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Abstract

Causal inference determines cause-and-effect relationships between variables and has broad applications across disciplines.
Traditional time-series methods often reveal causal links only in a time-averaged sense, while ensemble-based information
transfer approaches detect the time evolution of short-term causal relationships but are typically limited to low-
dimensional systems. In this paper, a new causal inference framework, called assimilative causal inference (ACI), is
developed. Fundamentally different from the state-of-the-art methods, ACI uses a dynamical system and a single
realization of a subset of the state variables to identify instantaneous causal relationships and the dynamic evolution of
the associated causal influence range (CIR). Instead of quantifying how causes influence effects as done traditionally,
ACI solves an inverse problem via Bayesian data assimilation, thus tracing causes backward from observed effects with
an implicit Bayesian hypothesis. Causality is determined by assessing whether incorporating the information of the effect
variables reduces the uncertainty in recovering the potential cause variables. ACI has several desirable features. First, it
captures the dynamic interplay of variables, where their roles as causes and effects can shift repeatedly over time. Second,
a mathematically justified objective criterion determines the CIR without empirical thresholds. Third, ACI is scalable
to high-dimensional problems by leveraging computationally efficient Bayesian data assimilation techniques. Finally,
ACI applies to short time series and incomplete datasets. Notably, ACI does not require observations of candidate
causes, which is a key advantage since potential drivers are often unknown or unmeasured. The effectiveness of ACI is
demonstrated by complex dynamical systems showcasing intermittency and extreme events.

Classification: Physical Sciences – Applied Mathematics
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Significance statement

Causal inference is fundamental across scientific disciplines, yet existing methods struggle to capture instantaneous, time-

evolving causal relationships in complex, high-dimensional systems. In this paper, assimilative causal inference (ACI) is

developed, which is a paradigm-shifting framework that leverages Bayesian data assimilation to trace causes backward from

observed effects. ACI solves the inverse problem rather than quantifying forward influence. It uniquely identifies dynamic

causal interactions without requiring observations of candidate causes, accommodates short datasets, and scales efficiently

to high dimensions. Crucially, it provides online tracking of causal roles, which may reverse intermittently, and facilitates a

mathematically rigorous criterion for the causal influence range, revealing how far effects propagate. ACI opens new avenues

for studying complex systems, where transient causal structures are critical.
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Introduction

Causal inference determines cause-and-effect relationships

between variables [28, 27, 36]. It has found wide applications

across different disciplines such as atmospheric and ocean

science, economics, and neuroscience [2, 33, 29]. In addition

to discovering the interactions between variables, causal

inference plays a significant role in model identification, policy

evaluation, and decision-making [31, 5, 37, 49, 34].

Methods for causal inference can be classified into different

categories depending on the available resources for use. On

the one hand, a natural way to identify the overall causal

structures is to exploit multivariate time series, where temporal

dependencies are often utilized to infer causal relationships.

Methods falling into this category include Granger causality

[16], transfer entropy [41, 3], mutual information [11, 15],

convergent cross mapping [43, 26], causation entropy [45,

44], and mixture causal discovery [46]. On the other hand,

models built upon physics can assist in understanding causal

dependence between different variables. Information transfer

based on the ensemble forecast of the underlying model has

been exploited to indicate certain causal relationships for a

short term [22]. In addition, linear response theory, which

infers causal links by analyzing system responses to small

perturbations at the equilibrium, has been utilized to reveal the

attributions of variations in climate systems [23, 13, 18]. Other

recently developed methods include using Koopman operators

for causal discovery [38], causal graphs [20], and approaches

based on machine learning [4, 30, 42].

Nature can be regarded as a complex dynamical system

where only one single random realization from this system

is available. Due to the underlying strong nonlinearity and

multiscale features, such a realization is usually intermittent

and stochastic. Detecting instantaneous causal relationships as

a function of time is crucial for understanding the dynamic

interplay among variables, where the roles of causes and effects

can shift repeatedly over time and at irregular intervals. In

environmental science, extreme events, such as the triggering

mechanisms of hurricanes and the abrupt transitions in

weather patterns, have significant scientific and social impacts.

Understanding the precursor of each extreme event and its

subsequent implications requires real-time tracking of the

causal relationship between them. Likewise, instantaneous

causal analysis is of broad interest in neuroscience to discover

temporary role reversals between brain regions during decision-

making or cognitive tasks. However, most purely data-

driven causal inference methods exploit data points over a

long time series to reveal the average causal directions. In

contrast, purely model-based methods, such as computing

the information transfer in [22], utilize ensemble forecasts

to infer the causal relationship when the system begins

from a given initial condition and evolves towards statistical

equilibrium. Yet, these methods are typically only able to

provide time-dependent results for a very short time and

become computationally challenging as the dimension of the

system increases. Additionally, these model-based methods

often struggle to optimally handle cases with a single observed

realization.

Given the importance of discovering instantaneous causal

relationships, this paper introduces a new framework called

assimilative causal inference (ACI) to compute time-dependent

causal interactions in complex systems. As in many practical

applications, only a single realization of a subset of the state

variables is available as observations. Meanwhile, an associated

model, often turbulent and stochastic, is accessible as a

supplement. Fundamentally different from traditional causal

inference methods, which treat causality as a forward problem

(analyzing how causes propagate into effects), ACI addresses it

as an inverse problem. Using Bayesian data assimilation, ACI

traces causes backward from observed effects by quantifying

whether incorporating information about the effects reduces

uncertainty in reconstructing potential causes.

ACI has several desirable advantages. First, it captures the

evolving interplay among state variables, as their causal and

effect roles can be reversed across time. Thus, ACI provides

direct insights beyond time-averaged causal links, making

it particularly valuable for studying turbulent systems with

intermittency and regime switching. Second, ACI identifies

the causal inference range (CIR), revealing how far causal

effects propagate at each time instant. The framework includes

a mathematically justified criterion to determine the CIR

without empirical thresholds. While the importance of the

CIR has been highlighted in complex networks [35, 50], ACI

offers a unique and general method for its computation in

turbulent systems with varying autocorrelation decay rates.

Third, ACI scales efficiently to high-dimensional problems via

Bayesian data assimilation, which is fundamentally different

from information-transfer methods that are limited to low

dimensions [22]. In addition, ACI can accommodate short

time series and incomplete datasets, which often appear in

geophysics and climate science. Notably, ACI does not require

observations of candidate causes, which is a key advantage

since potential drivers are usually unknown or unmeasured.

Instead, uncertainty reduction in potential causal variables can

be determined solely from the observed effects and governing

dynamical model via Bayesian assimilation. As a final remark,

while data assimilation has been used to assist in detecting the

attribution of weather and climate-related events [17, 7], these

studies primarily focus on estimating the state in response to

specific external perturbations, rather than real-time causal

inference or CIR estimation. ACI also fundamentally differs

from these methods in its integration of data assimilation into

causal inference.

The remainder of this paper is organized as follows. Section

2 presents the ACI framework, followed by the discussion of

CIR in Section 3. Section 4 extends the ACI framework to

account for the presence of non-target variables. Numerical

experiments on various nonlinear complex dynamical systems

with intermittency and extreme events are presented in Section

5. Concluding remarks are contained in Section 6. Additional

mathematical derivations and supplementary test results are

available in the Supporting Information.

The assimilative causal inference (ACI) framework

Setup and notation

Consider a time interval [0, T ] and a specific time instant t,

where 0 ≤ t ≤ T . Let x0≤s≤T and y0≤s≤T be two multivariate

stochastic processes defined over this interval. Denote by x(t)

and y(t) the corresponding multivariate random variables at

time t. For notational simplicity, the dependence on t is

sometimes omitted when referring to these state variables and

no distinction between random variables and their realizations

is made. Let x(s ≤ t) represent one realization of the

stochastic process x0≤s≤T as a time series over the interval

[0, t]. Similarly, x(s ≤ T ) denotes a realization of x0≤s≤T

as a time series over the entire interval [0, T ]. For simplicity,

© The Authors. All rights reserved.
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the time series are assumed to be continuously observed. An

analogous framework can be developed for discrete-in-time

observations. Throughout this paper, the time series is assumed

to be free of observational noise.

According to Granger’s predictive causality or its nonlinear

extension, transfer entropy, y is the cause of x if the knowledge

of y(s ≤ t) improves the prediction or reduces the uncertainty

of x(t) [16, 41, 3]. Using information theory, this can be

expressed as:

S
(
p(x(t)|y(s ≤ t))

)
< S

(
p(x(t))

)
, (1)

where S(·) is Shannon’s entropy and the history of the target

variable in the conditioning, i.e., x(s < t), is omitted in (1) for

notation simplicity.

Causal discovery from a Bayesian inverse problem viewpoint

The above argument can be interpreted in a reverse way,

from the perspective of statistical inference through an inverse

problem in uncertainty quantification. If x is the subsequent

effect of y(t), then knowing future information about x reduces

the uncertainty in inferring the current state of y:

S
(
p(y(t)|x(s > t))

)
< S

(
p(y(t))

)
. (2)

Further including the past information of x on both side yields

S
(
p(y(t)|x(s ≤ T ))

)
< S

(
p(y(t)|x(s ≤ t))

)
, (3)

which does not change the causal relationship in (2).

A notable feature of (3) is that it establishes a connection

between causal discovery and Bayesian data assimilation.

Suppose the underlying turbulent and potentially stochastic

model governing x and y is known. Running the model forward

provides a statistical estimation of the state of y(t) (known

as ‘forecast’). However, this state estimation differs when also

incorporating the knowledge of the time series x(s ≤ t) or

x(s ≤ T ) (known as ‘analysis’), as the specific observation

provides additional information to reduce the uncertainty when

inferring the state of y(t). This two-step (forecast-analysis)

process is known as Bayesian data assimilation [21, 32], where

the distribution derived solely from the model statistics is

referred to as the prior, while the observed time series is used

to compute the likelihood, accounting for the uncertainty in

the observational process. The two conditional distributions in

(3) result from combining the model-based information with

the observation-induced likelihood and are referred to as the

posteriors. Specifically, the distribution on the left-hand side of

(3) corresponds to smoothing, while the one on the right-hand

side corresponds to filtering [12, 40].

ACI

Denote by ps
t and pf

t the smoother and filter posterior

distributions at time t (i.e., the two distributions on the left-

and right-hand sides of (3)), respectively. If the uncertainty

reduction in ps
t is more significant than that in pf

t, then it is

due to the incorporation of the future information of x, which

indicates towards the contribution from y(t) to the future states

of x.

Although the entropy difference has been widely used in

many other causal inference methods, the relative entropy is

employed hereafter to quantify the uncertainty reduction in

ps
t related to pf

t. In addition to the covariance (and other

higher-order moments), which measure the variability of the

random variable, the relative entropy also accounts for the

difference in the mean state of the two distributions. This

difference is crucial for reflecting the additional information

gained by incorporating future observations. Furthermore, it

is coordinate-free, i.e., it is invariant under general nonlinear

changes of the state variables. Notably, relative entropy has

been widely used to assess uncertainty reduction in the context

of data assimilation [48, 24, 14, 8].

As such, if the relative entropy between the smoother and

filter distributions is nonzero, i.e.,

P(p
s
t, p

f
t) =

∫
p
s
t ln(p

s
t/p

f
t) > 0, (4)

then y is identified as the cause of x at time t. By computing

(4) at different t, a time-dependent causal link is established.

Panel (a) of Figure 1 provides a high-level overview of

the ACI framework, while Panel (b) presents a schematic

illustration of ACI using the filter and smoother estimates. The

Supporting Information contains more technical details.

Dynamic discovery of the causal influence range
(CIR)

While the uncertainty reduction in the smoother solution

related to the filter solution in (4) indicates an instantaneous

causal link from y to x at time t, it does not reveal the temporal

extent of this causal influence, namely, how many future units

of x are affected by y(t). Since the memory of turbulent systems

decays over time, y(t) is expected to effectively influence the

future states x only within a limited time period, where this

causal influence range (CIR) can vary significantly as a function

of t. This raises two key questions: How can we determine the

CIR and, more importantly, how can we do so objectively, i.e.,

without relying on empirical cutoff thresholds? This section

outlines the core ideas for addressing these questions. Rigorous

mathematical analysis and detailed algorithms are provided in

the Supporting Information.

