
RNN framework when the data are high-dimensional. The proposed
hybrid framework will be capable of reconstructing/forecasting
high-dimensional time series data with high fidelity.

RNNs are capable of learning spatiotemporal characteristics of
data derived from dynamical systems that we used for three such
applications representing three fields. The observations based on
our analysis justify that an RNN is an effective machine learning
tool in learning dynamical systems. The internal memory module
in RNNs grants this ability, which is not available in most of the
spatiotemporal dynamic analyzing tools.
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