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Given multiple images that describe chaotic reaction-diffusion dynamics, parameters of a partial

differential equation (PDE) model are estimated using autosynchronization, where parameters are

controlled by synchronization of the model to the observed data. A two-component system of

predator-prey reaction-diffusion PDEs is used with spatially dependent parameters to benchmark

the methods described. Applications to modeling the ecological habitat of marine plankton blooms

by nonlinear data assimilation through remote sensing are discussed. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4812722]

When attempting to model many physical processes, a

frequent roadblock is the inability to observe certain var-

iables and parameters. For example, hyperspectral satel-

lite imagery provides a means to model phytoplankton

ecology in the ocean. However, a realistic model includes

predator-prey interaction with zooplankton, the primary

controller of phytoplankton blooms, and unobservable by

satellite imagery. Data assimilation, wherein measured

data are incorporated into model output, is crucial to

obtain a model that fits real-time observation. We

address the problem of data assimilation and parameter

estimation for a system of reaction-diffusion partial dif-

ferential equations (PDEs) wherein only one species is

observable such that modeling ocean ecology by means of

satellite imagery is plausible. This article extends former

results in ordinary differential equations by so-called

autosynchronization to the PDE case; the results permit

an important generalization, estimating parameters that

are spatially heterogeneous.

I. INTRODUCTION

Parameter estimation in ordinary differential equations
(ODEs) and partial differential equations (PDEs) has devel-

oped into a vast field in applied mathematics and control en-

gineering. For models representing important physical

processes, accurate estimates of appropriate model parame-

ters help facilitate short-term forecasting. However, to fore-

cast a system, one requires not only accurate parameter

estimates but also full knowledge of the initial state of the

system. There are widely varying and powerful methods for

parameter estimation of spatio-temporal systems including,

but certainly not limited to, Kalman filtering methods,1–3

multiple shooting methods,4,5 and adjoint methods.6 In fact,

parameter estimation based on synchronization has drawn

substantial interest.7–18 Applications include communica-

tions and cryptography,10 electronics and circuit dynam-

ics,9,19 and cardiac cell dynamics15 to name just a few. There

are currently several methods to estimate parameters based

on synchronization, a field that emerged after the seminal

work of Pecora and Carroll in Ref. 7. One approach is to

optimize a time-averaged synchronization error on which

synchronization acts as a regularizing force; the optimization

problem of finding the minimum synchronization error in pa-

rameter space is well-posed.9,14–17 Our interest here will be

based on an approach to force a response model to adapt to

observed data by developing additional equations for the pa-

rameters that depend on the synchronization error.8,13

To estimate model parameters by synchronization, we

exploit a special variation of synchronization called

“autosynchronization.” For systems of ODEs, an observed

scalar time series is coupled to a response system during

model simulation. The goal of this feedback is to cause the

response system to synchronize to the drive system. Ideally,

a proof of convergence follows by demonstration of an

appropriate Lyapunov function.8,11 In Refs. 12 and 13, we

see some generalizations of how to derive synchronization

schemes for many systems including the case where, a pri-
ori, we do not know the model form of the drive system.13

By autosynchronization, we recover the model parameters,

the current model state, and in some cases, a model form for

an observed system.

Stating an autosynchronization problem in the ODE

setting, suppose ut ¼ fðu; pÞ, where u 2 Rn; p 2 Rm; f :
Rn ! Rn, and ut represents the time derivative of u.

Further suppose ut ¼ fðu; pÞ is a nonlinear system of differ-

ential equations such that the model form of f is known. We

require a drive system

ut ¼ fðu; pÞ (1)

from which we are able to sample data with (unknown to us)

parameters p 2 Rm. Then we must state a response system

vt ¼ gðu; v; qÞ; (2)

where v 2 Rn; q 2 Rm; g : E! Rn, E is an open subset of

R2n, and vt represents the time derivative of v. Equation (2)

has the same model form as the drive system if q¼p. By

“same” we mean in as far as possible by our understanding

of the underlying physics. Then the goal is that when u is

coupled forward into Eq. (2), then Eq. (2) will synchronize

with Eq. (1) and v! u. Furthermore, parameter ODEs are

given by
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qt ¼ hðu; v; qÞ; (3)

so that ðv; qÞ ! ðu; pÞ as t!1.

The idea of synchronization was extended to one-

dimensional systems of PDEs in Ref. 19 and two-

dimensional systems in Ref. 16, where the authors consid-

ered the Grey-Scott and Barkely reaction-diffusion systems

respectively. In these works, the authors observed synchroni-

zation of an infinite-dimensional system by coupling the

drive and response systems at only a finite number of grid

points. Further work examines parameter estimation for

given PDE systems using optimization over the synchroniza-

tion error surface. The authors observe single-species assimi-

lation as they drive the PDE system to synchronization while

coupling with only one species.16 However, none of these

utilize autosynchronization.

