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Abstract

Early detection of structural damage is of special attention for civil and mechan-

ical engineers. Construction designs of structural systems, such as turbines, bridges,

aircraft, have become more complicated. Evaluating the load bearing capacity of

such a complex structure can be performed using mechanical modeling methods [1].

However, the characterization of cracks or structural damage is a crucial task. Con-

currently, assessment of anomalies soft soil/voids at geotechnical sites is important

in the design, construction, and maintenance of all civil infrastructure system, as

anomalies are the most significant cause of problems at the sites. Thus the develop-

ment of non-destructive techniques has received increasing attention in recent years.

The goal of this thesis is to develop noninvasive damage detection techniques for iden-

tifying and localizing damage in complex structures by minimizing the computational

requirements. Two approaches are proposed for such a purpose.

In the first part of the thesis, an approach that uses information theoretical meth-

ods is introduced to study noninvasive damage detection techniques for structures,

such as bridges. We introduce noninvasive damage detection methods for data ac-

quired from spatially distributed sensors of accelerometry time series collected from a

recent experiment on a local bridge in New York State. Several findings are in order.

The time series data, measured accelerations across sensors, roughly follows a Laplace

distribution, allowing us to develop parametric estimators for various information-

theoretic measures such as entropy and mutual information, between the sensor sites.

As damage is progressively introduced by the removal of structural bolts, of the first

diaphragm connection, the interaction between spatially nearby sensors as measured

by mutual information becomes weaker, confirming that the bridge is “loosened,”

and thereby suggesting a method that may be used in live field studies. Using a

proposed optimal mutual information interaction procedure to prune away indirect

interactions, we found that the primary direction of interaction or influence aligns
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with the traffic direction on the bridge even after damaging the bridge.

In the second part of the thesis, inverse problems for partial differential equations

are introduced for the purpose of studying sinkholes developing in the Earth. Struc-

tural damage, or collapse, that can be caused by low-velocity anomalies such as soft

soil, or voids, in subsurface structures can be identified by a full wave inversion of

the 2-D elastic wave propagation. A full seismic waveform inversion method using

the Gauss-Newton method is presented for the detection of embedded sinkholes. A

technique, which we call “different cell size” is proposed to address the computational

and memory requirements of the Gauss-Newton algorithm. To this end, a local time-

space mesh refinement method for simulations of elastic propagation in media with

small scale heterogeneities is adapted to solve the partial differential equations which

model propagation of energetic waveforms introduced into the soil. Cubic smooth

spline interpolation is used for the spatial mesh refinement step. We present the

solution of the 2-D elastic wave equations using the local time-space grid refinement

method, with further advancements for the full 3-D simulation in progress.
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Chapter 1

Introduction

Engineered systems degrade, decline, corrode or are otherwise damaged naturally in

time [26]. In some cases, damages can be detected from visual inspection. However,

in most of the cases, the damage is not visible.

A few examples of such damages are shown in Fig 1.1, Fig 1.2, and Fig 1.3.

(a) (b)

Figure 1.1: (a) A damaged wind turbine (photo credit: Ref. [2])(b) a collapsed bridge
(photo credit: Ref.[3]).

Figure 1.1(a) shows an industrial wind turbine buckled over in South Chatham-

Kent, Ontario. The whole tower failed due to a civil engineering problem. Figure

1.1(b) shows the collapse of the I-5 Skagit River Bridge, which failed in 2013. The

bridge collapsed after passing an oversized load truck. The engineers found that the

failure was due to infrastructure-related problems.
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(a) (b)

Figure 1.2: Two sinkholes in Chicago and Hudson (photo credit: Ref. [4, 5]).

Figure 1.2(a) shows a sinkhole that opened up in a street in Chicago’s South Side.

This is a 20-40 foot-wide sinkhole, which was large enough to engulf three cars and

send one driver to the hospital. A sinkhole that happened in 2012 at Shoal drive,

Hudson is shown in Fig 1.2(b). This 40 foot wide and 20 foot deep sinkhole swallowed

the back of a home.

The failure of the Tacoma Narrows bridge that was built to cross the Puget Sound

in Washington state in 1940 is another example of invisible damage. Four months

after opening to the public, it collapsed into the water as a result of aeroelastic flutter

caused by a 42 mph (68 km/h) wind. Figure 1.3(a) and (b) show the Tacoma Narrows

Bridge before and after the damage. The best way to avoid such failures is to identify

or predict such damage ahead of time in order to protect the public from injuries,

loss of life, and property damage. Thus the study of nondestructive damage detection

methods plays an important role in science and engineering fields [27–30].
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Figure 1.3: The failure of the Tacoma-Narrows Bridge (photo credit: Ref. [3]).

In the literature, several nondestructive methods such as vibration-based methods,

ultrasonic methods, and frequency-based methods have been developed to monitor

the structural damages of systems using various experimental and theoretical tech-

niques [6, 26, 29, 31–35] (More details of these methods are presented in Chapter 2).

Some methods, such as vibration-based damage detection methods, are found to be

promising in locating and quantifying the damage [7, 26]. However, some limitations

of these methods are reported [7, 26]. One of the drawbacks is the effectiveness of the

methods. The complexity of civil structures reduces the efficacy of these methods.

In addition, the results of these methods are associated with measurement errors,

processing errors, and high computational costs.

The goal of this thesis is to develop damage detection techniques for identifying

and localizing damages in complex structures by considering computational efficiency.

This thesis basically presents two approaches. The first approach uses the information

theoretical measures based techniques for damage detection in complex dynamical

systems.

For initial analysis, one can use mutual information (MI), which is an informa-

tion measure that can be used to identify the causal effect of a network system. The

dynamical properties of two status of structures (e.g., a baseline structure and a dam-

aged structure) are different, thus the MI also differs in the two status of structures.
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Therefore, MI flow difference of structures can be successfully used to identify damage

and location.

The information flow of a structure or system between sensors can be described

using networks. Thus a directed graph is used to model processes and relations

in information systems. A network graph G = (V,E) consists of a set of nodes

V = {1, 2, ..., n} and a set of edges E, where E ⊂ V × V . The adjacency matrix can

be used for data processing. The adjacency matrix A = [Aij]n×n corresponding to the

weighted network is

Aij =


weight of the link j → i if j → i in the network

0 otherwise

and the corresponding unweighted adjacency matrix χ (A) is

χ (A)ij =


1 iff Aij 6= 0

0 iff Aij = 0

In network theory, the sensors represent nodes and the edges represent the connection

between nodes. One of the biggest challenges here is to identify the connections or

edges. Thus, we develop MI-based mathematical techniques that can be applied to

complex structures.

The second approach is based on full wave inversion for sinkhole detection in

subsurfaces. There are many nondestructive testing methods available for health

monitoring in subsurfaces. Gravity methods [18, 36, 37], electric resistivity meth-

ods [38, 39], and seismic methods are some exciting new methods in locating sink-

holes (more details of these methods are presented in Chapter 5). However, the

full-waveform inversion (FWI) approach [40, 41] is another approach that offers the

potential to produce higher resolution imaging of the subsurface by extracting infor-
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mation contained in the complete waveforms [42]. This approach seeks to minimize

residuals between the model responses obtained by forward simulation of wave equa-

tions and observed seismic data.

The forward simulation of an FWI technique consists of generating synthetic wave

fields by solving wave equations. One of the goals here is to develop a numerical

scheme to solve 2D/3D wave equations with small-scale heterogeneities. FWI tech-

nique uses a model updating scheme to invert full seismic wave-fields. Recently, an

FWI technique based on the Gauss-Newton inversion method is developed in Ref.

[21]. One of the drawbacks of the Gauss-Newton method is a large memory require-

ment to store the Jacobian matrix. Our goal here is to improve the computational

efficiency and the memory requirements of the developed technique in Ref. [21].

1.1 Organization

This thesis is arranged in the following way. Chapter 2 presents a literature review on

existing nondestructive damage identification methods. These methods are described

with mathematical details and examples. The advantages and limitations of the

existing methods are also presented in Chapter 2.

Some basic concepts, definitions, and important theorems of information theory

are presented in Chapter 3. This chapter first starts with an introduction to causality

and information theory. The basic concepts, such as entropy and mutual information,

are also included in the discussion. Then an MI-based damage detection technique is

developed. For the illustration of the technique, a benchmark problem is discussed.

The results from the benchmark problem show that the proposed technique works

efficiently when identifying the connections between nodes.

Chapter 4 presents a novel application of the developed techniques in Chapter

3 for damage detection in bridge structures. In this study, the Waddington bridge,
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which is located along New York State Route 345 over Big Sucker Brook in the town

Waddington, NY is considered. The bridge span was instrumented in a rectangular

grid array at 30 locations with dual-axis accelerometers. The damage to the bridge

was introduced by removing bolts from the first diaphragm of the bridge and three

status of the bridge. Two damage scenarios were compared with the baseline struc-

tures. Much of the details is taken from Ref. [43].

Chapter 5 presents a full wave inversion method for sinkhole detection in the

subsurface. At the beginning of the chapter, some exciting new methods in locating

sinkholes are presented with advantages and disadvantages. Then the FWI technique

is introduced. The computational efficiency and the memory requirements of this

approach are addressed by developing a different cell size method. The efficiency of

the different cell size method is discussed with the results obtained for a synthetic

model.

A non-uniform mesh refinement method for simulation of wave equations with

small scale heterogeneities using staggered grid scheme is presented in Chapter 6.

Cubic smoothing spline interpolation is used for spatial mesh refinement. To this

end, the results of the wave propagation with and without cubic spline interpolation

are presented.

Chapter 7 presents the conclusions and future work. One of the ongoing project is

based on application to earthquake predictions using information theoretic measures.

The oMII method introduced in Chapter 3 shows great promise for damage detection

in complex structures. With some modification to the algorithm and using machine

learning techniques, we plan to apply this technique for the prediction of earthquakes.

Furthermore, Chapter 7 presents a description, data classification, and some basic re-

sults of the ongoing work of this project. Another ongoing project is to develop the

FWI technique for 3D seismic wave propagation. We plan to test the techniques used

in Chapter 5 and Chapter 6 for real-time experimental data. The necessary back-
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ground in probability theory is covered in Appendix A. Appendix B and Appendix

C include some featured articles published on SIAM news and American Institute of

Physics news.
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Chapter 2

Nondestructive Damage

Identification Methods: A

Literature Survey

As a result of many normal operations and natural disasters, such as earthquakes,

corrosion, and sinkholes, structural systems can be changed. Some of these changes

often result in permanent changes to human societies and the environment. The

changes that are introduced to the system harmfully can be defined as a damage [26].

Early prediction of damage can help in increasing the lifetime of a civil structure

and prevent unexpected modes of failure. Therefore, health monitoring of civil en-

gineering structures by means of damage detection methods is important. Among

techniques, the methods that are not involving the destruction of structures during

testing are called non-destructive testing.

In the literature, several non-destructive methods have been developed to monitor

the structural damages of systems [6, 26, 29, 34, 35, 44, 45]. Based on the features

of the methods, nondestructive damage identification methods can be categorized

as either local or global [29, 35]. In the following, we describe these two methods
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with examples and mathematical details. The advantages and disadvantages of these

methods are also presented.

2.1 Local Non-destructive Damage Identification

Methods

Non-destructive testings methods that can only be applied to small-scale (simple)

structures and a portion of a large-scale (complex) structures are called "local" non-

destructive damage identification methods [46]. Some examples of the popular lo-

calized damage identification techniques are ultrasonic methods or acoustic methods

[44], magnetic field methods [6], radiography [6], eddy-current methods or thermal

field methods [6], and liquid penetrant testing methods [29].

Ultrasonic methods, which are based on sound wave propagation, are used for

many health monitoring applications [3]. Ultrasonic waves such as Rayleigh and

Lamb waves, can propagate long distances and reveal damages. Lamb-waves based

techniques are able to characterize many frames of damage in composite materials.

Figure 2.1 shows the principle of ultrasonic testing for detection of the depth of a

defect. The left-hand side and the right-hand side figure show the sound wave propa-

gation through a non-defective test material and a defective test material, respectively.

A probe sends a sound wave into the test materials. There are two indications in the

non-defective test material and three indications in the defective test material. The

depth of the defect can be determined by the ratio D/Ep, where Ep is the distance

between the initial pulse of the probe and back wall pulse. D is the distance between

the initial pulse and the pulse from the defect.
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Figure 2.1: The principle of ultrasonic testing for detection of the depth of a defect
(photo credit: Ref. [3]).

Guided wave techniques is another type of ultrasonic method. Ultrasonic-guided

wave analysis techniques provide greater sensitivity for damage detection even when

using low frequencies [45]. This technique allows the inspection of hidden structures,

structures under water, and coated structures running under the soil. Ref. [45]

pointed out that conventional ultrasonic methods are only sensitive to gross defects,

but much less sensitive to minor-damage. To overcome this issue, nonlinear ultrasonic

techniques are also developed [45].

Magnetic field methods use magnetic fields to locate damage of a surface in fer-

romagnetic materials1 [6]. There are many ways to apply the magnetic field to the

surface. Examples of such types are applying an electromagnet to the surface (mag-

netic flow), passing a large current through the specimen or locally by means of

current prods (current flow), and putting the specimen inside a current-carrying coil

or forming a coil around the specimen. When a surface has a crack or damage, the

magnetic field produces a flux leakage area since the magnetic flux lines do not travel

well in the air or void. Thus, by applying magnetic particles, which are colored with
1The ferromagnetic materials are those substances which exhibit strong magnetism in the same

direction of the field when a magnetic field is applied to it [47].
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a visible dye or a fluorescent dye, on to the top of the surface, the crack area can

be identified. Figure 2.2 illustrates the behavior of magnetic flux near a crack on

a surface. This method can be applied to all strongly magnetized metals, such as

ferritic steels and irons [6].

Figure 2.2: The magnetic flux lines near a crack on a surface (photo credit: Ref. [6]).

Radiography testing uses the idea of attenuation of material density and thickness

[6]. A test material (with damage) is placed between a radiation source and a detector.

The radioactive sources that are used for radiography testing are X-ray and Gamma-

ray. These sources emit radiation and penetrate radiation through the test material.

Then the differences in absorption, which are recorded in the detector, are used to

identify the damage [6]. Figure 2.3 illustrates the penetration of radiation through

the test material. In testing, X-ray is used for thin or less dense materials such as

aluminum. Gamma-ray is used for thicker or dense materials. For example, computed

tomography (CT) is one of the non-destructive radiography testing methods used in

industry. CT uses a computer to reconstruct both the cross-sectional plane and

3D volume images of the testing object. Thus CT is able to identify the internal

discontinuities using every point in the plane and viewed from different directions.
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Figure 2.3: Radiation penetration through a test material (photo credit: Ref. [6]).

The eddy current technique is an electromagnetic testing method, which uses an

alternating current coil to induce an electromagnetic field into a conductive test piece

[6]. After applying the electromagnetic field, a small current is created around the

magnetic flux field (See the Fig. 2.4). The flow pattern of the created current is

known as “eddy current” and changes in the eddy current density are used to identify

the discontinuities of the test material [6].

Figure 2.4: The flow pattern of the created current after introducing the magnetic
field (photo credit: Ref. [6]).

In liquid penetrant testing, a very low viscosity liquid is used as the penetrant.

The liquid is applied to a part of a surface and allows to penetrate into the voids in the
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surface (see Fig. 2.5). After the excess liquid on the surface is removed, the penetrant

in the voids will flow back out. Thus the voids on the surface can be identified [6].

Figure 2.5: The penetrant flowing back out to indicate the void (photo credit: Ref.
[6]).

These local experimental techniques require that the location of damage is known

a priori and readily accessible for testing. This means damage can only be detected

if the damage is on the surface of the structure [29, 35]. However, these requirements

cannot be guaranteed in most cases in civil or aerospace engineering settings. Global

damage detection techniques are developed to overcome these difficulties.

2.2 Global Nondestructive Damage Identification

Methods

The damage detection techniques that can be used to identify damages in complex

structures are called “global” techniques [46]. The vibration-based methods play

an important role among global damage detection methods. The vibration-based

techniques are based on the changes in physical properties such as mass, damping,

and stiffness. Changes in these properties will cause detectable changes in modal

properties such as natural frequencies, modal damping, and mode shapes when the

damage is induced to the system.

According to the review in Ref. [26], most of the developments in vibration-based

damage detection began during the 1970s and 1980s by the offshore oil industry. The
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major area that they studied is detecting subsurface structural failure. They use the

changes in the natural frequencies of the structure for their study. Subsequently,

aerospace researchers used vibration-based damage detection techniques to study the

development of the space shuttle in the late 1970s and early 1980s. In the early

1980s, the civil engineers studied vibration-based damage detection techniques for

bridge structures.

Based on vibration features, the damage identification methods are classified into

three major categories: natural frequency-based methods, mode shape-based meth-

ods, and curvature mode shape-based methods [35]. In the following, we discuss these

three types of methods with examples.

2.2.1 Frequency-based Damage Detection Methods

The frequency-based methods observe the changes in structural properties that cause

changes in vibration frequencies. There is extensive literature about frequency-related

damage detection methods [7, 26, 31, 32, 34, 48]. A detailed review of the detection

of structural damage through changes in frequency can be found in [26, 31, 32].

The presence of damage, such as cracking, fatigue, corrosion, and loosening of bolted

joints in a structure, causes a reduction of stiffness. Due to stiffness reduction, natural

frequencies in a structure will change [31]. Damage at different locations have different

natural frequency patterns. By measuring the frequency changes in a structure, the

damage can be identified. This is the most useful damage detection method, since

frequencies can be quickly measured.

For instance, based on the knowledge of the damage-induced shifts in a pair of

natural frequencies, a crack in a rod is identified [48]. Ref. [48] assumes the spatial

vibration of the free vibration of an undamaged straight rod of length L is governed

14



by the differential equation

(a (x)u′ (x))′ + ω2ρ (x)u (x) = 0, x ∈ (0, L) ,

where u (x) describes the mode and ω is associated with the natural frequency. The

quantities a (x) and ρ (x) denote the axial stiffness and the linear-mass density of the

rod. If a crack appears at the cross-section s ∈ (0, L), the eigenvalue problem for a

damaged rod is

(a (x)w′ (x))′ + ω2
dρ (x)w (x) = 0, x ∈ (0, s) ∪ (s, L) ,

where w (x) describes the mode and ωd is associated with the natural frequency.

With specific boundary conditions, the solution of the boundary value problem that

leads to crack detection of a rod is presented. It is found that there are certain

situations concerning uniform rods in which the non-uniqueness of the solution may

be considerably reduced by means of a careful choice of the data [48].

Frequency-based methods can be viewed as two problems: the forward problem

and the inverse problem. In general, the forward problem can be defined as the

problem of calculating or observing data for a particular model. For example, in fre-

quency based damage detection methods, directly calculating frequency changes can

be defined as the forward problem. The inverse problem is the problem of calculating

parameters from the observed data. In frequency-based techniques, identifying the

parameters, such as crack size and location, can be defined as the inverse problem.

Some examples of such developed techniques and mathematical details for these two

problems from the literature are presented below.
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Forward Problem

The forward problem determines the natural frequency changes of a given occurrence

of structure-based damage. Frequencies are predicted using a mathematical model

and compared with the measured frequency [26].

For example, Ref. [33] developed a damage detection method based on a natural

frequency mode and analyzes via finite element method. In that method, the author

of the Ref. [33] modeled the changes in the natural frequency of a mode i of a damaged

structure as a function of the position vector r and the reduction in stiffness caused by

the damage, δK. Similar arguments are made for the undamaged case with δK = 0.

By considering that there is no frequency change without damage, the authors show

that the ratio of the frequency changes in two modes is only a function of damage

location. Further, a perturbation analysis is presented to compute the changes in the

natural frequencies due to localized damage.

Another example for the forward problem can be found in Ref. [34]. The authors

of the Ref. [34] suggested a statistical method of identification using the generalized

least squares criterion. Using the ratio of natural frequencies from both measured and

analytical data, the damage was localized for a range of damage levels. The major

assumption of the proposed method is that the relationship between the observed and

theoretical frequency changes are in the form

[
δΩr

δΩs

]
= α

(
δωr (ρ)
δωs (ρ)

)β1

,

where Ωr and Ωs are the actual frequency changes at modes r and s, ρ denotes

the damage mechanism as well as the damage location, ωr (ρ) and ωs (ρ) are the

natural frequencies of mode r and s, and α and β1 are constants. Further, using the

relation, the authors fit the measured data to a straight line using the generalized

least squares criterion. Other solving techniques for the forward problem can be found
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in [34, 49, 50].

Inverse Problem

The inverse problem based on frequency changes involves identifying the damage

parameters, such as crack length, location [26]. Ref. [7] discussed a vibration method

of non-destructively evaluating the integrity of structures. The authors of the Ref.

[7] formulated a relationship between the possible damage sites and the stiffness of

the damage. According to their derivation, the value of the stiffness of the damage

Kx at the axial position of the unknown damage location x, is given by

1
Kx

= − (βxx + γxx)ω=ωp−∆ωp
= − (βxx + γxx)ω=ωp−∆ωp

,

where βxx and γxx are the direct receptance 2 of a structure at the position x,

(ω −∆ωp) is the reduced natural frequency of the pth and qth modes due to the dam-

age at x. To find the possible damage sites and the associated value of Kx, a graph

superposing − (βxx + γxx)ω=ωp−∆ωp
and − (βxx + γxx)ω=ωp−∆ωp

are plotted against x.

Figure 2.6: A cross section of a straight bar (photo credit: Ref. [7]).

For example, the stiffness of a straight bar of the constant cross-section (see
2The ratio of the resulting displacement to the exciting force in an oscillation or vibration.
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Fig.2.6) can be obtained as

1
K

= cosλx
AEλsinλx + cos{λ (l − x)}

AEλsin{λ (I − x)}

or
EA

K
= 1
λ

(cotλx+ cot{λ (l − x)}) ,

where l is the total length of the bar, A is the cross-section area, E is Young’s modulus,

and F is the force amplitude. λ = ω
√
ρ/E, where ρ is the density. Figure 2.7 shows

the right-hand side of the above equation plotted against position x in a particular

experimental situation for the first three modes of the bar. The intersections of the

curves give the possible damage sites. Moreover, the authors validated the technique

for one-dimensional structures, such as an aluminum bar with a saw cut.

Figure 2.7: Damage location in a straight bar. (photo credit: Ref. [7]).
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Another example of the inverse problem is presented in Ref. [51]. These au-

thors developed a sensitivity and statistical based technique using frequency changes.

They defined damage location assurance criterion (DLAC) for location (j) using a

correlation approach.

DLAC (j) = |{∆f}T · {δfj}|2
({∆f}T · {∆f}) · ({δfj}T · {δfj})

,

where {∆f} is the measured frequency vector for a structure with a single defect

of unknown size or location, and {δfj} is the theoretical frequency change vector

for damage of a known size at location j. DLAC takes the values between 0 and 1

where 0 indicates no correlation and 1 indicates an exact match between the patterns

of frequency changes. The predicted damage site can be identified as the location

j, which corresponds to the highest DLAC value. Further, the authors developed

the DLAC formulations in such a way that multiple sites can be identified. For any

combination of size and location of damage at one or more sites, the multiple damage

location assurance criterion (MDLAC) is given by

MDLAC (j) = |{∆f}T · {δf ({δD})}|2
({∆f}T · {∆f}) · ({δf ({δD})}T · {δf ({δD})}) ,

where {δD} is the stiffness reduction factor, which is introduced such that Dj = 1 for

no damage and Dj = 0 for 100 % damage. The method is validated experimentally

and numerically.

A method to nondestructively locate and estimate the size of a crack is presented

[8]. These authors used the changes in natural frequencies of a structure by limiting

the discussion to the systems which can be modeled by Euler-Bernoulli beams. They

obtained a relationship between the crack depth and the fractional changes in the ith

eigenvalue as
δλi
λi

= ηSik

(
ak
H

)2

i
,
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where
(
ak

H

)
i
is the dimensionless crack size at the kth location defined in the ith mode,

and η is a constant value on beam dimensioning, crack types, and Poisson’s ratio. Sik

represents the sensitivity of the kth location in the ith modal strain energy, which is

given by

Sik =
∫
k{φ

′′
i }2dx∫ L

0 {φ
′′
i }2dx

with mode shape φi and the beam span length L. If the quantities δλi

λi
and Sik

can be determined numerically or experimentally, then the crack size can also be

determined using the above relationship. Further, a method to determine the crack

location is developed by linearly relating the structural system’s sensitivity of modal

characteristics to the eigenfrequency changes due to geometrical changes [8]. The

authors in Ref. [8] considered the case where the system is ill-conditioned when the

number of damage parameters is greater than the number of modes. Ref. [8] used

the prediction formula suggested in Ref. [52] to determine the damage inflicted at a

predefined location. For an MDOF 3 structural system where the number of damage

parameters is close to the number of modes, the damage inflicted at the predefined

location may be predicted using

NE∑
j=1

Fijαj = Zi.

