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Abstract

This thesis is concerned with three main areas of complex networks research. One is
on developing and testing new methods to pnd communities, especially methods that
do not need knowledge of the entire network. The second is on the application of shells
and their usage when characterizing and identifying important network properties.
Finally, we oPer several contributions toward the usage of complex networks as a tool
for studying social dynamics.

The study of communities, densely interconnected subsets of nodes, is a diZcult
and important problem. Methods to identify communities are developed which have
the rare ability to function with only local knowledge of the network. A new bench-
marking and evaluation procedure is introduced to compare the performance of both
existing and new local community algorithms.

Using shells, we introduce a new matrix structure that allows for quantitative
comparison and visualization of networks of all sizes, even extremely large ones. This
\portrait" encodes a great deal of information including dimensionality and regularity,
and imparts immediate intuition about the network at hand. A distance metric
generated by comparing two portraits allows one to test if, e.g., two networks were
created by the same underlying generating mechanism. Generalizations to weighted
networks are studied, as is applicability to the Graph Isomorphism problem.

We introduce the Patron-Artwork model as a new means of generating a distribu-
tion of fame or knowledge from an underlying social network, and give a full analysis
for a network where all members are neighbors. In addition, the so-called Small World
Phenomenon has been studied in the context of social networks, specipcally that of

XViii
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Kleinberg navigation. We studied the impact of modifying the underlying Kleinberg
lattice by introducing an anisotropy: the lattice is either stretched along one axis or
long-distance connections are made more favorable along a preferred direction.
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Introduction

Complex, non-uniform interconnectedness is present in such diverse areas as human
society and social interaction [1, 2, 3]; man-made technology such as the world wide
web [4, 5]; and even organic systems including food webs [6, 3], cellular biology [7], and
evolutionary relationships [8]. Motivated by the discrete, nonlinear aspects present
in such areas, the peld of Complex Networks has arisen to study these systems with a
variety of mathematical tools. All such systems consist of objects (people, web pages,
chemicals, etc.) and relationships (people that are friends, chemicals that react, web
pages that link to each other, etc.). Complex networks quantify these structures
using Graphs, where nodes and edges represent the objects and their relationships,
respectively.

Graph theory has a long, illustrious history, starting with Euler and the bridges of
Konigsberg [9], but it hasn't been until the recent availability of fast, cheap computers
that graph techniques were applicable to the very large networks of everyday life that
are most interesting. This has enabled the use of tools from Statistical Mechanics
and other pelds, which are most viable for such (statistically) large systems.

The results presented here cover three broad areas of complex networks interest.
One is in the area of pnding communities, densely interconnected groups of nodes,
inside networks. Another is the application of shells, a non-local, non-global means
of decomposing a network, to study and characterize network structure. Finally, we
present several useful contributions to the area of social networks, using complex
networks to model intrinsic human behavior (and other phenomena).

We begin in Chapter 1 with a review of the most prominent terminology and



background related to complex networks. This includes graph theoretic background,
such as the degree distribution, cycles, shells, etc., as well as the more famous random
graphs used to model various large-scale systems. Following this, in Chapter 2 we
introduce the problem of pnding communities, covering background material and
existing techniques as well as our own contributions (including a new local community
detection algorithm) and open questions.

Motivated by their appearance in our local community methods, in Chapter 3 we
present our study of shells, an interesting property of networks that is neither local nor
global. We present a recursive system of equations meant to enumerate quantities of
interest related to shells, several new statistics to help e Z ciently characterize networks
based on shells, and a new measure of bipartivity, a means of quantifying how \close"
a network is to being bipartite (two-colorable).

Informed by our work on shells, Chapter 4 introduces the network \portrait," an
entirely new and very exciting means to visualize and compare networks of any size.
We use these portraits to derive a distance metric between networks as well as pose
a variety of interesting open questions including generalization to weighted networks,
brute-force graph searching, and applicability to the Graph Isomorphism problem.

Finally, in Chapter 5 we present two contributions to the study of social dynamics,
one of the key applications of complex networks. We introduce the Patron-Artwork
model as a tool to study how objects (movies, art, celebrities, etc.) become famous
by means of a simple recommendation mechanism inside a social network. Our sec-
ond contribution is to the study of Kleinberg navigation, a social network model that
exhibits the small world phenomenon, the empirical fact that well-separated people
tend to be connected by surprisingly short chains of acquaintances. Kleinberg nav-
igation is famous for its richness despite consisting of a single parameter, although
it is not the most realistic model for a society. We modify the Kleinberg model by
introducing an anisotropy in the underlying lattice. A variety of open questions are
posed, including modipcation of the navigation scheme in the face of a lattice with
\voids," which increase the model's realism by representing uninhabitable regions



such as deserts, mountains, and so forth.
A pnal summary of this thesis, including a discussion of contributions as well as
open questions and avenues for future work, is presented in Chapter 6.



Chapter 1
Network Depnitions and Review

The area of Complex networks is a relatively recent peld of study, but much of the
associated terminology comes from Graph theory, which has a much longer history.
Due to this close relationship, and the inherent interdisciplinary nature of the peld,
competing, equivalent terms have arisen in many areas. Here we present a brief
overview of the most salient terminology, including alternatives when available, but
this list is far from comprehensive.

Z A Network is formally represented by a Graph G = fV/; Egwhere V is the set
of nodes (or vertices), representing the objects in the network, and £ is the set
of edges (or links) in the network, representing the connections or relationships
between the network's objects. The total number of nodes is N/ = jI/j and the
total number of edgesis M = jE/j. The edge connecting nodes /and j is typically
denoted e;;, e(/; /), or sometimes just (/;/). A graph is sparse if M = O(N).

Z The degree (or valency) of a node is the number of connections it has to other
nodes. For graphs where at most a single edge is allowed between any two
nodes, the degree of a node is equivalent to the number of nodes adjacent
to that node. Adjacent nodes are neighbors and the set of nodes adjacent
to / is the neighborhood of /. The degree distribution P(k) gives the
probability for a node to have degree k in the network. The number of nodes

4



with degree k may be denoted as n, so that the \empirical" degree distribution
is P(k) = ny=N. The degree of node /is generally denoted k;.

Z For undirected graphs ¢, = ¢;;. For directed graphs (or digraphs), this is
not true, and edges are visualized as \arrows" pointing from the tail node to
the head node. The head node is adjacent to the tail node, but the tail node
is not adjacent to the head node (unless there exists another connection).