Online smoothing for dynamic influence tracking

Recall from (4) that the relative entropy P(ps
t, p

f
t) between the

filter and smoother estimates quantifies the causal influence

from y to x. Here, ps
t = p(y(t)|x(s ≤ T )) incorporates the

complete future information of x. Due to the finite effective

influence length, the complete smoother solution ps
t achieves

a substantial uncertainty reduction compared to the lagged

posterior distributions p(y(t)|x(s ≤ T ′)), which only utilize

future information up to t ≤ T ′ ≤ T , for a short time period

after t. The divergence between these distributions vanishes as

T ′ → T . We therefore define the causal influence radius (CIR)

through the relative entropy criterion: For a predetermined

threshold ε > 0, the maximum lag T ′
ε satisfying

P
(
p(y(t)|x(s ≤ T )), p(y(t)|x(s ≤ T

′
))
)
> ε, (5)

yields the innate CIR measure τε(t) = T ′
ε − t. This adaptive

time variable τε(t) defines the effective causal period [t, t +

τε(t)] during which y(t) exerts measurable influence on x. A

recently developed online smoother algorithm [1] is employed

to compute the CIR. This online smoother computes the

uncertainty reduction in the estimated state of y(t) when

the future information of x is sequentially added. See the

Supporting Information for more technical details.
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Assimilative Causal Inference (ACI)
Inverse Problem: Tracing Causes Backward from Observed Effects

(a) High-Level Overview
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Fig. 1. The assimilative causal inference (ACI) framework. Panel (a): A high-level overview of the method. Panel (b): Schematic illustration of the ACI

from a more technical viewpoint. Panel (c): ACI in the presence of non-target variables. Panel (d): Objective CIR, as an integration of the associated

subjective CIRs.

While the CIR computed via (5) is intuitive, it remains

inherently subjective due to its dependence on the threshold

parameter ϵ. In the following, an objective CIR formulation is

developed, eliminating the need for a prescribed threshold. This

threshold-independent measure is subsequently integrated into

the ACI framework.

Objective CIR

For simplicity, assume that the relative entropy between the

aforementioned complete and lagged smoother distributions

decreases monotonically as more future information of x is

incorporated. This commonly holds in practice, though the

theory of the objective CIR (developed rigorously in the

Supporting Information) doesn’t require this condition. At a

given time instant t, let M = P(ps
t, p

f
t) denote the maximum

value of the relative entropy between the complete and lagged

smoother distributions over t ≤ T ′ ≤ T , which is the difference

between the smoother estimate and the filter estimate (where

the latter can be viewed as a degenerate smoother using no

future information). Given a threshold ε ∈ [0,M ], (5) yields a

subjective CIR as τε(t) = T ′
ε − t. The objective CIR is then

naturally defined by

τ(t) =
1

M

∫ M

0

τε(t)dε. (6)

Dividing M guarantees the unit of the objective CIR is ‘time’.

See Panel (d) of Figure 1 for a schematic illustration of the

objective CIR and its relationship with the subjective ones.

Note that numerically evaluating the integral in (6) requires

repeated smoother computations, leading to a computational

complexity that scales quadratically with the number of

discretization points. An efficient computational method of (6)

is included in the Supporting Information.

The subjective and objective CIR can be regarded as

analogs of the autocorrelation function and decorrelation

time, respectively. The autocorrelation function measures the

memory of a turbulent system based on the duration of its

values that remain above a predetermined threshold. However,

determining the memory using the autocorrelation function

is subjective and can vary significantly depending on the

threshold value. In contrast, the decorrelation time, which

integrates the autocorrelation function, provides an objective

way to define the memory length and is free from any

predetermined cutoff threshold.

Conditional ACI in the presence of additional
non-target variables

In the more general context of a complex system, state variables

can be grouped into three disjoint subsets: xA, xB, and y. The

goal is to determine whether y is a cause of xA in the presence

of the remaining variables xB, which are called the non-target

variables, including the cases of confounders or mediators. Since

xB interacts with both xA and y, appropriately accounting for

the role of xB while inferring the causal link from y to xA

becomes essential. Hereafter, let us assume that a realization

for each of xA and xB, namely, xA(s ≤ T ) and xB(s ≤ T ) is

available. Therefore, the candidate cause y is the only variable

that does not require to have observations in this framework.

Following the argument in Section 2, the causal relationship
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from y(t) to (xA,xB) is identified based on the uncertainty

reduction in the smoother distribution ps
t related to the filter

one pf
t, where

p
f
t = p(y(t)|xA(s ≤ t),xB(s ≤ t)),

p
s
t = p(y(t)|xA(s ≤ T ),xB(s ≤ T )).

(7)

The main focus here is to appropriately determine pf
t and ps

t in

the presence of xB.

Recall from Section 2 that ACI employs Bayesian data

assimilation to estimate the state of y. ACI exploits

observations of x to reduce the uncertainty in y, where the

influence of x on y depends on its own uncertainty: smaller

observational uncertainty leads to a stronger impact. When

extending this framework to include xB, the observed xB

time series is still used in the forecast step to compute

uncertainties in xA and y. However, during the analysis step,

the uncertainty in xB’s dynamics is deliberately excluded by

assigning infinite uncertainty to its likelihood before posterior

computation. Inflating the uncertainty in xB is straightforward

using Bayesian inference for state estimation. This ensures

that xB does not affect the uncertainty reduction in the state

estimation of y when treated as an observational process.

Consequently, any uncertainty reduction in y results solely from

xA under this proposed pipeline. See Panel (c) of Figure 1 for

an illustration. For dynamical systems with explicit governing

equations, a shortcut to exclude the influence in the uncertainty

of xB is to treat xB as a prescribed forcing term in the reduced

system defined by (xA,y) during Bayesian inference, with

values defined by its observed time series system. Nevertheless,

this framework does not necessarily require modifications to

the underlying dynamical system, making it compatible with

any given model, potentially including operational models in

atmospheric and ocean science, as the model structure and

integrity remains intact.

It is important to emphasize that while treating xB as

a conditioning variable may appear analogous to the role of

non-target variables in transfer entropy and other traditional

causal inference methods, the way of handling the uncertainty

in ACI is fundamentally different. Conventional methods treat

xB as a fixed component. In contrast, ACI explicitly accounts

for xB’s dynamical influence while systematically prohibiting

its uncertainty from affecting state estimation. This unique

treatment allows the inferred causal relationships to reflect

true dynamical interactions by isolating the contribution of

uncertainty reduction from the non-target variables. As a

final remark, if Bayesian data assimilation is used to compute

p(y(t),xB(t)|x(s ≤ T )) and then marginalize over xB(t) to

obtain p(y(t)|x(s ≤ T )), this manipulation may lead to

incorrect conclusions. This is because the correlation between

y(t) and xB(t) unavoidably alters the uncertainty in y(t) during

Bayesian data assimilation, potentially introducing a spurious

causal relationship between y and xA. This is true even if

we condition over xB(t). For instance, for the causal chain

xA → xB → y, such a method might falsely imply a direct

causal link between xA and y.

The details of conditional ACI implementation, along with

validation of (conditional) ACI’s nil causality principles, are

provided in the Supporting Information.

Applications to nonlinear systems with intermittency
and extreme events

A nonlinear dyad model with extreme events

Let us start with a two-dimensional model, which nevertheless

has strong nonlinear features with observed extreme events.

The model reads as:

dx

dt
= −dxx + γxy + fx + σxẆx (8a)

dy

dt
= −dyy − γx

2
+ fy + σyẆy. (8b)

This is a reduced-order conceptual model for atmospheric

variability. It has been used to analyze the effects of

various coarse-grained procedures on processes exhibiting

intermittency, large-scale bifurcations, and microscale phase

transitions. It is defined by an energy-conserving condition on

its quadratic nonlinearities [25]. The following parameter values

are used for this model:

dx = 0.5, γ = 2, fx = 0.5, σx = 0.5,

dy = 0.5, fy = 1, σy = 1.
(9)

Figure 2 illustrates the ACI and CIRs from y to x. Panel (a)

shows that extreme events in x occur intermittently. When

the combined coefficient −dx + γy in (8a) becomes positive,

the dynamics of x exhibit anti-damping, leading to amplitude

growth and extreme events. Conversely, when the coefficient

is negative, x behaves as a damped system, with fluctuations

primarily driven by random noise. Panel (b) displays the

ACI, revealing that phases with significant ACI values largely

coincide with the onset and peak phases of extreme events in

x. This aligns with intuition, as y acts as an anti-damping

source and the primary driver of these events. Once x peaks

and begins to decay, the ACI value drops sharply, reflecting

the strong negative feedback from x to y, which then dampens

x. The whisker plot in Panel (a) highlights the objective

CIR, indicating a sustained influence from y to x during the

triggering phase of extreme events but minimal influence during

their demise. Notably, the long-range influence from the CIR

reveals that extreme events develop gradually, with triggering

conditions established well in advance. From a data assimilation

perspective, when the observable signal x starts to strengthen,

it enhances the ability of the smoother to estimate y as the

signal in the future contains useful information beyond noise.

As a result, a longer CIR is obtained. In contrast, once

x becomes sufficiently strong, its high signal-to-noise ratio

ensures the filter captures all relevant triggering dynamics,

leaving little room for the smoother to improve estimates.

Hence, the outset of the ACI metric’s decline and shorter CIR.

The Supporting Information contains the filter and smoother

distributions and the subjective CIR with different threshold

values ϵ.

A stochastic model capturing El Niño-Southern Oscillation

(ENSO) diversity

El Niño-Southern Oscillation (ENSO) is a dominant climate

phenomenon characterized by quasi-regular periodic behaviors

in sea surface temperatures (SSTs) and in the atmospheric

circulation across the equatorial Pacific Ocean [10, 39]. ENSO

exhibits remarkable diversity in its spatial patterns, temporal

evolution, and impacts, which can be broadly categorized into

two main types: Eastern Pacific (EP) and Central Pacific
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Fig. 2. ACI values and CIRs for the nonlinear dyad model (8) from y

to x at each time instant t. Panel (a): Time series of x (magenta) and y

(blue), the objective CIR represented by a whisker plot emanating forward

in time from each y(t) value, and the anti-damping threshold line at dx/γ.

Panel (b): ACI from y to x as a function of time.

(CP) El Niños, where an anomalous warming center occurs in

the eastern and central Pacific, respectively [6]. The opposite

phases with anomalous cooling SSTs are called La Niña.

Understanding the causes of different ENSO events is crucial for

improving climate predictions and mitigating socio-economic

consequences.

Although few models can accurately capture ENSO

diversity, a recently developed stochastic conceptual model

successfully reproduces its diverse behaviors and non-Gaussian

statistics [9]. This model has been highlighted in a recent

review [47], making it a suitable testbed for studying El Niño

diversity. Mathematical details are provided in the Supporting

Information. The model consists of six state variables: ocean

zonal current in the CP (u), western Pacific (WP) thermocline

depth (hW ), CP SST (TC), EP SST (TE), atmospheric winds

(τ , intraseasonal), and decadal variation (I, decadal). The first

four variables (u, hW , TC , and TE) operate on interannual

timescales. As a nonlinear system with state-dependent noise,

the model generates extreme events and intermittency. The

two SST variables (TC and TE) allow reconstruction of

spatiotemporal SST patterns across the equatorial Pacific,

providing an intuitive way to identify different ENSO event

types.

The variables TC , hW , and τ directly influence TE .