Here NE is the elements, Fij is the modal sensitivity of the ith modal stiffness with

respective to the jth element, αj is the measure of damage at the jth location, and Zi

is the fractional change in the ith eigenvalue. In their work, with a measured set of

NM vibrational modes, a single damage indicator(DI) is defined for the qth location

as

DIq =
NM∑
i=1

(
Zm∑NM
k=1 Zk

− Fmq∑NM
k=1 Fkq

)2
−1/2

.

The term in the parenthesis represents the localization error for the ith mode and the
3Multiple Degree of Freedom Systems
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qth location. DI takes the value in the range between 0 and ∞ and as the element

q if DIq approaches a local maximum, then the damage is located. For example, DI

values calculated for a uniform beam with a crack is shown in Fig 2.8. The location

corresponding to the maximum peak value of DI gives the crack location. With the

experimental results, the authors of Ref. [8] concluded that cracks can be confidently

located with a relatively small localization error.

Figure 2.8: A crack localization in a beam. ( photo credit: Ref. [8])

More examples of the inverse problems can be found in [53–56]. In conclusion, fre-

quency change-based damage detection methods can be applied to simple structures

with small cracks. Even though many researchers have developed natural frequency

changes-based techniques for damage detection, these methods have some limitations.

One limitation is that the natural frequency of some structures changes due to ambi-

ent conditions as well. Therefore, one cannot say significant frequency changes alone

imply the existence of damage in a structure. Also, these frequency-based methods

can be applied to localize and quantify damage in simple structures only with a small

damage. Therefore, it is not trustworthy to use these methods for damage detection
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methods in complex structures [35].

2.2.2 Mode Shape-based Damage Detection Techniques

A mode shape-based method is a technique that can be used to overcome the above

limitations. Mode shapes are the shape of structures associated with different natural

frequencies of a system. A Mode shape-based method is based on the behavior of

the mode shapes. These methods use changes in the mode shapes in the damaged

structure and healthy structure for damage identification. Mode shapes are less sen-

sitive to other ambient conditions, such as temperature, than the natural frequency

[35]. Thus, the mode shape-based method is the most popular method used in dam-

age identification. In the literature, many damage detection methods are developed

based on mode shapes [9, 10, 57, 58]. Here we present a few examples from such

developed techniques.

An error localization technique based on damage detection using mode shapes is

developed in Ref. [57]. By calculating mode shape differences, the physical location on

the structure where stiffness differences exist between the two models is identified [57].

This technique is based on the Structural Translation and Rotation Error Checking

(STRECH) concept. For example, the translation STRECH ratio for a system with

only one displacement coordinate is

St = uc12
ud12

,

where u12 = u2−u1 is the difference of the displacement of two grid points u1, and u2,

superscripts c and d represent the desired modal and the comparison modal, respec-

tively [57]. Further, the authors of Ref. [57] defined the ratio for the three-dimensional

cartesian coordinates system by considering rotational displacement. The authors cal-

culated the STRECH ratio for a list of adjacent grids of two models of a structure.
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The largest numerical STRECH ratio will locate the link where comparison modal is

stretching more than the desired modal. The method is validated in application to a

two-link robot arm.

Another example of mode shape-based methods can be found in Ref. [9], where

a sensitivity-based and statistical-based method to detect structural damage using

incomplete mode shapes is presented. Without reconstruction of the unmeasured

information, the damage sites are localized in Ref. [9]. The authors of the Ref.

[9] modified the natural frequency method, MDLAC introduced by Ref. [51]. They

combined incomplete mode shapes to localize the damage. The correlation parameter

is given by

MDLAC ({δDj}) = |{∆Φ}T · {δΦ ({δDj})}|2
({∆Φ}T · {∆Φ}) · ({δΦ ({δDj})}T · {δΦ ({δDj})})

,

where {∆Φ} is the measured mode shape change vector with a dimension equal to the

product of the number of measured modes and the number of sensor locations and

{δΦ} is the analytical mode shape change at the same degree of freedoms for damage

of a known size {δDj} at different location j. Using the formula, the sites with

the greatest MDLAC values can be approximately localized as the damage sites. For

example, Fig 2.9 shows the normalized MDLAC values obtained for a two-dimensional

truss structure, which consists of 31 elements. The element corresponding to the

highest MDLAC value was identified as the true damage site. Notice that the actual

damage is at the 16th element and the results also show the damage site is at the

same element.
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Figure 2.9: Normalized MDLAC values at the 31 elements bar truss structure. (Photo
credit: Ref. [9])

Moreover, the authors of Ref. [9] defined the sensitivity of the kth mode shape to

damage at element j as

∂{φk}
∂Dj

=
n∗∑
r=1

−{φr}T · [Kj]{φk}
λr − λk

{φr} for r 6= k,

where {φk} is the kth analytical mode shape, λk is the kth eigenvalue, and n∗ is the

number of analytical modes, which is the total degree of freedom (DOF) in the system.

Also, the mode shape vector for m modes from several sites is expressed as

{δΦ} =


δΦ1

...

δΦm

 =


∂{Φ1
∂D1
} ... ∂{Φ1}

∂DL

... ... ...

∂{Φm

∂D1
} ... ∂{Φm}

∂DL

 {δD}

Using numerical simulations with a finite element model, Ref. [9] showed that this

strategy is effective and attractive for practical use.

A method using fractal dimension (FD) analysis was developed to identify the

cracks in beam structures and plates [10, 58]. This method also uses vibration signal

analysis. The proposed technique used an FD-based crack detector and adopts Katz’s
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estimation [59] of the FD. The FD estimate of a curve defined by a sequence {n} is

FD = log10 (n)
log10 (d/L) + log10 (n) ,

wherere d = max{dist (1, i)} and i is the ith point of the sequence. L is the total

length of the curve and n = (L/average step size) is the number of steps in the

curve [59]. Then, the authors of Ref. [10, 58] developed 1D-FD-based crack detector

(FDCD) technique as follows:

1. First, a sliding window of [M = 0.4/dx] sample length was employed, where dx

is the distance resolution in the acquisition of the vibration signal.

2. Next, the M-sample window was shifted along the N -sample section of the

vibration signal, with a 99 % percentage of overlap.

3. Then, FD is computed over each vibration signal segment obtained from the

sliding window.

4. Mid-point of the window was set as the estimated FD value.

Moreover, they improved the scheme to a 2-D-FDCD scheme for the analysis of two-

dimensional structures, such as plates [10]. To estimate the crack depth, FD energy

based formula was used

EFD = 1
N2
c

∑
i

∑
j

FD [i, j]2 ,

where (i, j) = 1, 2, ..., Nc. Here Nc denotes the number of samples corresponding

to the crack length 2c. Figure 2.10 shows the estimated FD of a beam for small

cracks at a specific crack location. The beam structure was analyzed and both the

location and size of the crack are estimated. The authors in the Ref. [10] showed

that crack predictions can be made accurately. Moreover, the technique is able to
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efficiently track changes of all crack characteristics, such as location, length, and

depth. Further, they showed that the method is computationally inexpensive and

suitable to use in experimental data analysis.

Figure 2.10: FD values as a function of crack depth.(photo credit: Ref. [10])

A method that uses a combination of Modal Assurance Criterion (MAC), Coordi-

nate Modal Assurance Criterion (COMAC), and sensitivity analysis to detect damage

in steel framed structures is presented in Ref. [11]. MAC evaluates the correlation

between two sets of vectors. By checking the correlation between the experimen-

tal modal vectors at different stages, the occurrence of damages in structures can

be found [11]. The MAC is not able to locate the position of damage. However,

COMAC, which is developed from the MAC concept, is able to indicate at which

coordinates the two sets of modal vectors deviate from each other. The COMAC

method can be used to locate the damage only if the data used in the analysis consist

of the vibrational response of the DOF that reflect the damage [11]. The proposed

method in Ref. [11] can be described in three stages:

1. First, the sensitivities of the analytically-derived mode shapes to particular
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damage conditions are computed to determine which DOFs are most relevant.

The sensitivity of the modal vectors is given by

∂φij
∂kR

=
n∑
q=1

αjqφiq,

where

αjq =


−1

(ω2
q−ω2

j )
(
{Φ}q ∂[K]

∂kR
{Φ}j

)
forj 6= q

0 j=q,

φij is the modal vector, kR is the rotational stiffness at a node, ωq and ωj are

the natural frequencies of mode q and j, respectively. Here [K] is the system

stiffness matrix, {Φ}q and {Φ}j are the full modal vectors of mode q and j,

respectively, and n is the total number of DOFs of the mathematical model

[11].

2. Then, the MAC between the measured modes from the undamaged structure

and the measured modes from the damaged structure is analyzed to select the

correlated mode pairs. The MAC value between the ith mode of undamaged

mode vector, {ΦU}i, and the jth mode of damage modal vector, {ΦD}j is defined

as

MAC ({ΦU}i,ΦD}j) = |{ΦU}Ti · {ΦU}i|2

{ΦU}Ti · {ΦU}i · {ΦU}Ti · {ΦU}i
,

where n is the DOF [11].

3. Using the modes and the DOFs selected in the step 2, the COMAC is computed

using the following formula and the damage is localized:

COMAC(i) =

(∑Lmax
L=1 |

(
φUi,L

)
·
(
φDi,L

)
|
)2

∑Lmax
L=1

(
φUi,L

)2
·∑Lmax

L=1

(
φDi,L

)2 ,
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where i the DOFs in the modal vector, Lmax is the highest correlated mode pair

number, L is the incremental counter of the mode pair number, and U,D stand

for the undamaged and damaged case.

The calculated COMAC values by the authors of Ref. [11] for a steel structure

is shown in Fig. 2.11. The results shows the damage is at node 9 (the node at the

maximum COMAC value). Moreover, the authors demonstrated that the effectiveness

of the proposed method is in locating the damage in the steel portal frame for both

rigid and pinned joint conditions.

Figure 2.11: COMAC values for a steel structure. (photo credit: Ref. [11])

Even though these modal shape-based methods work well in identification and

localization of damage in structures, these methods have some drawbacks. One of the

drawbacks is these methods require measurements from a great number of locations.

Another one is that the displacement mode shape itself is not very sensitive to small

damage, even with the high-density mode shape measurements. To address the second

issue, researchers introduce techniques based on mode shape curvature. The damage

detection techniques based on mode curvature assume mode shape curvatures are

highly localized to the damaged region.
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2.2.3 Curvature Mode Shape based Damage Detection Tech-

niques

Curvature mode shape is another parameter that is associated with natural frequency.

The damage detection methods based on the mode curvature are called curvature

mode shape damage detection techniques. These techniques assume mode shape

curvatures are highly localized to the damaged region.

For instance, Ref. [12] presented a curvature mode shape method for identifying

and locating damage in a structure. The curvature, ν ′′ at a point is given by

ν
′′ = M

(EI) ,

where M is the bending moment at a section, E is the modulus of elasticity, and

I is the second moment of cross-sectional area. When damage is introduced to a

structure, the quantity EI is reduced and therefore the curvature increases. Thus

the mode shape curvature changes can identify and locate the damage in a structure.

The amount of the damage can be identified with the magnitude change in curvature

[12].

The authors of Ref.[12] obtained curvature mode shape numerically from finite

element analysis by using a central difference approximation as

ν
′′

i = νi+1 − 2vi + vi−1

h2 ,

where h is the length of the elements. They compared the results with natural

frequency changes and mode shape changes. Figure 2.12 shows the absolute difference

between the curvature mode shapes for an intact and a damaged cantilever. The

maximum difference for each curvature mode shape occurs in the damaged region.

For this case, the damaged region is between point 13 and 14 [12].
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Figure 2.12: Differences between curvature modes. (photo credit: Ref. [12])

They showed that changes in the curvature mode shapes can be localized suc-

cessfully for the simple supported beam and the cantilever beam model. Moreover,

the authors showed that the MAC and COMAC methods are not able to detect the

damage in the cantilever.

The application of the change in modal curvature to detect damage in a presented

concrete bridge is presented in Ref.[13]. The authors of the Ref.[13] introduced a dam-

age indicator called "curvature damage factor (CDF)" by considering the difference

in curvature mode shapes for all modes:

CDF = 1
N

N∑
i=1
|ν ′′0i − ν

′′

di|,

where N is the total number of modes and ν ′′0 , ν
′′
d are the curvature mode shapes of

the undamaged and damaged structures, respectively. For instance, CFD values for a
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simple supported beam model are shown in Fig.2.13. The damage position is clearly

identified at the peak node.

Figure 2.13: CDF values for a simple beam model. (photo credit: Ref. [13])

The authors in Ref. [13] showed that when the structure contains several damage

locations, the CDF gives a clear identification of damage locations. Moreover, they

showed that the technique is promising for identification of damage in civil engineering

structures.

2.2.4 Other Methods

Overall, mode shape-based and curvature-based methods can be used for damage

localization. However, these methods may be not be reliable in highly complex struc-

tures due to the time required for their development. Researchers have developed

several other methods for structural health monitoring [14, 15, 60–62]. These include

comparison of dynamically measured flexibility changes [60], modal updating-based

methods [61] , neural network methods [14], and statistical methods [15, 62].
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Dynamically Measured Flexibility Matrix Method

The changes in the static behavior of structures are used in the dynamically measured

flexibility matrix method. The flexibility matrix is defined as the inverse of the

static stiffness matrix. Therefore, the flexibility matrix relates the applied static

force and then to the resulting structural displacement. Thus the structural damage

can be identified using the stiffness of the structure. One example of this approach

is presented in Ref. [60] in which the authors used a flexible approach for damage

identification of cantilever-type structures with bending and shear deformation. They

modeled the arbitrary cantilever-type structure as a lumped mass system and the

structural damage is identified. The authors obtained structural eigenvalue equation

as

[K] {φ} − ω2
i [M ] {φ}i = 0,

where [K] and [M ] are stiffness and mass matrix of the structure. ωi and {φ}i are

the structural circular and modal shape vector of the ith mode. They showed that

the approach only requires a small number of modes and it is convenient for practical

applications. Other examples for the dynamically measured flexibility matrix method

can be found in [63, 64].

Modal Updating Methods

Modal updating methods are based on an algorithm and update model parameters

in an initial model to detect and localize damage. These methods use a modification

of structural model matrices such as mass, stiffness, and damping solving an opti-

mization problem. One of the classes of matrix update methods is sensitivity-based

methods. Ref. [61] used the concept of inverse sensitivity equations. A linear or

sequentially linearized relation that expresses the effect of parameter changes due to
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the changes in the measurement data is formed as

[S] {∆a} = {r},

where [S] is the sensitivity matrix calculated from the partial derivatives of the resid-

uals rj’s with respect to the dimensionless parameters ak in the model. Thus, the

elements of the sensitivity matrix are given by

Sjk = − ∂rj
∂ak

.

This relation yields an ill-posed problem. Therefore, the authors of Ref. [61] used a

regularization method to solve the problem. Using QR decomposition, the number

of possible damage candidates is reduced to a minimum number and numerically

stable, accurate solutions are obtained. Mathematically, the sensitivity matrix [S]

is decomposed into a product of an orthogonal matrix [Q] and an upper triangular

matrix [R] as

[S] [Π] = [Q] [R] ,

where [Π] is a permutation matrix that stores a column interchange [61]. Moreover,

the authors presented other solution methods such as singular value decomposition

and the iterative method of conjugate gradients. The authors illustrated the method

for several examples.

Neural Network Methods

Alternative approaches through neural network methods were recently developed to

monitor the structural health of a system [14, 65]. These methods are capable of ex-

tracting features in the data. Machine learning algorithms for damage detection under

operational and environmental variability is presented in Ref. [14]. In applications,
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operational and environmental variations can highly impact to the damage related

features and damage level. Thus the authors of the Ref. [14] used intelligent fea-

tures extraction procedure to overcome the issue. The proposed technique consists of

three steps. In the first step, damage-sensitive features from the time-series measured

from an array of accelerometers are extracted using an autoregressive model. Next,

the effect of the operational and environmental variability on the extracted features

is defined using four machine learning algorithms, auto-associated neural network

(AANN), factor analysis (FA), Mahalanobis squared distance (MSD), and singular

value decomposition (SVD). Then, a damage indicator is found with these machine

learning algorithms. The damage indicator (DI) for AANN, FA, SVD algorithms are

defined as the square root of the sum-of-square errors:

DI (i) = ||ei||,

where i = 1, 2, ..., k is a feature vector. In the undamaged condition, DI ≈ 0 for the

feature vector i . For the MSD algorithm,

DI (i) = (zj − x̄)T Σ−1 (zj − x̄) ,

where x̄ and Σ are the multivariate mean vector and the covariance matrix for the

training matrix X and zi is a new feature vector zi. DI values calculated using these

four algorithms are shown in Fig. 2.14. The black color shows the undamaged and

the gray color shows the damaged state conditions.
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Figure 2.14: DI values calculated using the four algorithms. (photo credit: Ref. [14])

Even though these algorithms work effectively, they have some limitations. If the

training data are only characteristic of a limited range of operational and environmen-

tal variability, one cannot guarantee that algorithms work efficiently when applied to

a new data set [14].

Statistical Approaches

Many researchers have worked in the statistical approaches based damage detection

techniques. Principal component analysis (PCA)-based health monitoring methods

are presented in Ref. [15, 62]. These methods are based on pattern recognition to

detect the damage of structures.

Ref. [15] presented a vibrational-based damage detection in an aircraft wing

scaled model using PCA and pattern recognition. The authors of the Ref. [15] used

the frequency response functions of the healthy and damaged structure as initial data.
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PCA transforms the original n dimensional data into a lower dimensional data set and

identifies the damage features. The authors developed the methodology for a scaled

model of an aircraft wing. Distribution of the new feature vectors for an undamaged

and a cracked wing is shown in Fig 2.15. These two categories are clearly detectable

with the developed methodology.

Figure 2.15: Distribution of the feature vectors for damaged and undamaged cases.
(photo credit: Ref. [15])

The authors showed that the PCA and the pattern recognition procedure provide

a better methodology for structural damage detection. However, PCA-based methods

only perform linear transformations through the orthogonal components [15].
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Chapter 3

Information-Theoretic Measures

3.1 Causality and Information Theory

Many researchers have been working on finding cause-effect relationships among vari-

ables or objects. Changes in one variable are systematically related to changes in

other variables. Such a relationship that occurs between variables or objects can be

defined as a causal relationship. However, some of the observed relationship may be

a coincidence. Also, correlation does not necessarily guarantee causation. Thus a

relationship between variables does not necessarily imply that a causal relationship

exists[66–70]. Finding causal relationships is important in many processes and oper-

ations. For example, finding statistical evidence that money is "exogenous" in some

sense in the money-income relationship [71] is important in Economics. Finding hu-

man influence on climate from hemispheric temperature relations [72] is important

in Environmental studies. Finding such causal relationships becomes a challenging

problem in a large-scale complex system because of the vast number of connections

between different parts in the system [73].

The causation relationships of data observed as time series was first analyzed by

Clive W.J. Granger [74]. He proposed that causality in economics could be tested by
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measuring the ability to predict the future values of a time series using prior values

of another time series. The two assumptions defined by Granger about the causal

relationships are

1. The cause happens prior to its effect and

2. the cause has unique information about the future values of its effect.

Definition 3.1.1. Granger-Causality Given stochastic processes 1 X and Y , X is

said to Granger-cause Y if predictions of the value of Y based on its own past values

and on the past values of X are better than predictions of Y based only on its own

past values [74].

Granger proposed a statistical hypothesis test, which he calls the Granger causality

test, for determining whether one time series is useful in forecasting another. This

test is based on a linear regression model and given by

Yt = a0 +
m∑
k=1

b1kYt−k +
m∑
k=1

b2kXt−k + εt, (3.1)

where m is the specified number of time lags, t = m + 1, ..., N , and εt are Gaussian

noise with zero mean and variance σ2 [77].

This linear model has been widely applied in many fields such as economics,

finance, and natural sciences. To overcome the difficulties of applying this framework

to nonlinear dynamical systems, many researchers proposed non-linear extensions of

the Granger causality concept [73, 78, 79].

In conclusion, Granger causality can be treated as a theoretical framework. It

can be used to assess directional dependencies between time series [80]. In addition,

an information theoretic approach to the Granger causality plays an important role
1A stochastic process is defined as a collection of time-indexed random variables on a common

probability space [75, 76]. In other words, the stochastic process has a system for which there are
observations at certain times, and that observation at each time is a random variable. At each
observation at a certain time, there is a probability associated with the outcome. This probability
associated with the outcome depends on the previous observations.
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in finding causal relationships in non-linear systems. Information theory is devoted

to the analysis of dependencies through the definition of quantities that measure the

uncertainty of variables using probabilistic concepts [80]. Therefore, in the following,

we focus on the review of information theoretic measures. The rest of this chapter is

organized as follows: Section 3.2 introduces some of the basic concepts, definitions,

and theorems from information theory. The definitions are taken from Ref. [81].

With the aid of the basic concepts from information theory, we developed the optimal

mutual information interaction (oMII) algorithm, which can be used to infer the direct

and indirect influences of variables. We introduced the oMII algorithm in Sec. 3.3

and demonstrates the oMII to a simple benchmark problem in Sec. 3.4. The basic

definitions of probability theory can be found in Appendix A.

3.2 Basic Measures from Information Theory

Information theory was first introduced by C. E. Shannon by means of communication

in his paper titled “A mathematical theory of communication ” in 1948 [82]. He

defined modern digital communication and illustrated transmitting a message from

a transmitter to a receiver using a model “Shannon paradigm.” He determined how

much information can be transmitted over a telephone line and the measures need

to get a perfect signal on the other end. One of the most important things in a

communication system is noise and how well the system deals with it. Shannon

determined the effect of the noise to signal ratio in a communication system.

He represented a discrete information source as a Markov process (a special case

of stochastic processes).2 Shannon discussed the questions such as “how much infor-
2A Markov process is a process where all information that is used for predictions about the

outcome at some time is given by most recent observation [75, 83]. Mathematically, a Markov
process {Xt}t=1,2,... satisfies

P (Xt+1 = xt+1|Xt = xt, ..., X1 = x1) = P (Xt+1 = xt+1|Xt = xt)
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mation is produced by a Markov process?” and “How to measure the information?.”

To answer these questions, he introduced quantity entropy, which is based on the

probabilities of occurrences of events, as measures of information.

To understand the idea that Shannon introduced in Ref. [82], let’s consider a

primary information source used for reporting m different number of messages. The

information source generates a sequence of m symbols. The total information carried

by all of the m symbols is associated with probability of occurrence of the messages.

Thus the average information over a symbol

H = −
∑
j

pj log pj, (3.2)

where pi is probability of occurrence of the ith elementary message i. The classical

researchers in statistical mechanics, such as Maxwell, Boltzmann, and Gibbsused,

used the summation in eq. (3.2) as H and it is proportional to the thermodynamic

quantity entropy [84]. Thus Shannon introduced H for this summation as “entropy”

or “average language information” in his investigation of information theory.

3.2.1 Entropy

Definition 3.2.1. For a set of possible events with probabilities p1, p2, ..., pn, the

entropy measures the expected uncertainty of the events, which is defined by

H =
n∑
i=1

pi log (1/pi) = Ep (− log p) (3.3)

This can be interpreted as the negative of the expected value of log p. This

quantity can be used to measure the information, choice, and uncertainty of a discrete

random variable X.

A simple example of this is the Bernoulli process. Entropy is measured in bits.

A random variable X takes values 0 and 1 with the probabilities p(0) = p, p(1) =
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1− p = q. The entropy of the random variable with logarithm base 2 is

H = −p log2 p− (1− p) log2 (1− p) .

The entropy has the following properties:

1. H ≥ 0

2. H = 0 if and only if all the pi but one are zero, this one having the value unity.

3. For a given n and when all the pi are equal, the H is a maximum and equal to

log n.

4. If X and Y are two random variables, then the joint occurrence of two random

variables X and Y is p (x, y). Thus the joint entropy is

H (X, Y ) = −
∑
x

∑
y

p (x, y) log p (x, y) ≤ H (X) +H (Y ) , (3.4)

where

H (X) = −
∑
x

p (x) log
∑
x

p (x)

H (Y ) = −
∑
y

p (y) log
∑
y

p (y)

If the events are independent, then p (x, y) = p (x) p (y) and equality holds in

eq. (3.4).

5. For a random variable X and some deterministic function of X,

H (X) ≥ H (g (X)) . (3.5)

This property is called non increasing under functions. The equality occurs if

and only if g is invertible.
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3.2.2 Conditional Entropy

The joint entropy measures how much uncertainty there is jointly in the two random

variablesX and Y . The entropy is useful when determining the uncertainty in a single

variable, but it does not measure the uncertainty in one variable given knowledge of

another. The conditional entropy measures how much uncertainty remains on the

random variable X when the value of Y is known. The conditional entropy of X

given Y is

H (X|Y ) = −
∑
x,y

P (x, y) logP (x|y) = −E (log (P (x|y))) . (3.6)

3.2.3 Differential Entropy of Continuous Distributions

The above definitions and properties can be extended for a continuous random vari-

able X with continuous probability distribution f (x). One can attempt to prove

that taking the limiting case of the above-defined entropy of a discrete distribution.