In many systems, it is very reasonable to expect that

model parameters need not be spatially homogeneous. For

example, taking our problem of interest, spatial inhomogene-

ity in parameter values may be central when constructing

models for coastal algal blooms, since plankton growthrate

is affected by near-shore nutrient runoff and upwelling.20

More to that point, ocean fronts and eddies cause flow-

induced long-term inhomogeneities in the ocean which

results in a formidable spatial structure for density profiles in

the ocean.20 Whether inhomogeneities be the result of the

flow dynamics or of “boundary conditions” from nutrient

runoff, they are an important consideration for modelling

ecology over large coastal domains. Thus, it is reasonable to

argue that a biophysics-based model over the mesoscale

should accept spatially dependent parameters.

Parameter estimation by filtering methods adapted for

PDEs can be computationally expensive.5 Furthermore, we

have found that some filtering methods suffer during periods

of exponential growth, such as might be expected during

plankton blooms. Optimizing the time-averaged synchroni-

zation error in some function space is far more complicated

than the finite-dimensional alternative with scalar parameters

as in Ref. 16; optimization methods may not be practical.

Our work aims to extend the method of parameter estima-

tion for PDE systems by synchronization to autosynchroniza-

tion, especially including autosynchronization with spatially

dependent parameters. Thus, we investigate observed data

from the PDE drive system

utðx; y; tÞ ¼ fðuðx; yÞ; pðx; yÞÞ; (4)

with parameters pðx; yÞ 2 C0ðXÞ and a response system

vtðx; y; tÞ ¼ gðuðx; yÞ; vðx; yÞ; qðx; yÞÞ: (5)

We formulate an associated system of PDEs for the parame-

ters of Eq. (5)

qtðx; y; tÞ ¼ hðuðx; yÞ; vðx; yÞÞ; (6)

where h : C0ðXÞ ! C0ðXÞ, with the goal that ðv; qÞ
! ðu; pÞ as t!1. We design our methods by considering

a benchmark system of reaction-diffusion PDEs. Since we

know the model form of the drive system and the parameters

used to build the observed data, we compare our estimated

parameters with the exact parameters.

In preview of the paper layout, we begin by introducing

the reaction-diffusion equations that we will use as the drive

system. We discuss how this system is solved numerically

and the parameters used to simulate complex spatiotemporal

dynamics. Next, we implement the response system and

show the parameter PDEs used to find autosynchronization.

We demonstrate the power of the systems of PDEs to auto-

synchronize by employing three different spatial functions

for the parameters. Next, we show the estimated parameters

and the convergence plots for both state variables and param-

eters to the correct values. Finally, we give an improvement

on the response system that admits autosynchronization

wherein only one species is sampled, which is an important

breakthrough for applications since generally only the phyto-

plankton is easily observable.

II. THE PARAMETER ESTIMATION METHOD

Spatiotemporal dynamics for aquatic ecosystems includ-

ing phytoplankton are often modeled by two-species reac-

tion-diffusion predator-prey systems.21–25 These systems

describe predator-prey ecology between two species, often

Phytoplankton and Zooplankton, where diffusivities are

equal for both species since mixing is largely the result of

marine churning.20 Many systems derived include reaction

terms such that zooplankton populations increase by grazing

upon phytoplankton with some grazing efficiency,26 phyto-

plankton increase from exposure to nutrients, and each spe-

cies is subject to a mortality rate based on its current

population size or predation.

Consider the system of two PDEs as given in Ref. 20,

@P

@t
¼�PþPð1�PÞ� PZ

Pþh
;
@Z

@t
¼�Zþk

PZ

Pþh
�mZ; (7)

where � denotes the two-dimensional Laplacian, P(x, y, t) is

the abundance of phytoplankton at a point in the domain at a

given time, Z(x, y, t) is the zooplankton abundance, and k, m,

and h are dimensionless model parameters. Equation (7) is

simulated on a compact connected two-dimensional domain,

X, with zero-flux boundary conditions.