Figure 3 displays their conditional ACI values to TE . For

EP El Niño events (positive TE anomalies, shown in red),

TC exhibits the strongest ACI value, slightly preceding the

TE peak. This timing aligns with physical understanding,

as SSTs in these regions are strongly coupled: during El

Niño, warm water propagates from CP to EP, producing

the observed ACI lead. The τ to TE ACI value appears

noisier due to τ ’s intraseasonal variability, yet its evolution

confirms τ ’s robust impact on TE . Winds drive warm water

propagation and exert near-instantaneous SST effects. In

contrast, while hW significantly contributes to TE , its ACI

amplitude is weaker than TC or τ . The discharge-recharge

theory [19] posits hW -TE oscillator dynamics, but in models

with refined CP variables, hW ’s influence on TE becomes

indirect: hW first affects TC , which then propagates signals to

TE (WP→CP→EP). Consistent with this paradigm, hW ’s ACI

value to TE peaks months before EP El Niño maxima. CIRs

further corroborate these physical mechanisms: TC shows the

longest influence, hW ’s more indirect role yields intermediate

CIRs, and τ ’s intraseasonal nature produces the shortest

impacts. The Supporting Information provides additional ACI

and CIR analyses for all variables across different ENSO event

types.
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Fig. 3. ACI values and CIRs of the stochastic conceptual model for the

ENSO diversity with TE as the effect variable over a six-year model-

simulated period (where EEP EN and MEP EN stand for extreme and

moderate EP El Niños, respectively). Panel (a): Hovmöller diagram of

the SST anomalies in the equatorial Pacific reconstructed from TC and

TE series via a spatiotemporal multivariate regression technique [9]. Panel

(b): ACI values from TC to TE as a function of time. Panel (c): Time series

of the observable TC and the objective CIR represented by a whisker plot

emanating forward in time from the value of TC at each month over this

six-year period. Panels (d) and (e): Same as Panels (b) and (c) but for

the causal link from hW to TE . Panels (f) and (g): Same as Panels (b)

and (c) but for the causal link from τ to TE .

Conclusion and Discussions

In this paper, the assimilative causal inference (ACI)

framework is developed for the detection of instantaneous

causal relationships and of their associated causal influence

range (CIR) in complex dynamical systems. ACI leverages

Bayesian data assimilation to trace causes backward from

observed effects. It uniquely identifies dynamic causal

interactions without requiring observations from candidate

causes, accommodates short datasets, and scales efficiently

to high dimensions. Crucially, it provides online tracking of

causal roles, which may reverse intermittently, and facilitates

a mathematically rigorous criterion for the causal influence

range, revealing how far effects propagate temporally. Its ability

to detect causal influence ranges and handle high-dimensional

systems highlights its potential for applications in climate

science, neuroscience, and other fields. Numerical tests on

nonlinear systems with extreme events and regime transitions

demonstrate the effectiveness and robustness of the framework.

Future work will focus on several important directions. First,

we will study the impact of model error on causal inference, as

model error is common in practice. Understanding how model

error affects causal relationships may also provide opportunities

to detect and correct model errors using observational

data. Second, we will extend the framework to attribute

observed regime transitions and other dynamic phenomena,

complementing the current forward-in-time CIR analysis with

backward-in-time event attribution. Finally, we will develop

efficient computational algorithms based on ensemble data

assimilation, thus advancing the application of the ACI to

highly complicated systems.
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1. Mathematical Foundations and Theoretical Analysis of Assimilative Causal Inference43

A. Mathematical framework and notational conventions. In this document, boldface variables denote multidimensional44

quantities. Specifically, lowercase boldface variables denote column vectors, while Uppercase ones denote matrices. The only45

exception is W (with some subscript), which denotes a vector-valued Wiener process due to literary tradition. Furthermore,46

for simplicity, we follow the notational convention from physics and do not distinguish between random variables and their47

realizations.48

Let B = (Ω,F ,F,P) be an augmented probability space for filtering over the time interval [0, T ], T ∈ (0, +∞). Denote by49 (
x(t, ω), y(t, ω)

)
∈ Rk+l, for t ∈ [0, T ] and ω ∈ Ω, a (k + l)-dimensional partially observable stochastic process on B, where50

x is the k-dimensional observable component while y is the l-dimensional unobservable part. Without loss of generality, we51

consider real-valued processes, otherwise we work with the real-valued joint vector formed by the real and imaginary parts of52

(x, y) and for notational simplicity we henceforth drop the sample space (Ω) dependence, but it is always implied. We assume53

(x, y) is adapted to the filtration F and that x(s ≤ t) represents a realization of x over [0, t], i.e., a time series for a fixed ω ∈ Ω.54

For convenience, the time series of x is assumed to be continuously observed, with the development of an analogous framework55

for discrete-in-time observations being possible. Finally, for explicitness, we hereafter write
(
·
∣∣x(s ≤ t)

)
to indicate the fact56

that we are conditioning on the σ-algebra generated by {x(s)}s≤t.57

B. Bayesian data assimilation with continuous-time observations. The assimilative causal inference (ACI) framework builds58

fundamentally upon Bayesian data assimilation methods. Here we outline their essential mathematical formulation, particularly59

as applied to probabilistic state estimation in complex turbulent dynamical systems.60
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B.1. Underlying dynamics. We assume that the evolution of the partially observed process (x, y) is governed by the following61

stochastic system of coupled Itô diffusions over t ∈ [0, T ] (1):62

dx(t) = f x(t, x, y)dt + Σx
1 (t, x, y)dW1(t) + Σx

2 (t, x, y)dW2(t), [1a]63

dy(t) = f y(t, x, y)dt + Σy
1 (t, x, y)dW1(t) + Σy

2 (t, x, y)dW2(t), [1b]64

where W1 ∈ Rd1 and W2 ∈ Rd2 are two real-valued independent Wiener processes that are also independent from the65

distribution of (x(0), y(0)). In Eq. (1), we assume the following (1–3). (I) Almost every sample path of x and y is continuous66

in [0, T ]. (II) The functions appearing in Eq. (1) are predictable for each x ∈ Rk and y ∈ Rl. (III) Sufficient regularity67

conditions are enforced such that Eq. (1) has a unique solution. (IV) The diffusion coefficients of x do not depend on y:68

Σx
m(t, x, y) = Σx

m(t, x), for m = 1, 2. (V) The sum of the row-based Gramians of the observational noise feedback matrices,69

(Σx ◦Σx)(t, x) := Σx
1 (t, x)Σx

1 (t, x)T + Σx
2 (t, x)Σx

2 (t, x)T, is invertible for each t ∈ [0, T ] and x ∈ Rk.70

(IV)–(V) function as identifiability conditions, since they ensure that the conditional distribution of y given the data of x71

contains all available information about y in Eq. (1) (1).72

B.2. Bayesian data assimilation. Bayesian data assimilation provides a probabilistic state estimation for the unobserved variables73

y(t) conditioned on the observations of x. The process consists of two sequential steps:74

• Forecast step: Forward integration of Eq. (1) generates a model-based prior distribution for the unobserved state y(t).75

• Analysis step: Observational data of x is assimilated into the forecast through Bayesian updating, reducing the uncertainty76

and bias in the estimation of y(t).77

In Bayesian data assimilation for state estimation, the prior distribution (obtained from model forecasts) is combined with the78

likelihood of observations through Bayes’ theorem, yielding an updated posterior distribution.79

B.3. Filter and smoother. Bayesian data assimilation is naturally divided into two approaches based on the assimilated observational80

time window during analysis: filtering incorporates only current and past observations (x(s ≤ t)), while smoothing additionally81

utilizes future data (x(s ≤ T )), typically producing more accurate estimates through the broader temporal context.82

Under mild spatial regularity assumptions on the parameters in Eq. (1), both the filter and smoother distributions are83

absolutely continuous with respect to the Lebesgue measure on (1). This guarantees the existence of their probability density84

functions (PDFs) for all t ∈ [0, T ], which we define as:85

Filter: pf
t(y|x) := p

(
y(t)|x(s ≤ t)

)
,

Smoother: ps
t(y|x) := p

(
y(t)|x(s ≤ T )

)
.

[2]86

C. Explicit expression of the ACI framework for Gaussian distributions. The relative entropy (also known as the Kullback-Leibler87

divergence) between two given PDFs p(u) and q(u) is defined as (4):88

P
(
p(u), q(u)

)
=
∫

p(u) log
(

p(u)
q(u)

)
du, [3]89

which is positive unless p(u) = q(u) and is invariant under general nonlinear changes of the state variables. If90

P
(
ps

t(y|x), pf
t(y|x)

)
> 0 [4]91

holds at time t ∈ [0, T ], we can then establish an instantaneous assimilative causal link where y(t) is identified as the cause of92

x under the ACI framework, which we denote as:93

y(t)→ x. [5]94

In the main text, ACI is formulated through P. Nonetheless, the ACI framework is divergence-independent, so other f -95

divergences can be adopted as to measure the discrepancy between the filter and smoother distributions. This is because their96

positive-definiteness solely depends on the PDFs themselves.97

The relative entropy Eq. (3) benefits from a simple and explicit formula when the distributions p and q are real-valued98

Gaussian densities. Specifically, for p(u) being the PDF of NM (µp, Rp) and q(u) of NM (µq, Rq), then (5, 6):99

P
(
p(u), q(u)

)
= 1

2(µp − µq)TR−1
q (µp − µq) + 1

2
(
tr(RpR−1

q )−M − log(det(RpR−1
q ))

)
, [6]100

where M is the dimension of the PDFs. The quadratic-form term on the right-hand side of Eq. (6) is called the signal and101

measures the information gain in the mean which is weighted by R−1
q , while the second term is called the dispersion and102

involves only the covariance ratio RpR−1
q . Hence, Eq. (6) is known as the signal-dispersion decomposition.103
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D. Conditional ACI. To discuss conditional ACI, which handles the case where additional non-target (or ancillary) variables are104

present, we split the observed variables x into (xA, xB) ∈ RkA+kB , where k = kA + kB. We aim to determine whether y is105

the cause of xA in the presence of the remaining interfering variables xB. Recall that y(t)→ x is assessed by quantifying the106

uncertainty reduction in the smoother distribution beyond the filter one:107

P
(
ps

t(y|xA, xB), pf
t(y|xA, xB)

)
, t ∈ [0, T ]. [7]108

Since xB interacts with both xA and y in Eq. (1), it directly affects the state estimation of y(t). Therefore, establishing an109

instantaneous conditional assimilative causal link from y(t) to xA beyond xB requires careful treatment of xB’s contributions110

in Eq. (7).111

To accurately assess xB’s influence on y(t)’s estimation for establishing the conditional assimilative causal link from y(t) to112

xA beyond the presence of xB, we have to examine its contributions during the two-step Bayesian data assimilation pipeline:113

(1) through the model dynamics during the forecast step, and (2) via the likelihood distribution during the analysis step. This114

systematic approach allows us to isolate and remove xB’s effects on the state estimation of y(t), thereby ensuring the measured115

uncertainty reduction in y(t) stems solely from xA’s influence.116

D.1. Analyzing how xB affects the state estimation of y(t). To analytically characterize how non-target variables xB influence the y(t)117

estimation during Bayesian data assimilation, it suffices to examine the governing evolution equations for the unnormalized filter118

and smoother densities associated with Eq. (1) (1, 7). Under sufficient regularity conditions, we have that the unnormalized119

filter density uf
t(y|x) satisfies a linear random partial differential equation (PDE) for 0 ≤ t ≤ T :120

duf
t(y|x) = L∗uf

t(y|x)dt︸ ︷︷ ︸
Forecast

+M∗uf
t(y|x) · dx︸ ︷︷ ︸

Analysis
, [8]121

where L∗ is the forward Kolmogorov or Fokker-Planck operator :122

L∗ut(y) := −∇y ·
(
f yut

)
+ 1

2∇y · ∇y ·
(
(Σy ◦Σy)ut

)
, [9]123

and M∗ is the forward or filter Kalman update operator :124

M∗ut(y) := (Σx ◦Σx)−1/2(−∇y ·
(
(Σy ◦Σx)(Σx ◦Σx)−1/2ut

)
+ (Σx ◦Σx)−1/2f xut

)
, [10]125

while the unnormalized smoother density us
t(y|x) satisfies a backward linear random PDE for T ≥ t ≥ 0:126