The summation in the definition of entropy can be treated as a Riemann summation.

For example, one can define the entropy of a R-valued random variable X that takes

the values in [0,1] by considering the probabilities of partition elements
[
i−1
N
, i
N

]
as

N →∞.

H (X) = − lim
N→∞

N∑
i=1

P
(
X ∈

[
i− 1
N

,
i

N

])
logP

(
X ∈

[
i− 1
N

,
i

N

])
(3.7)

One can further show that

H (X) = − lim
N→∞

N∑
i=1

f (xi)
N

log f (xi)
N

(3.8)

= − lim
N→∞

N∑
i=1

f (xi)
N

log f (xi) +
N∑
i=1

f (xi)
N

logN, (3.9)
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by assuming X has a probability density function f and P
(
X ∈

[
i−1
N
, i
N

])
≈ 1

N
f (xi),

where xi ∈
[
i−1
N
, i
N

]
. If the first term has a finite limit, one can prove H (X) is not

likely to converge.

H (X) = −
∫ 1

0
f (x) log f (x) dx+ lim

N→∞

∑ f (xi)
N

logN (3.10)

≈ −
∫ 1

0
f (x) log f (x) dx+ lim

N→∞
logN (3.11)

=∞ (3.12)

Thus this cannot be used as a definition of entropy for continuous case.

Shannon introduced another approach by considering the left hand side integral in

Eq.3.10. That integral looks a continuous version of Shannon entropy and he defined

entropy for an R-valued random variable.

Definition 3.2.2. The differential entropy of a continuous random variable X is

h (X) =
∫
f (x) log (1/f (x)) dx = −E (log (f (x))) . (3.13)

The conditional entropy of the random variable X given Y is given by

h (X|Y ) =
∫ ∫

f (x, y) log (1/f (x|y)) dxdy, (3.14)

where the joint entropy of a pair of continuos random variable (X, Y ) with the joint

probability distribution f (x, y) is given by

h (X, Y ) =
∫ ∫

f (x, y) log (1/f (x, y)) dxdy. (3.15)

Some of the properties of the discrete random variables carry over to the contin-

uous case, but some do not. For example, the non-negativity does not hold for the

entropy of continuous random variables. So, h (X) can be negative. For instance,
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consider the random variable X uniformly distributed on the interval [a, b]. The

entropy is given by

h (X) = −
∫ b

a

1
b− a

log 1
b− a

dx = log(b− a)

This can be a negative quantity if b− a is less than 1. Also, the non increasing under

functions property does not necessarily hold.

3.2.4 Mutual Information

The joint and conditional entropies can be used to construct measures that detect

the statistical dependence or independence between random variables as the case

may be. Based on that, mutual information, which is another important measure in

information theory, can be introduced. The mutual information (MI) between two

random variables is the reduction of the uncertainty in one variable given another

variable. Thus the MI between discrete or jointly continuous random variable X and

Y can be defined as

I (X;Y ) = h (X)− h (X|Y ) = h (Y )− h (Y |X) = h (X) + h (Y )− h (X, Y ) . (3.16)

One should notice that

I (X;Y ) = I (Y ;X) .

In the case where the variables X and Y are independent, they have zero mutual

information. MI is nonnegative [I(X;Y ) ≥ 0] and equals zero if and only if f(x, y) =

f(x)f(y), that is, if X and Y are independent. It is often convenient to visualize the

relationship among various entropies and mutual information in an information Venn

diagram as shown in Fig. 3.1(a). The left circle represents the entropy of X and the

right circle represents the entropy of Y. Then the intersection represents the mutual
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information of X and Y. The joint entropy of X and Y is the union of two circles.

Notice that the entropies can take negative values and thus the areas in the Venn

diagram could be negative. When there is a third variable involved, the conditional

mutual information (CMI) between X and Y given Z is defined as follows [85, 86],

I(X;Y |Z) = h(X|Z) + h(Y |Z)− h(X, Y |Z). (3.17)

Like MI, the conditional MI obeys an analogous inequality, I(X;Y |Z) ≥ 0, with

equality if and only ifX and Y are independent given Z. The relation between various

entropies, mutual information, and conditional mutual information are visualized as

an information Venn diagram in Fig. 3.1(b). If the upper left circle represents the

entropy of X, the upper right circle represents the entropy of Y, and the lower circle

represents the entropy of Z, then the conditional mutual information h(X|Z) is the

area of X \ Z. h(Y |Z) is the area of Y \ Z and h(X, Y |Z) is the X ∪ Y \ Z. The

conditional mutual information, I(X;Y |Z) is the area that shown in 3.1(b) shaded

in black color.

(a) Venn diagram for two variables (b) Venn diagram for three variables

Figure 3.1: Information Venn diagram for two (a) and three (b) variables, respectively.
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3.3 Optimal Mutual Information Interaction

In some applications, such as the studying of gene interactions [87], human brain [88],

and power grid infrastructures [89], a large number of nodes and causal relationships

are involved. It is challenging to differentiate these direct relationships without pro-

ducing indirect and erroneous links. For example, Fig. 3.2 illustrates the direct and

indirect causal links to the node i in a simple network. The direct nodes to the node

i are j1, j2, j3, j4 and the indirect links to the node i are j5, j6, j7. Our goal here is to

identify these direct links by removing indirect links in the network.

Figure 3.2: A simple network with direct and indirect causal nodes. The direct causal
links to node i are j1, j2, j3, j4 and the indirect links to the node i are j5, j6, j7.

A direct change or damage site may subsequently affect many further sites down-

stream. Thus, we develop a method called optimal mutual information interactions

(oMII) as a technique of uncovering direct interactions.

The concept behind oMII is to select, based on conditional maximization of MI,

the smallest number of channels that yield the largest MI, analogous to the oCSE

principle that previously developed for causality inference [90]. The oCSE iterative

discovery process has been previously developed to identify causal networks from time

series [90].
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One of the properties of the oCSE is the use of the time-shifted states of the

variables. (See Definition 3.3.1). The number of samples required for the desired

accuracy depends on the average rate at which information transfers through links

between variables. If the transfer frequency is greater than the sampling frequency

then the signal is quickly traveling between sensors. Thus the time shift between the

states of the variables cannot be considered. Therefore, the oCSE algorithm cannot

be applied to the problems with high signal transfer frequency compared to sample

frequency. Notice that oMII is developed by considering the time shift to zero.

The application we consider in Chapter 4 is damage detection in bridge structures.

The length of the bridge that we considered is 41.16 m and the distance between the

two accelerometers is 2.14 m. A vibration signal travels across the bridge approxi-

mately at a speed of 3200 m/s. Then it takes 0.0126 s to travel one side of the bridge

to the other side of the bridge. However, for the experiment, the number of samples

per second (or sample rate) was 128 Hz. At this rate, the signal travels slower across

the bridge and limited to reconstruct the signal.

To apply the oCSE method, one needs to measure the vertical acceleration at two

states. If ai(t) = t m/s2 is the acceleration at state i then the acceleration at state

j is aj(t) = t + τ . Here τ = 2.14
3200 = 0.00067 m/s2 is the time that vibration takes to

travel through the material. On the other hand, at the sample rate 128 Hz/s, if the

acceleration at state j is t + s, where s = 1/128 = 0.0078 s. With this time shift,

oCSE is limited to reconstruct the signal. Thus the time shift between the states of

the variables cannot be considered. Therefore, oMII is developed by considering the

time shift to zero.

This phenomenon reminds us of the Nyquist Theorem or Sampling Theorem [91,

92], which also is fundamentally addressing the issue of sampling fast enough relative

to the process being observed.

Theorem 3.3.1. Nyquist-Shannon Sampling Theorem [92]. The Nyquist Theorem
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states that to reconstruct a signal, the sampling rate must be at least twice the highest

frequency component of a signal fmax (or bandwidth of that signal). If the sampling

rate is less than 2fmax, then some of the frequency components in the signal will not

be correctly reconstructed.

If the message signal has a bandwidth of B and a carrier frequency fc, the upper

frequency or the highest frequency of the modulated signal is fc + B. Then the

required sampling rate be larger than 2 (fc +B).

3.3.1 oCSE Algorithm

To distinguish between direct and indirect causality of networks, the oCSE uses the

information measure “causation entropy.” Causation entropy measures pairwise rela-

tionships of many variables in a network [90].

Definition 3.3.2. Causation entropy [93]. The causation entropy from the set of

nodes J to the set of nodes I conditioning on the set of nodes K is defined as

CJ→I|K = h
(
X

(I)
t+1|X

(K)
t

)
− h

(
X

(I)
t+1|X

(K)
t , X

(J)
t

)
, (3.18)

where I, J,K are all subsets of V = {1, 2, ..., n}.

The problem of causal network inference can be thought of as the problem of

estimating causation entropy among nodes [90]. For a set of nodes I ⊂ V , this

problem can be viewed as checking each node j independently to determine whether

or not it is a causal parent of I. Mathematically,

Node j ∈ NI if and only if there is a set K ⊃ NI , such that Cj→I|(K−{j}) > 0.

oCSE uses two algorithms to infer causal networks efficiently both computationally

and using fewest data samples. Algorithm 1, which is called the Aggregative Discovery
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of Causal Nodes, identifies nodes relevant to causal parents. Then Algorithm 2, which

is called Progressive Removal of Non-Causal Nodes prunes away non-causal nodes or

indirect nodes selecting only the causal parents.

Let I ⊂ V be a set of nodes and NI be its causal parents. Then the sequence

of numbers {x1, x2, ...}, nodes {p1, p2, ...}, and nested sets {K0, K1, K2, ...} can be

defined as

xi = maxx∈(V−Ki−1)Cx→I|Ki−1 (3.19)

pi = argmaxx∈(V−Ki−1)Cx→I|Ki−1

Ki = {p1, p2, ..., pk},

where K0 = ∅. Then the Algorithm 1 and Algorithm 2 can be presented as follows

[90]:

Algorithm 1 Aggregative Discovery of Causal Nodes [90]
Input: Set of nodes I ⊂ V
Output: K ( which will include NI as its subset)

1: Initialize: K ← ∅, x←∞, p← ∅
2: while x > 0 do
3: Ki ← Ki ⊂ {p}
4: for every j ∈ (V −K) do
5: x← Cj→I|K
6: end for
7: x← maxj∈(V−K)xj, p← argmaxj∈(V−K)xj
8: end while

Algorithm 2 Progressive Removal of Non-Causal Nodes[90]
Input: Set of nodes I ⊂ V and K ⊂ V
Output: N̂I ( inferred set of causal parents of I)

1: for every j ∈ K do
2: if Cj→I|(K−{j}) = 0 then
3: K ← K − {j}
4: end if
5: end for
6: N̂I ← K
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In a similar manner, we introduce oMII algorithm by setting time lag to 0 and

using conditional maximization of MI.

3.3.2 oMII Algorithm

Consider a multivariate time series {x(i)
t } that encodes the temporal variation of N

components in a system, i = 1, 2, ........N .

For a given component i, the oMII approach infers a set of components that di-

rectly influence i as follows. First, in the “Discovery" stage (Algorithm 1), components

are added one at a time to maximally reduce additional uncertainty as measured by

conditional entropies, until no further reduction is possible. Then, in the “Removal"

stage (Algorithm 2), each component inferred from the Discovery stage is examined

and removed if such removal does not result in an increase of uncertainty regarding

the time variability of i. In both stages, a shuffle test (Algorithm 3) is used to de-

termine whether uncertainty reduction as measured by conditional MI is statistically

significant.

Algorithm 3 Discovery stage

Input: time series Xt = {x(i)
t }i=1,...,N ;t=1,...,T and component i

Output: Ki

1: Initialize: Ki ← {∅}, p← φ, x← 1
2: while x > 0 do
3: p← argmaxj 6={i,Ki}I(X(i)

t ;X(j)
t |X

(Ki)
t )

4: if (X(i)
t ;X(p)

t ;X(Ki)
t ) passes the Shuffle Test (Algorithm 3) then

5: Ki ← Ki ∪ {p}
6: else
7: x← 0
8: end if
9: end while

50



Algorithm 4 Removal stage

Input: time series Xt = {x(i)
t }i=1,...,N ;t=1,...,T , component i, and set Ki

Output: K̂i

1: for every j ∈ Ki do
2: if (X(i)

t ;X(j)
t ;X(Ki/{j})

t ) fails the Shuffle Test (Algorithm 3) then
3: Ki ← Ki/{j}
4: end if
5: end for
6: K̂i ← Ki

Algorithm 5 Shuffle test

Input: time series (X(i)
t = {x(i)

t };X
(j)
t = {x(j)

t };X
(K)
t = {x(K)

t }, t = 1, . . . , T ),
threshold θ and number of shuffles Ns

Output: pass / fail
1: for ` = 1, ..., Ns do
2: generate a random permutation: σ : {1, . . . , T} → {1, . . . , T}
3: use σ to obtain a shuffled time series, Yt = {yt}, where yt ← x

(j)
σ(t)

4: compute I` ← I(X(i)
t , Yt|X(K)

t )
5: end for
6: S ← the b(1− θ)Nscth largest value from {I1, . . . , INs}
7: if I(X(i)

t ;X(j)
t |X

(K)
t ) > S then

8: output: pass
9: else
10: output: fail
11: end if

3.4 A Benchmark Problem

A simple test problem is created to validate the oMII algorithm. The time series

data {X i
t} that has a multivariate Gaussian distribution is generated randomly. Here

i represents the components and t represent the time index. The data is created to

have mean ~µ = ~0 and covariance Σ. The covariance matrix, which is the inverse of

Laplacian matrix L, is calculated using a test network. The following steps are taken

in the creation of the covariance matrix.

1. Build a test network with set of nodes i.
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2. Create the relevant adjacency matrix A such that

Ai,j =


1 iff i↔ j

0 otherwise.

3. Define the matrix L = D − A, where

D =



d1,1 0 ... 0

0 d2,2 ... 0

... ... ... ...

0 ... 0 dn,n



4. Make a positive definite Laplacian matrix L̃ by adding the identity matrix to

L.

L̃ = L+ I.

5. Set Σ = L̃−1.

With the calculated Σ, the time series data is generated as {X i
t} ∼ N (~µ,Σ). The

oMII algorithm is used to infer the direct influences between the nodes. The accuracy

of the algorithm can be measured by comparing the inferred network (the predicted

network) with the initial true network. Note that the spy graph of the adjacency

matrix is used to presents the connections between nodes.

Fig 3.3(a) and (b) show connections in the true network and the prediction network

created at 5 nodes and 10 nodes. The oMII algorithm uses two parameters, namely

Ns and θ. Ns is the number of shuffles used in the shuffle test, and θ is the threshold

in the shuffle test. Here Ns = 100 and θ = 0.01 are used for the calculations. Five

thousand (5000) sample data are used for the simulations. In Fig 3.3(a), we can see

that the network connections in the predicted network are exactly the same as in the
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true network. But in Fig 3.3(b), there are some new connections and lost connections

in the predicted graph. The number of connections in the true network is 26 and in

the predicted network is 25.
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(a)

(b)

Figure 3.3: Comparison of the results with adjacency matrix at (a) 5 nodes, Ns =100,
θ = 0.01 and (b) 10 nodes, Ns =100, θ = 0.01.
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Figure 3.4 shows the true and predicted network connections at 10 nodes to the

adjacency matrix shown in Fig. 3.3(b). The red color curve represents a connection

that in the true network, but not in the predicted network.

Figure 3.4: The number of connections in the true network and the predicted network
as a function of nodes in the network at Ns =100 and θ = 0.01

Further, we calculated the number of connections in a network at a different

number of nodes. Fig 3.5 shows the number of connections as a function of a number

of nodes. The predicted network connections are almost the same as in the true

network. At some nodes, oMII over predicted the number of connections.
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Figure 3.5: The number of connections in the true network and the predicted network
as a function of nodes in the network at Ns =100 and θ = 0.01

The network connections in the true network and the predicted network at θ = 0.1

and θ = 0.001 are shown in Fig. 3.6. There are 22 connections in the true network

with 10 nodes. The number of connections of the predicted network at θ = 0.1 is 24.

oMII has over-predicted the connections between nodes at θ = 0.1. However, when

the θ = 0.01, both true and predicted have exactly the same connections between

nodes. It is worth to looking at false positive rate (FPR) and false negative rate

(FNR) to check the efficacy of the method. We define the FPR and FNR as defined

in Ref. [94]. Table 3.1 illustrates four events associated with condition A.

Table 3.1: Four events associated with a condition A on an experiment.

Condition A Not A
Test says “A” True positive (TP) False positive ( FP)
Test says “Not A” False negative(FN) True negative (TN)
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Then the false positive rate and false negative rate are defined as follows.

FPR = FP

TP + FP
(3.20)

FNR = FN

TN + FN
. (3.21)
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(a)

(b)

Figure 3.6: Comparison of the results with with (a) θ = 0.1 and (b) θ = 0.001 in
the oMII algorithm. A network with 10 nodes at Ns = 100 and 5000 sample size is
considered.

58



Figure 3.7 shows the FPR and the FNR at 20 independent simulations. These are

done at different θ values. At any value of θ the FNR remains constant at zero. The

FPR approaches zero as the θ decreases. Therefore, the accurate predictions can be

made with oMII with a small θ value.

Figure 3.7: False positive and False negative ratio over the 20 independent simulations
and the average of the rates.

Further, we analyze the effect of the sample size in the algorithm. Here Ns = 100,

θ = 0.01, and 10 nodes network are used. Figure 3.8 shows the average false positive

and false negative ratios for different sample sizes at 20 independent simulations.

When the sample size is more than 800, both ratios are approaching smaller values.

Thus to get the accurate results with oMII, one needs to use a much bigger sample

size.
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Figure 3.8: The average false positive and false negative ratio over the 20 independent
simulations as a function of sample size.

In summary, the oMII method that was developed to uncover direct interactions is

tested with a simple benchmark problem. The method is tested for a simple randomly

generated data set. Results show that oMII is capable of identifying direct links to

nodes in randomly-generated networks. The effect of the results at the parameters

in the algorithm is discussed. To obtain accurate results, one needs to use a small θ

values in the algorithm, because, the results show that the FPR and FNR approach

to zero at small θ values. Also, results show that by using much larger data samples,

accurate predictions can be made using the oMII algorithm. In conclusion, accurate

predictions are guaranteed with at least 800 samples and θ ≤ 0.01.
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Chapter 4

Noninvasive Damage Detection in

Bridge Structures

In this chapter, we apply the oMII approach for damage detection in Bridge struc-

tures. These results are published in an article entitled “Information-theoretical non-

invasive damage detection in bridge structures, Chaos: An Interdisciplinary Journal

of Nonlinear Science. Here, we briefly describe the experimental instrumentation,

statistical findings, and then show the results of the oMII computation. This work

was also featured on SIAM news and American Institute of Physics news. These two

articles are included in Appendix B and Appendix C.

4.1 Introduction

Damage detection of civil infrastructure such as bridges has gained considerable in-

terest for obvious economic and public safety reasons. Damage here can be described

as a change of material or geometrical properties that impact the performance of

engineering systems [95]. In the literature there are many traditional methods to

detect the damage of a bridge[13, 96–98]. Among them, non-invasive techniques are

appropriate for many situations as they are non-destructive and often less expensive
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at least as a precursory scanning approach, in case the more expensive and direct

inspection methods are prescribed.

As dynamical properties of healthy and damaged bridges differ, parameters such

as natural frequencies, damping ratio and mode shapes can be used to detect the

presence of damage in a bridge. The modal curvature method, vibration based dam-

age identification technique, has been used extensively in literature as the stiffness of

the structure directly relate to the natural frequencies and mode shapes, [13, 96–100].

Model-based methods such as neural networks and genetic algorithms [101–103]

have also been used as a basis to develop damage detection of bridges utilizing ar-

tificial intelligence and machine learning techniques. These methods have been be

used to recognize patterns of the damaged and non-damaged systems. In [101] the

study used a genetic algorithm based damage detection method, wherein the authors

formulated the structure damage as an optimization problem. Moreover they used

static displacements as measured responses. In [104], several drawbacks were dis-

cussed when adopting the traditional neural networks in dealing with patterns that

vary over time. Also in [104], time-delay neural networks were proposed to detect the

damage of railway bridges and compared with traditional neural networks.

In this chapter, we propose a mutual information (MI) based damage detection of

a highway bridge, where the specific pairwise interactions are analyzed successively

by an interaction analysis to uncover and detect interactions, and most importantly,

changes in the way various regions of the structure may interact with each other

as the system becomes damaged. We use optimal mutual information interaction

(oMII) as explained in chapter 3 as analogous to our previously developed oCSE

[90, 105, 106], as this is a method of uncovering direct interactions that are more

indicatively sensitive to system changes. In the literature [107–114] many researchers

used MI based techniques to analyze different dynamical fields.

Since the working premise is that a damaged bridge’s dynamics are different, and
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therefore so is the way vibrational energy may transmit through the structure, the MI

of sensed accelerometers within the structure differs when comparing healthy bridge’s

pairwise MI to that of the same bridge later measured in a damaged state. Therefore,

we assert definitively a principle that damaged verses undamaged bridges have differ-

ent dynamics. Specifically direct influences may change due to damage. So comparing

influences as inferred by oMII over time we claim that we can non-invasively detect

important (damage) changes. Here we consider a specific bridge as our test platform.

The New York State Route 345 bridge crosses over Big Sucker Brook, in the town of

Waddington, NY and it was constructed in 1957. The instrumentation has involved

30 dual-axial accelerometers placed on the bridge at 30 locations therein. The test

protocol has involved collection of data from three levels of damage as introduced by

removing bolts from a diaphragm [115].

4.2 Information-theoretic Measures.

4.2.1 Spatial Pairwise Mutual Information

In many engineering applications such as the monitoring of mechanical structures,

sensors are often placed spatially. This motivates a concept of spatial pairwise mutual

information.

The idea of damage detection by information flow is to compare how signals mea-

sured from different spatial locations on the bridge respond to the challenge of the

truck passage. Therefore, the idea is that the signals compared between sites, pair-

wise, may show a given coincidence as measured by MI when the bridge is in a healthy

state, but the transmission of vibrational energy between sites becomes different if

the bridge has been altered or damaged. We assert that just as energy is transmitted

by forces, similarly information associations detect the resulting changes of states.

The idea here is that the manner in which information flow occurs may be detectably
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different between damaged and undamaged bridges. In particular, the MI between

measurements at spatially nearby sensors pairs are dynamically different, consider-

ing a healthy bridge versus a damaged bridge. Rather than just MI of sensors with

respect to each other sensors, we consider spatial pairwise MI carefully conditioning

to isolate effects as we go. It is important to note that there is often a difference

between direct and indirect influences. Most notably, if there is an indirect influence,

the path of information flow may have many multiple channels through the structure,

and therefore, even if damage diminishes one or many of the channels, then there still

may be significant information flow when an influence is indirect. Thus the change

might be hard to detect or masked if simply using the pairwise mutual informations

without carefully conditioning. Therefore, it is important to identify the direct influ-

ences as the direct MI channels, as these are more sensitive to specific damage states.

By our algorithm called oMII described in the next section that selects primary (di-

rect) transmission channels, we consider the likely direct information coincidence of

oMII as a more direct and sensitive measure of changes.

4.2.2 optimal Mutual Information Interaction (oMII)

It is important to distinguish between direct and indirect influences, because a direct

change or damage site may subsequently affect many further sites downstream. So by

identifying the most direct influences, we hope to both identify the specific location

of changes and damage, but also this prevents what otherwise would be an overly

populated map of (indirect) influences making it difficult to understand clear changes.

Therefore,using oMII, the direct vibration transmission network routes in the bridge,

between the sensor locations, can be identified, and most importantly, distinguished

from the indirect influences. This iterative discovery process has been previously

developed to identify causal networks from time series [90]. For the results shown

here, we set the parameters θ = 0.1 and Ns = 100 in the shuffle test.
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4.3 Waddington Bridge Data: Description and Ba-

sic Statistical Properties

4.3.1 Description of the Waddington Bridge Data

In this section we describe the bridge that was used for damage detection, the instru-

mentation setup, and the levels of damage introduced to the structure.

The Waddington Bridge

The Waddingtonbridge, constructed in 1957, is located in New York State Route

345 over Big Sucker Brook in the town of Waddington, NY (see Fig. 4.1). The

highway bridge investigated consists of a 19.1cm (7.5 in.) thick reinforced concrete

slab supported by three interior W33 × 152 and exterior W33 × 141 steel girders

over each span. The bridge has two-lane structures consisting of three 13.7 m (45

ft) simply supported spans carrying a total span of 41.7 m (137 ft) at an elevation

of approximately 1.2 m (4 ft) from waterline. The girders have a center-to-center

spacing of 2.1m (7 ft) and are supported by fixed and rocker steel bearings.