In terms of the biology of the model, the system

represents a dimensionless reaction-diffusion model for

phytoplankton-zooplankton predator prey dynamics in a hor-

izontal layer where vertical distributions of plankton are con-

sidered uniform. Although shown in dimensionless form, the

model is derived from principles in which phytoplankton

concentrations obey a logistic growth and are grazed upon

by zooplankton, following a Holling-type II functional

response. First classified by Holling,26 the Holling-type II

functional response assumes a decelerating growth rate such

that the predator, or consumer, is limited by its ability to effi-

ciently process food. Zooplankton grow at a rate proportional

to phytoplankton mortality and are subject to a natural mor-

tality rate. In dimensionless form, the growth and death rates

for phytoplankton are absorbed in the dimensionless parame-

ters k, m, and h. For a range of parameter values, e.g., k¼ 2,
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h¼ 0.4, and m¼ 0.6, this system exhibits spatiotemporal

chaos after transient spiral pattern behaviour.20

For simulations shown here, we choose X to be a rectan-

gle of size 864� 288. For homogeneous initial plankton dis-

tributions, the system remains in a homogeneous state for all

time, therefore, we use the perturbed initial conditions found

in Ref. 20.

We solve this system with a finite difference method,

using a three-point centered difference stencil for spatial

derivatives and forward Euler time stepping. Our simulations

use spatial discretization with dx¼ 2 and and Euler time step

of dt¼ 0.2. Although Eq. (7) is nonlinear, the choice of step

size satisfies the linear stability requirement for the Euler

scheme, i.e., that dt
dx2 þ dt

dy2 � 1
2
. The model output is treated as

an image sequence given by a particular (known) model

form but with unknown parameters k and m, to be deter-

mined. Thus, we will mimic our target application of remote

sensing oceanographic images of hyperspectral images fil-

tered to reveal plankton blooms. Here, we observe over ev-

ery point in the grid as would be available from satellite

data, however, it has been shown that synchronization is pos-

sible by sub-sampling the grid.16 Moreover, we will be inter-

ested to allow k and m to vary spatially as functions, k(x, y)

and m(x, y) as they also account for phytoplankton

dynamics.

Our interest in this PDE model stems from our work in

remote sensing, to build a better understanding of our

ocean’s ecology. Particularly, we aim to predict short-term

behavior of coastal algal blooms. Such a system may in prin-

ciple be modeled by estimating parameters directly from

observed data in the field. This additional data could then be

used to validate model predictions informed by remote sens-

ing data. However, hyperspectral satellite imagery provides

the observed data to which we would synchronize a response

model in hopes of autosynchronization providing good pa-

rameter estimates for forecasting. Since phytoplankton are

largely affected by spatial inhomogeneities in the ocean such

as nitrogen runoff, regions of hypoxia, or upwelling, to name

a few parameter inhomogeneity-inducing effects, we wish to

allow model parameters to vary spatially. These considera-

tions are especially important since our models will be built

over coastal domains where large changes in ocean biology

occur spatially, leading naturally to spatially dynamic

parameters.

We are only able to observe time series data Eq. (4) as a

movie and we know the model form of Eq. (7), but want to

estimate the parameters used to create the observed data.

The system in Eq. (7) will be taken as the drive system and

we form a response system to be synchronized to the obser-

vations as,

@P̂

@t
¼ �P̂ þ P̂ð1� P̂Þ � P̂Ẑ

P̂ þ h
þ jðP� P̂Þ;

@Ẑ

@t
¼ �Ẑ þ k̂

P̂Ẑ

P̂ þ h
� m̂Ẑ þ jðZ � ẐÞ;

(8)

where we assume P̂ðx;y;0Þ 6¼Pðx;y;0Þ; Ẑðx;y;0Þ 6¼Zðx;y;0Þ;
k̂ðx;y;0Þ 6¼ kðx;yÞ, and m̂ðx;y;0Þ 6¼mðx;yÞ. Thus, we do not

know the initial model states, and wish to recover the

spatially varying parameters m(x, y) and k(x, y). To derive

Eq. (8), a diffusive coupling term is added to each equation

in Eq. (7) accounting for the error between the drive and

response values with a coupling strength, j. These additional

terms drive P̂!P and Ẑ! Z, so that the PDEs will syn-

chronize after a short time. The synchronization is of identi-

cal type and dependent upon the choice of j, as is the

synchronization speed.

III. RESULTS AND SIMULATIONS OF
AUTOSYNCHRONIZATION PARAMETER ESTIMATION

We modify the system Eq. (7) as found in Ref. 20 by

forcing the parameters to be non-negative C0ðXÞ functions.

Here X is the domain, which in the case of our simulations,

X � R2 is a compact domain such as a rectangle or even a

domain shaped as the Gulf of Mexico. Parameters are

updated as diffusively coupled PDEs during the synchroniza-

tion process as

@k̂

@t
¼ �sðP� P̂Þ s > 0;

@m̂

@t
¼ �sðZ � ẐÞ; (9)

where we choose s¼ 30 for specificity and for which we

observe good convergence results. The Ansatz system Eq.