←−
dus

t(y|x) = Lus
t(y|x)dt︸ ︷︷ ︸

Forecast
+Mus

t(y|x) · ←−dx︸ ︷︷ ︸
Analysis

, [11]127

where L is the backward Kolmogorov operator and formal adjoint of L∗ in Eq. (9), whileM is the backward or smoother Kalman128

update operator and formal adjoint of the operator M∗ appearing in Eq. (10), which are both explicitly given by:129

Lut(y) = f y · ∇yut + 1
2tr
(
(Σy ◦Σy)∇2

yut

)
, [12a]130

Mut(y) = (Σx ◦Σx)−1/2((Σx ◦Σx)−1/2(Σx ◦Σy)∇yut + (Σx ◦Σx)−1/2f xut

)
. [12b]131

The diffusion interactions (Σy ◦Σy) and (Σx ◦Σy) are defined in the same manner as Σx ◦Σx, while
←−
dus

t and ←−dx denote132

backward stochastic Itô integrals (i.e., the negative of the usual differentials).133

D.2. Managing the influence of xB on y(t) estimation. From Eq. (8) and Eq. (11), we can deduce that as to eliminate the effect of xB134

on the state estimation of y(t), while retaining only xA’s observational influence, we can simply assign infinite uncertainty to135

xB during the analysis step. This follows from the Kalman update’s inverse dependence on the observational uncertainty in136

Eq. (10) and Eq. (12b). This manipulation effectively nullifies xB’s contributions to the state update, thus preventing it from137

impacting the uncertainty reduction (the key mechanism behind ACI), while still preserving its role in the forecast dynamics.138

Implementation via posterior densities. We implement this proposition through a formal limit operation on the posterior filter139

and smoother PDFs (normalizations of the densities in Eq. (8) and Eq. (11), respectively), therefore defining for each t ∈ [0, T ]:140

p
f|xB
t (y|xA) := lim

Var(xB(t))→+∞
p
(
y(t)

∣∣xA(s ≤ t), xB(s ≤ t)
)

[13a]141

p
s|xB
t (y|xA) := lim

Var(xB(t))→+∞
p
(
y(t)

∣∣xA(s ≤ T ), xB(s ≤ T )
)

[13b]142

The limit Var(xB(t))→ +∞ represents taking xB’s marginal likelihood uncertainty to infinity, which removes xB’s influence143

in the Kalman updates, which occurs through the Kalman gain’s effect on the innovation process in Eq. (10) and Eq. (12b),144

while preserving its dynamic role during forecasts in Eq. (9) and Eq. (12a).145
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Conditional assimilative causal links. Using the distributions in Eq. (13), we generalize the ACI framework. When:146

P
(
p

s|xB
t (y|xA), p

f|xB
t (y|xA)

)
> 0, [14]147

we establish a conditional assimilative causal link at t ∈ [0, T ], denoted as:148 (
y(t)→ xA

)∣∣xB. [15]149

This indicates y(t) as the cause of xA conditioned on xB when the relative entropy between the smoother- and filter-based150

distributions in Eq. (13) is nonzero.151

D.3. Arguments in favor of the conditional ACI framework. The generalized ACI framework presented in Section 1D and defined by152

Eq. (13)–Eq. (14) offers several key advantages for establishing Eq. (15):153

(1) Complete elimination of xB’s influence during data assimilation, ensuring any uncertainty reduction in y(t) stems solely154

from xA, consistent with our ACI objectives.155

(2) While discounting xB’s observational influence, we retain its time series in y(t)’s estimation, analogous to transfer entropy156

approaches where conditional causal links account for spurious effects. Our framework naturally conditions on xB’s157

observations while assigning them uniform likelihood weight through the infinite uncertainty assumption.158

(3) Preservation of the original dynamical system structure. Unlike methods that modify dynamics or eliminate governing159

equations (potentially yielding nonphysical results), our approach maintains model integrity while properly handling xB’s160

spurious contributions through the Bayesian framework.161

(4) Straightforward implementation. When the filter/smoother distributions in Eq. (2) solve continuous random PDEs, the162

limiting distributions in Eq. (13) emerge naturally under continuous parameter dependence, particularly as Var(xB(t))→163

+∞ for the relevant covariance matrix elements.164

D.4. A further justifications: Why infinite uncertainty outperforms marginalization. To further justify our approach for establishing165

temporally-varying conditional assimilative causal links in the presence of ancillary variables, consider treating the non-target166

variables xB as unobserved. In this scenario, the smoother PDF at time t ∈ [0, T ] becomes:167

pt

(
y, xB

∣∣xA(s ≤ T )
)
.168

One might attempt to infer a conditional causal relationship from y(t) to xA by marginalizing over xB:169

pt

(
y
∣∣xA(s ≤ T )

)
=
∫

supp(xB(t))
pt

(
y, xB

∣∣xA(s ≤ T )
)

dxB(t).170

However, this approach proves problematic even for simple turbulent nonlinear dynamical systems. Crucially, the issue persists171

even when conditioning on xB(t) rather than marginalizing.172

The fundamental flaw lies in how correlations between y(t) and xB(t) affect uncertainty reduction during state estimation.173

These correlations can introduce spurious causal relationships that become unavoidable once the model forecast begins174

propagating forward, regardless of time-step size. Consider the following causal network:175

xA xB y

For this causal chain, this marginalization (or conditioning) method might falsely suggest a direct causal link from y(t) to176

xA. While these filter- and smoother-based distributions of y(t) given xA may differ after marginalization (or conditioning),177

we cannot attribute causation to xA under Eq. (4). The uncertainty reduction in y(t) inherently incorporates information178

transfer from xB(t) due to their coupled dynamics, unlike the distributions in Eq. (13) where xB trajectories are known but179

carry infinite likelihood uncertainty.180

E. Instantaneous discovery of the causal influence range (CIR). The relative entropy between the smoother and filter solutions181

in Eq. (4) quantifies both the existence and strength of an assimilative causal link from y(t) to x. Similarly, the generalized182

metric in Eq. (14) measures the conditional causal link
(
y(t)→ xA

)∣∣xB and its intensity. However, these ACI metrics alone183

cannot determine the temporal extent of causal influence, namely, how many future values of x (or xA conditioned on xB) are184

affected by y(t) over [t, T ]. We define this temporal characteristic as the causal influence range (CIR), representing the future185

time window where y(t)’s causal impact persists. Below we develop the theory for unconditional CIR; the conditional case186

(CCIR) follows analogously by substituting the appropriate equations with those from Section 1D.187

In chaotic turbulent systems, new observations of x influence y(t)’s estimation only within finite time windows. More chaotic188

dynamics accelerate memory decay, typically exhibiting exponential decay modulated by factors like x’s signal-to-noise ratio (8).189

Our framework estimates this CIR duration for y(t)→ x by determining how many future x values are meaningfully affected.190

For arbitrary t ∈ [0, T ] and T ′ ∈ [t, T ], we compare two smoother distributions:191
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• Complete smoother pt(y|x(s ≤ T )): Optimal (minimum variance) estimation using all available data.192

• Lagged smoothers pt(y|x(s ≤ T ′)): Suboptimal estimations using partial data (T ′ ≤ T ).193

The divergence between these distributions reveals the temporal decay of y(t)’s causal influence on future x values as T ′
194

increases from t towards T .195

E.1. Quantifying the CIR. The finite nature of the CIR motivates measuring how the complete and lagged smoother distributions196

differ as functions of observational time T ′ ∈ [t, T ] when evaluating the recovery of the state of y at t. We naturally quantify197

this discrepancy using the relative entropy:198

δ(T ′; t) := P
(
pt(y|x(s ≤ T )), pt(y|x(s ≤ T ′))

)
, 0 ≤ t ≤ T ′ ≤ T [16]199

where the second input in δ, i.e., t, is the time on which the posterior distributions of y are evaluated. For analysis, we200

normalize the domain of δ to I = [0, 1] via the transformation h(τ) = t + τ(T − t):201

δ̂(τ ; t) := δ(t + τ(T − t); t), τ ∈ I. [17]202

Let M(t) := ∥δ̂(·; t)∥L∞(I) denote the maximum divergence, which exists in practical applications. Notably:203

• At τ = 1, δ̂(1; t) = 0 by the positive-definiteness of the relative entropy.204

• At τ = 0, δ̂(0; t) recovers the standard ACI metric from Eq. (4).205

• For τ ∈ (0, 1), δ̂(τ ; t) measures the lack of information from incorporating a limited portion of the future observations of206

x after t, i.e., up until h(τ), x(s ≤ h(τ)), but not up to T .207

For chaotic systems, M(t) typically occurs at τ = 0 or shortly thereafter. The interval where δ̂(τ ; t) remains large suggests208

significant causal influence under ACI, since it indicates that there is substantial information gain to be incurred by additionally209

incorporating the future observations of x from [h(τ), T ].210

Formal definition of the CIR. For a threshold ε ≥ 0, define:211

Jt(ε) := {τ ∈ [0, 1] : δ̂(τ ; t) > ε}. [18]212

The CIR length of y(t)→ x is then given by:213

∼
τy(t)→x(ε) := (T − t) sup Jt(ε), [19]214

with the convention ∼
τy(t)→x(ε) = 0 when Jt(ε) = ∅ (true for ε ≥M(t)). The associated CIR interval becomes:215

C̃IRy(t)→x(ε) := [t, t + τ̃y(t)→x(ε)]. [20]216

As aforementioned, for most practical chaotic dynamical systems, the maximum information deficit M(t) typically occurs217

at τ = 0 or shortly thereafter. This reflects the characteristic memory decay in such systems, where the influence on the218

state estimation of y(t) from the future observations of x in [h(τ), T ] diminishes with increasing lead time τ . Note also that219

under the mild assumption that δ̂(·; t) is Lebesgue measurable for each t ∈ [0, T ], which is a condition satisfied when δ(·; t) is220

Borel measurable (that holds for the relative entropy and most complex turbulent systems found in practice), we obtain the221

fundamental inequality:222
∼
τy(t)→x(ε) ≥ (T − t)λI

(
J(ε)

)
, [21]223

where λI(·) represents the Lebesgue measure restricted to I. Thus, C̃IR provides a liberal estimate of the temporal window224

where y(t) causally influences x.225

Interpretation. The decreasing trend of δ(T ′; t) reflects the finite memory of chaotic dynamics:226

• δ(t; t) assesses whether y(t)→ x via ACI.227

• δ(T ; t) = 0 shows complete information incorporation.228

• The significant δ(T ′; t) region marks where y(t) substantially affects future x.229

E.2. Subjective and objective perspectives of CIR. The current CIR framework, while intuitive, introduces subjectivity through its230

dependence on the threshold parameter ε. We therefore distinguish between two perspectives:231

• Subjective CIR: Denoted by τ̃y(t)→x(ε) (length) and C̃IRy(t)→x(ε) (interval), marked with tildes to emphasize their232

ε-dependence.233

• Objective CIR: An ε-independent alternative developed in the sequel.234
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Objective CIR definition. The natural objective measure averages the subjective CIR lengths over all possible thresholds:235

τy(t)→x := 1
M(t)

∫ M(t)

0
τ̃y(t)→x(ε)dε, t ∈ [0, T ], [22]236

where M(t) = maxτ∈[0,1] δ̂(τ ; t). Dividing M(t) guarantees the unit of the objective CIR is “time”. This averaging process: (a)237

yields dimensionally consistent results (time units), (b) guarantees τy(t)→x ∈ [0, T − t], and (c) defaults to 0 when M(t) = 0238

(no causal link).239

The corresponding objective CIR interval is then defined as:240

CIRy(t)→x := [t, t + τy(t)→x], t ∈ [0, T ]. [23]241

By construction, this objective interval is always contained within the maximal subjective CIR.242

Analogy with correlation analysis. These CIR measures parallel concepts in correlation analysis:243