Z A subgraph of G is a graph whose edges and vertices are subsets of G's.

Z A path (or trail) between source node / and target node j is an alternating
sequence of nodes and edges, beginning with / and ending with j. The path
length is the number of edges traversed in the path. The shortest path is
the path(s) with the smallest number of edges, and is typically the quantity
of interest. A cycle (or circuit) is a closed path (one with the same source
and target). Simple paths and cycles are those where each node and edge
is traversed exactly once. Unless otherwise stated, all paths and cycles will be
considered simple. The distance between two nodes is the length of the shortest
(simple) path between them. (This shortest paths distance is sometimes known
as chemical distance or chemical space.) A triangle is the shortest simple cycle,
of length 3.

Z The eccentricity of a node is the length of the longest of all the shortest paths
from that node to any other node. The diameter of a graph is the length of
the longest of a// shortest paths; the maximum of all eccentricities.

Z If a path exists from every node to every other node, then that graph is con-
nected. If this is not true, then the graph consists of two or more connected
components: subsets of vertices where each node in a component has a path
to every other node in that component.

Z An acyclic graph is one in which no cycles are present, and is called a forest.
A connected, acyclic graph is called a tree.



Z A weighted graph is a graph where every edge is labeled with a weight (or
cost). These weights are typically real numbers, though they are sometimes
restricted to rational numbers or even integers. The weight of a path, cycle, or
tree is the sum of the weights of the included edges. Shortest paths in weighted
graphs are those paths with the minimum weight, not the minimum length.
Unless otherwise stated, we consider graphs to be unweighted.

Z A multigraph (or pseudograph) is one where multiple edges (multi-edges or
parallel edges) can connect the same pair of nodes. A self-loop is an edge that
connects a node to itself. In the graphs throughout this work, unless otherwise
stated, neither are allowed.

Z A complete graph of / nodes, often denoted Ky, is the graph where all nodes
are adjacent. A complete subgraph is known as a clique.

7 The clustering coeZcient C; of node /is a measure of how well-connected
the neighbors of / are to each other [10]. Specipcally, for / having degree k;:

2E;,
ki(ki 1)

where E; represents the number of edges between neighbors of /. The maximum

C; (1.0.1)

number of edges between neighbors is k;(k; 1)=2, therefore 0 C; 1. The
clustering coeZcient of the entire graph is taken as the average clustering over
all nodes, C = hC;I.

Z Assortativity measures the degree-degree (and other) correlations between
nodes in the network [11, 12]. A network is considered assortative when nodes
of like degree tend to connect to one another, and dissortative (or disassor-
tative) when high-degree nodes tend to connect to low-degree nodes and vice
versa. The assortativity coeZcient is essentially the Pearson correlation
coeZcient between pairs of nodes:

Lo Tre jejj.

ALY 1.0.2
1 jje?jj (1.0.2)



where ¢;; denotes the fraction of edges in the network that connect nodes of
type /7 to nodes of type j and jjxjj denotes the sum of all elements in x. For
degree-degree correlations, the type of a node is its degree.

One of the overriding themes of this work is the no-
tion of shells (or layers). The /-th shell of a node v is
the set of all nodes in G that are at a distance /from v."

These shells are denoted as /-shells, or G,(v), and the
node v is sometimes referred to as the starting node.
The shell decomposition of G \about" v is the set

v. An interesting property of these shell decompositions is that they are neither a
local property, since they depend on all of G, nor are they a global property, since
they depend on a particular starting node. A decomposition is found in O(N + M)
steps using, e.g., the Breadth First Search (BFS) or another search algorithm.

Regarding implementation, networks are typically represented in several ways.
One is the adjacency matrix A, where A;; = 1if edge e;; exists, and zero otherwise.
This matrix has many interesting properties but becomes intractably large for very
large networks, since it is of size N 0 N. Another storage format, which is more
eZcient than the adjacency matrix, is the edgelist, which can be thought of as
an M 0 2 matrix where row e contains the two nodes composing edge e. This is
especially eZcient for sparse graphs, since it will only be of size O(N). In addition, a
single network can be represented by many adjacency matrices and edgelists, since the
ordering of nodes and edges is arbitrary. These data structures are easily extended
to directed, weighted, and multi- graphs.

Many types of random networks have been proposed, typically consisting of a
generating mechanism giving the subsequent degree distribution and other properties.
Here we list some of the more famous network models.

1Sometimes the shell is depned as the subgraph of G consisting of all nodes (and edges be-
tween those nodes) that are / steps away from node v. In this work, the depnitions are typically
interchangeable.



Z The earliest random network was the eponymous Erdés-Renyi (ER) graph, pro-
posed in 1959 [13]. This graph consists of / nodes with an edge existing between
any two nodes with probability p. The degree distribution is then Binomial
(Poissonian as /' / 7). An important characteristic of ER graphs is that
they undergo a phase transition as p increases past a critical value, p,. For
small values of p, the graph mostly consists of small, separate groups of nodes,
but when p = p, = 1=N, the graph becomes connected (a \giant" connected
component emerges).

Z Watts and Strogatz proposed a famous random network model in 1998, to de-
scribe how the Small World phenomenon arises [10]. This describes the fact
that people tend to be much closer to each other than one would expect, based
on the ER model (the famous six degrees of separation). Their model consists
of a circular graph where nodes are connected to k-nearest neighbors. This net-
work has a very high diameter (large world) until one begins to randomly rewire
a few edges, creating long-range contacts. These edges will rapidly collapse the
diameter of the graph, illustrating the small-world transition.?

Z In response to the empirical fact that many real-world networks have a few
highly connected nodes (or hubs), but most nodes have low degree, Barabasi and
Albert (BA) proposed their seminal model for generating scale-free networks:
networks with a power-law degree distribution, P(k) % k *[4, 14]. Their model
consists of taking an initial seed network of n % 2 nodes, introducing one or
more new nodes of degree m to the network at each time step, and connecting
these newcomers to existing nodes based on their degree. This model contains
two properties, growth and preferential attachment (rich-get-richer), that are
necessary to generate a power-law degree distribution. The BA model always
generates scale-free networks with % = 3 but there exist other models that can
generate diPerent values for %.

2We discuss a similar model illustrating the small world phenomenon, using a two-dimensional
lattice, in Chapter 5.