(9) was chosen after testing multiple forms. The parameter

equations are evolved simultaneously with Eq. (8) with a for-

ward Euler discretization and the same time step. The model

form of Eq. (9) was chosen after testing several forms and

there may exist other forms for which synchronization is

possible. Once the model form was chosen, a parameter

search was performed to find s¼ 30. As we vary s and j, the

synchronization manifold may lose stability, a common sit-

uation with diffusively coupled systems. Parameters may be

updated as reaction-diffusion PDEs, by adding a diffusion

term, however, we need to restrict parameters to be nonnega-

tive C2ðXÞ functions and stability may be affected. To begin

the simulation, parameters are arbitrarily initialized as the

constant function

k̂ðx; y; 0Þ ¼ 5; (10)

m̂ðx; y; 0Þ ¼ 5: (11)

We evolve Eq. (7) forward and count the model output as

observed data. Initial conditions for the response system are

P̂ðx; y; 0Þ ¼ 2 and Ẑðx; y; 0Þ ¼ 2. Furthermore, to avoid val-

ues outside the normal range of Eq. (7), we enforce that

P̂ ¼
P̂ : 0 < P̂ < 2

0 : P̂ � 0

2 : P̂ � 2

and Ẑ ¼
Ẑ : 0 < Ẑ < 2

0 : Ẑ � 0

2 : Ẑ � 2

8<
:

8<
:

during the simulation.

First, we develop synthetic datasets with spatially vary-

ing parameters to challenge our methods. Spatially depend-

ent parameters are chosen to be in the range given in Ref. 20

for spatially irregular behavior. Three different functional

forms for the parameters are tested. First, a Gaussian param-

eter function is defined as
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k1ðx; yÞ ¼ ae
� ðx�n=2Þ2

2r2 þðy�m=2Þ2

2r2

� �
;

m1ðx; yÞ ¼ ce
� ðx�n=2Þ2

2r2 þðy�m=2Þ2

2r2

� �
;

(12)

where a¼ 2, c¼ 0.6, m¼ 300, n¼ 900, and r ¼ 400.

Appropriate parameters are chosen to maintain m1ðx; yÞ and

k1ðx; yÞ in the target range. For example, Eq. (12) is dis-

played in Figures 1(a) and 1(b). Next, we define

k2ðx; yÞ ¼ a cosðbxþ dÞsinðbyÞ þ s;

m2ðx; yÞ ¼ c cosðbxþ dÞsinðbyÞ þ t;
(13)

where a ¼ 0:2; b ¼ p=ðm=2Þ; c ¼ 0:6; d ¼ p=2; s ¼ 0:5, and

t¼ 1.5, to test the quality of the autosynchronization scheme

to resolve fine spatial structures in model parameters. The

surfaces produced by Eq. (13) are displayed in Figures 1(c)

and 1(d).

Finally, we build a swirly parameter function in order to

simulate spiral-like behavior in parameter values as might be

expected in turbulent near-coastal regions. We save a time-

instance of phytoplankton density from the simulation of the

original PDE, Eq. (7), scale it appropriately, and treat it as a

parameter function. We refer to these spiral parameters as

k3ðx; yÞ and m3ðx; yÞ, and their forms are shown in Figures

1(e) and 1(f), respectively.

We observe solution data at every time step relative

to the response system, Eq. (8), and the parameter system,

Eq. (9), to drive ðP̂; ẐÞ ! ðP; ZÞ and ðm̂ðx; yÞ; k̂ðx; yÞÞ
! ðmðx; yÞ; kðx; yÞÞ as t!1. For brevity, only the

parameters defined by Eqs. (12) and (13) are shown and

compared with their estimated counterparts. We observe

autosynchronization for each test set of parameters and the

spatial inhomogeneities in each case are effectively resolved,

demonstrated in Figures 2–5.

Figure 2 displays time-instances of the simulation of

Eqs. (8) and (9), as the response, and Eq. (7), as the drive,

with spatially dependent model parameters rendered by

Eq. (12). Figure 2(a) shows the initial conditions, P(x, y, 0)

over P̂ðx; y; 0Þ, Figure 2(c) represents P(x, y, 1000) over

P̂ðx; y; 1000Þ, and Figure 2(e) represents P(x, y, 4788) com-

pared to P̂ðx; y; 4788Þ. Figure 2(b) shows the initial condi-

tions, Z(x, y, 0) over Ẑðx; y; 0Þ, Figure 2(d) represents Z(x, y,

1000) over Ẑðx; y; 1000Þ, and Figure 2(f) represents Z(x, y,

4788) compared to Ẑðx; y; 4788Þ.
Likewise, Figure 3(a) shows the initial conditions,