• Subjective CIR resembles the autocorrelation function (ACF), where memory duration depends on a subjective244

threshold.245

• Objective CIR mirrors the decorrelation time, providing a threshold-free measure through integration.246

Just as decorrelation time objectively quantifies system memory by integrating the ACF, our objective CIR integrates over all247

possible thresholds to remove subjectivity, by assigning an impartial uniform weight on each subjective CIR, while capturing248

the essential temporal influence structure.249

E.3. Efficient computation of the objective CIR. While Eq. (22) offers a theoretically sound definition of the objective CIR length, its250

practical implementation faces significant computational challenges. The subjective CIR length τ̃y(t)→x(ε) generally admits no251

analytical solution across the full parameter space ε ∈ [0,M(t)] and t ∈ [0, T ]. Numerically evaluating the integral in Eq. (22)252

requires repeated smoother computations and leads to a computational complexity that scales at best quadratically with the253

number of discretization points adopted for quadrature.254

We overcome this computational limitation by developing an efficient lower-bound approximation that becomes exact when255

the information loss metric δ(T ′; t) in Eq. (16) is non-increasing with respect to future observations (i.e., non-increasing in T ′).256

This is the typical case in most applications as the memory usually decays as the lead time increases. The following theorem257

formalizes this approach, requiring only that δ̂(·; t) is Lebesgue measurable for each t ∈ [0, T ].258

Theorem 1.1 (Computing the Objective CIR). Assume that ∃M(t) := ∥δ̂(·; t)∥L∞(I) = ∥δ(·; t)∥L∞([t,T]) > 0 for each t ∈ [0, T ].259

Then, for t ∈ [0, T ]:260

1
M(t)

∫ T

t

δ(T ′; t)dT ′ = T − t

M(t)

∫ 1

0
δ̂(τ ; t)dτ

= T − t

M(t)

∫ M(t)

0
λI
(
Jt(ε)

)
dε

≤ 1
M(t)

∫ M(t)

0

∼
τ

y(t)
ACI
−→x

(ε)dε = τ
y(t)

ACI
−→x

,

[24]261

where δ̂(τ ; t), Jt(ε), and ∼
τ

y(t)
ACI
−→x

(ε) are defined in Eq. (17), Eq. (18), and Eq. (19), respectively. The equality (in the last262

inequality in Eq. (24)) is achieved if and only if δ̂(·; t) is a nonincreasing function in I. In that case, we also have:263

M(t) = δ̂(0; t) = δ(t; t) = P
(
ps

t(y|x), pf
t(y|x)

)
.264

Proof of Theorem 1.1. First, observe that λI(·) defines a probability measure on I = [0, 1]. Under the Lebesgue measurability265

assumption for δ̂(·; t), we can then interpret δ̂(·; t) as a continuous random variable on the probability space (I,LI, λI), LI as266

the σ-algebra of Lebesgue measurable subsets of I, where the support of δ̂(·; t) is [0,M(t)].267

δ̂(·; t)’s survival function λI(Jt(ε)) is well-defined because (a) it is nonincreasing and right-continuous with left limits, (b) it268

satisfies λI(Jt(ε)) = 1 for ε ≤ 0, and (c) it satisfies λI(Jt(ε)) = 0 for ε ≥M(t).269

Applying the expected survival time formula to this nonnegative, compactly supported random variable yields:270

E[δ̂(·; t)] :=
∫ 1

0
δ̂(τ ; t)dτ ≡ 1

T − t

∫ T

t

δ(T ′; t)dT ′ =
∫ M(t)

0
λI(Jt(ε))dε.271

The theorem’s main result follows by dividing through by M(t) > 0, multiplying by T − t, and applying the inequality272

in Eq. (21). The equality condition follows immediately from Eq. (21), since the equality there holds if and only if δ̂(·; t) is273

nonincreasing on I.274
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The result of Theorem 1.1 provides a consistent and computationally efficient way to approximate from below the objective275

CIR length:276

τapprox
y(t)→x := T − t

M(t)

∫ 1

0
δ̂(τ ; t)dτ = 1

M(t)

∫ T

t

δ(T ′; t)dT ′ ≤ τy(t)→x, t ∈ [0, T ]. [25]277

The inequality reduces to an equality precisely when δ̂(·; t) is nonincreasing on I, which is a condition satisfied in most practical278

applications. A dimensional analysis of Eq. (25) reveals that τapprox
y(t)→x maintains consistent time units, confirming the physical279

validity of this approximation. This consistency mirrors the dimensional properties established for the exact objective CIR280

length in Eq. (22).281

2. Analytically Tractable Nonlinear Systems for ACI Analysis282

In this section, we introduce a broad class of nonlinear stochastic dynamical systems that possess analytically tractable283

Bayesian data assimilation solutions. These closed-form solutions allow direct investigation of ACI without relying on ensemble284

approximation methods.285

A. Conditional Gaussian nonlinear systems (CGNS). Numerical approximations, such as ensemble or particle methods, have to286

be adopted to find the filter and smoother solutions for general nonlinear dynamics systems. Nevertheless, analytical solutions287

are available for the data assimilation solutions for a broad class of nonlinear systems, known as conditional Gaussian nonlinear288

systems (CGNSs) (7).289

A.1. The modeling framework. A CGNS consists of two Itô diffusion processes and has the following form (7):290

dx(t) =
(
Λx(t, x)y(t) + f x(t, x)

)
dt + Σx

1 (t, x)dW1(t) + Σx
2 (t, x)dW2(t), [26a]291

dy(t) =
(
Λy(t, x)y(t) + f y(t, x)

)
dt + Σy

1 (t, x)dW1(t) + Σy
2 (t, x)dW2(t). [26b]292

where the matrices Λx, Λy, Σx
1 , Σx

2 , Σy
1 , Σy

2 and the vectors fx, fy can contain arbitrarily nonlinear functions of x. The293

state variable y appears in the system in a conditionally linear way but it can interact nonlinearly with x. Therefore, the294

system is overall highly nonlinear and can generate strong non-Gaussian feature in both the marginal and joint distributions,295

corresponding to extreme events, intermittency, regime switching, etc. When all these matrices and vectors become only a296

function of time, i.e., they do not depend on x, then the filtering and smoothing of Eq. (26) collapses to the setup of the297

classical Kalman-Bucy filter (9) and Rauch-Tung-Striebel smoother (10).298

The CGNS framework broadly applies to many complex nonlinear systems across disciplines, including physics-constrained299

stochastic models (e.g., noisy Lorenz systems, low-order Charney-DeVore flows, and topographic mean-flow interaction300

paradigms), stochastically coupled reaction-diffusion systems like FitzHugh-Nagumo neural models and SIR epidemic models,301

and multiscale geophysical flow models such as stochastic Boussinesq equations and forced rotating shallow water equations.302

This framework has also been successfully adapted to model realistic phenomena like the Madden-Julian oscillation and Arctic303

sea ice dynamics. See a gallery of examples in (11). On the other hand, many multiscale systems with general nonlinearities304

can be effectively approximated as CGNSs with minimal error. In geophysical and fluid systems, where nonlinearities often take305

quadratic forms, this approximation preserves all nonlinear interactions involving the large-scale variables x and their couplings306

with the small-scale fluctuations in y. Only the self-interactions of y are replaced by effective noise and damping terms, which307

is an approach rigorously justified when y represents fast, unresolved scales. This strategy aligns with the stochastic mode308

reduction framework developed by Majda, Timofeyev, and Vanden-Eijnden (the MTV method) (12).309

The conditional linearity of y given x allows closed-form analytic solutions for the posterior distributions of y in Bayesian310

data assimilation, despite the overall nonlinearity of the system. This property fundamentally distinguishes CGNSs from linear311

Gaussian systems. For instance, the posterior covariance evolves according to a random Riccati equation, leading to temporal312

fluctuations rather than the asymptotic convergence seen in linear cases. These dynamic covariance variations are essential for313

capturing extreme events and intermittency with high fidelity.314

A.2. Filtering and smoothing distributions for CGNSs.315

Theorem 2.1 (Optimal nonlinear filter state estimation equations for CGNSs (7)). Let x(t) and y(t) satisfy Eq. (26a)–316

Eq. (26b). Then, under suitable regularity conditions, the posterior distribution of y(t) given a realization of the trajectory x up317

to the current time instant t (namely, the optimal filter solution) is Gaussian,318

P
(
y(t)

∣∣x(s ≤ t)
) (d)∼ Nl

(
µf(t), Rf(t)

)
,319

where320

µf(t) := E
[
y(t)

∣∣x(s ≤ t)
]

and Rf(t) := E
[
(y(t)− µf(t))(y(t)− µf(t))

T
∣∣x(s ≤ t)

]
,321

are the unique continuous solutions to the system of optimal nonlinear filter equations for 0 ≤ t ≤ T :322

dµf(t) = (Λyµf + f y)dt + Kf(dx− (Λxµf + f x)dt), [27a]323

dRf(t) =
(
ΛyRf + Rf(Λy)T + (Σy ◦Σy)−Kf(Σx ◦Σx)KT

f
)
dt, [27b]324
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with325

Kf(t, x) :=
(
(Σy ◦Σx) + Rf(Λx)T)(Σx ◦Σx)−1, [28]326

being the filter Kalman gain operator of the CGNS and dx− (Λxµf + f x)dt being its filter innovation process.327

Theorem 2.2 (Optimal nonlinear smoother state estimation backward equations for CGNSs (7)). Let x(t) and y(t) satisfy328

Eq. (26a)–Eq. (26b). Then, under suitable regularity conditions, the posterior distribution of y(t) given a realization of the329

trajectory x up to the end point T (namely, the optimal smoother solution) is Gaussian,330

P
(
y(t)

∣∣x(s ≤ T )
) (d)∼ Nl

(
µs(t), Rs(t)

)
,331

where332

µs(t) := E
[
y(t)

∣∣x(s ≤ T )
]

and Rs(t) := E
[
(y(t)− µs(t))(y(t)− µs(t))

T
∣∣x(s ≤ T )

]
,333

are the unique continuous solutions to the system of optimal nonlinear smoother backward equations for T ≥ t ≥ 0 (t running334

backward):335

←−−dµs(t) = −(Λyµs + f y −BR−1
f (µf − µs))dt + Ks

(←−dx + (Λxµs + f x)dt
)
, [29a]336

←−−dRs(t) = −
(
(A + BR−1

f )Rs + Rs(A + BR−1
f )T − (Σy ◦Σy) + Ks(Σx ◦Σx)KT

s
)
dt, [29b]337

with338

Ks(t, x) := (Σy ◦Σx)(Σx ◦Σx)−1, [30]339

being the smoother Kalman gain operator of the CGNS and ←−dx + (Λxµs + f x)dt being its smoother innovation process, where340

the auxiliary matrices A and B are defined by:341

A(t, x) := Λy(t, x)− (Σy ◦Σx)(t, x)(Σx ◦Σx)−1(t, x)Λx(t, x) ∈ Rl×l,342

B(t, x) := (Σy ◦Σy)(t, x)− (Σy ◦Σx)(t, x)(Σx ◦Σx)−1(t, x)(Σx ◦Σy)(t, x) ∈ Rl×l.343

The backward-arrow notation in denotes a backward Itô integral and is to be understood as:344

←−du(t) := lim
∆t→0+

(u(t)− u(t + ∆t)) ,345

i.e., ←−d· corresponds to the negative of the usual differential up to its principal (linear) part. Since Eq. (29) are solved backward,346

(µs(T ), Rs(T )) = (µf(T ), Rf(T )).347

B. Online smoother for CGNS. The theoretical framework in Section 1E requires computation of δ(T ′; t) in Eq. (16) for all348

t ∈ [0, T ] and T ′ ∈ [t, T ] to evaluate either the subjective or objective CIR of an (conditional) assimilative causal link. For349