Z One of the most general random network models is the conpguration model,
sometimes referred to as the Molloy-Reed (MR) or Maximally Random (also
MR) model [15, 16, 17, 18]. Unlike the previous networks, this model accepts
the degree distribution as an /nput. To build a network, each node /out of N is
assigned k; \stubs," where k; is drawn from the chosen P(k). Uniformly random
pairs of these stubs are chosen and wired together, until all stubs are plled.
For two nodes of degree k, and k,, the probability that they are connected is
koky=2M, where M = % ; k;. Since edges are placed at random, conpguration
model networks exhibit none of the degree-degree correlations inherent in many
other models.

30ne should be concerned if a graph can be made that will satisfy a particular sample sequence:
the sum of the sampled degrees must be even, for example, or an empty connection will remain. In
general, we limit ourselves to graphs so large that the introduction of a single edge to avoid this will
not alter their properties. Self-loops and multi-edges are likewise neglible.



Chapter 2
Communities

A topic of current interest in the area of networks has been
the idea of communities and their detection. A Com-
munity could be loosely described as a collection of ver-
tices within a graph that are densely connected amongst
themselves while being loosely connected to the rest of the
graph [19, 20, 21]. This description, however, is somewhat
vague and open to interpretation. This leads to the pos-
sibility that diPerent techniques for detecting these com-
munities may lead to slightly diPerent yet equally valid

results. Thus, the community problem becomes that of
creating a partitioning which maximally identipes the community structure.

Many social, technological, and biological networks exhibit community structure.
Applications include studying the spread of disease (or, more generally, information)
in social and communication networks, since one expects faster transport within com-
munities than between; reducing very large graphs to smaller ones by studying only
the community structure (collapsing communities down to a single node); and even
the e Z cient routing of both hardware and software within multi-processor computers,
since the interconnections between separate CPUs will be slower than internal con-
nections, and their use should be minimized. See Fig. 2.1 for two example networks

10
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MotherPlutarch

Figure 2.1: Two real-world networks with community structure. Shown is (a) the
2005 NCAA football schedule, and (b) the network of character interactions from Les
Miserables by Victor Hugo [23]. The NCAA network is composed of teams who have
played against each other in the regular season, and exhibits a community structure
based on the conferences the teams are organized in, since teams tend to play within
their own conference more often. The nodes in (a) are colored according to their
conference aZliation, while the nodes in (b) are colored from the result in Fig. 2.7.

which exhibit such community structure.

The number of ways to partition a graph is extremely large, and it is intractable
to enumerate all of them. In fact, it has been shown that the problem of maximizing
modularity (see Sec. 2.1.3), often taken as equivalent to detecting communities, is NP-
Complete, meaning it is easy to check a solution but diZcult to pbnd one [22]. Due to
this, many detection methods are approximate, greedy optimizations. Since pnding
communities is diZcult and has many applications, it is an interesting problem.
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2.1 Existing Methods

We begin by detailing the most historically important classes of community detection
methods. It is a fairly new peld; early results date from the 1970s, but it has only
recently become popular, in the past six years or so.

2.1.1 Spectral graph partitioning

The earliest form of community detection was the spectral graph partitioning methods
due to Fiedler in the 1970s and later Pothen, Simon, and Liou in 1990 [24, 25, 26]. This
method splits the network into communities based on the eigenvalues and eigenvectors
of the Graph Laplacian L(G):

ki, ifi=/;

1, if 7& jand 9 e, (2.1.1)
0, otherwise,;

=W N\ o

where G is an undirected, unweighted graph and k; is the degree of node /. This is
also known as the Laplacian matrix, Combinatorial Laplacian, KirchhoP's Matrix, or
the Admittance Matrix.

Brie y, some interesting properties of the Graph Laplacian.

Z This matrix is symmetric, singular (rows sum to zero), and positive-semidepnite.

Z The number of distinct spanning trees of G is equal to any cofactor of L [27],
[28, page 57] . Thisis known as the matrix-tree theorem or KirchhoP's Theorem.

Z Since L is symmetric, its eigenvalues are real and its eigenvectors are real and
orthogonal.

Z The number of connected components in G is equal to the multiplicity of zero
as an eigenvalue. This means that % = 0 and % & 0 iP G is connected.

Z The eigenvalues are nonnegative: 0 = % % 000  %y.

Z The second smallest eigenvalue %, is known as the algebraic connectivity of
G and acts as a lower bound on the number of edges connecting two partitions
in G. In other words, the larger % is, the more \diZcult" it is to cut G into
pieces [28].
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Figure 2.2: The cut
number AR for a parti-
tion of two equally sized
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The actual partitioning algorithm is quite simple and exploits the values of the
egigenvector v, (often known as the Fiedler Vector), corresponding to %: for each
node nin V, if w(n) < 0, put nin group N ; otherwise, put n in group N,. If
one wishes to pnd further sub-communities (sub-partitions), this algorithm can be
repeated by treating each partition as a separate graph.

To see the algorithm, let us derive the cut number R [24, 25, 26], [28, pages 268{
270]. We wish to divide the graph's nodes into two groups while minimizing the
number of edges R that must be cut to disconnect them:

1 X 1 X
R= Ajj = 1 A (1 sisp); (2.1.2)
irjin iij
diPerent
groups
where 8
< 41, if vertex / belongs to group 1,
Si= J group (2.1.3)

1, if vertex 7/ belongs to group 2.

The spectral bisection method seeks to choose an appropriate partition to minimize
R. Rewriting the prst sum,

A/j = k/- = S%k,' = S,'Sjk,'zv,'/',' (214)
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gives R solely in terms of the Laplacian:
1 X 1

R=14 sis;j (kiZy Aj) = =s"Ls; (2.1.5)
i;j

4

where s is the vector with elements depned by Eq. (2.1.3). Writing s in terms of the
normalized eigenvectors v, of L,

X
S = av; (216)
i=1
where a; = v]s, reduces R:
1 X X 1 X
R = Z H/V;-I-L aVv; = Z a%Vz,-.' (217)
i j i

Thus, R for a given partition depends entirely on the eigenvalues and eigenvectors of
L.

There is a trivial solution which must be avoided. Since L is singular, vy =
(1,1,1,: :)=pW is always an eigenvector with eigenvalue %; = 0. If one choosess = v;4
then R =1 ;&% = }a2 = 0, which is certainly minimized. This corresponds to
choosing a group of size N/ and a group of size zero. In other words, the graph has
not been partitioned at all. To avoid this solution, px the two group sizes at Ny and

N,. This constrains as:

z

) 2
T ? - % (2.1.8)

Instead, minimize R by focusing on v, (hence it's known as the Fiedler vector).