k1ðx; yÞ over k̂ðx; y; 0Þ, Figure 3(c) represents k1ðx; yÞ over

k̂ðx; y; 1000Þ, and Figure 3(e) represents k1ðx; yÞ compared to

k̂ðx; y; 4788Þ. Figure 3(b) shows the initial conditions,

m1ðx; yÞ over m̂ðx; y; 0Þ, Figure 3(d) represents m1ðx; yÞ over

m̂ðx; y; 1000Þ, and Figure 3(f) represents m1ðx; yÞ compared

to m̂ðx; y; 4788Þ. Additional results will be presented with

the same arrangement.

To challenge our methods in resolving spatial heteroge-

neities in parameters, we simulate Eq. (8) and (9), fed by the

drive system Eq. (7) with parameters rendered by Eq. (13).

Time-instances of this simulation are shown with species

compared in Figure 4 and parameters compared in Figure 5.

Time instances are displayed at t¼ 0, t¼ 1000, and

t¼ 10 660. This simulation demonstrates the effectiveness of

FIG. 1. Three sets of spatially dependent parameters used in simulations. Figures 1(a) and 1(b) are described by Eq. (12), with k1ðx; yÞ on the left and m1ðx; yÞ
on the right. Below, with the same ordering, are the parameters described by Eq. (13). Finally, the swirly parameters are shown in Figures 1(e) and 1(f).

033101-4 S. Kramer and E. Bollt Chaos 23, 033101 (2013)



parameter reconstruction. Similar results were found by test-

ing parameters that vary spatially according to m3ðx; yÞ and

k3ðx; yÞ.
In the top row of Figure 6, the globally averaged relative

error between the phytoplankton terms in the drive and

response system is driven to less than 3.0� 10�9 and the

error between the zooplankton terms is driven below

2.0� 10�8. The globally averaged relative error between

true and estimated parameters, both k and m, is driven below

1.0� 10�5. The top row corresponds to the simulation shown

FIG. 2. Autosynchronization of species in Eqs. (8) and (9). Each figure shows drive (top) and response (bottom) pairs. P(x, y, 0) and P̂ðx; y; 0Þ in (a), P(x, y,

1000) and P̂ðx; y; 1000Þ in (c), and P(x, y, 4788) and P̂ðx; y; 4788Þ in (e). Z(x, y, 0) and Ẑðx; y; 0Þ in (b), Z(x, y, 1000) and Ẑðx; y; 1000Þ in (d), and Z(x, y, 4788)

and Ẑðx; y; 4788Þ in (f). Model parameters are k1ðx; yÞ and m1ðx; yÞ.
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in Figures 2 and 3, with parameters built using Eq. (12). In

the bottom row of Figure 6, globally averaged relative errors

are plotted corresponding to the simulations shown in

Figures 4 and 5, with parameters corresponding to Eq. (13).

All simulations shown here were terminated once parameter

errors fell below 1.0� 10�5.

IV. SYNCHRONIZATION BY SAMPLING ONLY ONE
SPECIES

To this point, an important criticism of our work is that

we need to sample both species to drive the response model

and parameters. As mentioned above, our interest in

FIG. 3. Autosynchronization of response parameters in Eqs. (8) and (9). Each figure shows drive (top) and response (bottom) pairs. k1ðx; yÞ and k̂ðx; y; 0Þ in

(a), k1ðx; yÞ and k̂ðx; y; 1000Þ in (c), and k1ðx; yÞ and k̂ðx; y; 4788Þ in (e). m1ðx; yÞ and m̂ðx; y; 0Þ in (b), m1ðx; yÞ and m̂ðx; y; 1000Þ in (d), and m1ðx; yÞ and

m̂ðx; y; 4788Þ in (f).
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autosynchronization for parameter estimation stems from

work with ocean models for phytoplankton-zooplankton

ecology. In fact, hyperspectral satellite imagery provides

phytoplankton density inferences but provides no data for

zooplankton. In this case, parameter estimation using the

response model above will fail since we have no zooplankton

observables with which to drive the response. Even given

correct model parameters, it is impossible to forecast the

model since zooplankton initial conditions are not supplied.