Figure 4.1: The Waddington Bridge, in New York State Route 345 over Big Sucker
Brook in the town of Waddington, NY.
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Instrumentation

In this case study, we use wireless sensor solution (WSS) for bridge health monitoring

and condition assessment. The WSS was developed at Clarkson University as a versa-

tile wireless sensing platform optimized for large scale, high rate, real-time acquisition

[116, 117]. The system was developed based on off-the-shelf components to provide a

low-power sensing interface for vibration, strain, and temperature measurements with

signal conditioning tailored to the typical highway bridge response spectrum. The

wireless communication is facilitated by a low-power chip transceiver employing direct

sequence spread spectrum modulation over a 2.4GHz carrier frequency. Proprietary

embedded software was used to sample data at an effective rate 128Hz.

The bridge span was instrumented in a rectangular grid array at 30 locations

with dual-axis (vertical and lateral) accelerometers, in effect resulting in 60 vibration

sensors.

The sensor locations are shown in the Fig. 4.2(a). The lateral and longitudinal

spacing between these accelerometers are 2.13m and 1.96m, respectively.

Field Testing and Damage Introduction

The sequence of tests performed is outlined in Table 1. Each test consisted of the

acquisition of approximately 90-second time history. Each case included three passes

across the bridge with a truck in both directions. More explicitly, first test was

performed for ∼ 90 seconds, and measurements of the sensors were taken after first

pass of the truck, the second set of test measurements was taken after the second pass

of the truck for another ∼ 90 seconds, and so on. In total 9 tests were performed.

Peak acceleration induced by the truck loading, as measured across the sampled

locations, was generally 15mg, while peak lateral acceleration of 7mg was typical. The

damage test was done with 6 bolts in 1st diaphragm connections (see Fig. 4.2(b)).
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(a) (Top view) Physical spatial layout of the in-
dexed accelerometers, within the bridge structure.
The bridge is divided into three sections. When a
truck goes by, its goes through all three sections. In
this particular experiment, the sensors are placed to
cover one of these sections near one end of the bridge.

(b) Top view with the same orientation and cover-
age area as in (a), here showing the location of the
1st diaphragm connections where the damages are in-
troduced in the experiment.

(c) Vibrational energy is introduced to the bridge
in a controlled manner by driving a truck over the
structure, both before and after damage has been
introduced

Figure 4.2: Physical layout of the accelerometers and the field test vibration intro-
duction.
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Table 4.1: Baseline and Damage Test Scenarios.

Case Test ID Scenario Comments
1 1-3 Baseline “Healthy” Structure
2 4-6 1st diaphragm Removal of four out of six bolts (Damage 1)
3 7-9 1st diaphragm Removal of all six out of six bolts (Damage 2)

For each test (∼ 90 seconds), lateral and vertical accelerations are measured and

recorded at 128HZ, producing a raw time series {x̃(k)
t } for each sensor, where k denotes

the index of the sensor as labeled in Fig. 4.2(a) and t = 1, 2, . . . , T = 11536.

We standardize each raw time series by a linear transformation

x
(k)
t =

(
x̃

(k)
t − µ(x̃(k))

)
/σ
(
x̃(k)

)
, (4.1)

where µ(·) and σ(·) denotes the empirical mean and standard deviation of the given

time series {xt}Tt=1, that is, µ(x) = 1
T

∑T
t=1 xt and σ(x) =

√
1

T−1
∑T
t=1(xt − µ(x))2.

Such transformation produces time series that have zero mean and unit variance. For

the remainder of the paper we shall always deal with such standardized time series

{x(k)
t }.

4.3.2 Basic Statistical Findings - Laplace Distribution

Since the information theoretic entropies are in terms of probabilities, there is the ne-

cessity of good statistical estimation from sampled time series data. Recall that there

is a total of 30 sensors, and 2 time series are measured and recorded at each sensor

(accelerometer) location: lateral acceleration and vertical acceleration. Fig. 4.3 shows

the distribution of the sensor time series plotted against two baseline distributions:

the normal distribution and the Laplace distribution, both standardized to have zero

mean and unit variance, given below:
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
(Normal distribution) f(x|µ, σ2) = 1

σ
√

2π exp (x−µ)2

2σ2 ,

(Laplace distribution) f(x|µ, b) = 1
2b exp −|x−µ|

b
,

(4.2)

with mean µ = 0, σ = 1 (normal distribution), and b =
√

2/2 (Laplace distribution).

From the figure it is visually evident that the measured acceleration data more

closely follow Laplace distribution than normal distribution. To draw this conclusion

from a quantitative standpoint, we compute the l1 norm between the standardized

distribution of the time series for each sensor component and either a Laplace distri-

bution or a normal distribution. The results are shown in Fig. 4.4, confirming that

Laplace distribution is a better fit for the observed data across all sensors in all test

scenarios.

We further establish the following theorem and prove some properties that holds

for the entropy error for an independent and identically distributed source.

Theorem 4.3.1. The entopy error, eH(x) for an independent and identically dis-

tributed (i.i.d.) source X with probability distribution ρ1(x) and empirical distribution

ρ2(x) is given by

|eH(x)| ≤ ||(ln ρ1(x)− ln ρ2(x)||1 + ||ρ1(x)− ρ2(x)||1|| ln ρ2(x)||1

Then the following hold:

1. If ρ1(x) = ρ2(x), then |eH(x)| = |H1(x)− Ĥ1(x)| = 0

2. If ||ρ1(x) − ρ2(x)||1 < ε/2M , with || ln ρ2(x)||1 < M with 0 < ρ1, ρ2 < 1 and

|| ln(ρ1/ρ2)||1 < ε/2 , then |eH(x)| < ε ,for ε > 0.

Proof. Let H1(x) = −
∫
ρ1(x) ln ρ1(x)dx and Ĥ1(x) = −

∫
ρ2(x) ln ρ2(x)dx are the en-

tropies of i.i.d source X with probability distribution ρ1(x) and empirical distribution

ρ2(x).
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(a) Baseline - Lateral direction (b) Baseline - Vertical direction

(c) Damage 1 - Lateral direction (d) Damage 1 - Vertical direction

(e) Damage 2 - Lateral direction (f) Damage 2 - Vertical direction

Figure 4.3: Probability distributions of the sensor time series after first pass of the
truck. (a) Baseline-lateral, (b) Baseline-vertical, (c) Damage 1-lateral, (d) Damage
1-vertical, (e) Damage 2-lateral, (f) Damage 2-vertical. In all panels we also plot the
normal distribution and the Laplace distribution for visual comparison. All distribu-
tions have been standardized to have zero mean and unit variance.
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Consider

|eH(x)| = |H1 (x)− Ĥ1 (x) |

= |
∫

(ρ1 (x) ln ρ1 (x)− ρ2 (x) ln ρ2 (x)) dx|

≤ ||ρ1 (x) ln ρ1 (x)− ρ2(x) ln ρ2(x)||1

≤ ||ρ1 (x) ln ρ1 (x) + ρ1(x) ln ρ2(x)− ρ1(x) ln ρ2(x)− ρ2(x) ln ρ2(x)||1

≤ ||ρ1 (x) (ln ρ1 (x)− ln ρ2(x) + (ρ1(x)− ρ2 (x) ln ρ2(x)||1

≤ ||ρ1 (x) (ln ρ1 (x)− ln ρ2(x)||1 + ||ρ1 (x)− ρ2(x) ln ρ2(x)||1 (By Minkowski inequality)

≤ ||ρ1(x)||1||(ln ρ1 (x)− ln ρ2(x)||1 + ||ρ1 (x)− ρ2(x)||1|| ln ρ2(x)||1 (By Young’s inequality)

≤ ||(ln ρ1 (x)− ln ρ2 (x) ||1 + ||ρ1 (x)− ρ2 (x) ||1|| ln ρ2 (x) ||1 (Since||ρ1 (x) ||1 = 1)

(4.3)

1. ( Trivial case)

If ρ1(x) = ρ2(x)

⇒ ρ1(x)/ρ2(x) = 1

taking the natural logarithmic of both sides, ln(ρ1/ρ2) = 0 and ⇒ |eH(x)| ≤ 0.

Since |eH(x)| > 0, ⇒ |eH(x)| = 0

2. If ||ρ1(x)− ρ2(x)||1 < ε/2M and || ln ρ2(x)||1 < M ,

||ρ1(x)− ρ2(x)||1|| ln ρ2(x)||1 < ε/2 (4.4)

Since

|| ln ρ1(x)− ln ρ2(x)||1 < ε/2 (4.5)

by 4.4

|eH(x)| ≤ ε for ε > 0.
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4.4 Results

4.4.1 Parametric Entropy Estimator for Multivariate Laplace

Distribution

In the previous section we established that the lateral and vertical accelerations

recorded by the bridge sensors more closely follow Laplace distributions rather than

normal distributions. Assuming a parametric estimator for entropy generally requires

fewer data points for the same level accuracy. On the other hand, the non-parametric

approaches where no prior assumption on the form of the underlying distribution can

be used to calculate information measures. However, non-parametric based estima-

tors do not guarantee accuracy [118]. Thus parametric estimators for information

measures based on the Laplace distributions are used for more accurate results.

If the underlying data follows a normal distribution, there is a parameter estima-

tor based on a closed-form formula that only involves the variance (and covariance for

multivariate data) of the time series. However, no such closed-form formula exists for

the Laplace distribution. Our strategy is to use a Monte Carlo method to numerically

evaluate the integrals which define entropies and mutual information, where the pdf

in the integrals are assumed to be Laplace distributions whose covariances are di-

rectly estimated from data. Since there are multiple variables involved, the assumed

distribution is a multivariate Laplace distribution whose pdf is given by [119]

fX (x) = 1
2π(d/2)

2
λ

K(d/2)−1
(√

2
λ
q(x)

)
(√

λ
2q(x)

)(d/2)−1 , (4.6)

where x ∈ Rd, K(d/2)−1 is the modified Bessel function of the second kind with order
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(a) Baseline - Lateral direction (b) Baseline - Vertical direction

(c) Damage 1 - Lateral direction (d) Damage 1 - Vertical direction

(e) Damage 2 - Lateral direction (f) Damage 2 - Vertical direction

Figure 4.4: Relative l1 - norm error of the probability distributions of the sensor
time series after first pass of the truck. Here relative l1 - norm error is defined
by ||p1 − p2||/||p1||, where p1 is the empirical distribution and p2 is either standard
normal or Laplace distribution. (a) Baseline-lateral, (b) Baseline-vertical, (c) Damage
1-lateral, (d) Damage 1-vertical, (e) Damage 2-lateral, (f) Damage 2-vertical. In
all panels the distribution error is computed against either a standard normal or a
Laplace distribution.

73



(d/2)− 1 evaluated at x,

q(x) = λ (x− µ)>Σ−1 (x− µ) , (4.7)

µ is the mean vector, Σ is the covariance matrix and λ =
√
det(Σ).

4.4.2 Spatial Pairwise MI - Baseline, Damage 1, Damage 2

This section illustrates use of pairwise mutual information to study the damage detec-

tion of the bridge. Bridge layout has 30 accelerometers. Each accelerometer records

time series data for vertical and lateral directions, each. We use the spatial pairwise

mutual informations as a probe to study the difference between healthy bridge struc-

ture and damaged bridge structures. In particular, for each sensor, we compute the

MI between the time series produced by it and each of its 4 spatially nearest neighbors.

All the results here are shown only for the scenarios that we call, baseline, damage 1,

damage 2 after the first pass of the truck (tests 1, 4, 7 in Table 4.1). Fig. 4.5 shows

the estimated pairwise mutual information of the lateral-direction accelerometer for

the first pass of the truck in both directions. In particular, Fig. 4.5(a) describes the

mutual interactions for baseline, which is referred as the healthy bridge. Here pairwise

mutual informations are drawn as thickness of the line proportional to the pairwise

mutual information. Maximum pairwise mutual information is shown between ac-

celerometers 28-29, 26-27. Interactions are less than 0.108 between accelerometer

9-10 and 15-16. Fig. 4.5(b) describes the mutual interactions for damaged bridge,

which is referred as the first damage of study of the bridge. Notice that, first damage

study was done by removing 4 bolts (out of 6) from the first diaphragm. We can

see that after the first damage, interactions remain in the same range for almost all

the accelerometers. However, there is a loss of MI between 10-11 and 8-9, which

can be identified clearly in Fig. 4.7. Further damage to the bridge in the tests was
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done by removing all 6 bolts from first diaphragm, with the resulting pairwise mutual

information shown in Fig. 4.5(c). Similar plots are shown with respect to the vertical

accelerations in Fig. 4.6.

Figure 4.5: Pairwise mutual information between accelerometers in the lateral direc-
tion after first pass of the truck. Fig. (a) healthy bridge (b) Damaged bridge after
removing 4 bolts of six bolts (c) Damaged bridge after removing all 6 bolts from the
first diaphragm. There is a significant loss of mutual information in both damaged
bridges compares with healthy bridge.

To more clearly illustrate the difference in information association between nearby

spatial sites, we further plot the difference of spatial pairwise mutual information be-

tween the healthy bridge and damaged bridges, as shown in Fig. 4.7 (lateral direction)

and Fig. 4.8 (vertical direction). In these figures, red and blue are used to respec-

tively denote negative and positive changes due to the damage. Several observations

are in order. First, (with very few exceptions) damage to the structure (as achieved

by the removal of bolts in the tests) seems to generally lower the value of mutual

information in the lateral direction between spatially nearby sites, indicating a lower

coupling, and such change is enhanced with further structural damage [Fig. 4.7].

Secondly, some difference in connection strengths can be seen in the both Fig. 4.7

and Fig. 4.8. For example in Fig. 4.7(a) 11-12, 10-11, 8-9, 7-8 and in Fig. 4.8(a) 11-12,

10-11, 8-9, 16-17. Same mutual interaction strength differences between the above
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Figure 4.6: Pairwise mutual information between accelerometers in the vertical di-
rection after first pass of the truck. Fig. (a) healthy bridge (b) damaged bridge after
removing 4 bolts of six bolts (c) damaged bridge after removing all 6 bolts from the
first diaphragm.

mentioned accelerometers can be seen in Fig. 4.7 (b) and Fig. 4.8(b), which describes

the differences in information flow between the healthy bridge and the bridge after

second damage in the lateral and vertical directions, respectively. However, some

connections remain the same as measured by the spatially pairwise MI. Ex: see the

connection 9-15 in the lateral direction [Fig. 4.7] and the connection 1-7 in the vertical

direction [Fig. 4.8].

4.4.3 oMII - Baseline, Damage 1, Damage 2

In the previous section we use spatial pairwise MI to study damage detection of the

bridge structure. However, pairwise mutual information itself cannot differentiate be-

tween direct and indirect couplings or select the most influential pairs among all pos-

sible couplings. The oMII connections by contrast identify direct influences, whether

they be spatially nearest neighbors or more remote sites on the bridge structure.

It is particularly valuable in a damage detection scenario where oMII connections

may be especially fragile to changes in the structure. Applying the oMII algorithm

as described in Section 4.2.2 to the lateral time series with parameters θ = 0.1 for
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Figure 4.7: Difference of the pairwise mutual information between accelerometers
in the lateral direction after 1st pass of the truck. (a) difference of healthy bridge
and bridge after first damage (b) difference of healthy bridge and bridge after second
damage. There is some difference of connection strengths after first damage and
second damage.

Figure 4.8: Difference of the pairwise mutual information between accelerometers
in the vertical direction after 1st pass of the truck. (a) difference of healthy bridge
and bridge after first damage (b) difference of healthy bridge and bridge after second
damage. There is some difference of connection strengths after first damage and
second damage in the vertical direction.
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the stopping criteria and Ns = 100 in the shuffle test, we show the resulting oMII

connections in Fig. 4.9 and Fig. 4.10 for lateral and vertical directions.

Figure 4.9 (a) shows the oMII interactions for the healthy bridge. It can be seen

from the figure that the bridge structure supports more information flow in the same

direction as the truck lanes (horizontal direction in the figure). Exceptions are near

the center of the bridge which could have been due to the first diaphragm placed in

the bridge structure (see Fig. 4.2(b)). The oMII interactions after the first damage

(removal of 4 out of 6 bolts) and second damage (removal of all 6 bolts) are shown

in Fig. 4.9(b-c). After the first damage, we can see there is both a loss of oMII

connections and new ones. This indicates that the loosening of the bridge potentially

allows for new pathways for vibrational signals to propagate. Clear change in the

information flow in the center of the bridge can be seen from the Fig. 4.10. However,

in the vertical axis also bridge structure supports more information flow in the same

direction as the truck lanes.

To more clearly see which oMII connections are lost/created after damage, we plot

the difference of the oMII connections between the healthy bridge and the damaged

bridges in Fig. 4.11(a) (healthy vs. first damage) in lateral direction, Fig. 4.11(b)

(healthy vs. second damage) in lateral direction, 4.12(a) (healthy vs. first damage) in

vertical direction, and Fig. 4.12(b) (healthy vs. second damage) in vertical direction,

respectively. In these figures, the lost connections are shown as dashed red lines

and the new ones are illustrated by solid black lines. Directionality is denoted by

arrows. One can see that there are 10 new connections (solid black lines) and 7 loss

connections (dashed red lines) appear after the first damage in Fig. 4.11(a).

Due to the second damage, we can see there are significant changes in the informa-

tion transfer between sensors. 10 new connections are occurred and 16 connections

are lost after the second damage (see 4.11(b)). We can see from the 4.12(a) and

4.12(b) that the number of changes of connections in the vertical direction and lat-
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(a) Baseline (b) Damage 1

(c) Damage 2

Figure 4.9: oMII interaction between accelerometers in the lateral direction after first
pass of the truck. Fig. (a) healthy bridge (b) damaged bridge after removing four
bolts from 6 bolts (c) damaged bridge after removing all the 6 bolts from the first
diaphragm.
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(a) Baseline (b) Damage 1

(c) Damage 2

Figure 4.10: oMII interaction between accelerometers in the vertical direction after
first pass of the truck. Fig.(a) healthy bridge (b) damaged bridge after removing four
bolts from 6 bolts (c) damaged bridge after removing all the 6 bolts from the first
diaphragm.
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(a) Baseline - Damage 1 (b) Baseline - Damage 2

Figure 4.11: Difference of the oMII between baseline and damaged bridges in the
lateral direction after 1st pass of the truck. (a) difference of healthy bridge and
bridge after first damage (b) difference of healthy bridge and bridge after second
damage. Red and black lines represent new connections and loss connections after
damaged the bridge respectively.

eral direction remain same after the first damage. After the second damage, number

of new and loss connections ( so number of changes) have decreased in the vertical

direction. However, the number of changes in the connections have increased in the

lateral direction.

The results obtained by oMII as plotted in Fig. 4.11 and Fig. 4.12 show that for the

vertical “gap" in the middle of the region which corresponds to where the diaphragm

connections are, new connections are formed after damages are introduced. Inter-

estingly, this pattern only appears for the lateral accelerations but not the vertical

ones.

Another way to characterize the results is to look at degree distribution of outgoing

and incoming links. The degree distribution (outgoing and incoming links) in the

baseline and damaged bridge is shown in the Fig. 4.13. Yellow, cyan, and black bars

represent the baseline, damage 1, damage 2 respectively. For some bridge systems,

there are some sensors that do not have outgoing or incoming links. The maximum
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(a) Baseline - Damage 1 (b) Baseline - Damage 2

Figure 4.12: Difference of the oMII between baseline and damaged bridges in the
vertical direction after 1st pass of the truck. (a) difference of healthy bridge and
bridge after first damage (b) difference of healthy bridge and bridge after second
damage. Red and black lines represent new connections and loss connections after
damaged the bridge respectively.

amount of outgoing and incoming link is 3 for all structures. In both the lateral

and vertical directions, both the probability of having no incoming links and the

probability of having no outgoing links have increased after damage 2 (as compared

to the healthy bridge). This implies that after introducing relatively large damage to

the bridge there is a significant number of locations that become “disconnected" from

the rest of the bridge in terms of information flow.

In summary, we observe that there are both vanishing and new direct connections

between sensors as the damage experiment is progressed (Fig. 4.13), inferred as direct

connections of the accelerometer signals by vibrational transmission of energy, and

furthermore the sensed values are stable across the repeated experiment. Therefore,

we have described a simple experimental protocol, driving a truck over a bridge

with instrumentation, and a information theoretic way to interpret the data, that is

positively indicative of the damage.
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(a) Degree distribution - Lateral (b) Degree distribution - Vertical

Figure 4.13: Degree distribution of the oMII between baseline and damaged bridge
after 1st pass of the truck in the (a) lateral direction (b) vertical direction. 0, 1, 2, 3
are the number of outgoing and incoming links.

4.5 Discussion and Conclusion

In this work, we used an MI based approach to study damage detection of a bridge

located in Waddington, New York. The damage to the bridge was introduced by

removing bolts from the first diaphragm of the bridge and a sequence of tests were

performed with time series data collected on various locations on the bridge. In

particular, comparing to the baseline case where no damage was introduced, two

levels of damage were tested by either removing four out of the six bolts (damage 1)

or all six bolts (damage 2).

Our first finding is that the measured data, which are accelerations detected by

sensors on the bridge, more closely follow Laplace distribution than normal distribu-

tion. This enables us to develop parametric estimators of mutual information and

conditional mutual information that are more efficient than non-parametric ones.

Our second finding is that the spatial nearest-neighbor interactions as measured

by mutual information tend to become weaker as more damage is imposed. This is

consistent with the intuition that less force and energy pass between adjacent sites
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as the bridge is “loosened" due to the removal of bolts.

Finally, we found that the more primary direction of direct influence and in-

formation flow as detected by oMII goes in the direction of traffic flow even after

partial damage to the bridge. Based on the particular experiments from which these

results are obtained, it is not yet clear whether such unidirectional dominance of in-

formation flow comes from the underlying mechanical structure or from the effect of

drive-through by the trucks.

Among the many unsolved problems, we note that it is important to design ex-

periments for which results from noninvasive damage detection techniques such as

the ones investigated herein can be experimentally validated. The success of such

validation is necessary for making reliable assessment of the structural fatigue as well

as the risk of sudden and disastrous collapse of bridges.
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Chapter 5

Sinkhole Detection using Full

Waveform Inversion

5.1 Introduction

Anomalies such as voids in soils cause significant structural damage. When a void

weakens support of the overlying earth, ground-surface depressions occur. Such a

depression formed as a result of collapse is called sinkhole. Sinkholes can occur

naturally or by manmade activities. Natural sinkholes occur when rocks, such as

limestone, dolomite, carbonate rock, or salt beds below the land surface dissolve

to create underground cavities. Hydraulic conditions such as excessive rainfall in a

short period of time and lack of rainfall can also lead to sinkhole development [120].

On the other hand, humans are also responsible for sinkholes. Manmade activities

such as mining, drilling, and construction can result in sinkholes [121]. Figure 5.1(a)

and (b) illustrate the development process of a sinkhole by natural and human-made

activities.
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(a)

(b)

Figure 5.1: The making of a sinkhole (photo credit: Ref. [16]).

These collapses can result in significant property damage as well as loss of life.

For example, in 2013 in Florida, a man was swallowed by a sinkhole that opened

beneath the bedroom of his house. This man’s remains were never recovered. This

sinkhole reopened up in 2015 and is shown in Fig. 5.2. Also, repairing such damaged

structures after a collapse is expensive. Thus, understanding the causes of sinkholes

has the potential to prevent such expensive structural damage ahead of time.
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Figure 5.2: A 15-foot deep sinkhole in Florida that swallowed a man. (photo credit:
Ref. [17]).

Geologists have developed many testing methods for health monitoring in the

geological sites. Among them, nondestructive testing methods play an important

role. There are many nondestructive testing methods available for sinkhole detection

in a geological site. Gravity methods [18, 36, 37], electric resistivity methods [38, 39],

and seismic methods are some exciting new methods in locating sinkholes.

These methods have advantages and disadvantages in characterizing sinkholes.

Gravity methods [18, 36, 37] are based on a density contrast between the mate-

rial filling the sinkhole and its surroundings. The gravity field on the subsurface is

not uniformly distributed everywhere. The strength of the gravity depends on the

distribution of the mass of materials below the subsurface. Thus the density prop-

erty of subsurface materials can be used for sinkhole identification [37]. Figure 5.3

illustrates the relative surface variation of Earth’s gravitational acceleration over ge-

ological structures. If the void or sinkhole is close to the ground surface, then the

void can be located by measuring the gravitational pull across the void. The gravity

method is a relatively inexpensive method [18]. However, if the depth from the free

surface to the void is greater than the size of the sinkhole, accurate predictions cannot

be made from the measured data [42].
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Figure 5.3: The relative variation of Earth’s gravitational acceleration over geologic
structures (photo credit: [18]).