Y

Since /% is the next smallest eigenvalue, we (roughly) minimize R by maximizing a,.
To do this, we want s to be parallel to v, but the elements of s are constrained to

$1. The basic method is an attempt to do the best we can:

8
<+1 if n(i) %£0;
Si= . (2.1.9)
1 if n(/) <0
with some swapping to satisfy a;. This also justipes the importance of /% (the alge-
braic connectivity), since it places a lower bound on the value of A.
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Overall, this method works very well, but may not always be ideal. A partition
is always returned, regardless of whether or not the graph naturally possesses com-
munities, and the size of each group is arbitrary. This may or may not be useful,
depending on the application. Also, the number of partitions found is always even,
which may not be natural for a particular network.

Due to the drawbacks with spectral graph partitioning, and the recent rise in
interest in networks in other areas, completely diPerent methods to pnd communities
have been investigated. These methods generally fall into one of two categories:
divisive methods, where (typically) the edges of the graph are cut in a specipc order,
usually based on a centrality measure, or agglomerative methods, where all nodes
begin in their own community (of size 1), and these communities are then merged
step-wise in some prescribed order [29].

2.1.2 Divisive community partitioning

Perhaps the most famous divisive method is the one due to Newman and Girvan
[3, 30, 31], it uses Edge Betweenness, and is very intuitive. The betweenness of
an edge is the number of times that edge appears in the all-pairs shortest paths.
Edges that often participate in shortest paths are more \central" in that they are
more responsible for transportation across the network. Cutting high-betweenness
edges then partitions the network. This method is expensive, however. Finding edge
betweenness for a graph scales like O(/N?), since one must pnd all the shortest paths,
and this must be recalculated after each edge is cut, for a total cost of O(N?3). This
becomes prohibitive for larger networks. For an example of a progressive sequence of
divisive partitioning, see Fig. 2.4

In addition to edge betweenness, one can depne partitioning schemes based on a
variety of centrality measures such as closeness centrality,’ which uses the sum of all

T0ther centrality measures include Degree centrality, which is just the node's degree; Straightness
centrality, which uses the inverse of the shortest path lengths; Eigenvector centrality, which uses
the elements of the eigenvector corresponding to the largest eigenvalue of the adjacency matrix;
and Information centrality, which uses the change in a quantity similar to straightness under node
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Figure 2.3: The Zachary Karate Club [32], a famous community detection bench-
mark due to the fact that Zachary observed the club split in half over an argument
about membership dues [3]. Edges with higher Betweenness are thicker. Note that
betweenness has not been shared equally over paths of equal length, as is usually the
case. This is best seen in the two edges leading to the right-most node.

shortest path lengths from a node, and one can use other divisive measures such as
node removal [19, 1]. These methods typically scale no better than betweenness with
equivalent or lower accuracy (for testable cases such as the Zachary karate club) [2],
so betweenness has remained the depnitive centrality measure used within divisive
partitioning algorithms.

deletion.
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Figure 2.4: An example divisive community partitioning where edges with higher
betweenness are cut prst. Shown is a graph with 0 cuts (a); 100 cuts (b); 120 cuts,
where the graph prst splits (c); and 500 cuts.
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2.1.3 Modularity and agglomerative community detection

To combat the expense of betweenness, and to measure the accuracy of a discovered
partition, Newman introduced a quantity called Modularity [31], and then an ag-
glomerative algorithm using it to pnd communities [33]. This algorithm was then
repned, giving a cost of O(MN log V) [34]. This is one of the most computationally
eZcient algorithm to date and recent improvements [35] have made it up to 70 times
faster, allowing analysis of networks with 5 d 10% or more nodes.

Modularity is a statistic used to evaluate how \good" a particular community
partitioning is; it does not pnd the partitioning. Since a good partition will maximize
the number of edges inside each community, it makes sense to depne a statistic that
measures the ratio of intra-community edges to the total number of edges for that
partition. For a community partitioning such that vertex v belongs to community ¢,,

the fraction of edges within communities compared to the total number of edges is

P .

wAvwZ(Cy) Cy) 1 X .
V’M'D v, w 4 w _ . B .
1 AV’.W 2M AV, WZ(cVI cW)l

v,w VW

where Z(cv,'cw) = 1if vand w are in the same community and 0 otherwise. This
statistic has its largest value of 1 in the trivial case where all vertices belong to a
single community. To correct this, subtract the expected value of the same quantity
in the case where edges were randomly placed (no community structure present). The
probability of an edge existing between vertices v and w if connections are made at
random (and respecting existing vertex degrees) is k,k,=2M, where k; is the degree
of vertex /. Then, modularity is depned to be?

1 X koky 5
i 51/ (e, cy): (2.1.10)

Q Avw

v, w
Following modularity, an agglomerative algorithm was introduced [38]. This works
by prst considering each node a community of its own and, at each step, merging the
two communities (by re-introducing an edge) that will give the largest (positive)

2Further repnements and a more compact matrix notation are presented in [36] and [37].
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change in Q, D Q. This is then repeated until only one community remains, and
the step with the maximum Q@ is chosen as the pnal partition. In other words, an
approximate (greedy) optimization of @ is employed. Combined with certain data
structures,® this yields an extremely eZcient algorithm, with O(Nlog V) cost [34].

2.2 A Local Community Detection Method*

Often a network is too large to be fully represented or it's too expensive to explore
in its entirety. For example, the internet has too many hyperlinks that are changing
too much to be succinctly stored in a central location. Another example would be
researchers surveying a social population, perhaps in a prison or an isolated tribe.
They might not have the time or resources to interview every member of the society,
but they might still want to know the community of a particular person such as a
leader or authority pgure. Local methods, capable of pnding a particular community
within a network without requiring knowledge of every single node and edge are thus
of extreme importance.

Here we present a unique community detection algorithm: it uses only local infor-
mation and is wholly unlike the previously mentioned spectral bisection, divisive, or
agglomerative methods. This method pnds a single community inside the network's
full structure; global applications capable of pnding the full community partition as
well as a hierarchy of sub-communities will also be introduced.