Our problem of interest requires that we somehow estimate

FIG. 4. Autosynchronization of species in Eqs. (8) and (9). Each figure shows drive (top) and response (bottom) pairs. P(x, y, 0) and P̂ðx; y; 0Þ in (a), P(x, y,

1000) and P̂ðx; y; 1000Þ in (c), and P(x, y, 10 660) and P̂ðx; y; 10 660Þ in (e). Z(x, y, 0) and Ẑðx; y; 0Þ in (b), Z(x, y, 1000) and Ẑðx; y; 1000Þ in (d), and Z(x, y,

10 660) and Ẑðx; y; 10 660Þ in (f). Model parameters are k2ðx; yÞ and m2ðx; yÞ.
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zooplankton initial conditions based on phytoplankton

observations.

We find that, by a modification of Eq. (8), it is possible

to drive zooplankton density to its true state by sampling

phytoplankton alone. This is a first demonstration of the

possibility of simulating this system with only partial knowl-

edge. As an added bonus we observe autosynchronization.

Thus, this technique gives us a tool to estimate parameters

and to initialize a model for short term forecasts. The

response model that drives these results is

FIG. 5. Autosynchronization of response parameters in Eqs. (8) and (9). Each figure shows drive (top) and response (bottom) pairs. k2ðx; yÞ and k̂ðx; y; 0Þ in

(a), k2ðx; yÞ and k̂ðx; y; 1000Þ in (c), and k2ðx; yÞ and k̂ðx; y; 10660Þ in (e). m2ðx; yÞ and m̂ðx; y; 0Þ in (b), m2ðx; yÞ and m̂ðx; y; 1000Þ in (d), and m2ðx; yÞ and

m̂ðx; y; 10660Þ in (f).
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@P̂

@t
¼ �P̂ þ P̂ð1� P̂Þ � P̂Ẑ

P̂ þ h
þ jðP� P̂Þ;

@Ẑ

@t
¼ �Ẑ þ k̂

P̂Ẑ

Pþ h
� m̂Ẑ ;

(14)

where the absence of “hats” denotes where observation data

are coupled directly into the PDE. That is, we use a combina-

tion of diffusive and complete replacement coupling in the

response PDE to observe autosynchronization. Note that

zooplankton density is no longer observed in Eq. (14). The

parameter update equations are

@k̂

@t
¼ s1ðP� P̂Þ; @m̂

@t
¼ s2ðP� P̂ÞP̂; (15)

with s1 ¼ 0:2; s2 ¼ 0:6, and j ¼ 1:45. Again, the Ansatz
systems Eqs. (14) and (15) were chosen after testing multiple

forms. As above, the parameter equations are evolved simul-

taneously with Eq. (14) using a forward Euler discretization.

Figure 7 shows results obtained simulating Eqs. (14) and

(15), driven by Eq. (7), at three time-instances, t¼ 0,

t¼ 1000 and t¼ 9360. Results obtained for a spiral parame-

ter form, which simulates perhaps more realistic mesoscale

parameters, show that both k̂ðx; y; tÞ and m̂ðx; y; tÞ converge

to their true values. Similar results are found with uniform

random initial conditions defined for the response system

(Figure 8).

In Figure 9, globally averaged errors are shown to di-

minish over time as the coupled systems evolve. Both pa-

rameter errors drop to within about 1.0� 10�7, the threshold

at which the simulation is terminated, by t¼ 9360.

Importantly, we note zooplankton synchronization error

drops to within 2.0� 10�6 of ground truth. Therefore, we

need not sample zooplankton to observe autosynchronization

FIG. 6. Globally averaged relative synchronization error between drive and response PDE components and parameters on a log scale. Figures 6(a) and 6(b)

correspond to parameters built by Eq. (12) and simulation displayed in Figures 2 and 3, respectively. Figures 6(c) and 6(d) show globally averaged relative syn-

chronization error for species and parameters built by Eq. (13), corresponding to simulations in Figures 4 and 5, respectively.
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and we find the true zooplankton density profile and model

parameters such that model simulations may be initialized.

Furthermore, we are able to estimate swirly parameters as

might be expected for spatially dependent parameters in the

ocean on the mesoscale.

V. ON INCOMPLETE OBSERVATION DATA

Since we wish to apply these methods to model ocean

ecology based on remote sensing, in particular hyperspectral

satellite imagery, we now consider an innate complication

FIG. 7. Autosynchronization of species in Eqs. (14) and (15). Each figure shows drive (top) and response (bottom) pairs. P(x, y, 0) and P̂ðx; y; 0Þ in (a), P(x, y,

1000) and P̂ðx; y; 1000Þ in (c), and P(x, y, 9360) and P̂ðx; y; 9360Þ in (e). Z(x, y, 0) and Ẑðx; y; 0Þ in (b), Z(x, y, 1000) and Ẑðx; y; 1000Þ in (d), and Z(x, y, 9360)

and Ẑðx; y; 9360Þ in (f). Model parameters are those shown in Figures 1(e) and 1(f).
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with such data. In real experimental situations, data are

sampled at discrete locations, providing perhaps local aver-

ages on a coarsened subset of the domain. In order to apply

the methods discussed directly one might subsample the

observed data by interpolation to the desired grid.