CGNSs, this calculation is now feasible thanks to recent advances in online smoothing algorithms (8), which allow real-time350

computation of smoother distributions as x observations arrive sequentially.351

Let T (∆t) = {tj}j∈JNK be a uniform partition of [0, T ] with mesh size 0 < ∆t≪ 1 and tj = j∆t, for j ∈ JNK := {0, 1, . . . , N},352

where N = T/∆t. In what follows we use a superscript notation · j to denote the discrete approximation to the continuous form353

of the respective function when evaluated on tj , e.g., Λx,j := Λx(tj , x(tj)) and xj := x(tj). Similar to the continuous-time354

setup,
(
·
∣∣x(s ≤ n)

)
denotes that we are conditioning on the σ-algebra generated by {x0, . . . , xn}. Define the following auxiliary355

matrices for j ∈ JNK:356

Ej := Il×l +
[
(Σy ◦Σx)j

(
(Σx ◦Σx)j

)−1Gx,j −Gy,j
]

∆t ∈ Rl×l,357

Fj := −Rj
f

[
(Kj)T +

(
(Gx,j)TKjRj

f (Kj)T − (Rj
f )−1(Hj)TRj

f (Kj)T + (Λy,j)T(Kj)T)∆t

− (Λx,j)T
((

(Σx ◦Σx)j
)−1 + KjRj

f (Kj)T∆t
)]
∈ Rl×k,

358

where359

Gx,j := Λx,j + (Σx ◦Σy)j(Rj
f )−1 ∈ Rk×l,360

Gy,j := Λy,j + (Σy ◦Σy)j(Rj
f )−1 ∈ Rl×l,361

Hj := (Rf)−1 (Λy,jRj
f + Rj

f (Λy,j)T + (Σy ◦Σy)j
)
∈ Rl×l,362

Kj :=
(
(Σx ◦Σx)j

)−1Gx,j ∈ Rk×l.363
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Theorem 2.3 (Optimal online smoother for CGNSs (8)). Let x(t) and y(t) satisfy Eq. (26a)–Eq. (26b). Then, under suitable364

regularity conditions, the discrete-time smoother distribution up to the n-th observation xn at tj is Gaussian,365

P
(
yj
∣∣x(s ≤ n)

) ( d)∼ Nl(µj,n
s , Rj,n

s ),366

where367

µj,n
s := E

[
yj
∣∣x(s ≤ n)

]
, Rj,n

s := E
[
(yj − µj,n

s )(yj − µj,n
s )T

∣∣x(s ≤ n)
]

,368

for n ∈ JNK and j = n are given by µn,n
s = µn

f and Rn,n
s = Rn

f , since the smoother and filter Gaussian statistics coincide at369

the current end point tn. Then, for n ∈ {1, . . . , N} and j = n− 1 they are instead given by the following equations:370

µn−1,n
s = En−1µn

f + bn−1,371

Rn−1,n
s = En−1Rn

f (En−1)T + Pn−1
n ,372

where the bn−1 and Pn−1
n auxiliary residual terms are defined by373

bn−1 := µn−1
f −En−1 ((Il×l + Λy,n−1∆t)µn−1

f + f y,n−1∆t
)

374

+ Fn−1 (xn − xn−1 − (Λx,n−1µn−1
f + f x,n−1)∆t

)
,375

Pn−1
n := Rn−1

f −En−1(Il×l + Λy,n−1∆t)Rn−1
f − Fn−1Λx,n−1Rn−1

f ∆t,376

while finally for n ∈ {2, . . . , N} and j ∈ Jn− 2K they are the unique solutions to the following system of recursive backward377

difference equations:378

µj,n
s = µj,n−1

s + Dj,n−2 (µn−1,n
s − µn−1

f
)

, [31a]379

Rj,n
s = Rj,n−1

s + Dj,n−2 (Rn−1,n
s −Rn−1

f
)

(Dj,n−1)T, [31b]380

with the update matrices Dj,n−2 being defined as381

Dn−1,n−2 := Il×l & Dj,n−2 :=

↷
n−2∏
i=j

Ei := EjEj+1 · · ·En−2. [32]382

Theorem 2.3 yields O(∆t)-accurate discrete-time Gaussian smoother statistics for each new observation xn at tn = n∆t383

(n ∈ JNK) by solving Eq. (31a)–Eq. (31b) backward over j ∈ JnK, where the forward operator Dj,n−2 represents the discrete-384

time smoother Kalman gain at tj for the n-th observation, while µn−1,n
s − µn−1

f and Rn−1,n
s −Rn−1

f respectively denote the385

discrete-time innovation mean and covariance corresponding to xn.386

C. Calculation of the subjective and objective CIRs for CGNSs. Using the online smoother for CGNSs, for each j ∈ JNK we can387

compute both the subjective and objective CIRs over [tj , T ] for the potential assimilative causal link yj → x (with analogous388

results for the CCIRs). Let pn(yj |x), for j ∈ JNK and n ∈ {j, . . . , N} denote the Nl(µj,n
s , Rj,n

s ) PDF from Theorem 2.3. At389

each tj = j∆t, we quantify the information gain in the complete smoother distribution pN (yj |x) beyond its lagged counterpart390

pn(yj |x) using the signal-dispersion decomposition from Eq. (6) as:391

Pj
n := P

(
pN (yj |x), pn(yj |x)

)
= 1

2
(
µj,N

s − µj,n
s
)T(Rj,n

s )−1(µj,N
s − µj,n

s
)

+ 1
2

(
tr
(
Rj,N

s (Rj,n
s )−1)− l − ln

(
det
(
Rj,N

s (Rj,n
s )−1))).

[33]392

Per Section 1E and Eq. (16), we identify δ(tn; tj) = Pj
n, for j ∈ JNK and n ∈ {j, . . . , N}. This yields:393

• The subjective CIR length for a threshold ε ≥ 0:394

τ̃y(tj )→x(ε) = max
n∈{j,...,N}

{
Pj

n > ε
}

∆t− tj ∈ [0, T − tj ]. [34]395

• The objective CIR length via integration of Eq. (34) over ε ∈
[
0, maxn{Pj

n}
]
.396

• Its efficient approximation:397

τapprox
y(tj )→x = ∆t

maxn{Pj
n}

N∑
n=j

Pj
n ∈ [0, T − tj ]. [35]398

We maintain the conventions from Section 1E: τ̃ = 0 when no maximum exists, and τ = τapprox = 0 = τ̃ when maxn{Pj
n} = 0.399

For strongly intermittent systems and the objective CIR, we employ the computationally efficient scheme in Eq. (35) rather400

than the full integral definition.401
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3. ACI-Based Principles of Nil Causality402

Before investigating complex turbulent systems, we first validate the ACI framework’s theoretical foundations using the403

analytically tractable CGNS structure. Crucially, any reliable causal metric must satisfy two requirements: (1) it should404

correctly identify unidirectional relationships (yielding zero measure in non-causal directions), and (2) it must obey the principle405

of nil causality (13), which is “an event cannot cause another if their dynamics are independent”. For CGNS, this principle takes406

a rigorous form: when x’s evolution is independent of y, the ACI framework guarantees y(t)��→x for all t ∈ [0, T ], confirming407

the absence of spurious causality.408

A. Principle of nil assimilative causality for CGNSs.409

Theorem 3.1 (Principle of Nil Assimilative Causality for CGNSs). Let x(t) and y(t) satisfy Eq. (26a)–Eq. (26b). When410

Λx ≡ 0k×l and (Σy ◦Σx) ≡ 0l×k for every t and x, then the ground-truth causal network is:411

y x

This is validated by the ACI framework per Eq. (2) and Eq. (4)–Eq. (5):412

y(t) ��→ x, ∀ t ∈ [0, T ],413

since in this case we have414

ps
t(y|x) = pf

t(y|x), t ∈ [0, T ].415

Note on Theorem 3.1: The condition Λx ≡ 0k×l prohibits y from entering the mean dynamics of x, while (Σy ◦Σx) ≡ 0l×k416

nullifies the cross-interactions between their noise feedbacks. The combination of these two assumptions removes the possibility417

of y contributing to the evolution of x in the dynamics, both through its drift coefficient, as well as via the full diffusion418

coefficient of the system in Eq. (26). As a result: y ��→ x.419

Proof of Theorem 3.1. Since Λx ≡ 0k×l and (Σy ◦Σx) ≡ 0l×k, by Eq. (28) we have that the filter Kalman gain operator of420

the CGNS vanishes. As a result, the filter equations for the mean and covariance matrix reduce to their model-forecast part:421

dµf(t) = (Λyµf + f y)dt,422

dRf(t) =
(
ΛyRf + Rf(Λy)T + (Σy ◦Σy)

)
dt.423

The equations for the filter statistics become decorrelated under this regime, meaning they can be solved independently.424

Similarly to its filter counterpart, the smoother Kalman gain operator of the CGNS also vanishes, meaning the smoother425

equations likewise become:426

←−−dµs(t) = −(Λyµs + f y − (Σy ◦Σy)R−1
f (µf − µs))dt,427

←−−dRs(t) = −
(
(Λy + (Σy ◦Σy)R−1

f )Rs + Rs(Λy + (Σy ◦Σy)R−1
f )T − (Σy ◦Σy)

)
dt.428

Taking the difference between the filter and smoother equations we have429

←−−−−−−−
d(µs − µf)(t) =←−−dµs(t) + dµf(t) = −(Λy + (Σy ◦Σy)R−1

f )(µs − µf)dt, T ≥ t ≥ 0, [36]430

and so by µs(T ) = µf(T ), the linearity of Eq. (36), and its uniqueness of solution, we retrieve431

µs(t) = µf(t), t ∈ [0, T ].432

As an immediate consequence, we have433

Rs(t) = E
[
(y(t)− µs(t))(y(t)− µs(t))

T
∣∣x(s ≤ T )

]
434

= E
[
(y(t)− µf(t))(y(t)− µf(t))

T
∣∣x(s ≤ T )

]
= Rf(t), t ∈ [0, T ],435

where in the last equality we have used the stability property of conditional expectations, Fx
t ⊆ Fx

T , and the Fx
t -measurability436

of Rf(t), with Fx
t denoting the σ-algebra generated by {x(s)}s≤t for t ∈ [0, T ] (7). Combining these, we end up with:437

ps
t(y|x) = pf

t(y|x), t ∈ [0, T ],438

which by Eq. (4) yields y(t) ��→ x for each t ∈ [0, T ].439
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B. Principle of nil conditional assimilative causality for CGNSs. The following theorem extends Theorem 3.1 to establish the440

principle of nil conditional assimilative causality for CGNSs. To formulate this result, we first introduce some necessary441

notation. Following Section 1D, we consider the state variables (xA, xB, y) and reformulate the CGNS in Eq. (1) as:442

dxA(t) =
(
ΛxA (t, x)y(t) + f xA (t, x)

)
dt + ΣxA

1 (t, x)dW1(t) + ΣxA
2 (t, x)dW2(t), [37a]443

dxB(t) =
(
ΛxB (t, x)y(t) + f xB (t, x)

)
dt + ΣxB

1 (t, x)dW1(t) + ΣxB
2 (t, x)dW2(t), [37b]444

dy(t) =
(
Λy(t, x)y(t) + f y(t, x)

)
dt + Σy

1 (t, x)dW1(t) + Σy
2 (t, x)dW2(t), [37c]445

where by using block-matrix notation we have:446

Λx =
(

ΛxA

ΛxB

)
, f x =

(
f xA

f xB

)
, Σx

m =
(

ΣxA
m

ΣxB
m

)
, m = 1, 2,447

Λx□ ∈ Rk□×l, f x□ ∈ Rk□ , Σx□
m ∈ Rk□×dm , m = 1, 2, □ ∈ {A, B}.448

Under this formulation, (Σx ◦Σx) can be depicted as a 2× 2 block matrix:449

(Σx ◦Σx) = Σx
1 (Σx

1 )T + Σx
2 (Σx

2 )T =
(

(ΣxA ◦ΣxA ) (ΣxA ◦ΣxB )
(ΣxB ◦ΣxA ) (ΣxB ◦ΣxB )

)
.450

We also define the Schur complement of the (ΣxA ◦ΣxA ) and (ΣxB ◦ΣxB ) blocks with respect to (Σx ◦Σx) (14):451

(Σx ◦Σx)/(ΣxA ◦ΣxA ) := (ΣxB ◦ΣxB )− (ΣxB ◦ΣxA )(ΣxA ◦ΣxA )−1(ΣxA ◦ΣxB ),
(Σx ◦Σx)/(ΣxB ◦ΣxB ) := (ΣxA ◦ΣxA )− (ΣxA ◦ΣxB )(ΣxB ◦ΣxB )−1(ΣxB ◦ΣxA ),

[38]452

under the tacit assumption that (ΣxA ◦ΣxA ) and (ΣxB ◦ΣxB ) are invertible; (Σx ◦Σx) is positive definite if and only if either453

one of (ΣxA ◦ΣxA ) or (ΣxB ◦ΣxB ) and its associated Schur complement are positive definite matrices (14). In the case where454

both (ΣxA ◦ΣxA ) and (ΣxB ◦ΣxB ) are positive definite, then (Σx ◦Σx)−1 enjoys the following explicit representation:455

(Σx ◦Σx)−1 =

((
(Σx ◦Σx)/(ΣxB ◦ΣxB )

)−1 0kA×kB

0kB×kA

(
(Σx ◦Σx)/(ΣxA ◦ΣxA )

)−1

)

×
(

IkA×kA −(ΣxA ◦ΣxB )(ΣxB ◦ΣxB )−1

−(ΣxB ◦ΣxA )(ΣxA ◦ΣxA )−1 IkB×kB

)
.