Resistivity methods [38, 39] are another technique for solving the sinkhole problem.

These methods involve the measurements of the apparent resistivity of soils and rocks.

Resistivity methods utilize direct currents or low frequency alternating currents to

investigate the resistivity of the subsurface. One of the advantages of these methods

is that resistivity methods are relatively easy to perform in difficult field conditions.

But, like gravitational methods, the approach is only applicable for finding shallow

voids [42].

Full seismic surface wave fields can also be used to identify and quantify embedded

sinkholes. This method can be used to characterize variable soil/rock layers, as the

propagation properties of seismic waves are modulated by the anomalies and layer

interfaces [42]. The seismic waves can be divided into two categories according to

the wave propagation in a medium; body waves and surface waves. Body waves

propagate in the interior of a medium. There are two main types of elastic body waves;

longitudinal waves (P-wave or primary wave) and shear waves (S-wave or secondary

wave). P-waves generate compression particle motion parallel to the direction of

propagation–also known as compressional waves–and may be transmitted through

solid rock and fluids. S-waves generate particle motion perpendicular to the direction

of propagation. S-waves are slower than P-waves and cannot move through a liquid

medium. The surface waves propagate in a shallow zone near a free surface. Surface
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waves have a lower frequency than body waves.

In the seismic wave method, ground vibrations are incurred by striking a hammer

against a metal plate, producing seismic waves which emanate from the source (see

Fig. 5.4). These waves are detected and the arrival time is recorded by the geophone,

which is placed on the ground along the direction of the seismic wave propagation.

Then, using the arrival time, ground properties such as wave velocities are determined.

Some of the popular seismic wave methods are surface wave methods and borehole

methods.

The surface wave method (SWM) is a seismic characterization method based on

the analysis of the geometric dispersion of surface waves [122]. Surface waves travel

parallel to the surface or near the surface. They are characterized by low velocity,

low frequency, and relatively high amplitude. Surface waves with different frequencies

travel at different velocities. They are easily generated by both active (hammer and

plate, weight drop) and passive (micro-tremors) sources. One of the limitations of

SWM is that the result is one-dimensional as the assumed model is one dimensional

[122]. i.e. the surface model assumes it does not include lateral changes in velocity

and layer geometry [123].

Figure 5.4: A field layout of seismic survey. Here the multi-channel seismograph is
built-in with internal computer geophones (photo credit: [19])

There are two types of borehole methods; downhole seismic testing and cross-holes

seismic testing. In downhole testing technique, a source is placed at the top of a bore-
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hole and vertical changes in seismic velocity are measured. Using geophones, travel

times at multiple intervals in the borehole can be measured. In cross-hole (or “cross-

well”) seismic testing, the velocity of seismic waves between boreholes is measured.

In the conventional approach, a 3-component borehole geophone is lowered down one

hole and a source is lowering down an adjacent hole(s) by firing the source at some

prescribed depth interval. Figure 5.5 illustrates the field layout of the conventional

cross-hole method. The source and geophones are always at the same elevation. In

each receiver hole, the energy from each shot is measured at a single depth. Velocities

are found by dividing the travel times by the distance between the holes [20].

Figure 5.5: A field layout of cross-hole seismic testing (photo credit: [20])

The full-waveform inversion (FWI) approach [40, 41] is another approach that of-

fers the potential to produce higher resolution imaging of the subsurface by extracting
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information contained in the complete waveforms [42]. This approach can be deter-

mined the properties of the subsurface from seismic data (wavefield data) obtained at

receivers, which are placed on the subsurface. The FWI approach can be illustrated

using the workflow given in Fig. 5.6.

Figure 5.6: Illustration of FWI method

The model we consider is an initial guess based a known properties of the sub-

surface. The model’s results (wavefield data) are solved wave equations assuming an

elastic media producing “predicted data". Simultaneously, wavefield data is observed

experimentally at the receivers, which are placed on the surface. Then the difference

between the predicted data and the observed data are minimized to obtain properties

of the subsurface. The model is updated iteratively until the residual is sufficiently

small.

In the FWI approach, the process of estimating wavefield by solving wave equa-

tions at known model parameters is known as the forward problem. IfM is the model

space (or parameter space) and D is the data (wave field) space, then the forward

model F : M → D can be defined by

F (m) = d, (5.1)
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wherem ∈M is the model parameters that represent the subsurface. For example, in

the acoustic case, the model parameters are the P-wave velocities, S-wave velocities,

density, and Lame coefficients defined at each cell of the numerical mesh used in the

forward simulations. d ∈ D represents seismic responses of the surface recorded at

the receivers. F is the corresponding modeling operator, which is specified by the

equation of motion and boundary conditions.

Finding m by seeking the minimum of the residuals between the model responses

obtained by simulation of wave equations and the observed seismic data is known as

the inverse problem. The residual can be defined as

∆d = dest (m)− dobs (5.2)

where dest is the estimated data associated with the model parameters m and dobs

is observed data. The inverse problem is called well-posed if there is a unique and

continuous solution to the problem with a small perturbation of responses d. Other-

wise, the problem is called ill-posed. One of the common approaches to ensuring the

well-posedness is to regularize the ill-posed problem. By regularizing the problem,

one can obtain a unique and consistent solution to the problem. We present more

mathematical details of the inverse problem and the regularization in Section 5.4.

In the literature, many waveform inversion algorithms were developed for appli-

cation in large-scale (kilometer-scale) domains [124–129]. For example, a frequency

domain method to carry out the inversion with discrete space-frequencies is presented

in Ref. [124]. That method allows a significant reduction in computational time by

selecting a few frequencies. In general, in the large scale problems, the surface waves

can be well separated and removed from body waves prior to the inversion process.

However, in small-scale (meter or millimeter scales), separation of the body waves

from the surface is difficult [42]. In the literature, only a few studies of waveform
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inversion involving body and surface waves have been performed for near-surface in-

vestigations on synthetic data at meter scales [130, 131] or real laboratory data at

millimeter scales [42].

Recently, Ref. [21] developed an FWI technique which inverted body and surface

waves in the case of real experimental data. This approach uses a Gauss-Newton

technique to invert the full seismic wave-fields of near-surface velocity profiles by

matching the observed and computed waveforms in the time domain. Virtual sources

and a reciprocity principle are used to calculate partial derivative wave-fields (gradient

matrix) to reduce the computing time.

The Gauss Newton method consists of the computation of Jacobian matrix, which

records the partial derrivatives of the seismic data. One of the drawbacks of the

Gauss-Newton method is a large memory requirement to store the Jacobian matrix

[21, 132–134].

In the literature, several techniques were used to reduce the memory usage for

the Jacobian matrix [132–134]. For example, Ref. [132] used a non-linear conjugate

gradient method for seismic wave inversion as it does not require the inversion of

the dense Hessian matrix. However, the convergence rate of the results may be slow

with the conjugate gradient method and not efficient for the problems with more

parameters.

Ref. [133] proposed Gauss-Newton-Krylov based method, which is a matrix-free

implementation of the Gauss-Newton method for full-wave inversion problems. The

authors in Ref. [133] showed that this approach is well suited for a nonlinear and

ill-conditioned problem such as inverse wave propagation.

A compressed implicit Jacobian scheme for 3D electromagnetic data inversion was

proposed in Ref. [134]. A significant reduction in memory usage for the Jacobian ma-

trix is obtained with the implicit Jacobian scheme for reconstructing electromagnetic

data.
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We introduce a different cell size based technique as an option for the Jacobian

matrix storage. The goal is to address the computational efficiency and the memory

requirements of the developed method in Ref. [21]. The difference cell size based

technique is applied to a synthetic model and compared with the Gauss-Newton

inversion regular method, which is developed in Ref. [21].

The rest of the chapter is organized as follows. The derivation of the wave propa-

gation equations in elastic media is presented in Section 5.2. We present the Full-wave

inversion method, which was introduced in Ref. [21] in Section 5.3. Mathematical de-

tails and illustration of the inverse problem and regularization problem are given in

Section 5.4. Section 5.5 presents the different cell size approach. The comparison of

the methods and results for a synthetic model are presented in Section 5.6.

5.2 Wave Propagation in Elastic Media

Equations of wave propagation in elastic media are derived by using Newton’s Second

Law of Motion and Hooke’s Law [135]. These equations can be derived by considering

the total force applied to a volume element of an elastic media. We consider a volume

element V with surface area S. The total force is accounted for by the body force act

within the volume element and its surface force field.

FTotal = FSurface + FBody (5.3)

The surface force can be derived from the traction T . The traction vector describes

the surface force as a contact force at one point and is defined by

T (n) = lim
∆S→0

(
∆FSurface

∆S

)
, (5.4)

where ∆FSurface is the force acting on the volume element with surface ∆S at a point
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and n is normal on the surface element. Thus

FSurface =
∫
S
T (n) dS (5.5)

The body force FBody can be obtained by considering Newton’s second law,

F = mg, (5.6)

where g is the acceleration due to gravity, m is the mass of the volume element, and

density ρ = m
V
. Thus

dFBody = ρgdV (5.7)

FBody =
∫
ρgdV (5.8)

The total force is obtained as

FTotal =
∫
V
ρfdV, (5.9)

where f is the local acceleration field given by f = ∂2u
∂t2

. Here u is the displacement.

The traction vector can be calculated using the nine component stress tensor σ.

T (n) = σ · n (5.10)

Therefore, the force balance equation can be written as

∫
S
σ · ndS +

∫
V
ρgdV =

∫
V
ρ
∂2u
∂t2

dV (5.11)

The divergence theorem is used to transform the volume integral and the surface
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integral in Eq. 5.11. Then one can obtain

5 ·σ + ρg = ρ
∂2u
∂t2

(5.12)

In the absence of body forces, the equation of motion is obtained as

5 ·σ = ρ
∂2u
∂t2

(5.13)

The stress acting on the surface of a volume element can also cause deformation, such

as linear, shearing, and rotation. This internal deformation can be described by a

component strain tensor εij, which is related to displacement.

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(5.14)

Hooke’s law describes the relationship between stress and strain for linear elasticity

σij = Cijklεkl, (5.15)

where Cijkl is the third-order stiffness tensor, which represents 21 independent elastic

moduli of the anisotropic medium. For elastic, isotropic medium the stiffness tensor

can be written with two elasticity coefficients, the Lame parameters λ and µ. Here µ

is called the shear-modulus.

Cijkl = λδijδkl + µ (δikδjl + δilδjk) , (5.16)

where δij = 1 only if i = j. Then

σij = λθδij + 2µεij, (5.17)
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where θ is the stress tensor given by θ = σxx + σyy + σzz. Now we can substitute Eq.

5.17 in to Eq. 5.12 and the elastic wave equation is obtained as

ρ
∂2u
∂t2

= 5 (λθ) + µ52 u + µ5 θ + 2ε · 5µ (5.18)

The strength of the 5λ and 5µ tend to zero when the wave frequency is high com-

pared to the scale length of the variation in λ and µ. Ignoring the gradient terms of

λ and µ, the elastic wave equation can be approximated as

ρ
∂2u
∂t2

= (λ+ 2µ)5 (5 · u)− µ5×5×u (5.19)

By introducing the particle velocity v = ∂u
∂t
, we can express the equations of wave

propagation as

ρ
∂vi
∂t

= fi + σij
∂xj

(5.20)

∂σij
∂t

= λ
∂θ

∂t
δij − 2µ∂εij

∂t
(5.21)

∂εij
∂t

= 1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
(5.22)

5.2.1 The Links Between Wave Velocities and Elastic Mod-

uli

Seismic waves are elastic waves. The two independent parameters in elastic tensor

can be expressed in terms of elastic moduli. If κ represents the bulk modulus of the

material, then

λ = κ− 2µ
3 (5.23)

and the Young’s moduli

E = (3λ+ 2µ)µ
(λ+ µ) . (5.24)
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The wave propagation velocity depends on the elasticity and the density of the

medium. The P-wave and S-wave velocities are

Vp =
√
κ+ 4µ/3

ρ
=
√
λ+ 2µ
ρ

(5.25)

and

Vs =
√
µ

ρ
, (5.26)

where Vs and Vp are P-wave and S-wave velocities of the medium. Moreover, the

shear moduli G is defined as

G = µ = ρV 2
s . (5.27)

5.3 Full-Waveform Inversion

The FWI technique consists of two stages. The first stage includes forward modeling

to generate synthetic wave-fields and the second stage includes the model updating

by considering when the residual between predicted and measured surface velocities

are negligible. In this thesis, we consider wave equations in 2-D cartesian coordinates.

5.3.1 Forward Problem

Forward modeling seeks the solutions of the 2-D elastic wave equations. We simulate

wave propagation by solving 2-D elastic wave equations numerically. The governing

equations for 2-D elastic wave propagation can be obtained using Equations 5.20-5.22.

Let σxx, σzz, and σxz be the components of stress tensor and u, v be the particle

velocity components. The spatial directions in the 2D plane are x and z.
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Then the equations governing particle velocity in 2-D are

∂u

∂t
= 1
ρ

(
∂σxx
∂x

+ ∂σxz
∂z

)
= f1 (ρ) (5.28)

∂v

∂t
= 1
ρ

(
∂σxz
∂x

+ ∂σzz
∂z

)
= f2 (ρ) (5.29)

and the equations governing stress-strain tensor are

∂σxx
∂t

= (λ+ 2µ) ∂u
∂x

+ λ
∂v

∂z
= f3 (λ, µ) (5.30)

∂σzz
∂t

=λ∂u
∂x

+ (λ+ 2µ) ∂v
∂z

= f4 (λ, µ) (5.31)

∂σxz
∂t

=µ
(
∂v

∂x
+ ∂u

∂z

)
= f5 (µ) (5.32)

Here ρ (x, z) is the mass density, µ (x, z), and λ (x, z) are the Lame’s coefficients of

the material. The equations 5.28-5.32 can be written as

F (ρ (x, z) , µ (x, z) , λ (x, z)) = d. (5.33)

Equations 5.28-5.32 are the forward equations of the FWI method. We can express

the forward equations in the form of Ax = b, where

A =



∂σxx

∂x
+ ∂σxz

∂z
0 0

∂σxz

∂x
+ ∂σzz

∂z
0 0

0 ∂u
∂x

+ ∂v
∂z

2∂u
∂x

0 ∂u
∂x

+ ∂v
∂z

2 ∂v
∂x

0 0 ∂v
∂x

+ ∂u
∂z


,x =


1
ρ

λ

µ

 , and b =



∂u
∂t

∂v
∂t

∂σxx

∂t

∂σzz

∂t

∂σxz

∂t


. (5.34)

To solve the above forward equations numerically, specific boundary conditions are

needed. We impose three boundary conditions: the free surface boundary condition

on the top of the domain, the absorbing boundary condition on the right side of the
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domain and bottom of the domain, and the symmetric boundary condition on the

left-hand side of the domain.

Free Surface Boundary Conditions

The measurements of the wavefield are generally collected along the earth’s subsur-

face. Therefore, we impose the free surface boundary condition on the top of the

domain by setting the vertical stress components are as zero.


σxz = 0

σzz = 0.
(5.35)

Absorbing Boundary Conditions

Numerical methods are solved for a region of space by imposing artificial boundaries.

Therefore, to avoid the reflections from the boundaries, absorbing boundary condi-

tions should be applied on the right-hand side and the bottom of the domain. Thus

the absorbing condition at the bottom of the domain is


∂u
∂t

+ Vs
∂u
∂z

= 0

∂v
∂t

+ Vp
∂v
∂z

= 0
(5.36)

and at the right-hand side of the domain


∂u
∂t

+ Vs
∂u
∂x

= 0

∂v
∂t

+ Vp
∂v
∂x

= 0,
(5.37)

where Vs and Vp are sheer and pressure wave velocities, respectively.
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Symmetric Condition

To save computational time, we imposed a symmetric condition along the load line.

Thus at the left-hand side of the domain we set


σxz = 0

u = 0.
(5.38)

To solve the forward equations, one can use numerical approaches such as finite

difference method, finite element method, and Fourier/spectral method. Ref. [21]

used a classic velocity-stress staggered-grid finite-difference solution of the 2-D elastic

wave equations in the time domain (Virieux, 1986) with the absorbing boundary

conditions (Clayton and Engquist, 1977). In that approach, a direct discretization of

the equations 5.28-5.32, both in time and in space is considered. We follow the same

approach for solving forward equations.

5.3.2 A Classic Finite Difference Scheme

To solve Eqs. 5.28-5.32 with the above boundary conditions 5.35 - 5.37, the derivatives

are discretized using central finite differences. For instance, the second order central

difference approximation formula for the function f ∈ C3 [a, b] and x − h, x, x + h ∈

[a, b] is defined as:

f
′ (x) = f (x+ h)− f (x− h)

2h + O
(
h2
)
, (5.39)

where O (h2) is the truncation error. This term indicates that the error of the ap-

proximation is proportional to the step size of h. To get a good approximation with

a small error, h should be sufficiently small.
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In our problem, for a field variable f , the temporal discretization is

Dt [f ]ki,j =
f
k+1/2
i,j − fk−1/2

i,j

δt
= ∂f

∂t
|ki,j +O(δ2) (5.40)

and the spatial discretizations are

Dx [f ]ki,j =
fki+1/2,j − fki−1/2,j

h1
= ∂f

∂x
|ki,j +O(h2

1) (5.41)

Dz [f ]ki,j =
fki,j+1/2 − fki,j−1/2

h3
= ∂f

∂z
|ki,j +O(h2

3). (5.42)

Here i, j, and k represent the indices used in the discretization for the directions

x, y and time. The domain is discretized in the x, y and time directions as shown in

Fig. 5.7. h1, h3, and δt are the grid steps for x, z and time directions, respectively.

f can take u, v, σxx, σzz, σxz. For example, the derivative terms ∂u
∂t
, ∂σxx

∂x
, and ∂σxz

∂z
in

Eq. 5.28 can be approximated as

∂u

∂t
=
u
k+1/2
i,j − uk−1/2

i,j

2δt (5.43)

∂σxx
∂x

=
σxx

k
i+1/2,j − σxxki−1/2,j

2h1
(5.44)

∂σxz
∂z

=
σxz

k
i,j+1/2 − σxzki,j−1/2

2h3
(5.45)

Then, Eq. 5.28 can be approximated using Eqs. 5.43, 5.44, and 5.45 as,

u
k+1/2
i,j − uk−1/2

i,j

2δt = 1
ρ

((
σxx

k
i+1/2,j − σxxki−1/2,j

2h1

)(
σxz

k
i,j+1/2 − σxzki,j−1/2

2h3

))
(5.46)
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Figure 5.7: The discretization of the domain ( photo credit: Ref. [21]).

Equations 5.47 - 5.51 are the second order accuracy numerical scheme after dis-

cretizing the system of differential equations (Virieux, 1986). The velocity field

(U, V ) = (u, v) at time
(
k + 1

2

)
δt and the stress-tensor field (Txx, Tzz, Txz) = (σxx, σzz, σxz)

at time (k + 1) δt are explicitly calculated with the numerical scheme.
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U
k+1/2
i,j = U

k−1/2
i,j +Bi,j

δt

h1

(
Txxki+1/2,j − Txxki−1/2,j

)
+Bi,j

δt

h3

(
Txzki,j+1/2 − Txzki,j−1/2

)
(5.47)

V
k+1/2
i+1/2,j+1/2 = V

k−1/2
i+1/2,j+1/2 +Bi+1/2,j+1/2

δt

h1

(
Txzki+1,j+1/2 − Txzki,j+1/2

)
+Bi+1/2,j+1/2

δt

h3

(
Tzzki+1/2,j+1 − Txzki+1/2,j

)
(5.48)

Txxk+1
i+1/2,j = Txxki+1/2,j + (L+ 2M)i+1/2,j

δt

h1

(
U
k+1/2
i+1,j − U

k+1/2
i,j

)
+ Li+1/2,j

δt

h3

(
V
k+1/2
i+1/2,j+1/2 − U

k+1/2
i+1/2,j−1/2

)
(5.49)

Tzzk+1
i+1/2,j = Tzzki+1/2,j + (L+ 2M)i+1/2,j

δt

h1

(
V
k+1/2
i+1/2,j+1/2 − V

k+1/2
i+1/2,j−1/2

)
+ Li+1/2,j

δt

h3

(
U
k+1/2
i+1,j − U

k+1/2
i,j

)
(5.50)

Txzk+1
i,j+1/2 = Txzki,j+1/2 +Mi,j+1/2

δt

h3

(
U
k+1/2
i,j+1 − U

k+1/2
i,j

)
+Mi,j+1/2

δt

h1

(
V
k+1/2
i+1/2,j+1/2 − V

k+1/2
i−1/2,j+1/2

)
(5.51)

Here, M and L represent the Lame coefficients (µ, λ) and

B = 1
ρ

(5.52)

as shown in Fig. 5.7.

Moreover, the initial condition at time t = 0 is set such that the stress and velocity

are zero everywhere in the domain. The medium is perturbed by changing vertical

stress σzz at the source using

R (t) =
[
1− 2π2f 2

c (t− t0)2
]

exp
[
−π2f 2

c (t− t0)2
]
, (5.53)

where fc is the center of the frequency band and t0 is the time shift.
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Stability Criterion

Numerical schemes are associated with numerical errors due to the approximation of

the derivatives in the partial differential scheme. It is important to obtain a stable

wave propagation solution from the finite difference scheme. With some numerical

schemes, the errors made at one-time step grow as the computations proceed. Such

a numerical scheme is said to be unstable so the results blow up. If the errors decay

with time as the computations proceed, we say a finite difference scheme is stable. In

that case, the numerical solutions are bounded.

To obtain a bounded solution from the finite difference scheme, we obtain δt from

the stability criterion (Virieux, 1986) given by

δt ≤ 1
Vmax

√
1
h2

1
+ 1

h2
3

. (5.54)

Here Vmax is the maximum P-wave velocity in the media.

Inputs for the forward problem are the model parameters such as density, Lames’s

moduli, P-wave velocity, and S-wave velocity. Then the particle velocities and stresses

(outputs) are calculated by implementing the numerical scheme (Eqs. 5.47 - 5.51) in

MATLAB.

5.3.3 Inverse Problem

The FWI is the problem of finding the parametrization of the subsurface using seismic

wave field. Thus the goal of inversion is to estimate a discrete parametrization of the

subsurface by minimizing the residual between the observed seismic data and the

numerically predicted seismic data. If seismic waves are generated from NS sources

(one shot at a time) and are recorded by NR receivers, then the residual for all shots
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and receivers can be defined as

∆dij = Fij (m)− dij, (5.55)

where di,j and Fi,j (m) are the observed data and the estimated data associated with

the model parameters m, and indices i and j denote the ith shot and jth receiver,

respectively. In this problem, the model parameters are density, ρ (x, z), or one of

Lame’s moduli, λ (x, z) and µ (x, z) or Vs (x, z) and Vp (x, z). However, due to the

relationship between elastic moduli and wave velociies only three model parameters

are enough to characterize the subsurface.

This problem can be modeled as a least squares problem. The objective function

of the inverse problem can be expressed as minimizing a least square error Ed (m).

For ∆d : M → D the problem is

argminmEd (m) = 1
2∆dT∆d = 1

2 ||∆d||22, (5.56)

where Ed (m) is called the misfit function [129]. Here ∆d = {∆di,j, i = 1, ..., NS, j =

1, ..., NR}. ∆d is a column vector, which is the combination of residuals ∆di,j for all

shots and receivers. Optimization problems of this form are called nonlinear least-

squares problem and our target here is to find model parameters m∗ that minimizes

Ed (m).

Model updating methods such as Gradient descent method, Newton method, and

the Gauss-Newton method can be used to solve the above optimization problem.

Gradient Descent Method

The gradient method solve the non linear least square problem with search directions

defined by the gradient of the function Ed (m). Ed (m) decreases in the negative
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direction of the gradient of Ed (m), −∇Ed (m). For iterations n ≥ 0,

mn+1 = mn − α∇Ed (m) (5.57)

iterates to find the minimum number m∗. Here α is the step size. The gradient

contains the first partial derivatives of Ed (m) with respect to the model parameters

m.

∇Ed (m) =
[
∂Fi (m)
∂mj

]T
∆d, (5.58)

where i = 1, ..., NS ×NR and j = 1, ...,M . Here
[
∂Fi(m)
∂mj

]
is defined as the Jacobian

matrix J .