Interpolation could perform well, given the assumption of

solutions in W2ðXÞ. Otherwise, our method needs to be

adapted for sampling by local averaging. Therefore, we now

show that our techniques are robust by partially observing

only phytoplankton in patches throughout the domain. We

sample a coarser subset of the discretized domain and take

local averages to be the driving signal, in the same way as

FIG. 8. Autosynchronization of parameters in Eqs. (14) and (15). Each figure shows drive (top) and response (bottom) pairs. k3ðx; yÞ and k̂ðx; y; 0Þ in (a),

k3ðx; yÞ and k̂ðx; y; 1000Þ in (c), and k3ðx; yÞ and k̂ðx; y; 9360Þ in (e). m3ðx; yÞ and m̂ðx; y; 0Þ in (b), m3ðx; yÞ and m̂ðx; y; 1000Þ in (d), and m3ðx; yÞ and

m̂ðx; y; 9360Þ in (f). Model parameters are those shown in Figures 1(e) and 1(f).
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Ref. 16. The domain over which we sample is shown in

Figure 10, where the domain is sampled in 3� 3 patches

with a spacing of 3 grid points between patches.

Synchronization is robust to spatial subsampling by

local averaging by changing the response system to include

only diffusive coupling, shown as follows:

@P̂

@t
¼ �P̂ þ P̂ð1� P̂Þ � P̂Ẑ

P̂ þ h
þ jGn 8x; y 2 Sn;

@Ẑ

@t
¼ �Ẑ þ k̂

P̂Ẑ

P̂ þ h
� m̂Ẑ ;

(16)

where the complete replacement term is removed in the sec-

ond equation. Therefore,

GnðtÞ ¼
1

ðdxÞðdyÞ
X

x;y2Sn

ðPðx; y; tÞ � P̂ðx; y; tÞÞ; (17)

where Sn represents the rectangular “sensor” on the domain

over which the model misfit is locally averaged. A require-

ment for good results is that we remove the direct replace-

ment term in Eq. (16) since local averaging forces a slight

misfit from observed data. Thus, the complete replacement

term eventually works against identical synchronization and

identical synchronization is not observed. Instead, we either

remove the term as shown above or we allow complete

replacement until the response output stops progressing to-

ward drive observations. We then remove the complete

replacement term and simply couple as shown in Eq. (16).

This allows for faster synchronization from random initial

conditions. Synchronization results are shown in Figure 11,

wherein three different arrangements of local averaging are

tested. In all three cases, the synchronization manifold is

asymptotically stable, however, the rate of convergence to

the manifold acts inversely with respect to sampling sparsity.

These results agree with previous results shown in Ref.

16, however, we now address autosynchronization. Thus, we

modify the response system Eqs. (14) and (15)

@P̂

@t
¼ �P̂ þ P̂ð1� P̂Þ � P̂Ẑ

P̂ þ h
þ jGn 8x; y 2 Sn;

@Ẑ

@t
¼ �Ẑ þ k̂

P̂Ẑ
~P þ h

� m̂Ẑ;

@k̂

@t
¼ �k̂ þ s1ð ~P � P̂Þ;

@m̂

@t
¼ �m̂ þ s2ð ~P � P̂ÞP̂;

(18)

FIG. 9. Globally averaged relative synchronization error between drive and response PDE components and parameters on a log scale, estimating perhaps more

realistic spiral parameters. Figures (a) and (b) correspond to parameters shown in Figures 1(e) and 1(f) and simulation displayed in Figures 7 and 8,

respectively.

FIG. 10. Locally averaged patches

over which drive system is sampled

shown in black. Sampled on subset of

3� 3 grid points with a distance of

3 grid points between patches.
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FIG. 11. Comparison of three different sampling schemes. Shown are relative synchronization errors between drive and response systems for sampling over

3� 3 grid points (blue) with a distance of 3 grid points between subsequent patches, 2� 2 grid points (red) with a distance of 2 grid points between subsequent

patches, and 1� 1 grid points (black) with a distance of 1 grid points between subsequent patches. Phytoplankton synchronization errors on left and zooplank-

ton synchronization errors shown on right.

FIG. 12. Autosynchronization results

shown at t¼ 2000. Both species and

both parameters shown compared with

drive species and true parameters.

Effect of adding diffusion to parameter

equations is clearly visible in estimated

parameters.