[39]456

With these preliminaries, we now establish the principle of nil conditional assimilative causality for CGNSs: when (i) xA’s457

evolution is independent of y, and (ii) the uncertainty levels of xA and xB are non-interacting, the generalized ACI framework458

correctly identifies the absence of conditional causation. Formally,
(
y(t) ��→ xA

)∣∣xB, for all t ∈ [0, T ].459

Theorem 3.2 (Principle of Nil Conditional Assimilative Causality for CGNSs). Let x(t) and y(t) satisfy Eq. (26a)–Eq. (26b).460

When ΛxA ≡ 0kA×l, (Σy ◦ΣxA ) ≡ 0l×kB , and (ΣxA ◦ΣxB ) ≡ 0kA×kB for every t and x, then the ground-truth causal network461

is:462

y xB xA

This is validated by the ACI framework per Eq. (13)–Eq. (15):463 (
y(t) ��→ xA

)∣∣xB, ∀ t ∈ [0, T ],464

since in this case we have465

p
s|xB
t (y|xA) = p

f|xB
t (y|xA), t ∈ [0, T ].466

Note on Theorem 3.2: The assumption ΛxA ≡ 0kA×l eliminates direct influence of y on xA’s mean dynamics, while467

(Σy ◦ΣxA ) ≡ 0l×kB removes their noise feedback coupling. However, these conditions alone are insufficient to prevent indirect468

y-xA interactions through xB via observable noise cross-correlations. We therefore additionally impose (ΣxA ◦ΣxB ) ≡ 0kA×kB ,469

rendering (Σx ◦Σx) block-diagonal. Collectively, these ensure:
(
y ��−→ xA

)∣∣xB.470

Proof of Theorem 3.2. For CGNS, the filter and smoother means evolve according to linear random ODEs, while their covariance471

matrices satisfy forward Riccati and backward symmetric Sylvester random ODEs respectively (15). Under the regularity472

conditions of Theorems 2.1 and 2.2, these Gaussian statistics exhibit continuous dependence on both the model parameters in473

Eq. (26) and their initial/terminal conditions (16, 17). This continuity allows direct computation of the posterior PDFs in474
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Eq. (13) through the limit Var(xB(t))→ +∞ applied to Eq. (27) and Eq. (29). Crucially, Gaussianity is preserved under this475

limit since a normal distribution depends continuously on its mean and covariance. Specifically, p
f|xB
t (y|xA) remains Gaussian476

Nl

(
µf|xB

(t), Rf|xB (t)
)
, where:477

dµf|xB
(t) = (Λyµf|xB

+ f y)dt + Kf|xB (dx− (Λxµf|xB
+ f x)dt), [40a]478

dRf|xB (t) =
(
ΛyRf|xB + Rf|xB (Λy)T + (Σy ◦Σy)−Kf|xB (Σx ◦Σx)KT

f|xB

)
dt, [40b]479

with480

Kf|xB (t, x) := lim
Var(xB(t))→+∞

Kf(t, x),481

while p
s|xB
t (y|xA) is a Gaussian density corresponding to Nl

(
µs|xB

(t), Rs|xB (t)
)
, where482

←−−−−dµs|xB
(t) = −

(
Λyµs|xB

+ f y −B|xB R−1
f|xB

(µf|xB
− µs|xB

)
)
dt483

+ Ks|xB

(←−dx + (Λxµs|xB
+ f x)dt

)
, [41a]484

←−−−−dRs|xB (t) = −
(
(A|xB + B|xB R−1

f|xB
)Rs|xB + Rs|xB (A|xB + B|xB R−1

f|xB
)T

485

− (Σy ◦Σy) + Ks|xB (Σx ◦Σx)KT
s|xB

)
dt, [41b]486

with487

Ks|xB (t, x) := lim
Var(xB(t))→+∞

Ks(t, x),488

A|xB (t, x) := lim
Var(xB(t))→+∞

A(t, x),489

B|xB (t, x) := lim
Var(xB(t))→+∞

B(t, x).490

As the measurability of the posterior Gaussian statistics remains unaffected under the limit Var(xB(t))→ +∞, we just need to491

prove492

µs|xB
(t) = µf|xB

(t), t ∈ [0, T ],493

as this immediately yields Rs|xB ≡ Rf|xB , similarly to the proof of Theorem 3.1.494

Following a similar procedure to the proof of Theorem 3.1, we first determine how the filter and smoother Kalman495

gain operators reduce subject to the assumptions of this theorem. Under this regime, by using block-matrix algebra and496

Eq. (38)–Eq. (39), we have from Eq. (28) that497

Kf =
(
(Σy ◦Σx) + Rf(Λx)T)(Σx ◦Σx)−1

498

=
(
0l×kA (Σy ◦ΣxB ) + Rf(ΛxB )T

)
499

×

((
(Σx ◦Σx)/(ΣxB ◦ΣxB )

)−1 0kA×kB

0kB×kA

(
(Σx ◦Σx)/(ΣxA ◦ΣxA )

)−1

)
500

=
(

0l×kA

(
(Σy ◦ΣxB ) + Rf(ΛxB )T

)(
(Σx ◦Σx)/(ΣxA ◦ΣxA )

)−1
)

501

=
(
0l×kA

(
(Σy ◦ΣxB ) + Rf(ΛxB )T

)
(ΣxB ◦ΣxB )−1) ,502

since under the conditions of this theorem we simply have503

(Σx ◦Σx)−1 =
(

(ΣxA ◦ΣxA )−1 0kA×kB
0kB×kA (ΣxB ◦ΣxB )−1

)
.504

As such, by interpreting Var(xB(t))→ +∞ as to mean (ΣxB ◦ΣxB )−1 → 0kB×kB for each t and x in this regime, by the result505

we just established we see that506

Kf|xB (t, x) = lim
Var(xB(t))→+∞

Kf(t, x) = 0l×k.507

Analogously, we can see that for the smoother Kalman gain operator we have from Eq. (30):508

Ks(t, x) = (Σy ◦Σx)(Σx ◦Σx)−1
509

=
(
0l×kA (Σy ◦ΣxB )

)((ΣxA ◦ΣxA )−1 0kA×kB
0kB×kA (ΣxB ◦ΣxB )−1

)
510

=
(
0l×kA (Σy ◦ΣxB )(ΣxB ◦ΣxB )−1) ,511

and so, in the same vain as in the filter-based result, we end up with512

Ks|xB (t, x) = lim
Var(xB(t))→+∞

Ks(t, x) = 0l×k.513
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Applying now these results to Eq. (40a) and Eq. (41a), we retrieve514

dµf|xB
(t) = (Λyµf|xB

+ f y)dt,515

←−−−−dµs|xB
(t) = −

(
Λyµs|xB

+ f y −B|xB R−1
f|xB

(µf|xB
− µs|xB

)
)
dt.516

Then, as in the proof of Theorem 3.1, we have517

←−−−−−−−−−−−−
d(µs|xB

− µf|xB
)(t) = −(Λy + B|xB R−1

f|xB
)(µs|xB

− µf|xB
)dt, T ≥ t ≥ 0, [42]518

and since µs(T ) = µf(T ), which by the continuous dependence of the filter and smoother means on their initial and terminal519

conditions, respectively, translates to520

µs|xB
(T ) = µf|xB

(T ),521

then due to this, the linearity of Eq. (42), and its uniqueness of solution, we recover522

µs|xB
(t) = µf|xB

(t), t ∈ [0, T ].523

As already mentioned, this has the immediate consequence that524

Rs|xB (t) = Rf|xB (t), t ∈ [0, T ],525

which yields the desired result of526

p
s|xB
t (y|xA) = p

f|xB
t (y|xA), t ∈ [0, T ],527

which in turn, by Eq. (14), establishes
(
y(t) ��→ xA

)∣∣xB for each t ∈ [0, T ].528

Remark 3.1 (Analytical Meaning of Var(xB(t)) → +∞). When (ΣxA ◦ ΣxB ) ≡ 0kA×kB , the interpretation of “assigning529

infinite uncertainty to xB’s marginal likelihood” (Section 1D) becomes straightforward. In this case, Var(xB(t))→ +∞ simply530

corresponds to (ΣxB ◦ΣxB )−1 → 0kB×kB for all t and x, since (Σx ◦Σx) becomes block-diagonal. For general turbulent systems531

or when this condition fails, the interpretation of this limiting procedure requires more care. Here, Var(xB(t))→ +∞ demands532

rigorous analysis of the structure of xB’s marginal likelihood and its impact on the Kalman gain operators. Only through such533

analysis can we properly nullify xB’s influence when testing for conditional assimilative causal links
(
y(t)→ xA

)∣∣xB. We defer534

this detailed investigation to future work.535

Remark 3.2 (Special Case: ACI Framework and Reduced CGNS Dynamics). When (ΣxA ◦ ΣxB ) ≡ 0kA×kB in a CGNS,536

implementing the condition within the generalized ACI framework (ΣxB ◦ΣxB )−1 → 0kB×kB (Section 1D) leads to an equivalent537

reduced system. In this reduced system, the state estimation of y(t) becomes governed by the CGNS defined in Eq. (37a) and538

Eq. (37c), where (xA, y) form the state variables, with xB being reduced to a deterministic forcing term defined by its observed539

values.540

4. Numerical Studies: ACI Performance in Nonlinear Systems with Intermittency, Regime Switching and Extreme541

Events542

This section includes three numerical studies that exploit the ACI framework to study complex dynamical systems with543

intermittency, non-Gaussian features, regime switching, and extreme events. All test cases employ CGNS models, leveraging544

their analytical tractability while capturing these nonlinear phenomena.545

A. A nonlinear dyad model with extreme events. For completeness, we restate the nonlinear dyad model described in the main546

text:547

dx

dt
= −dxx + γxy + fx + σxẆx [43a]548

dy

dt
= −dyy − γx2 + fy + σyẆy. [43b]549

This is a reduced-order conceptual model for atmospheric variability. It has been used to analyze the effects of various550

coarse-grained procedures on processes exhibiting intermittency, large-scale bifurcations, and microscale phase transitions. It is551

defined by an energy-conserving condition on its quadratic nonlinearities (18). The coupling parameter γ > 0 plays a crucial552

role by ensuring significant positive y values (y > dx/γ) trigger extreme events in x.553

Figure S1 presents the data assimilation results for the dyad model in Eq. (43). The key distinction between the filter and554

smoother distributions in estimating y occurs prior to extreme events in x. This behavior is expected since the filter, operating555

without knowledge of future observations, cannot fully anticipate the triggering mechanism in y. In contrast, the smoother556

benefits from future extreme event data, enabling more accurate state estimation of y with reduced uncertainty.557