The proposed algorithm consists of an /-shell spreading outward from a starting

n

vertex, / = 0;1,;:::;" As the starting vertex's nearest neighbors and next-nearest
neighbors, etc., are visited by the /-shell, two quantities are computed: the emerging
degree and total emerging degree. The emerging degree of a vertex is depned as

the number of edges that connect that vertex to vertices the /-shell has not already

SEssentially, instead of calculating @, instead store and update a matrix containing B Q;.;, the
change in modularity when merging communities /and j. This is more e Zcient since D @ will always
have fewer entries than A and merging two communities will only alter a few elements in D Q.

“Published in [39]
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visited as it expanded from the previous / 1,/ 2;:::,0-shells. Edges between
vertices within the same /-shell do not contribute to the emerging degree.
Let us introduce the following notation:

emerging degree of vertex /from a

.
ki(/) shell started at vertex J; (2.21)

K total emerging degree of a shell of

/- depth /starting from vertex j. (2.2.2)

The total emerging degree of an /-shell is then the sum of the emerging degrees of
all vertices on the leading edge of the /-shell. This can also be thought of as the
total number of emerging edges from that /~shell [40]. At depth 0, the total emerging
degree is just the degree of the starting vertex. At depth /, it is the total number of
edges from vertices at depth /connected to vertices at depth /+ 1. The total emerging
degree at depth /is not necessarily the number of vertices at depth /+ 1, though this
approximation is often valid.

It follows from (2.2.1) and (2.2.2) that

X
K = Ke(j); (2.2.3)

i2G(})
with K,(-’ = k;. In addition, let us depne the relative change in total emerging degree
13) K/’-,

I_- (2.2.4)

/
DK/’ K/“’

for a shell at depth /starting from vertex j.
The algorithm works by expanding outward from some starting vertex j and
comparing the change in total emerging degree to some threshold A. When

DK <P (2.2.5)

the /-shell ceases to grow and all vertices covered by shells of a depth  / are listed
as members of vertex j's community. More specipcally:

1. Startat / = 0, at vertex /, add j to the list of community members, and compute
KO.
/
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2. Spread outward, / = 1, add the neighbors of j to the list, and compute K}.

3. Compute D K]. If DK} < P, then a community has been found. Stop the
algorithm.

4. Else repeat from step 2 for increasing /, until Pis crossed or the entire connected
component of j has been added to the community list.

The total emerging degree of an /-shell started from within a community will
tend to increase as / increases, since there tend to be many interconnections within
communities. When the /-shell reaches the \border" of the community, the number
of emerging edges tends to decrease sharply. This is because, at this point, the only
emerging edges are those connecting the community to the rest of the graph which
should be, by depnition, less in number than those within the community.

By introducing a single parameter, P, and monitoring D K/, the /-shell's growth
can be stopped when it has covered the community. It is this fact that allows for the
starting vertex to detect its community locally: at the last depth before P is crossed,
it does not matter where the emerging edges lead.

Our method is not perfect, however, and it is possible for the /-shell to \spill
over" the community it is detecting. This is dependent on how the starting vertex
is situated within the graph: if it is closer (or equally close) to some non-community
vertex or vertices than to some community vertices, the /~shell may spread along two
or more communities at the same time. To alleviate this ePect, one can run the
algorithm N times, using each vertex as a starting vertex, and then achieve a group
consensus as to which vertices belong to which communities.

The idea of having an expanding /-shell encompass a community is not in it-
self new. The algorithm in [40] expands multiple /-shells simultaneously from the n
vertices of highest degree (the hubs) until all vertices are within an /-shell. While
computationally inexpensive, the number of communities detected is arbitrarily pre-
assigned and the possibility of two hubs within the same community is neglected. In
addition, it requires simultaneous knowledge of the entire network.

This method has also been generalized to weighted networks, by using summing
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the weights on the emerging edges instead of counting them [41].

2.2.1 Global application

The above local algorithm is a method for a single vertex to determine something
about its own community membership. |t seems reasonable that, by surveying all the
locally-determined membership listings, one should be able to generate an idea of the
global structure of the network. Here we propose a simple method using a member-
ship matrix to obtain such a picture and to overcome membership overlap (vertices
claimed by multiple communities; the partition is now a cover) when determining a
\consensus" partitioning of the network.

For any given starting vertex j, the algorithm can return a vector v, of size N,
where the /th component is 1 if vertex /is a member of the starting vertex's community
and 0 otherwise. These vectors can be assembled to form an N/ 0 N \membership
matrix"

M = (vijvojBiijvy)T ; (2.2.6)

where the jth row contains the results from using vertex j as the algorithm's starting
point. This allows for a good way to visualize the resultant data when starting the
algorithm from multiple vertices.

Unfortunately, this matrix is arbitrarily ordered depending on how vertices are
mapped to rows. We introduce a simple sorting step to overcome this. To begin,
we depne a \distance" Dy between rows /and j as the total number of diPerences
between their elements:

X h i
Dw(i;j) M(ir k) & M(j k) ; (2.2.7)
k=1
where [P] = 1 if proposition P is true and 0 otherwise. In other words, this is the
Hamming distance between rows / and /.

Now we perform a simple sorting algorithm on M. Starting at row / = 1:

1. Find Dy(/; /) for all rows j > /.
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2. Pick the row that is the \closest" to row / (call it row k) and interchange it
with row 7+ 1. This requires swapping rows /+ 1 and k and swapping columns
i+ 1 and k. Columns are swapped because a row interchange is equivalent to
a renumbering of the involved vertices, so that new numbering must be kept
consistent throughout M.

3. Repeat for row / + 1.

Unfortunately, the sorting step can be computationally expensive. Finding each
distance costs O(/N). When the sorting algorithm begins at the prst row, there are
N 1 distances to pnd, so the cost of the prst sortis O(N(N 1)) % O(N?). Sorting
the next row requires pnding /' 2 distances, and so forth. Therefore, since there
are N rows, the total cost is

X
NN =N N %/\/(/\/ +1) % O(N3): (2.2.8)
i=1

The result of this sorting/renumbering is @ matrix that is much more indicative
of structure. Well-separated communities appear as blocks along the diagonal and
imperfections within the blocks can indicate substructure. See Figs. 2.5 and 2.6(a).

The pnal set of D's can also be used to generate the hierarchy of subcommunities.

2.2.2 Finding a hierarchy of sub-communities

Sorting the membership matrix already provides a useful means of visualizing the
results of all the diPerent runs of the local algorithm, but this is not enough to
determine how any present sub-communities relate to larger communities. Therefore,
we introduce a further operation to apply to M to generate a dendrogram of the
community structure.