Gauss-Newton Method

The Newton method is based on the model update with the second order partial

derivatives of the function Ed (m). The Hessian matrix,

H = −∇2Ed (m) = ∂

∂mp

[
JT∆d

]
(5.59)

records the second order derivatives. The Newton method is given by

mn+1 = mn −H−1JT∆d. (5.60)

However, the calculation of the Hessian matrix is difficult. Therefore, the Newton

method has not been often used in geophysical inverse problems. The Hessian matrix

can be written as

H = JTJ + ∂JT

∂mp

∆d. (5.61)
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By considering the negligibility of the second term of the Eq. 5.61, the Hessian matrix

can be approximated as

Ha = JTJ (5.62)

and the Gauss-Newton formula [124] with the approximate Hessian matrix is

mn+1 = mn −H−1
a JT∆d. (5.63)

The Gauss-Newton method is effective for solving non-linear problems and guaran-

tees faster convergence rates than the gradient method. With good initial guesses, the

Gauss-Newton method converges nearly quadratically. But theoretically, the Gauss-

Newton method converges linearly. However, when the Jacobian is ill-conditioned

or singular, the search direction becomes very large and the Gauss-Newton method

is not globally convergent. Thus to solve the original problem, regularization of the

original problem can be used.

The regularized misfit function E used in geophysical inversion[129] is defined as

E (m) = Ed (m) + λEm (m) , (5.64)

where λ is the regularization parameter that controls the relative importance of the

Em (m), where Em (m) is the model objective function that contains a priori infor-

mation of the model. Em (m) can be written as

Em (m) = 1
2 ||L∆m||2, (5.65)

where L is discrete linear operator [129]. Then the regularized Gauss-Newton formula

with step size α is

mn+1 = mn − αn
[
JTJ + λLTL

]−1
JT∆d. (5.66)
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When L = I, Eq. 5.66 represents the damped least-squares method [129]. L can be

used as a discrete 2-D Laplacian operator[136], which is defined as

Li∆m ≈ Pi∆m = (∆mi)E + (∆mi)W + (∆mi)N + (∆mi)S − 4 (∆mi) , (5.67)

where E,W,N, and S are the four neighbors of the ith model parameter and Pi is

the ith row of the Laplacian matrix whose elements are either 1, -4, or 0. Ref. [129]

used both model objective functions from damped least-squares method and discrete

2-D Laplacian operator in the regularized problem. The regularized Gauss-Newton

formula [129] to geophysical inversion can be written as

mn+1 = mn − αn
[
JTJ + λ1P

TP + λ2I
T I
]−1

JT∆d. (5.68)

The step length αn is determined by

αn ≈

[
JTgn

]T
[F (mn)− d]

[JTgn]T [J tgn]
, (5.69)

where gn =
[
JTJ + λ1P

TP + λ2I
T I
]−1

JT [F (mn)− d].

For model updating, Ref. [21] uses Eq. 5.68 in the FWI. Following modifications

to the residual and the Jacobian matrix are also used in Ref. [21].

1. The residual ∆dij is modified to avoid the influence of the source on the estima-

tion during inversion. For that modification cross-convolution1 of wave-fields

is used. The symbol * denotes the convolution. Let the model m includes all

unknowns (S-wave and P-wave velocities of cells). For each shot gathering, the
1The convolution of two functions f and g is defined as the integral of the product of the two

functions after one is reversed and shifted. Mathematically,

(f ∗ g) =
∫ ∞
−∞

f (τ) g (t− τ) dτ
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estimated wave-fields are convolved with a reference trace from the observed

wave-field, and the observed wave-fields are convolved with a reference trace

from the estimated wave-field. Thus the modified residual between estimated

and observed data for the ith shot and jth receiver is

∆dij = Fi,j (m) ∗ di,k − dij ∗ Fi,k (m) , (5.70)

where di,j and Fi,j (m) are the observed data and the estimated data associated

with the model m. Fi,k (m) and di,k are the reference traces from the estimated

and observed data, respectively, at the kth receiver position.

2. The Jacobian matrix J is obtained by taking the partial derivatives of seismo-

grams with respect to parameters of modelm and convolving with the reference

traces and defined by

Jij,M = ∂Fi,j (m)
∂mp

∗ di,k − di,j ∗
∂Fi,k (m)
∂mp

, (5.71)

for i = 1, ..., NS, j = 1, ..., NR, and p = 1, ...,M .

The Gauss-Newton model updating algorithm that minimizes the error Ed(m) can

be expressed as

Algorithm 6 Gauss- Newton Algorithm
Input: starting point m0, tolerance ε
Output: m∗

1: mk ←m0
2: Calculate Jacobian J and P
3: pk ← JTJ + λ1P

TP + λ2I
T I

4: R← ||pk||
5: αk ← step size
6: mk+1 ←mk + αnpk
7: if R = ||pk|| < ε then
8: m∗ ←mk+1
9: else mk ←mk+1
10: end if
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The λ1 and λ2 are between 0 and ∞. For this study, λ1 = 0.05 and λ2 = 0.0005

are chosen as appropriate values.

5.4 Illustration of Inverse Problem and Regular-

ization Problem

Let’s consider the problem defined by the matrix equation

Ax = b. (5.72)

The forward problem is the problem of finding b for a given A and x. The inverse

problem is the problem of finding x for a given A and b. In many applications, we

measure the data or responses b and try to find the quantities or parameters of the

original problem. A simple example of an inverse problem is Model fitting. For a

given data set of measured points (ti, yi), we wish to determine the parameters a, b,

and c in such a way that the observed data are fitted to some theoretical model given

by

y = a+ bt+ ct2. (5.73)

Figure 5.8 illustrates the inverse and forward problem for a mathematical model.
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Figure 5.8: The forward and the inverse problem (photo credit: Ref. [22])

According to Hadamard [137], the problem defined by the matrix equation:

Ax = b (5.74)

is well-posed, if the following three conditions hold:

1. it has a solution

2. the solution is unique

3. the solution depends continuously on data and parameters.

A problem that violates any of these three conditions is called an ill-posed problem.

Let’s illustrate these conditions using simple examples.
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Example 5.4.1. Consider the problem [23], Ax = b, where

A =

1 1

2 −1

 , b =

5

4

 and x =

x1

x2

 . (5.75)

To solve the problem, we can write the problem as a system of two equations.

x+ y =5 (5.76)

2x− y =4 (5.77)

These two lines intersect at the point (3, 2), which is called the solution (see Fig.

5.9(a)). In this case, the problem has only one solution and we say that the problem

has unique solution. The unique solution is x =

3

2

.
This problem satisfies the first two conditions of the well-posedness.

Example 5.4.2. Consider the problem [23], Ax = b, where

A =

−2 1

−4 2

 , b =

3

2

 and x =

x1

x2

 . (5.78)

By writing the problem as a system of two equations,

−2x+ y =3 (5.79)

−4x+ 2y =2 (5.80)

one can see that two parallel lines in the xy-plane (see Fig. 5.9(b)). There is no point

of intersection and therefore, no solution to the original problem. Thus the problem

is ill-posed.
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Example 5.4.3. Consider the problem [23], Ax = b, where

A =

4 −2

6 −3

 , b =

6

9

 and x =

x1

x2

 . (5.81)

In this problem, both equations can be written as

y = 2x− 3. (5.82)

Thus any point on the line is a solution and there are infinitely many solutions (see

Fig. 5.9(c)). One can see that this problem is ill-posed since it does not satisfy the

second condition, which is the uniqueness of the solutions.

Figure 5.9: Three possibilities that can arrive in solving of Ax = b. (photo credit:
Ref. [23])

The third condition of the well-posedness can be described as if a small changes

in initial condition and parameter values result in small changes in the solution. To

measure this change, we can use condition number with an appropriate measure. The

condition number is defined more precisely as the maximum ratio of the relative error

in x to the relative error in b. If the condition number is large or infinite, a small

change (error) in b may result a large change (error) in x.

The condition number of A in Ex. 5.4.1 is 1.76. That means small change in b

causes a small change in the solution. Thus the problem has a well-defined solution.

114



The condition number in Ex. 5.4.2 is 4.8 ×1016. This implies that the problem in

Ex. 5.4.2 is ill-conditioned and does not have a well-posed solution for all data and

parameters.

A problem defined by Ax = b with a square matrix A of size n × n posses well-

posed solution, then the matrix is invertible, i.e. det A 6= 0 and the unique solution

is given by x = A−1b. The problem is ill-posed if the det A = 0 or the matrix A is

not invertible.

One can see that, for Ex. 5.4.1, detA = −3 6= 0 and the solution is given as

x = A−1b =

1/3 1/3

2/3 −1/3


5

4

 =

3

2

 (5.83)

However, for Ex. 5.4.2, detA = 0. For these type of problems where the problem

is ill-posed, to obtain a solution, a regularization method can be used. In general,

least square solution of an inverse problem Ax = b seeks to minimize

||Ax− b||2. (5.84)

The regularization problem is defined by adding a regularization term to the least

squares minimization problem as

||Ax− b||2 + ||Γx||2, (5.85)

where Γ is the Tikhonov matrix. This matrix can be chosen as a multiple of the

identity matrix. Thus the regularization problem can be written as solving Ax = b

such that minimizing

||Ax− b||2 + α||x||2, (5.86)

where α is the regularization parameter. The next example shows how to regularize
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an ill-posed problem and achieve a solution to the regularization problem.

Let’s consider the ill-posed problem given in Ex. 5.4.2. The system of equations

can be row reduce to obtain

−2 1

0 0


x1

x2

 =

 3

−2

 .

We seek the solution for x1 and x2.

One can see that this system of equations has an inconsistent solution as the second

equation implies that 0 = −2. If we like to find a solution on the line −2x1 + x2 = 3

which is closest to the origin, then the regularization problem can be defined as

arg minx1,x2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
−2 1

0 0


x1

x2

−
 3

−2


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
x1

x2


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

. (5.87)

The closest distance to the origin can be found using any distance measure, such

as Euclidean distance (l2 norm), l1, and l∞. Using the new problem, we can find a

solution.

5.5 Different Cell Size Method to Store Jacobian

To solve the inverse problem introduced in Section 5.3.3, the regularized Gauss-

Newton formula, which is defined in Eq. 5.68, can be used. The term JTJ is defined as

approximation to the Hessian matrix H. The major drawback of the Gauss-Newton

method is memory and computational requirements of the Hessian matrix approxi-

mation.

The size of the Jacobian matrix is equal to the number of measured data points

at receivers for each shot (NR × NS) times the number of parameters (number of

cells in the domain). In 3-D problems the size of the data set and the number of cells
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in the domain is usually large. Hence, the storage of the Jacobian matrix requires

an adequate amount of storage. For large scale problems, as the size of the Jacobian

matrix increases, expenses to calculate JTJ and invert JTJ + λ1P
TP + λ2I

T I in

Eq. 5.68 also increase. As we discussed in Section 5.1, there are several approaches

to manage the storage and computational requirements of the inversion. Other than

those techniques, Ref. [129] suggested a way to calculate Ha matrix without fully

storing the Jacobian matrix. In their approach, the Jacobian matrix was divided into

sub-matrices at the receivers and Ha matrix was calculated as follows:

Ha = JTJ =
[
JT1 JT2 . . . JTNR

]


JT1

JT2

. . .

JTNR


=

NR∑
j

JTj Jj (5.88)

In this way, the Ha can be calculated by summing up the sub-matrices. The above

technique can be implemented in MatLab with a loop that goes through the num-

ber of receivers. Therefore, the full Jacobian matrix does not have to be stored.

Ref. [21] used the same technique for calculating Ha matrix. In the implementation,

Ref. [21] did all the above manipulation with arrays rather than the matrices. Before

calculating the Ha matrix, Ref. [21] converted the Jocobian sub matrices to an array.

In this thesis, we introduce an approach called different cell size method in ad-

dition to the computational techniques used in Ref. [129] and Ref. [21]. One special

observation on the Jacobian matrix is that the partial derivatives values of the seis-

mograms corresponds to the bottom cells in the domain are smaller when compared

with those values at the top cells. By considering that fact, we decompose the spatial

domain into three zones: zone 1, zone 2, and zone 3. Here the Jacobian matrix has

the smallest values at the cells corresponding to the zone 3. Then zone 2 and 3 are

discretized again with a bigger step size in the x direction and z direction. The dis-
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cretization ratio for zone 3 is larger than that of zone 2 and the discretization ratio

for zone 2 is larger than that of zone 1. For example, if dx and dz are step size for the

regular domain in the x and z direction, then the discretization ratios for zone 2 can

be 2dx and 2dz. The discretization ratios for zone 3 can be 3dx and 3dz. According

to that, one cell in the zone 2 is created by combining 4 smaller cells and one cell in

the zone 3 is created by combining 9 smaller cells in the regular domain

The values of the Jacobian at the bigger cells in zone 2 and zone 3 are re-evaluated

by taking the sum of the values at the smaller cells. Then the values at the cells for

the three zones are stored in matrices and converted to a single array. Figure 5.10

illustrates the procedure of the new discretization and converting values from matrix

to an array for the three zones.
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(a)

(b)

Figure 5.10: (a) Decomposition of the initial domain. The cell size of zone 1, zone
2, zone 3 are dx × dz, p1dx × p2dz, and p3dx × p3dz, respectively. Here p1, p2 are
integers. (b) The array formulation for the values in the cells in the domain.

Notice that the length of the obtained array for the different cell size method is

shorter than the length of the array obtained with the regular cell method, which uses
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Jacobian matrix without combining cells, for the initial domain. For the regular cell

size method, the number of parameters is equal to the number of cells in the domain.

For the proposed different cell size method, the number of cells is less than that of

the regular cell size method as the bottom cells in the bottom zones are combined.

Thus the size of the Hessian approximation matrix is smaller than that of the regular

cell size method. Due to that, the Hessian approximation matrix can be calculated

faster and less Jacobian storage is required. Thus the different cell size method is

computationally inexpensive compared with the regular cell size method. Once we

calculate the Hessian matrix, the Gauss-Newton update was used to find the shear

wave and pressure wave velocities. Then the velocities in the bigger cells (combined

cells) in zone 2 and zone 3 are converted back to smaller cells. The velocities at the

smaller cells are calculated by taking the average of the bigger cells.

5.6 Numerical Results

In this section we investigate the capacity of the FWI in detection of embedded voids.

The FWI technique with the different cell size method is applied to a synthetic model.

Results are compared with the regular cell size method, which was used in Ref. [21].

5.6.1 A Synthetic Model with an Embedded Void

We consider a synthetic model of the earth for the investigation. The velocity profiles

of the earth, i.e., S-wave and P-wave velocities of cells, are assumed to be known a

priori. In the test configuration, the locations of a set of sources and receivers are

also known. Using a known velocity structure, surface waveform data are calculated.

These waveform data are then used as the input to the inversion program. If the

waveforms were obtained from a field test, then the velocity structures can be ex-

tracted from the inversion of the surface waveform data. Theoretically, the extracted
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velocity profile should be the same as the velocity profile assumed at the start.

We consider a synthetic model, which consists of two layers with an embedded

air-filled void. The S-wave velocities Vs of the materials are 200 m/s for the soil layers

and 700 m/s for limestone. The P-wave velocity is generated from the S-wave velocity

Vp using

Vp =
√

(2 (1− ν) / (1− 2ν))Vs (5.89)

for the entire domain. Here ν is 0.33. The void is encoded by setting the S-wave

velocity in some computational cells to zero and P-wave velocity of those cells to 300

m/s. We consider 49.5 m long and 18 m depth domain for the test configuration.

Figure 5.11 shows the S-wave velocity and P-wave velocity profiles for the assumed

model. The soil layer (cyan color) is located approximately 7 m depth from the

surface and the limestone layer (yellow color) is located from 8 m to 18 m depth. The

void, blue rectangle in the domain, is located at the 15 m in the x direction and 7 m

in the z direction (depth).
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Figure 5.11: Velocity profiles of the true model

The finite difference code developed by Ref. [21] was used to generate a synthetic

waveform data set. The code was modified to be used with the difference cell size

method. The synthetic waveform data were recorded from 32 receivers spaced every

1.5 m from station 0.75 m to 49.5 m. 33 shots were used at 1.5 m spacing starting from

0 to 36 m on the ground surface. Fig. 5.12 shows the receiver locations and source

positions. The waveform data obtained with the finite difference code is used for

inversion. For the data inversion, an initial model is generated with S-wave velocity

increasing with depth (from 200 m/s at the surface to 600 m/s at the bottom) and

P-wave velocity was generated from the S-wave velocity using Eq. 5.89. Figure 5.13

shows the initial model, which was used for the inversion. Step size in the regular

grid is dx = dz = 0.3 in both x and z directions. Widths of the three regions for the

difference cell size methods are 6.75 m, 9 m, and 2.25 m for zone 1, zone 2, and zone
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3, respectively (see Fig. 5.12). The corresponding step sizes are dx, 2dx, and 3dx for

zone 1, zone 2, and zone 3, respectively.

Figure 5.12: The domain categorization as zone 1, zone 2, and zone 3. Receivers and
sources are on the ground surface.
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Figure 5.13: Velocity profiles of the initial model

With the initial model, four inversions are performed for the data sets at four

frequency ranges at central frequencies of 10, 15, and 20 Hz. The first inversion at

a central frequency of 10 Hz started with the initial model. The other inversions at

the central frequencies 15 and 20 Hz were performed by using the inversion results

at the lower central frequency as the initial model. During the inversion, S-wave and

P-wave velocities were updated using Eq. 5.68.

The inversion results with the central frequency 10 Hz and 15 Hz are shown in

Fig. 5.14(a) and (b), respectively. At 10 Hz, the void and the two layers can be clearly

characterized by the S-wave velocity profile. Two layers can also be characterized

from the P-wave velocity profile, but the void cannot be seen clearly from the P-wave

velocity profile. From the inversion results at 15Hz, the void can be characterized by

both S-wave and P-wave velocity profiles. Notice that inversion results at 10 Hz were
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used as the initial model for the inversion at 15 Hz.

(a)

(b)

Figure 5.14: The inversion results for S-wave and P-wave velocities at the central
frequency (a) 10 Hz and (b) 15 Hz.

Convergence of the iteration method was tested by using the residual between

the estimated and observed data. In all inversions, the convergence occurred at

20 iterations. Figure 5.15 shows the estimated and observed waveforms at receiver

positions for the inversion at the central frequency at 20 Hz. The residuals at the
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receivers are very small due the similar waveform of observed and estimated data.

(a)

Figure 5.15: The observed and estimated data for the inversion at the central fre-
quency 20 Hz using the different cell size approach

The normalized least squares error for 20 iterations are shown in Fig. 5.16. One

can see the 0.8 order reduction in the error from the 1st iteration to the 20th iteration.

After the 20th iteration, the error reached a plateau and results are converged at the

20th iteration.
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(a)

Figure 5.16: Least square error as a function of integration number at simulations

Computational Efficiency of the Different Cell Size Method

The results of the different cell size method are compared with the regular cell size

method used in Ref. [21]. The comparison here is done only to see the accuracy and

computational efficiency of the different cell size method. The model updates at 20 Hz

from the regular grid method and different cell size method are shown in Fig. 5.17. By

comparing both models with the true model, one can accurately identify the void and

the soil layers. Moreover, both methods are able to characterize the location, shape,

and the S-wave velocity of the void. However, one should notice that the Hessian

approximation matrix calculation with regular cell size method took about 3 hours

on a Mac computer with a 2.6 GHz processor, while the different cell size method took

only about 2.5 hours. For the synthetic model that we considered here, the domain

was discretized to have 24 × 66 =1584 cells. Thus the number of parameters in the

model is 1584. Since the number of sources multiplied by the number of receivers is

1506, the size of the Jacobian matrix is 1506 × 1584 and the size of the Ha = JTJ

is 1584 × 1584. When we use our different cell size approach to combine the bottom
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cells of the domain, the number of cells in the domain was reduced to 814, so the

number of parameters of the problem was reduced to 814. With this different cell size

method, the size of the Ha = JTJ is 814× 814, which is less expensive to calculate.

One can see that the size of the Ha has reduced to approximately to 1/4 of the original

Ha matrix. The reduction of the size of Ha depends on the discretization ratio of zone

3 and zone 2 and the decomposition of the domain. For real experiments, usually,

the inversion problems are large scale problems. In the 3-D problems, the size of the

data sets and the number of parameters of the model are large. The different cell size

method is competitive even with high resolutions. For example, consider the case with

100×150 = 15000 cells, widths of the zone 1, zone 2, zone 3 are 46 m, 24 m, and 30 m,

and discretization ratios for zone 1, zone 2, zone 3 are 1,2, and 3. Then the size of the

newHa matrix is 8300×8300. The size of newHa has reduced approximately to 1/4 of

the originalHa matrix. Thus the differentThe results of the difference cell size method

are compared with the regular cell size method used in Ref. [21]. The comparison

here is done only to see the accuracy and the computational efficiency of the different

cell size method. The model updates at 20 Hz from the regular grid method and

different cell size method are shown in Fig. 5.17. By comparing both models with the

true model, one can accurately identify the void and the soil layers. Moreover, both

methods are able to characterize the location, shape, and the S-wave velocity of the

void. However, one should notice that, the Hessian approximation matrix calculation

with regular cell size method took about 3 hours on a Mac computer with a 2.6 GHz

processor, while the difference cell size method took only about 2.5 hours. For the

synthetic model that we considered here, the domain was discretized to have 24× 66

=1584 cells. Thus the number of parameters in the model is 1584. Since the number

of sources multiplied by the number of receivers is 1506, the size of the Jacobian

matrix is 1506×1584 and the size of the Ha = JTJ is 1584 × 1584. When we use our

different cell size approach to combine the bottom cells of the domain, the number of
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cells in the domain was reduced to 814, so the number of parameters of the problem

was reduced to 814. With this different cell size method, the size of the Ha = JTJ is

814×814, which is less expensive to calculate. One can see that the size of the Ha has

reduced to approximately to 1/4 of the original Ha matrix. The reduction of the size

of Ha depends on the discretization ratio of zone 3 and zone 2 and the decomposition

of the domain. For real experiments, usually, the inversion problems are large scale

problems. In the 3-D problems, the size of the data sets and the number of parameters

of the model are large. The difference cell size method is competitive even with high

resolutions. For example, consider the case with 100 × 150 = 15000 cells, widths of

the zone 1, zone 2, zone 3 are 46 m, 24 m, and 30 m, and discretization ratios for zone

1, zone 2, zone 3 are 1,2, and 3. Then the size of the new Ha matrix is 8300× 8300.

The size of new Ha has reduced approximately to 1/4 of the original Ha matrix. Thus

the difference cell size method is more efficient than the regular grid method and has

a good potential for 3-D wave inversion and large scale problems. cell size method is

more efficient than the regular grid method and has a good potential for 3-D wave

inversion and large scale problems.
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(a)

(b)

Figure 5.17: The inversion results for S-wave and P-wave velocities at the central
frequency 20Hz using (a) the different cell size approach and (b) the regular grid
method

Figure 5.18(a) and (b) show the inverted 2-D profiles of S-wave velocity and P-wave

velocity variations along the depth, respectively. Blue color curve represents velocity

variation with depth in the pre-assumed true model. The observed velocity variation

from inversion using the regular method and the different cell method are shown in
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green color and purple. The first layer appears from 0 to 8 m depth. The second layer

appears from 12 m to 18 m depth. The void is located from 8 m to 12 m depth. The

velocity variations from both regular and difference cell size method closely follow the

same variations as true model. One can see that two layers, including the void, are

clearly characterized by both velocity profiles.
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(a)

(b)

Figure 5.18: The variation of the velocity profile at x = 25.5 m (a) S-Wave velocity
profile (b) P-Wave velocity profile
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5.7 Discussion and Conclusions

In this chapter, full seismic waveform inversion method using the Gauss-Newton

method was utilized for detection of embedded sinkholes. The forward problem for

simulating seismic wave fields was solved using the velocity-stress staggered-grid finite

difference method. A model update of the inversion method was performed with the

Gauss-Newton method with the difference cell size method.

One of the major disadvantages of the Gauss-Newton model updating is the large

amount of computational and memory required to calculate the Hessian approxima-

tion matrix and the Jacobian matrix. To overcome the computation and memory

requirements, we used difference cell size approach for storing the Jacobian matrix.

The values of the Jacobian, which were obtained using partial derivatives of seismo-

grams with respect to the parameters, at the bottom part of the cells in the domain

take smaller values compared with the values of Jacobian at the upper part of the do-

main. In this approach, the domain is decomposed into three zones according to the

values of the Jacobian at the cells. The cells in the bottom of the zones are combined

to create larger cells. The Jacobian matrix is then recalculated appropriately.

The results are validated for a synthetic model with an embedded air-filled void.

The synthetic model, which consists of two layers of an earth model, is investigated.

The inversion at three frequency ranges with central frequencies of 10, 15, and 20

Hz were performed. The void can be characterized from both S-Wave and P-Wave

velocities. The computational requirements for both the difference cell size method

and the regular cell size method are compared. The difference cell method is able to

compute the Hessian with less computational time than required for regular method.