FIG. 13. Globally averaged relative

synchronization errors shown for spe-

cies and parameters. Local sampling

destroys stability of the identical syn-

chronization manifold, however, spa-

tial characteristics of parameters are

still observed.
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where ~P represents locally averaged observations from the

drive system. Note, diffusion is added to the parameter equa-

tions in Eq. (18) in order that data from the driven regions,

Sn will diffuse into the occluded regions. Varying sensor

sizes were examined and in Figure 12 results are shown

assuming a 2� 2 subsampling of the domain X, with 1 grid

point between subsequent patches.

In Figure 12, we see that despite locally averaged data,

the response system is driven toward identical synchroniza-

tion. Results are clearly not as good as sampling at every

grid point in the domain, nor as good as the results for syn-

chronization alone. Current work is aimed at finding how

much data can be occluded from the observable set before

autosynchronization completely fails. We also aim to address

the considerable problem of cloud coverage over a region

observed by satellite imagery. Clearly, results obtained are

not as accurate when the locally averaged sampling is sparse.

We note, however, that our satellite data are sufficiently fine

such that interpolation or local averaging for simulation on a

finer grid is unnecessary. That is, for our application to

remote sensing, we evolve ecology over the same grid on

which the data are observed, as described in Sec. IV.

Nevertheless, an important consideration for application of

these methods is missing observables due to cloud cover and

sparsity in observables by local averaging (Figure 13).

VI. CONCLUSION

In this paper, we have shown that it is possible to derive

an autosynchronization scheme for a system of PDEs. We

emphasize here the improvements we have made upon past

synchronization methods in that we use autosynchronization

as a means of parameter estimation of parameters that exist

in a function space. We assume prior knowledge of the model

form of the observed system, but have no prior knowledge of

the parameters. By sampling at every time step, we observed

identical synchronization between the response and drive sys-

tems as described in Ref. 16. As a first attempt, we have

given a model form for adaptive parameters in the response

system such that we observe identical synchronization

between response model parameters and true parameters, or

autosynchronization. Our techniques were implemented on a

benchmark model and estimates converge to ground truth.

Thus, autosynchronization is observed for PDEs with scalar

parameters.

Next, we considered the same system of PDEs wherein

the parameters were spatially dependent. We provided a

scheme with which we observe autosynchronization of spa-

tially dependent parameters. We tested our results against

several different functional forms for parameters and found

the method to be robust.

We markedly improved upon these results once more

with an autosynchronization scheme that requires sampling

of only one species (phytoplankton). We noted that in order

to evolve a system of PDEs for forecasting, we need initial

conditions for both species; this is a serious problem when

dealing with remote sensing data with which we can only

observe one of the species. This concern was addressed by

providing a response system that autosynchronizes

parameters and synchronizes zooplankton using only phyto-

plankton data. These methods are plausible for use in remote

sensing problems.

As discussed above, synchronization schemes can be

proven to work for a given range of coupling parameters

using, for example, Lyapunov functions. It remains to be

shown why this scheme works on this system, and to perhaps

derive autosynchronization model forms for a wider class of

reaction-diffusion PDEs.

A drawback of this technique with application to hyper-

spectral satellite data is that data may be noisy; this is where

filtering techniques have a built-in advantage. Data may also

be occluded because of cloud cover. It has been shown in

Ref. 16 that synchronization is possible even when sub-

sampling the domain. Therein, samples are taken to be local

averages representing a subset of the domain. By driving

only on coarse subset of the original domain, we show that

synchronization for our system is robust to spatial subsam-

pling as long as subsampling is not too coarse. We further

show that autosynchronization is somewhat robust to sub-

sampling by local averaging, but not as robust as synchroni-

zation. Sampling only one species, however, required that

we add diffusion into the parameter update equations to

transfer information across unobservable regions of the do-

main. To this end, further work is to be done to improve

upon these results, including perhaps interpolation of obser-

vations. By interpolating observations, diffusion could be

removed again from the parameter equations. However, we

have not had the same success for autosynchronization with

large amounts of simply connected occluded data. Since

there is no hope to synchronize PDEs without large quanti-

ties of data relative to the domain, we require techniques to

fill in that which is missing, for example, inpainting. We

address this problem in future work.

A problem with applying these techniques to satellite

imagery is temporal data resolution. There may be several

days between successive images and autosynchronization

requires ample data observations. The need for frequent

observables is perhaps the main drawback to this method.

However, autosynchronization may be advantageous for pa-

rameter estimation or model building in situations where

spatiotemporal data are abundant, and especially where pa-

rameters are expected to vary spatially.
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