For row /, we compute a cumulative row distance, CD:

CD1 = 0,'
CD; = DM(I,I 1)+CD,‘1
X L
N a1y (229)
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Figure 2.5: Unsorted and sorted Membership matrices, NCAA 2005 season. The four
bottom rows are the independent teams (Army, Navy, Notre Dame, and Temple).

Plotting the row number / versus the cumulative distance CD; will yield a collec-
tion of points of increasing value falling into discrete bands that indicate the members
of each community. See Fig. 2.6(b) for an example. Note that the row number /is
the new sorted number /for that vertex: one needs to keep track of all the individual
sorting operations to maintain the original number of that vertex. These plots are
useful for visualization but are not strictly necessary to generate the sub-community
hierarchy. Finally, to yield a dendrogram of the community structure, perform the
operation outlined in Table 2.1.

Grouping the rows of the sorted M as per Table 2.1 is equivalent to grouping the
vertices of the graph together into a sub-community hierarchy. This is also similar
in form to many agglomerative or clustering techniques, with the row distances of M
used as a similarity measure. These groupings can then be used to generate a den-
drogram of the sub-community structure if we assume that each vertex is a singleton
before we started grouping and that after the largest distance is used, all vertices are
grouped together. See Fig. 2.7 for an example dendrogram. This algorithm was later
applied by Porter, et. al. [41] to pnd the hierarchical structure of the US House of
Representatives, based on committee voting patterns, and was shown to be the most
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Figure 2.6: (a) The sorted membership matrix for the Les Mis network with P = 6.9
and (b) a plot of the cumulative row distances from (a).

accurate of the tested methods.

2.2.3 Conclusions and future work

It is worth pointing out that one can apply the same sorting algorithm to the adja-
cency matrix, and this will often give a similar block-diagonal structure when commu-
nities are present. This does not mean that we do not need the membership matrix.
Instead, this is an indication of pnite-size ePects: for real-world networks such as the
NCAA football schedule, nodes within the same community are typically neighbors.
This is why the adjacency matrix will exhibit the same block diagonal structure. This
should not be expected in general, and thus the local algorithm is still important.
The disadvantage of M is the expense of calculating, storing, and sorting it.° In
principle, one need not initiate the local algorithm from all A/ vertices, but instead
from just O(C) vertices, where C is the number of communities present, since you
really only need one starting node per community. This will be much more eZcient,
since we typically expect ¢ - N. Future research will study the ePectiveness of the

S|t is worth noting that the sorting cost in Eq. (2.2.8) is rather naive and improvements, such as
using a heap, may reduce this cost to (N2 In N), for example.
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Table 2.1: Clustering the sorted membership matrix to pnd sub-communities. We
move downward, grouping together all the vertices whose corresponding rows are
closer together than Dni, until we arrive at a row that is farther away than Dyin.
Then we start a new group and begin grouping the subsequent vertices together until
we again pnd a row that is farther away than D.i,, and so forth. This is repeated
using the next smallest Dy(/ 1,;7) as Dni,. This has a course-graining ePect: as we
use larger values of Dnin, farther vertices will start grouping together.

a 1.
For the sorted M, compute Dy(/ 1,/) forall i =2;:::;n.
Choose the smallest Dy(/ 1,/) (often zero for identical rows). Call it Dyin.

Cyq empty queue. // clustering queue
enqueue 1st vertex /! Cg.

o ok~

(@) f Du(/ 1) > Dpin:
i d d+1.
i. Cy empty queue.

(b) enqueue /-th vertex /! C,.

7. Repeat from 3 for next smallest Dy (/ 1,/), generating next level of the den-
drogram, until all have been used.

discovered partitioning both as a function of P and as a function of the fraction of
starting nodes.® Another area that must be studied when starting from less than N
nodes is the fraction of the network that is detectead, since it is possible to never visit
nodes if no /-shells spread to them. This will be a function of both the number of
starting nodes and A, since a very large P will allow even a single /-shell to spread very
far.” Porter, et al. have also generalized our local algorithm to weighted networks and

6Perhaps a three dimensional plot showing modularity as a function of the fraction of starting
nodes and P. One expects this to reach a saturation point for some number of starting nodes, after
which increasing the number of starting nodes will not improve the detected partitioning. This
remains an open question.

"Perhaps another three dimensional plot, showing the fraction of the network \discovered" as a
function of both P and the number of starting nodes.
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Figure 2.7: The dendrogram of sub-communities for the Les Mis network, calculated
using the change in corresponding row distances shown in Fig. 2.6(b). The coloring
applied at the bottom was generating by cutting the dendrogram 8 levels from the
top, and is also shown in Fig. 2.1(b).

methods have been developed to choose A based on maximizing the modularity [41].
We hope to apply these results in our future work, as well.

2.3 Improved Local Community Methods®

Since the publication of the local method described in Sec. 2.2, several new algorithms
have appeared. In this section, we brie y detail some of these algorithms, as well
as propose a very simple yet surprisingly ePective new local method. Due to the
proliferation of competing methods, an objective benchmarking scheme would allow
a researcher to compare methods, as well as create and repne methods for improved
accuracy. Here we propose such a scheme.

We will focus our new benchmarking procedure on two existing algorithms, due
to Clauset [42] and Luo, Wang, and Promislow (LW P) [43], as well as a simple new

8To appear, J. Stat. Mech.
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method. Several other local methods exist, including those due to Flake, Lawrence,
and Giles [44] and Bagrow and Bollt [39] (Sec. 2.2), but these are either reliant on
a priori assumptions of network properties (limiting applicability to specipc types of
networks, such as the WW W), or tend to be accurate only when used as part of a more
global method. Other methods (for example, [45, 46, 47, 48]) concern themselves with
local community structure, but either require global knowledge to prst determine this
structure, or are depned locally but do not provide a depnitive partition necessary
for evaluation [49, 47, 50]. Some of these methods may work locally with simple
estimates of global values such as the total number of nodes but we neglect these as
well, mainly for brevity. Also, some works (e.g. [51]) use similar terminology but are
not concerned with local methods in the sense discussed here (they are local in the
space of all possible graph partitions, not in the network itself).