In conclusion, the developed approach is well suitable for 3D full wave inversion with

other geotechnical conditions.
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Chapter 6

A Local Time Mesh Refinement

Method for Simulation of Elastic

Wave Propagation

The full-wave inversion method that was introduced in chapter 3 is a numerical sim-

ulation based method. The accuracy of the results and the efficacy of the method

depend on the numerical approaches that were used in seismic wave propagation. In

the FWI method, the forward modeling consists of generating synthetic wave fields. In

chapter 3, the synthetic wave field is generated by solving 2-D elastic wave equations

using the classic velocity-stress staggered-grid finite difference scheme. Simulation of

elastic wave equations with small-scale heterogeneities can be done with the classic

finite difference approach at small step sizes with uniform grid. However, simulation

of a 3-D seismic survey with small-scale heterogeneities is impossible with the classic

finite difference approach even on modern supercomputers due to large number of

source gatherings and grid points [138]. Therefore, a mesh refinement approach (or

multi-grid method) that can be applied to different regions of domain with different

step sizes is needed.
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Ref. [138] introduced an approach for numerical simulation of wave propagation

in media with sub-seismic-scale heterogeneities such as cavities and fractures. Their

method is based on local mesh refinement with respect to time and space. The

main features of the approach are the use of temporal and spatial refinement on two

different surfaces, use of the embedded-stencil technique of grid step with respect to

time, and use of the fast Fourier based interpolation to couple variables for spatial

mesh refinement.

We adapted the approach introduced in Ref. [138] with some modification. For

spatial mesh refinement, Ref. [138] used the fast Fourier based interpolation. However,

in this chapter, we modify the technique with cubic smoothing spline interpolation

rather than the finite Fourier interpolation for spatial mesh refinement. By using cubic

smoothing spline interpolation, we can achieve a better results for wavefield data for

the fine grid zone. For the comparison, we simulate a 2-D elastic wave equation with

both the modified technique and the technique in Ref. [138]. The results of both

methods are compared with uniform mesh method and the cubic smoothing spline

interpolation show a significant improvement than the finite Fourier interpolation.

The rest of the chapter is arranged as follows. Section 6.1 presents the modified

local mesh refinement method with cubic spline interpolation. The results for 2-D

wave propagation are presented in Section 6.2.

6.1 Non-uniform mesh refinement method

In this section, we present the non-uniform mesh refinement method proposed in

Ref. [138] with some modification for spatial mesh refinement. Ref. [138] used fast

Fourier interpolation for spatial mesh refinement, but here we use cubic spline inter-

polation.

The domain is categorized into a coarse grid and a fine grid. The coarse grid is the

135



regular grid that we introduce in Section 5.3.2. Regular grids are considered with in-

teger and half-integer points. The time grid and the spatial grid are denoted by TC ={
tN |N = 0, 1/2, 1, ...

}
and ΩC = {((x)I , (z)J) |I = 0,±1/2,±1, ...; J = 0,±1/2,±1, ...},

respectively. The grid steps with respect to time and the spatial directions x and z

are τ , h1, and h3, respectively. The sub-grids are introduced so that they do not

intersect with each other. Figure 6.1 shows a sketch of the staggered grid scheme.

Figure 6.1: The grid structure for the standard staggered grid scheme.

The sub grids in the staggered grid can be introduced as

TCσ =
{
tn+1/2|n ∈ N

}
, TCu,v = {tn|n ∈ N} (6.1)

ΩC
σxx

=ΩC
σzz

=
{(

(x)i , (z)j
)
|i ∈ Z, j ∈ Z

}
, (6.2)

ΩC
σxz

=
{(

(x)i+1/2 , (z)j+1/2

)
|i ∈ Z, j ∈ Z

}
, (6.3)

ΩC
u =

{(
(x)i+1/2 , (z)j

)
|i ∈ Z, j ∈ Z

}
, (6.4)

ΩC
v =

{(
(x)i , (z)j+1/2

)
|i ∈ Z, j ∈ Z

}
. (6.5)

The fine grid is introduced in such a way that the coarse grid is a subset of the
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fine grid. Two sub grids for velocity fields and the stress tensor fields with respect to

time in the fine zone are defined. The refinement ratio with respect to time is taken

as K.

T Fσ =
{
tn+ 1

2 + k
K |n ∈ N, k = 1, ..., K

}
(6.6)

T Fu,v =
{
tn+ k

K |n ∈ N, k = 1, ..., K
}

(6.7)

T F =T Fσ + T Fu (6.8)

The fine grid with respect to space for field variables can be introduced as

ΩF
σxx

=ΩF
σzz

=
{(

(x)i+l1/L1
, (z)j+l3/L3

)
|i ∈ Z, j ∈ Z

}
, (6.9)

ΩF
σxz

=
{(

(x)i+1/2+l1/L1
, (z)j+1/2+l3/L3

)
|i ∈ Z, j ∈ Z

}
, (6.10)

ΩF
u =

{(
(x)i+1/2+l1/L1

, (z)j+l3/L3

)
|i ∈ Z, j ∈ Z

}
, (6.11)

ΩF
v =

{(
(x)i+l1/L1

, (z)j+1/2+l3/L3

)
|i ∈ Z, j ∈ Z

}
, (6.12)

for l1 = 1, ..., L1 and l3 = 1, ..., L3.

ΩF = ΩF
σxx

+ ΩF
σxz

+ ΩF
u + ΩF

v (6.13)

where L1 and L3 are the refinement ratios with respect to the spatial directions in

x and z. The refinement ratios K,L1, and L3 are taken to be odd numbers, which

ensures the consistency of all sub grids.

The transition zone is introduced when switching from coarse grid to the fine grid.

A sketch of the refined grid for the standard staggered grid scheme is shown in Fig.6.2.
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Figure 6.2: A sketch of the refined grid for the standard staggered grid scheme.

The refinements are introduced in the following ranges along the spatial direction

z:

• a coarse zone - z < j0h3, where j0 is is an integer. Both time and space are

coarse in this zone.

• a transition zone - j0h3 < z < j1h3, where j0 is an integer and j1 is an half

integer. In this zone, coarse grid in space and fine grid in time are used.

• a fine zone - z < j1h3. In this zone, both a fine grid in time and space are used.

The grid functions of the field variables can be defined as the cross product of

time and the corresponding spatial domains.

6.1.1 Wave equation discretization

The wave equations are discretized by using central finite differences. This approxi-

mation scheme has of second order accuracy. The Finite difference operations, which
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are defined on the filed variable f for the coarse grid are given by

DC
t [f ]NI,J =

f
N+1/2
I,J − fN−1/2

I,J

τ
= ∂f

∂t
|NI,J +O(τ 2) (6.14)

DC
x [f ]NI,J =

fNI+1/2,J − fNI−1/2,J

h1
= ∂f

∂x
|NI,J +O(h2

1) (6.15)

DC
z [f ]NI,J =

fNI,J+1/2 − fNI,J−1/2

h3
= ∂f

∂z
|NI,J +O(h2

3). (6.16)

Here, f represents u, v, σXX , σZZ , and σXZ .

The finite difference operations acting on the fine grid are

DF
t [f ]NI,J =

f
N+1/2K
I,J − fN−1/2K

I,J

τ/K
= ∂f

∂t
|NI,J +O(τ 2) (6.17)

DF
x [f ]NI,J =

fNI+1/2L1,J
− fNI−1/2L1,J

h1/L1
= ∂f

∂x
|NI,J +O(h2

1) (6.18)

DF
z [f ]NI,J =

fNI,J+1/2L3
− fNI,J−1/2L3

h3/L3
= ∂f

∂z
|NI,J +O(h2

3). (6.19)

In order to obtain bounded solutions, we need to employ the stability criterion

τ ≤ 1
Vmax

√
1
h2

1
+ 1

h2
3

, (6.20)

where Vmax is the maximum of the P-wave velocity. Thus in the transition zone,

successive mesh refinement is used. Therefore, the fine grid at time T F and the coarse

spatial grid, ΩC , are used. The finite difference operations acting on the transition

zone are

DF
t [f ]NI,J =

f
N+1/2K
I,J − fN−1/2K

I,J

τ/K
= ∂f

∂t
|NI,J +O(τ 2) (6.21)

DC
x [f ]NI,J =

fNI+1/2,J − fNI−1/2,J

h1
= ∂f

∂x
|NI,J +O(h2

1) (6.22)

DC
z [f ]NI,J =

fNI,J+1/2 − fNI,J−1/2

h3
= ∂f

∂z
|NI,J +O(h2

3) (6.23)
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6.1.2 Refinement of Solutions at Interfaces

For a smooth transition from coarse to fine, the transition zone is introduced. At

the same time, solutions at the interfaces z = j0h3 and z = j1h3 should be updated

in a special manner for smooth transition. The solutions at the interface z = j0h3

are calculated before updating the solutions at the transition zone. At the interface

z = j0h3 , only time need to be fined. Similarly, solutions at the interface z = j1h3

are calculated before updating the solutions in the fine zone.

Refinement of temporal steps at the interface z = j0h3

In the interface z = j0h3, time interval [tn, tn+1] can be divided as

• t ∈ (tn, tn+1/2]

• t ∈ (tn+1/2, tn+1]

for an integer n. Figure 6.3 shows the section of the time grid at the interface z = j0h3.

Then solution is updated separately inside the sub-time interval. Note that the time

step in the coarse grid and fine grid are τ and τ/K for a positive, odd integer, K.

Since only the temporal refinement occurs in the transition zone, the time step for

the transition zone is τ/K.

Figure 6.3: A section of the time grid
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The time interval t ∈ (tn, tn+1/2]

Since j0 is an integer, only the diagonal component of the stress sensors σXX and σZZ

are updated at the interface. These stress sensors should be updated at the instances

tn+(2k−1)/2K for k = 1, 2, ..., (K + 1) /2.

(a)

(b)

Figure 6.4: 2D (t, z) projection of embedded stencils used to update the solution from
the instant tn to tn+1/2. (a) update of stresses at the interface (b) Spatial staggered
grid stencil used to update velocity component

Approximations for the stress tensor at the interface j0h3 are obtained as

(σxx)
n+ 2k−1

K
i,J0 − (σxx)

n− 2k−1
K

i,J0

(2k − 1) τ
2K

=(λ̂i,J0 + 2µ̂i,J0)DC
1 [u]ni,J0

+λ̂i,J0D
C
3 [v]ni,J0 (6.24)

(σzz)
n+ 2k−1

K
i,J0 − (σzz)

n− 2k−1
K

i,J0

(2k − 1) τ
2K

=λ̂i,J0D
C
1 [u]ni,J0 + (λ̂i,J0

+2µi,J0)DC
3 [v]ni,J0 (6.25)
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for k = 1, ..., (K + 1)/2. The velocity vector component is updated at the interface

z = j0h3 using the finite difference approximation of the equation,

ρ
∂2u

∂t2
= ∂

∂x

(
(λ+ µ)∂u

∂x
+ λ

∂v

∂z

)
+ ∂

∂z

(
µ
∂v

∂x
+ µ

∂v

∂z

)
. (6.26)

The time interval t ∈ (tn+1/2, tn+1]

In the time interval t ∈ (tn+1/2, tn+1], the velocity and the stress tensors are updated

with the following equations:

ρ̂i+ 1
2 ,J0

(u)n+ 1
2 + 2k−1

2K

i+ 1
2 ,J0

− (u)n+ 1
2−

2k−1
2K

i+ 1
2 ,J0

(2k − 1) τ
2K

=DC
1 [σxx]

n+ 1
2

i+ 1
2 ,J0

+DC
3 [σzz]

n+ 1
2

i+ 1
2 ,J0

, (6.27)

for k = 1, ..., (K + 1)/2.

∂2σxx

∂t2
= (λ+ 2µ) ∂

∂x

(
1
ρ

∂σxx
∂x

+ 1
ρ

∂ρxz
∂z

)
+ λ

(
1
ρ

∂σxz
∂x

+ 1
ρ

∂σzz
∂z

)
(6.28)

∂2σxx

∂t2
= λ

∂

∂x1

(
1
ρ

∂σxx
∂x

+ 1
ρ

∂ρxz
∂z

)
+ (λ+ 2µ)

(
1
ρ

∂σxz
∂x

+ 1
ρ

∂σzz
∂z

)
(6.29)
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Figure 6.5: 2D (t, z) projection of embedded stencils used to update the solution
from the instant tn+1/2 to tn+1. Stress component at the interface is updated with
the stencil.

Refinement of the spatial steps at the interface, j1h3

The interface j1h3 appears between the transition zone and the fine grid zone. Notice

that j1 is a half-integer number. The step size of the spatial direction in the transition

zone are h1 and h3. Also, space grid in the transition zone is a coarse grid. Thus

the step sizes of the fine grid are taken as h1/L1 and h3/L3 where L1 and L2 are

refinement ratios in the x and z direction. To update the solution at the interface

j1 + 1
2L3

from the coarse to the fine grid, the following equations are obtained using

the finite-difference approximation.

ρ̂NI,J1+ 1
2L3
DF
t [v]NI,J1+ 1

2L3
= DF

1 [σxz]NI,J1+ 1
2L3

+DF
3 [σ̃zz]NI,J1+ 1

2L3
(6.30)
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DF
t [σxz]NI,J1+ 1

2L3
= µ̂NI,J1+ 1

2L3

(
DF

1 [v]NI,J1+ 1
2L3

+DF
3 [ũ]NI,J1+ 1

2L3

)
, (6.31)

In the above equations, ˜σZZ and ũ indicates that the up sampling of the variables

σZZ and u is required along the interface j1h3. These components are defined on the

line z = j1h3 as shown in Fig. 6.6. Thus the 1D interpolation is needed to get these

components in the fine grid due to the shift of the grids. Ref. [138] applied a fast

Fourier transform for the interpolation. However, we use the cubic smoothing spline

[24, 139] for the interpolation.

Figure 6.6: The grid of the spatial mesh refinement interface (x3)J1 .

6.1.3 Cubic smoothing spline Interpolation

For a given a set of co-ordinates (xi, yi), for i = 1, 2, ..., n of a function y = f (x),a

cubic spline finds a curve that connects the gap between the two adjacent points

(xj, yj) and (xj+1, yj+1). The cubic spline approach uses cubic functions Si, i =

1, 2, .., n− 1 and their first and second derivatives.
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The cubic function can be expressed as

Si (x) = ai (x− xi)3 + bi (x− xi)2 + ci (x− xi) + di, (6.32)

where xi ≤ x ≤ xi+1.

In the case of interests of smoothness, one can consider the coordinates of the

data given by

yi = f (xi) + εi, (6.33)

where εi, i = 0, 1, ..., n represents the noise of the curve and a random variable with

variance σ2
i . Thus the spline is smoothed. The function f (x) can be obtained by

constructing a spline function, S (x), which minimizes the function

L = λ
n∑
i=0

(
yi − Si
σi

)2
+ (1− λ)

∫ xn

x0

(
S
′′ (x)

)2
dx, (6.34)

where Si = S (xi) and λ is the smoothing parameter or penalty for the roughness of

the function.

Here, the first term considers reducing the error between the spline and the data

points. So the spline should come reasonably close to the data. The second term con-

siders the low curvature of the spline. Thus the smoothing spline Eq. 6.34 produces

a spline that balances these two opposing criteria.

Figure 6.7 shows a cubic interpolating spline and a smoothing spline for a given

set of coordinates [24]. The dotted line represents the cubic interpolating spline and

the solid line represents the cubic smoothing spline. One can see that the cubic

interpolating spline is passing through the given set of spline whereas the smoothing

spline does not.
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Figure 6.7: Example for a cubic interpolating spline and cubic smoothing spline. The
dotted line represents the cubic interpolating spline and the solid line represents the
cubic smoothing spline (photo credit: [24]).

We implement the above refinement procedure with the defined boundary con-

ditions in Eqs. 5.35 - 5.37 and the initial condition in Eq. 5.53 together with the

stability criterion 6.20.

6.2 Wave Propagation Results

In this section, we present the wave propagation results from the above method. A

numerical study was conducted with 2-D domain of size 50 m × 50 m. Step sizes in

the spatial directions in the regular grid are taken as h1 = h3 = 0.5. Thus a 100×100

regular mesh in the spatial domain is created. The time step τ is calculated with the

stability criterion (Eq. 6.20) using the maximum P- wave velocity. The shear wave

velocity Vs of the medium was considered as 200 m/s. The pressure wave velocity Vp

was calculated using the defined shear wave velocity and the formula

Vp = Vs

√√√√(2 (1− ν)
1− 2ν

)
, (6.35)
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where ν = 0.33 is used in the numerical calculations. The density of the medium

is considered to be 1800 m/s. A source was located at the grid point (1,50) in the

spatial domain. 20 receivers were positioned in the domain with the 2.5 m spacing

on the surface. Thus, the source was placed 24 m away from the first receiver.

The time refinement and spatial refinement ratios are as K,L1, L3 = 3. A refine-

ment area in the grid was considered from 6m to 15m in the z direction. Accordingly,

the coarse zone, transition zone, and fine grid zone are defined in Table 6.1 and

Fig. 6.8.

Table 6.1: Grid cells breakdown in the grid zones

grid zone grid cells
coarse 1-10

transition 10-12
fine 12-30

transition 30-32
coarse 32-100
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Figure 6.8: Grid cells breakdown

Here, we introduced two transition zones. The first transition zone appears when

the wave propagates from coarse to fine and the second transition zone appears when

the wave propagates from fine to coarse grid zone.

The wave fields were obtained from the classic finite difference approach using

the uniform mesh and the mesh refinement approach (non uniform mesh) to see the

accuracy of the presented method. Figure 6.9 shows the wave fields obtained at three

depths, 0.5m, 6.5 m, and 16.5 m depths at the receivers. Note that these three depths

are positions in the coarse grid (before the transition zone to the fine grid), fine grid,

and coarse grid (after the transition zone to the fine grid), respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Wave fields from the mesh refinement method (non uniform mesh) at (a)
0.5 m depth, (c) 6.5 m depth, and (e) 16.5 m depth. Wave propagation from the
uniform mesh at (b) 0.5 m depth, (d) 6.5 m depth, and (f) 16.5 m depth.

Figure 6.9 shows the estimated wave field at receivers. Figure 6.9 (a),(c), and (e)

corresponding to the observed wavefield data from the mesh grid method and Fig. 6.9

(b),(d), and (f) correspond to the estimated field data from the classic finite difference

method. One can see that results from both methods are the same at receivers at

the same depth. However, an advantage of the mesh refinement method is the ability

of simulation real models with small-scale heterogeneities. In this study, we only

consider the ability to estimate wavefield data from the mesh refinement method.
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Also, the mesh refinement method is able to be applied with different refinement

ratios at different surfaces. In this case, the fine grid zone has the refinement ratios of

L1 = L3 = 3 for x, z directions. The step sizes in the fine grid zone are h1/L1 = 1/6

and h3/L3 = 1/6. Thus the coarse grid zone and the fine grid zone behave as two

layers and the mesh refinement is applied only to one layer, which contains small-scale

heterogeneities.

Moreover, we compare the computational efficiency of the non-uniform mesh

method with the uniform grid method at a smaller step size in spatial directions.

The number of cells in the spatial domain for the two methods are shown in Table

6.2. For example, if the uniform mesh method is used with step size 1/6 (refinement

ratio L1 = L3 = 3) in the x and z directions, the number of grid points in the spatial

domain is 90000. However, the spatial domain of the non-uniform mesh refinement

method contains only 24400 grid points. Thus less memory storage is required with

non-uniform mesh method than the uniform mesh method.

Figure 6.10 shows the number of grid points in the spatial domain as a function

of refinement ratio. The blue color curve represents the number of cells required for

the non-uniform mesh method and the red color curve represents the number of cells

required for the uniform mesh method. One can see that there are eight orders of

magnitude increment in the number of cells with uniform mesh method. However,

only 1.5 orders of magnitude increment in the number of cells with the non-uniform

mesh method. Therefore, Non-uniform mesh method required less storage even with

higher refinement ratio.
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Table 6.2: Domain size of the non uniform mesh method and the uniform grid method
at the spatial directions

Number of cells Number of cells
Refinement Ratio (uniform mesh method ) (non-uniform mesh method)
L1 = L3 = 3 90000 24400

( step size =1/6)
L1 = L3 = 5 250000 53200

( step size =1/10)

On the other hand, the less computational time is required to generate the wave

field using non-uniform mesh method on the same standard computer. In the uniform

mesh method, when the refinement ratio increases, Matlab encounters memory prob-

lem. This time difference brings the possibility of being applied to the FWI method

presented in Chapter 5 for 3-D large scale problems with small-scale heterogeneities.

Figure 6.10: Number of cells as a function of refinement ratio.

Figure 6.11 shows the wave fields at four receivers at the 6.5m depth using the

cubic smoothing spline interpolation method and the finite Fourier transformation

method. At the 6.5m depth, the wave propagates in the fine grid area. Thus the
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spatial mesh refinement is needed. The wave field results using two interpolation

methods are compared with the results from the uniform mesh method. Note that

we assume the uniform mesh method gives accurate wave field solutions. Figure 6.11

shows the estimated wave fields only at receiver 6, 9, 12, and 15. Blue, red, and

black color curves represent the wave fields using FFT interpolation, cubic smoothing

spline interpolation, and the uniform mesh method (without spatial mesh refinement).

One can see that, a good agreement between the results from the cubic smoothing

spline interpolation and uniform mesh method. However, the solutions with FFT

interpolation overestimated the wavefield data.

(a) (b)

(c) (d)

Figure 6.11: Comparison between wave fields generated by fast Fourier interpolation
and cubic smoothing spline interpolation.

We calculated the l2 norm error of the field data with cubic smoothing spline

and FFT interpolation. Table 6.3 shows the l2 norm error of the two interpolation

methods relative to the uniform mesh method at four receivers 6, 9, 12, and 15. Cubic

smoothing spline gives less error in the wave field estimation than FFT interpolation.
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Table 6.3: l2 norm error of the estimated wave field data using FFT interpolation
and cubic smoothing interpolation for spatial mesh refinement

Receiver Error (FFT interpolation) Error (Cubic smoothing spline interpolation)
6 0.55 0.33
9 0.52 0.39
12 0.65 0.51
15 0.65 0.51

6.3 Conclusions

In this chapter, we adopted a method for numerical simulation of wave propagations

in media with small scale heterogeneities such as cavities and fractures. This method

is introduced by Ref. [138] and is based on local mesh refinement with respect to

both time and space in different media. One of the main features of their method is

the use of fast Fourier transform based interpolation for spatial mesh refinement. We

modified this step by using cubic smoothing spline interpolation instead fast Fourier

transform. The technique was developed using central finite difference approximation.

We presented numerical results for the simulation of seismic wave propagation.

The results using the mesh refinement method are compared with a classic finite

difference approximation scheme with a uniform mesh. The results of the mesh re-

finement approach show a good agreement with the results of the wave propagation

with the classic finite difference scheme with uniform grid. The advantage of the mesh

refinement method is the capability of the simulations of 3-D large scale problems in

media with small scale heterogeneities.

Moreover, results for the wave propagation using the cubic smoothing spline inter-

polation and fast Fourier interpolation are compared. The mesh refinement method

with cubic smoothing spline approach provides better results for wave propagation.

Overall, the local time-space mesh refinement approach with the cubic smoothing

spline interpolation will be a good candidate for 3-D FWI problem as the ability of
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the simulation of small scale heterogeneities in different surfaces for large scale prob-

lems. In the future, we plan to perform numerical simulations of seismic waves in 3-D

heterogeneous media.
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Chapter 7

Future Work

One of the challenges of identifying and localizing damages in complex structures

is developing non destructive damage detection techniques by considering computa-

tional efficiency. In this thesis, we developed two approaches. One approach is based

on information theoretic methods for damage detection in complex dynamical struc-

tures, such as bridges. That approach is based on mutual information and is called

Optimal Mutual Information Interaction (oMII). We discussed the efficiency of this

approach using a benchmark problem in Chapter 3 and successfully applied the tech-

nique for damage detection in bridge structures in Chapter 4. We intend to use this

technique together with machine learning techniques for predictions of earthquakes.

This ongoing work is discussed in Section 7.1.

The other approach is based on Full Wave Inversion (FWI) of seismic wave prop-

agation to detect anomalies in engineering structures and subsurfaces. We addressed

some issues, such as the computational and memory requirements of a recently de-

veloped FWI approach, which uses the Gauss-Newton method. Efficiency of the

technique was discussed Chapter 5. In chapter 6, we adapted a refinement mesh

grid approach for simulation of 2D seismic wave propagation with small-scale hetero-

geneities. Section 7.2 discusses some possible extensions on these approaches.
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7.1 Application for Earthquake Prediction

Prediction of earthquakes generally refers to identifying the location, size, and time

of the event. Identifying the earthquakes early will result in minimizing the loss of life

and property damages. Earthquakes, including aftershocks, can be predicable to some

extent. However, earthquake prediction is a difficult problem due to unreachability of

the Earth for observation. Therefore, earthquake predictions are an interesting and

challenging problem among seismologists. [140–144].

7.1.1 Background

Earthquakes are usually caused when two plates collide or move in different directions.