Figure S2 displays the ACI and CIR analyses. Several important patterns emerge:558

• First, the ACI value reaches its maximum during y’s strongest anti-damping phase, corresponding to y’s peak instantaneous559

influence on x.560
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• Second, the subjective CIR (shown by deep red shading in Panel (b)) attains its highest values slightly before y > dx/γ561

(initiating an extreme event) and for small ϵ thresholds (indicating a longer-range influence). This reveals that extreme562

events develop gradually, with triggering conditions established well in advance. Notably, the objective CIR’s temporal563

extent does not reach the actual peak of extreme events. This finding mirrors the decorrelation time (the integration of564

the autocorrelation function) in complex dynamical systems, where the true causal influence often persists weakly beyond565

the formal timescale indicated by the objective function.566

• Third, and most significantly, the objective CIR shortens as the system approaches y’s positive peak (corresponding to567

x’s extreme event buildup phase). At this stage, the filter can reliably detect the emerging pattern without requiring568

future information. This transition naturally partitions the time series at each extreme event, marking distinct dynamical569

regimes: a build-up phase with long-range dependence (where future information improves estimation) and an event570

phase where the trajectory becomes locally predictable. The short CIR also persists during y’s demise, where x is the571

driving factor behind the system dynamics (high signal-to-noise ratio) and controls y via −γx2.572

These results demonstrate that extreme events in this system are not sudden occurrences, but rather the outcome of gradually573

evolving conditions. The triggering mechanism begins significantly earlier than the actual event, with effects that propagate574

both forward and backward in time, as evidenced by the CIR patterns.575
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Fig. S1. Data assimilation of the dyad model Eq. (43). Panel (a): A single realization
of the observed variable x. Panel (b): The true hidden signal y (blue) alongside
the posterior mean estimates from filtering (green) and smoothing (red), where the
smoother is the complete smoother using all the information in future. The dashed
line marks the anti-damping threshold, above which the net damping −dx + γy

in Eq. (43a) becomes positive. Panel (c): Posterior variance of the filtered and
smoothed estimates of y.
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Fig. S2. ACI values and CIRs for the nonlinear dyad model Eq. (43) from y to
x as functions of time. Panel (a): Time series of x (magenta) and y (blue), with
the objective CIR depicted as whiskers extending forward in time from each y(t).
The dashed horizontal line marks the anti-damping threshold dx/γ. Panel (b):
Subjective CIR (shaded region, logarithmically scaled) as a function of the threshold
ϵ (logarithmic, reversed y-axis). Panel (c): ACI values from y to x over time.

B. A noisy predator-prey model. The predator-prey model (also known as the Lotka-Volterra model) is fundamentally important576

across scientific disciplines as it captures the universal dynamics of interacting populations through simple yet powerful577

mathematics (19). Originating in ecology to explain cyclical fluctuations between species like lynx and hares, its core principles578

have been adapted to model diverse systems, from disease spread in epidemiology to competition in economics and even579

chemical oscillations. The nonlinear feedback mechanisms in the model provide crucial insights into understanding stability,580

resilience, and emergent patterns of many natural and scientific problems.581

Let us consider a noisy version of the predator-prey model:582

dx

dt
= βxy − αx + σxẆx, [44a]583

dy

dt
= γy − δxy + σyẆy, [44b]584

In Eq. (44), x and y represent the population densities of a predator species and its prey, respectively, with their time derivatives585

(dx/dt and dy/dt) describing their instantaneous population growth rates. The predator dynamics are governed by two586

parameters: α, the predator’s natural death rate, and β, which quantifies how prey availability enhances predator growth. The587

prey dynamics depend on γ, which is the maximum intrinsic growth rate of the prey, and δ, which captures the negative impact588

of predators on the prey population. To ensure results are biologically realistic in finite-length simulations, small additive noise589

terms (σx and σy) are included, preventing populations from reaching nonphysical negative values. The parameter values in590

the study here are as follows:591

α = 0.4, β = 0.1, σx = 0.3, γ = 1.1, δ = 0.4, σy = 0.3.592

Since both β and δ are positive, larger prey population y enhances the anti-damping effect in the x equation, while larger593

predator population x intensifies the damping in y. The resulting coupled variations in x and y produce intermittent phase594
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alternations in the system dynamics. Note that since Eq. (44) is conditionally linear both in x and y, it is a bidirectional595

CGNS, meaning both posterior distributions, x|y and y|x, are Gaussian.596

Figure S3 displays the data assimilation results. Panels (a)–(c) and (d)–(f) show the results by observing y (recovering x)597

and observing x (recovering y), respectively. The state estimation is more informative when the observed signal has a large598

value, corresponding to when the estimated variable induces an extreme event in the former’s evolution. Additionally, the599

uncertainty reduction in the smoother related to the filter is more significant when the predator x is the observed variable,600

which accounts for the choice of the coupling, quadratic feedback parameter values; δ > β.601

Figure S4 presents the ACI value (instantaneous causal strength) and CIR (influence duration) between predator (x) and602

prey (y) populations. The interaction exhibits two distinct regimes:603

1. Predator-to-Prey Causality (x-to-y; Panels (a)–(b)):604

• When the predator population x is below the threshold γ/δ, the net damping in the prey equation becomes positive605

(anti-damping phase), allowing y to grow, though at a progressively slower rate as x increases.606

• Once x exceeds γ/δ, strong positive damping emerges causing y to decline. This demonstrates how predator growth607

first suppresses then reverses prey population trends.608

• Notably, when y is small, x shows weak instantaneous influence (low ACI values) but exhibits extended CIRs, which609

reveals how predator reduction leads to delayed prey resurgence.610

2. Prey-to-Predator Causality (y-to-x; Panels (c)–(d)):611

• The prey population y acts as an anti-damping term for predators during its abundance (when y > α/β), directly612

driving x growth with persistent temporal effects (long CIRs).613

• The subsequent prey collapse (sharp y decrease) when the predator population reaches the critical quantity (x > γ/δ)614

reflects predator overconsumption rather than causing predator dynamics (causal link reversal), which is consistent615

with the x-to-y causality shown in Panels (a)–(b).616

• Due to the stronger coupling feedback in y, δ > β, the ACI metric for y(t) → x is stronger. Furthermore, the617

damping effect that x’s growth induces has a more immediate impact on the prey population y, when compared to618

the more delayed effect that prey prosperity y has on the predators x.619

Remarkably, the causal relationship between predator (x) and prey (y) is bidirectional during specific phases. Prior to the620

prey population peak, while y is growing but x remains below the anti-damping threshold, the variables exhibit strong mutual621

interaction: the increasing prey population y drives predator growth (x), while simultaneously, the rising predator population622

x suppresses (but does not yet reverse) the prey’s growth rate. This creates a transient period of coupled positive feedback623

(y → x) and negative feedback (x→ y).
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Fig. S3. Data assimilation of the noisy predator-prey model Eq. (44). Panels
(a)–(c) and (d)–(f) show the results by observing y (recovering x) and observing
x (recovering y), respectively. The dashed lines in Panels (b) and (e) indicate the
anti-damping threshold values.
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Fig. S4. ACI values and CIRs for the noisy predator-prey model Eq. (44). Only the
objective CIRs are shown. Panels (a)–(b) and (c)–(d) show the results from x(t) to
y and from y(t) to x, respectively. The dashed lines in Panels (a) and (b) indicate
the anti-damping threshold values in the equations of y and x, respectively.

624

C. A stochastic model capturing El Niño-Southern Oscillation (ENSO) diversity. As was described in the main text, although625

few models can accurately capture ENSO diversity, a recently developed stochastic conceptual model successfully reproduces626

its diverse behaviors and non-Gaussian statistics (20). This model has been highlighted in a recent review (21), making it a627

suitable testbed for studying El Niño diversity. The model consists of six state variables: ocean zonal current in the CP (u),628

western Pacific (WP) thermocline depth (hW ), CP SST (TC), EP SST (TE), atmospheric winds (τ , intraseasonal), and decadal629

variation (I, decadal). The variables (u, hW , TC , and TE) operate on interannual timescales and model the anomalies away630

from the corresponding climatology. As a nonlinear system with state-dependent noise, the model generates extreme events631
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and intermittency. Note that the decadal variable represents the strength of the Walker circulation. The two SST variables632

(TC and TE) allow reconstruction of spatiotemporal SST patterns across the equatorial Pacific, providing an intuitive way to633

identify different ENSO event types. The model reads:634

du

dt
= −ru− δu

TC + TE

2 + βu(I)τ + σuẆu, [45a]635

dhW

dt
= −rhW − δh

TC + TE

2 + βh(I)τ + σhẆh, [45b]636

dTC

dt
=
(
rC − c1(t, TC)

)
TC + ζCTE + γChW + σ(I)u + Cu + βC(I)τ + σCẆC , [45c]637

dTE

dt
=
(
rE − c2(t)

)
TE − ζETC + γEhW + βE(I)τ + σEẆE , [45d]638

dτ

dt
= −dτ τ + στ (t, TC)Ẇτ , [45e]639

dI

dt
= −λ(I −m) + σI(I)ẆI . [45f]640

While the full model details are available in (20), its basic mechanism can be summarized as follows. EP El Niño events are641

typically associated with a strong thermocline buildup in the WP, whereas CP EN and La Niña events are primarily triggered642

by advective processes. In the latter case, when σ(I) ∝ I is larger, indicating a strengthening Walker circulation, the advection643

term u becomes dynamically significant in driving TC . Unlike the standard discharge-recharge oscillator model, which couples644

hW and TE , the TC variable acts as a transitional component that is expected to have a more direct influence on TE .645

Figure S5 shows ACI values and CIRs for model-simulated EP events (target variable: TE). Among the three potential646

causal variables, TC has the strongest ACI value, peaking slightly before TE during EP El Niño events (red positive TE647

anomalies). This timing makes physical sense because SSTs in these regions are strongly coupled: during El Niño, warm water648

moves from CP to EP, explaining why TC leads. The τ -TE ACI value is noisier due to τ ’s short-term variability, but still649

shows τ ’s clear impact on TE . Winds both push warm water and directly affect SSTs quickly. While hW does influence TE ,650

its ACI value is weaker than TC or τ . According to discharge-recharge theory (22), hW and TE form an oscillator, but in651

models with CP resolution, hW affects TE indirectly: first changing TC , which then affects TE (WP→CP→EP). This explains652

why hW ’s ACI value peaks months before EP El Niño maxima, specifically during periods where hW starts to increase thus653

initiating upwelling processes that generate extreme warming centers in the EP. The CIRs further corroborate these underlying654

mechanisms in the temporal sense: TC has the longest influence, hW ’s more indirect role gives medium-length CIRs, and τ ’s655

shortest-term variability leads to the briefest impacts.656

Figure S6 shows ACI values and CIRs for model-simulated CP events (target variable: TC). When the decadal variable I657

is significant, u contributes substantially to CP events through the enhanced zonal advective feedback (σ(I) ∝ I) according658

to Eq. (45c), peaking slightly before CP El Niño events. The WP thermocline (hW ) also affects TC via positive feedback in659

Eq. (45c), but peaks earlier than the CP event. While the u and hW ACIs sometimes coincide due to state-space correlations,660

hW ’s CIR persists longer due to WP-CP information transfer delays. Wind (τ) influences CP events on shorter intraseasonal661

timescales. Unlike EP events, CP events show balanced contributions from u, hW , and τ . The strong ACI value from u to TC662

around t = 1985 corresponds to the rapid transition from CP El Niño to La Niña, where the value of u changes dramatically663

from positive to negative. Furthermore, during the second year of the multi-year CP La Niña events (i.e., t = 1986), all three664

ACIs drop suddenly, as the signals of all these three variables remain near zero. This corresponds to a typical discharge phase665

of ENSO.666
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wind profile, plotted above the dateline, is superimposed, along with the decadal
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series of TC and the corresponding CIR (depicted as whiskers) from TC to TE .
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