All three algorithms begin exploring the network from a starting node sand divide
the explored portion into two regions: the community C, and the set of nodes adjacent
to the community, B (each has at least one neighbor in C). At each step, one or more
nodes from B are chosen and agglomerated into C using some agglomeration scheme,
then B is updated to include any newly discovered nodes so that all neighbors of
nodes in C are known. This continues until an appropriate stopping criteria has
been satisped.® When the algorithms begin, ¢ = fsg and B contains the neighbors
of s: B = fn(s)g. See Fig. 2.8(a).

2.3.1 Existing local methods

The Clauset algorithm focuses on nodes inside C that form a \border" with B: each
has at least one neighbor in B. Denoting this set Cporger, and focusing on incident
edges, Clauset depnes the following local modularity:
P ) )

ij bij ’

R = (2.3.9)

9Many \methods" actually consist of just the agglomeration scheme, including most of what is
discussed in Sec. 2.3.1. We will discuss stopping criteria later in Sec. 2.3.4.
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where p;; is the adjacency matrix comprising only those edges with one or more
endpoints in Cporger and [P] = 1 if proposition P is true, and zero otherwise. Each
node in B that can be agglomerated into C will cause a change in R, D R, which
may be computed eZciently. At each step, the node whose agglomeration would give
the largest D R is agglomerated. This modularity R lies on the interval 0 AR 1
(depning R = 1 when jCporger/ = 0) and local maxima indicate good community
separation, as shown in Fig. 2.9. For a network of average degree d, the cost to
agglomerate jC/j nodes is O(jC/%d).

The LWP algorithm depnes a diPerent local modularity, which is closely related
to the idea of a weak community [21]. Depne the number of edges inside and exiting

C as M, and M,,, respectively:
X

% Aijli 2 Cllj 2 C; (2.3.2)
iij

Aili 2 Cl[j 2 B]: (2.3.3)

Min

MOUT

ij
The LWP local modularity My is then:
_ Min )
Mout
When M; > 1=2, C is a weak community, according to [21]. The algorithm consists

M(C) (2.3.4)

of agglomerating every node in B that would cause an increase in My, D M; > 0,
then removing every node from C that would also lead to D M; > 0 so long as the
node's removal does not disconnect the subgraph induced by €. (Removed nodes are
not returned to B, they are never re-agglomerated.) Finally, B is updated and the
process repeats until a step where the net number of agglomerations is zero. The
algorithm returns a community if My >1and s 2 C. Similar to the Clauset method,
the cost of agglomerating jC/ nodes is O(jC/*d).

2.3.2 Outwardness agglomeration

Finally, we present a new (almost toy model) algorithm, as an illustration of how sim-
ple a local method can be and as a new test setting for our benchmarking procedure.
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() (b)

Figure 2.8: (a) The community C is surrounded by a boundary of explored nodes
B. This exploration implies an additional layer of nodes that are known only due to
their adjacencies with B. (b) Two nodes 7and j in B, with ; =2=3and ;= 1.
Moving node j into C will give improved community structure, compared to moving
I

Let us depne the \outwardness" ,(C) of node v 2 B from community C:
1 X 0t bt
V(C) = - i2C i2C
Viz2n(v)
1 B
— FV kgut klvn :

where n(v) are the neighbors of v. In other words, the outwardness of a node is the

(2.3.5)

(2.3.6)

number of neighbors outside the community minus the number inside, normalized by
the degree. Thus, , has a minimum value of 1 if all neighbors of v are inside C,
and a maximum value of 1 2=k, since any v 2 B must have at least one neighbor
in C. Since pnding a community corresponds to maximizing its internal edges while
minimizing external ones, we agglomerate the node with the smallest at each step,
breaking ties at random. See Fig. 2.8(b).

This method is eZcient for the following reasons. When a node v 2 B is moved
into C, only the neighbors of v will have their outwardness' altered. For a neighbor
node / 2 n(v), the change in ;isjust D ; = 2=k, since only a single link can exist
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between v and /. If node / was not previously in B, it will now have a single edge
to Cand ;=1 2=k, Calculating , at each step thus requires knowing only k;,
which may be expensive (for example, on the WWW), but need only be calculated
upon the initial discovery of /.

For eZciency, one can maintain a min-heap of the outwardness' of all nodes in B
then, at each step, extract the minimum with cost O(log/Bj), and update or insert
the neighboring 's. For a network with average degree d, the cost of this updating is
0(c?log jBj). This is often an overestimate, depending on the community structure,
since a node's degree need only be calculated once. Then, the cost of agglomerating
jCjnodes is O(jCjd? log jBj). The relative sizes of C and B are highly dependent on
the particular network and the current state of the algorithm, but jBj % jCj seems
reasonable. A sparse network with rich community structure would give a cost of
0(jCjlog jC)).

While seeking to agglomerate the least outward nodes at each step seems natural,
it lacks a nicely depned quality measure, analogous to R in the Clauset agglomer-
ation (or @ for global algorithms). To overcome this we simply track My, during
agglomeration. The smaller this is the better the community separation, so we expect
local minima in My,; when a community has been fully agglomerated. In addition,
Moyt can be easily computed alongside agglomeration. After agglomerating node v,
the change in Moy is just D Moy = 2Kt k,: As shown in Fig. 2.10, Moy provides
useful information about a real-world networks' community structure, in this case the
amazon.com co-purchasing network.'

Using M,,: as a measure of quality is not ideal, however: it's not normalized,
and (like the Clauset modularity) obtains a trivial value when the entire network has
been agglomerated. The latter is less of an issue for local methods. More worrisome
is the fact that M,,; may also be trivially small when C is small. See Fig. 2.9 for a
comparison of R and M,,. We continue to use M, for the sake of simplicity, but
more involved measures may certainly lead to improved results.

0This data was generated by crawling the actual links on each amazon product page that point
to co-purchased products. This network evolves over time and results are necessarily altered.
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Figure 2.9: Comparison between quality measures for the Clauset algorithm, R, and

the method presented here, M,,:. Shown are the average of 500 realizations of the
128 node ad hoc networks (Sec. 2.3.3), for zut = 1,2,:.:,6.

2.3.3 Benchmarking

We now reach the main focus of this section, a specipc method for testing the accuracy
of local algorithms. We will show that our new method provides insight into how and
why a local algorithm performs well or poorly. It will also be shown to be useful for
designing new algorithms as well as comparing existing ones.