The underground rocks break along a fault and a sudden release of energy causes

seismic waves, which make the ground shake [25]. The size of an earthquake depends

on the size of the fault and the amount of the slip of the fault. Figure 7.1 shows the

situation in which two blocks of the Earth slip past one another.

Figure 7.1: Two plates are moving in different directions (photo credit: Ref. [25]).

An earthquake may have foreshocks and aftershocks. The smaller earthquakes

that happen in the same place before the main earthquake are called foreshocks. The

aftershocks happens after the main shock. Aftershocks can continue for years after
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the mainshock, depending on the size of the mainshock. Thus, predicting aftershocks

is another goal among the seismologists[144].

Earthquakes are recorded by instruments called seismographs. The size of an

earthquake can be detected using the seismogram recordings on seismographs. How-

ever, it is unlikely that scientist can predict earthquakes correctly. There are many

researchers have been trying to predict the earthquakes with different approaches

[140]. For example, Ref. [141] presents an earthquake prediction method based on

variation of seismic velocities. They discovered that a large precursory change in seis-

mic body-wave velocities occurred before the earthquake in San Fernando, California

in February 1971. Based on further experiments, authors conclude that velocity vari-

ations show significant promise as earthquake precursors. Moreover, they show that

P-wave velocity variation is greater than the S-wave velocity. This indicates impor-

tant implication for the course of future investigation because the time of arrival of

P-waves is easier to measure than that of S-waves.

Some discussions and reviews on statistical approaches to earthquake prediction

have also done in the past [142]. Ref. [143] develops a quantitative analysis of earth-

quake prediction involving economics. The authors in Ref. [143] formulate the earth-

quake prediction problem as an optimal control problem and founded an optimal

strategy by minimizing the total expected losses for maintaining alerts costs and for

changing alerts costs.

Ref. [145] uses a statistical procedure to identify a foreshock sequence while it is

in progress. This method is derived from a theoretical model of fracture growth. The

authors show that, as a predictor, the procedure reduces the average uncertainty in

the rate of occurrence for a future strong earthquake by a factor of more than 1000

when compared with the Poisson rate of occurrence. They conclude that using this

statistical approach, about one-third of all main shocks with local magnitude greater

than or equal to 4.0 in central California can be predicted.
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Recently, aftershock patterns following large earthquakes are studied in Ref. [144].

They use a deep-learning approach to identify a static-stress-based criterion that fore-

cast aftershock locations. Results show that this machine-learning-driven approach

provides improved forecasts of aftershock locations.

7.1.2 Methods: Spatial Pairwise Mutual Information

Observations over the past years motivate the idea that earthquake events that hap-

pened around the world have a dynamic relation between the regions. The purpose

of the analysis of earthquakes by information flow is to compare the effects for the

events with smaller magnitude and the events with larger magnitudes region wise.

Therefore, the events are categorized into three categories according to the size of

earthquakes and information flow between three categories in regions are measured

pairwise using MI. We discuss the categorization of regions separately later in this

section.

MI information finding approach that we used in Chapter 3 uses known or assumed

probability distribution of variables. However, for this particular application, we plan

to estimate MI between categories using k-nearest neighbor statistics [146]. The idea

of finding MI from k-nearest neighbor statistics was introduced by Alexander Kraskov,

Harald Stobauer, and Peter Grassberger in 2004. We briefly summarized the idea

introduced in Ref. [146] for finding MI between two random variables.

Let Z = (X, Y ) be a space where X and Y are two random variables. For some

metrics given on the spaces spanned by X, Y , the neighbors for each point zi = (xi, yi)

are defined by the maximum norm distance formula

di,j = ||zi − zj|| = max{||xi − xj||, ||yi − yj||}.

In this formula any norms can be used for calculating ||xi − xj|| and ||yi − yj||.
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However, in this application we use a “geographical distance measure" along the

surface of the Earth, which uses geographical coordinates in terms of latitude and

longitude. Also, the distance from zi to its kth nearest neighbor is taken as ε (i) /2

and defined by

ε (i) = max{εx (i) , εy (i)}, (7.1)

where εx (i) /2 and εy (i) /2 are the distance between the corresponding points pro-

jected into the X and Y subspaces. The MI estimate formula using the average

distance to nearest neighbors is

I (X, Y ) = ψ (k)− 〈ψ (nx + 1) + ψ (ny + 1)〉+ ψ((N) , (7.2)

where ψ is the digamma function, ψ = Γ (x)−1 dΓ(x)
dx

, which satisfies

φ (x+ 1) = ψ (x) + 1
x

(7.3)

and ψ (1) = −C, where C ≈ 0.577 is the Euler-Mascheroni constant. nx (i) are the

number of points xi whose distance from xi is strictly less than ε (i) /2. ny (i) can

also be defined in the same manner. 〈·〉 indicates the averaging both over i and over

all realizations of the random samples.

Data Classification Method

It is interesting research goal to find whether earthquakes can trigger other earth-

quakes on the opposite side of the earth. We plan to analyze the earthquakes events

between spatially distributed regions. This classification of the land geographically

into regions should be done before analyzing the effects between earthquakes with

different magnitudes. We plan to use k-means clustering, which is a machine learning

algorithm, to classify the observation data into clusters.
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7.1.3 Data Description

For this study, real time earthquakes data downloaded from the United States Geo-

logical Survey website was used. Parameters such as magnitude, longitude, latitude,

depth, time, and location are recorded daily when the event occurs. The data was col-

lected for the earthquakes that happened during 1970-2018 in the world. Magnitude

is the most common measure of an earthquake’s size. Typical values of magnitude

are in the range -1, 10. However, for this study events with magnitude [2.5,10] are

considered.

Figure 7.2: The magnitudes of the earthquakes that happened in 1975

For instance, Figure 7.2 shows the magnitudes of the events that happened in the

world in 1975. During 1975, the event with the maximum magnitude happened in

Azores-Cape St. Vincent Ridge in May 26 at 9.11 am and the size of the magnitude

is 7.9 (Richter Scale). The latitude and longitude of this location are 35.997 and

-17.649, respectively. The total number of earthquakes that happened in the world

during 1975 was 7030.
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Figure 7.3: The locations of the earthquakes that happened during the period 1970-
2018. The earthquakes only with the magnitude greater than 2.5 are shown and
categorized into three according to the size of the magnitude.

The spatial distribution of magnitudes for the events that happened during the

time period 1970-2018 are shown in Fig. 7.3. The events are divided into three

categories according to their magnitudes. Blue, green, and red dots correspond to

the earthquakes with magnitudes 2.5-4.9, 5-6.4, and 6.5-10, respectively.

7.1.4 Some Basic Results

The k-mean clustering algorithm is used to classify the geographical region. Figure 7.4

shows the 5 clusters of the world according to the locations of the earthquake events

that happened between 1970-2018. Ongoing work considers selecting an optimal

number of clusters that classify the geographical region according to the location of

the earthquake events.
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Figure 7.4: Spatial clustering of the earthquakes using k-mean clustering algorithm

The earthquake events that happened in each cluster again divided into three

categories according to the size of the earthquakes. The earthquakes with magnitude

2.5-4.9, 5-6.4, and 6.5-10 are labeled as small, medium, and large. Then the number

of earthquake that happened in a week are divided for small, medium, and large

magnitude categories. In this way we identified 15 variables for 5 clusters. Pair-wise

interactions between these variables are calculated using MI between variables.

For the basic analysis we calculated MI between variables using the most straight-

forward and widespread approach: discrete probability estimation using histograms

[146]. The data of the variables are partitioned into bins of finite size and using the

frequencies of each bins, entropy, joint entropy, and MI are approximated.

Figure 7.5 shows MI connections between variables. MI values are categorized

into three ranges and the connections are presented using three colors. Blue lines,

red lines, and black lines represents the MI values 0-0.5, 0.5-0.8, and greater than

0.8, respectively. We can see that there are some strong connections between large

earthquake, medium, and small earthquakes categories in each clusters. For example,

in cluster 3, there is a strong connection between the large earthquake group and the

medium size earthquake group. Also, one can see a strong connection between the
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earthquakes in cluster 1 and cluster 4.

Our ongoing work considers finding MI using the k-nearest neighbor algorithm

with geographical distance. Then the oMII algorithm can be used to distinguish

the indirect and the direct interactions. Thus, in the future, more analysis will be

performed to see if events with large magnitude are associated with the occurrence of

events with the smaller magnitude and to see whether earthquakes can trigger other

earthquakes on the opposite side of the earth.

Figure 7.5: MI connections between 15 variables

7.2 Future Works on Full Waveform Analysis

There are many ways to extend the initial work of 2-D analysis of full seismic wave-

fields. The results of FWI with difference cell size method, which was introduced

in Chapter 5, showed the capability of locating void and characterizing soil/ rock

layers for a synthetic model of the earth. In future, we plan to test the method us-

ing real experimental data for several engineering applications such as soil and rock

characterization, sinkhole detection, and unknown foundation elements.

Also, we plan to extend this work for analysis of 3-D full seismic wavefields for
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sinkhole detection. The 2-D analysis of full seismic wavefields are able to identify

sinkhole and characterize soil/rock layers. However, in real engineering applications

it may require significant field testing effort in locating sinkholes. Thus we plan to use

FWI with difference cell size approach and the mesh refinement approach discussed

in Chapter 6 for the analysis of 3-D full seismic wavefields.
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Appendix A

Basics from Probability Theory

In this section, we present the basic definitions from probability theory. These defi-

nitions are taken from Information Theory by Marcelo S. Alencar [81].

A.1 Probability

The probability of an event S is a number P (S) assigned to the event. If the experi-

ment is performed n times and the event S occurs n0 times, then the probability of

the event P (S) is the relative frequency n0/n of the occurrence of S:

P (S) = n0

n
, where 0 ≤ P (S) ≤ 1.

If there are N distinct possible events (x1, x2, ..., xn) with the events occurring fre-

quencies (n1, n2, ..., nN), then the probability of event xi is given by

P (xi) = ni∑N
j=1 nj

.

This satisfies the property ∑N
i=1 P (xi) = 1.
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A.1.1 The Axioms of Probability

The basic axioms of probability were established by Andrei Nikolaevich Kolmogorov

(1903− 1987), and allowed the development of the complete theory.

• P (Ω) = 1, in which Ω denotes the sample space or universal set and P (·) denotes

the associated probability;

• P (A) ≥ 0, in which A denotes an event belonging to the sample space;

• P (A∪B) = P (A) +P (B), in which A and B are mutually exclusive events and

A union B denotes the union of events A and B.

A.1.2 More Properties

• Notice that

∅ ∪ Ω = Ω

• The sets ∅ and Ω are disjoint and thus,

P (∅ ∪ Ω) = P (Ω) = P (∅) + P (Ω) = 1⇒ P (Ω) = 0.

• In the case of sets A and B which are not disjoint,

P (A ∪B) = P (A) + P (B)− P (A ∩B).

A.1.3 Bayes’ Rule

Bayes’ rule, which is essential for the development of Information Theory, concerns

the computation of conditional probabilities and can be expressed by the following

definition,
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P (A|B) = P (A ∩B)
P (B) ,

where P (B) 6= 0. Here A and B denote events from a given sample space.

• If A is independent of B, then P (A|B) = P (A). It then follows that P (B|A) =

P (B) and that B is independent of A.

• If B ⊂ A, then P (A|B) = 1.

A.1.4 Random Variables

A random variable denoted by X, is a stochastic function that defined on the sample

space. There are two types of random variables, discrete and continuous. A discrete

random variable is one which takes only a finite or countably infinite number of values

[75, 76].

For example, the number of dogs in a village, number of defective bulbs in a box

belong to discrete random variables.

Definition A.1.1. The discrete probability distribution is a list of probabilities asso-

ciated with its discrete random variable X. If the possible values that X can takes are

x1, x2, ..., then the discrete probability distribution of X can be defined

P (X = xi) = pi,

where pi satisfies

1. 0 ≤ pi ≤ 1 for each i.

2. ∑i pi = 1.

A random variable that takes non-discrete values is called continuous random

variables[75, 76].
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Examples: a person’s weight, time required to complete a task

Definition A.1.2. The continuous distribution function can be expressed as

F (x) = P (X ≤ x) =
∫ x

−∞
f(u)du,

where f(x) satisfies

1. f(x) ≥ 0

2.
∫∞
−∞ f(x)dx = 1

Definition A.1.3. The joint probability distribution of two discrete random variables

can be denoted by

P (X = x, Y = y) = f (x, y) ,

where

1. f (x, y) ≥ 0

2. ∑x

∑
y f (x, y) dx = 1.

The joint probability distribution of two continuous random variable can be ob-

tained easily by analogy with the discrete case on replacing the sums by integrals[].

A random variable is usually characterized by a cumulative probability function

(CPF) PX(x), or by a probability density function (pdf) pX(x).

Example: a random variable with a uniform pdf, in the interval [0, 1], is described

by the formula

PX(x) = u(x)− u(x− 1).

It follows, by Axiom 1, that ∫ ∞
−∞

PX(x) dx = 1
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In general, for a given probability distribution, the probability that X belongs to the

interval (a, b] is given by

P (a < x ≤ b) =
∫ b

a
PX(x) dx.

The cumulative probability function PX(x), of a random variable X , is defined as the

integral of pX(x),

PX(x) =
∫ x

−∞
pX(t)dt

.
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through bridges for diagnosing
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Your source for the latest research news

Date:

Source:

Summary:

'Listening' to signals traveling through bridges for diagnosing

damage

November 30, 2016

American Institute of Physics (AIP)

A passive and noninvasive approach has been developed to “listen” to a collection of relevant sig‐
nals from bridges and other mechanical structures to diagnose changes or damage.

FULL STORY

A group of Clarkson University mathematicians and a civil engineer developed a passive and
noninvasive approach to "listen" to a collection of relevant signals from bridges and other
mechanical structures to diagnose changes or damage.

As the group reports in Chaos, from AIP Publishing, their approach involves installing accelerometer sensors at
various locations along a bridge to measure how each small part of the bridge is disturbed in response to a truck
driving across.

"Signals from sensors near the truck loading are relevant, but so are signals far away because they react as the
bridge structure flexes under its load and the entire structure oscillates like a guitar string, but obviously more
complicated," said Erik M. Bollt, a W. Jon Harrington professor in the Department of Mathematics at Clarkson
University, located in Potsdam, NY.

Accelerations serve as "a listening media to forces and accelerations travelling through the structure," Bollt said.
"Signals travelling through the structure are expected to change if the bridge undergoes a change, such as a
crack within the structure or if some of the bolts holding it together are loosened deliberately."

A central part of the group's analysis is a data processing technique called "optimal mutual information interac‐
tion," which was developed to identify significant direct interactions between individual components within a
system.

"Our technique adopts ideas from information and communication theory and uses state-of-the-art statistical es‐
timation routines," said Jie Sun, an assistant professor in the Department of Mathematics at Clarkson University.
"The key concept is to search for interactions that are most relevant to the increase of predictability of bridge os‐
cillations. If the bridge's structure has been altered due to damage or deformation, the details are expected to
change, enabling us to detect the health status of the bridge."

The group's work stands out because it brings together two unique aspects to detect damage within bridges or
other mechanical structures.

"One is the noninvasive and automated nature of the data collection process," Sun said. "The other is the data
analytics tool we developed, which can infer direct information flow and significant interactions. By combining
them, we're able to detect from only the data the presence of structural changes within the bridge as controlled
and varied in our experiment."

181



4/4/2019 'Listening' to signals traveling through bridges for diagnosing damage -- ScienceDaily

https://www.sciencedaily.com/releases/2016/11/161130090220.htm 2/3

Cite This Page:

American Institute of Physics (AIP). "'Listening' to signals traveling through bridges for diagnosing damage." Sci‐
enceDaily. ScienceDaily, 30 November 2016. <www.sciencedaily.com/releases/2016/11/161130090220.htm>.

Along the way, the three mathematicians involved found some interesting structural defects revealed by data
analysis of significant interactions, which puzzled them for a long time because it just didn't make sense.

"Our analysis suggested a 'boundary' in the middle of the covered area where there is no apparent structural de‐
fect or pattern," Sun said. "After long discussions with our civil engineer collaborator, Kerop Janoyan, a professor
of civil engineering at Clarkson University, we finally realized that we'd been confused all along because the cov‐
ered area isn't the entire bridge in the experiment, but rather a one-third portion and the 'boundary' we discov‐
ered is precisely where there is a structural boundary some supporting structure underneath."

Bridges are ubiquitous, so it's important to be able to detect structural damage as early as possible to avoid dis‐
astrous outcomes. But detection of structural damage, which is often done manually, can be costly and in many
cases isn't effective.

Since the group's work combines modern sensing technology with state-of-the-art data analytics tools to auto‐
mate this process, "it can be used for early detection of structural changes and damage before requiring inspec‐
tion by a human," Bollt said.

This approach can be used along with inexpensive instrumentation for all sorts of structures -- from bridges to
wind turbines, buildings to airplanes.

"Accelerometers are becoming so cheap that we find them even within cellphones, so this will become a data
avalanche, serving as a marriage of modern big data analytics with structural health monitoring," Bollt said.

The group is now working to make their approach deployable.

"On the more theoretical side, we're building a database of bridge models that can be easily simulated and tested
via computers to calibrate parameters in the method, and we're also developing improved statistical estimators to
produce more accurate results faster," Bollt said with Sun's agreement. "On the experimental side, we're collabo‐
rating with labs to test our methods for other structures, including airplane wings under various conditions."

Story Source:

Materials provided by American Institute of Physics (AIP). Note: Content may be edited for style and length.

Journal Reference:

1. Amila Sudu Ambegedara, Jie Sun, Kerop Janoyan, Erik Bollt. Information-theoretical noninvasive damage

detection in bridge structures. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2016; 26 (11):
116312 DOI: 10.1063/1.4967920
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 Research | January 17, 2017

An Information Theory­Based
‘Thermometer’ to Uncover Bridge
Defects
By Lakshmi Chandrasekaran

Aging roadway infrastructure generates the threat of sudden bridge collapses, along with the
possibility of catastrophic human mortality rates. Unlike with a faulty mobile phone, one cannot
simply pick apart a bridge, identify the defect, repair it, and put everything back together. 

“When an inspector detects a sign of distress—say, cracking—it is not always straightforward to
figure out the cause of the problem without an in-depth analysis,” Pinar Okumus, assistant
professor of civil, structural, and environmental engineering at the University of Buffalo, New York,
said. “This makes it hard, and sometimes subjective, to evaluate the seriousness of the condition.
So, the decision-making to mark a bridge safe or not after detection of a problem is one of the
hardest parts of the job.” Okumus was not associated with this study.

Is it then possible to perform preemptive, hands-free checks on the mechanical ‘health’ of
bridges? The answer is yes, according to a study by an interdisciplinary team of applied
mathematicians—Amila Sudu Ambegedara, Jie Sun, and Erik Bollt—and civil engineer Kerop
Janoyan, all of Clarkson University. The work was published in Chaos.

How does math help prevent bridge-collapse disasters? The research team, led by Bollt and Sun,
uses techniques from ‘information theory,’ a branch at the intersection of mathematics and
electrical engineering that can help monitor the structural health of bridges.

In 1948, a mathematician and electrical engineer named Claude Shannon developed this seminal
field to study how information can be quantified, stored, and transmitted through abstract “wires”
in terms of bits 0 and 1, igniting modern telecommunication. Incidentally, we celebrated Shannon’s
100th birthday in 2016. 

Information theory, is currently comprised of a combination of physics, mathematics, computer
science, and engineering methods. This field has spawned the rise of the internet and the World
Wide Web, cell phones, cryptography, and many cutting-edge applications.

However, information needs a medium for transmission. Imagine a communication channel via
fiber optic cables – one of the fastest media. A nick or tear in the cable would impair
communication, as it would be noisy and travel slower. Similarly, a mechanical or structural defect
in the bridge would affect mechanical waves travelling through it. 
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“I have always been fascinated with the concept that the way a given disturbance, an
acceleration, a distortion travels through media is clear, but the details of how tightly built that
structure is will moderate the details of how the signal travels through the structure,” Bollt said,
explaining his motivation for this research. “So a good way of ‘listening’” to the structure could do
the job. This work is essentially about an information-theoretic way of listening to the signals
travelling through the structure.” 

The scientists primarily used various forms of “Shannon entropy” to detect and analyze damages
in bridges. “The entropy of a system measures how ‘disordered’ or ‘unpredictable’ the system is,”
Sun explained. “This quantity can be extended to study the flow of information among
subcomponents of a complex system, and that is exactly what we did in this study; we used what
we called ‘causation entropy’ and optimal mutual information interaction (oMII) to detect structural
patterns and damages in bridges.” 

One attractive aspect of this method is its purely noninvasive nature; this is in contrast to
conventional manual inspection, which is invasive and can be cost-prohibitive. Additionally, it may
not be possible to detect problems with bridges by visual inspection alone. “For example,
corrosion of steel bars on concrete cannot be detected by visual inspection. Special
instrumentation might be required, but these instruments have varying levels of reliability,”
Okumus said.

In order to conduct their experiments, Janoyan led an engineering squad to place thirty
accelerometers (wireless sensors) at various locations on the Waddington Bridge in Waddington,
NY, which measured how each small part of the bridge was disturbed as a truck passed through.
The team compared these results with the bridge’s response under “damaged” conditions by
removing a few bolts, thereby artificially inducing damage and collecting time series sensor data
from various locations. They found that the sensor signals obtained from different sites were more
likely to be coincidental under “healthy” conditions than damaged ones.

This figure shows a top view of the Waddington Bridge in NY. The research team placed a total of 30 dual-axis

accelerometers (wireless sensors) near one end of the bridge, uniformly covering roughly one-third of the surface area.
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They collected the accelerations measured at each accelerometer as a multivariate time series dataset and recorded them

into a digital computer. Using the recorded data, the team then inferred directed functional influences as connections

between the accelerometer sites using an entropy-based optimal mutual information interaction (oMII) algorithm. Figure

credit: Amila Sudu Ambegedara, Jie Sun and Erik Bollt.

Ambegedara applied oMII, an entropy-based optimization algorithm developed by Sun and Bollt,
which compared the structural monitoring of the bridge’s health to the measurement of our body
temperature, which detects abnormalities in our health. “I have always been amazed by how
much information a tiny bit of change in body temperature can tell us about our health,” Sun said.
“Thus, I always liked the idea of having a simple thermometer-like device to monitor the internal
status of very complex systems.”

Bollt noted that the work merges two unique aspects to use real-time data when detecting the
presence of structural change in the bridge. “One is the noninvasive and automated nature of the
data collection process, which has become popular in structural health monitoring but is not yet
common,” he said. “The other is the specifics of the unique data analytics tool that we developed,
which is able to infer direct information flow and significant interactions.” 

“On the analytical/computational side, we apply an entropy-optimization algorithm—which we
recently developed—to the measured data to detect effective interactions among the sensor
locations,” Sun said, describing the use of techniques normally used in deciphering big data.
“Without such ‘big data analytics,’ we will be left with just large volumes of data and no clue of
what’s actually going on with the bridge.”

X, Y, and Z are three random variables whose interdependences are represented by a three-node directed network.

Solid edges indicate direct dependence, whereas the dashed edge represents indirect dependence. The Venn

diagram shows direct and indirect mutual information interactions of these variables. Direct interactions (dark green

area) have significant mutual information, between X and Y, given Z, and between Y and Z, given X, for example; on
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the other hand, proper conditioning enables one to “filter out” indirect interactions (small red area), which are those

interactions characterized by having mutual information that disappears upon conditioning, between X and Z, given Y,

for example. Figure credit: Amila Sudu Ambegedara, Jie Sun and Erik Bollt.

A key component of the analysis was the data processing technique oMII that can identify
significant direct interactions between individual sensors in the system. According to Bollt and
Sun, oMII is an excellent technique based on ideas from information and communication theory. It
uses state-of-the-art statistical estimation routines. “The key idea is to search for interactions that
are most relevant to the increase of predictability (reduction of uncertainty) of the bridge
oscillations,” Sun said. “If the bridge’s structure has been altered either due to damage or
deformation, the details of the sensor interaction network are expected to change, enabling one
to detect the health status of the bridge,” Bollt added. And such changes in interaction between
sensors were indeed observed when the researchers removed key bolts and induced artificial
“damages” to the Waddington Bridge.

In the future, the team would like to expand the current study to assess the health of more
bridges and other mechanical structures. “Ultimately, we would like to integrate our data analytics
tool with automated data collection to develop something that detects the health status of a
bridge as simply as a thermometer detects body temperature,” the team said.

Lakshmi Chandrasekaran received her Ph.D. in mathematical sciences at the New
Jersey Institute of Technology. She is currently pursuing her masters in journalism
with a health & science writing concentration at Northwestern's Medill School of
Journalism. She is a freelance science writer whose work has appeared in PLUS
math magazine, HELIX - Science in Society magazine at Northwestern University,
and The Munich Eye, an online newspaper based in Munich, Germany.  
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