The procedure consists of two components: the construction of suitable artipcial
\test" networks, which possess a tunable degree of community structure, and a means
of measuring how accurate the algorithm's result is compared to the test network's
built in communities. We discuss new and existing test networks and an information
theoretic means of comparing the \real" and \found" community partitions.
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350 | Gravitation: Thorne, Wheeler, Misner
Planet Earth: BBC Series, DVD
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Agglomeration step, community size jC/
Figure 2.10: Comparison of a seminal physics text and a popular DVD (#1 seller
at the time of calculation) on the amazon.com co-purchasing network. Fluctuations
in Moyt in both items indicate the presence of non-trivial community structure. The

smooth curve at bottom is for a 2D periodic lattice of 500 0 500 nodes and the
Erdos-Renyi graph has NV = 10% and #hk/ = 3.

Test graphs

It has become standard practice to test community algorithms with synthetic net-
works that possess a given community structure and a parameter to control how well
separated the communities are. The traditional example is the so-called \ad hoc"
network [31, 52], which typically possess 128 nodes divided into four equally sized
communities. Each node has (on average) degree z = Zin + Zoyt = 16, wWhere Zy; is
the number of links a node has to nodes outside its community. A smaller z,; (and
correspondingly larger z,) leads to communities that are easier to detect.

These ad hoc networks have a sharply peaked degree distribution. Since local
algorithms are dependent on a particular starting node, their accuracy might be
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Figure 2.11: The rewiring scheme to build the
new artipcial networks. For two communities
(gray), two external edges (solid lines) are re-
moved and two internal edges (dashed) are cre-
ated, further separating the communities. One
must make sure that the dashed edges do not al-
ready exist, otherwise edges are being destroyed
instead of moved.

(~)
/
[/ V/

(=)
(~)

aPected if the starting node is a hub or a leaf."" So one would also like more realistic
synthetic networks which possess a wider degree distribution, such as a power law.
To do this, we propose the following:

1. Build agraph G of NV nodes and M edges, perhaps using the conpguration model

and a given degree distribution. Throughout this work, we use Barabasi-Albert
graphs of N =512, and mg = 8."

2. Randomly partition the nodes of G into two or more groups. These will serve as
the \actual" communities. We limit ourselves to four equally sized partitions.

3. Choose random pairs of edges that are between the same two groups and rewire
them to be within the groups, in such a way that the degree distribution is
unaltered.

This rewiring (or switching) technique, replacing edges (/; /) and (&, /) with edges (/; k)
and (/,/) [55, 56], has been used in the past to destroy the presence of community
structure, allowing for a null model to test for false positives [57]. Here we do the
opposite, and communities become more sharply separated as the number of rewirings
increases. See Fig. 2.11.

Since the partition is random, the initial modularity @y will be very small. As
edges are moved within communities, the prst sum in Eq. (2.1.10) will grow but
the second term will remain unchanged, since the degree distribution is unaPected.

"We term the lowest degree node in the network the \leaf," which is not necessarily of degree 1.

2These are built quickly by relaxing the constraint on multi-edges, which are then removed [53,
54]. The total number of edges will vary slightly, and the lowest degree nodes often have less than
mg neighbors.
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Therefore, the modularity of the actual partition Q() after f pairs of edges have been
moved is
2

Q(f) = Qo + 5t (2.3.7)

Rewiring M=4 pairs of edges will give @ ° 1=2.

It has been shown that even random networks can possess large values of @ [58, 46].
This is due to the sparsity of such networks when, e.g., hki 2. The benchmark
networks used here possess much higher hki.

Evaluation

Any local method creates a binary partition of the network into the community itself,
C, and the remaining non-communnity nodes, € = VV  C. In a realistic setting V/ is
unknown, but synthetic benchmarks allow one to know the full division. In addition,
for a synthetic benchmark, the frue partition Pg = fCpr; Crgis already known, while
the found partition Pr = fCr,; €rg may diPer.

Traditionally, the accuracy of the found communities is quantiped by the fraction
of correctly identiped nodes. This has been shown to have drawbacks [52] and the
binary partitioning of a local algorithm poses further problems. For example, if the
algorithm fails to stop in time, it has still identiped every node in the community
correctly, there are just additional nodes incorrectly attributed to that community.
Should each incorrect node give a penalty? If the algorithm incorrectly pnds one
community of A/ nodes, when there were actually K communities of /=K nodes
each, one could assign a +1=N for each correct node and 1=N for each incorrect
node, giving a composite score of 2=K 1. This means that synthetic networks
with diPerent K's cannot be directly compared. While scores could be subsequently
re-normalized to lie between 0 and 1, we propose an alternative that avoids these
problems and is unambiguous. (Sec. IX of [46] provides another alternative.)
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Following the application introduced in [59], we use Normalized Mutual Informa-
tion [60, 61] to measure how well P and Pr correspond to each other:

P P XN

U | 1]
X X
; Xi-log -+ /.X,,-Iog W

I(Pr; PF) = p (2.3.8)
where X is a 2 02 matrix with X;; being the number of nodes from real group / that
were placed in found group j, X; = Xi; + Xp;, and X;- = X1 + Xpp. In a sense,
I(Pg,; Pr) is a measure of how much is known about partition Pz by knowing partition
Pr, with / = 1 corresponding to perfect knowledge, and / = 0 to no knowledge at all.
A plot of / versus z,,; or the number of rewirings will give a picture of how accurate
an algorithm manages to identify the benchmark's communities as they become more
diZcult to pnd.

In general, the confusion matrix X is Ng 0 Nr where Nz and Nr are the number of
real and found communities, respectively. The application of Eq. (2.3.8) is a limiting
case corresponding to the binary partitioning inherent to local algorithms. Comparing
partitions is a problem more general than the scope presented here: see App. A for
other ideas and general background material, including a derivation of Eq. (2.3.8).

In most pgures, we have included a \faked" global method, the Clauset-Newman-
Moore (CNM) algorithm [33, 34], for comparison. This was done by running CNM to
bnd the partitioning with the highest modularity, one random community was desig-
nated C, and the other communities were grouped together in €. A local algorithm
is unlikely to match the accuracy of a global method, as shown. More accurate algo-
rithms than CNM exist, meaning the gap between local and global methods is often
worse than illustrated.

2.3.4 Stopping criteria

After identifying an appropriate agglomeration scheme, a local method must also be
able to correctly stop adding nodes. This point is often neglected and, as will be
shown, is a critical component in the accuracy of a local algorithm. Here we suggest
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two possible schemes and will use the techniques and benchmarks of Sec. 2.3.3 to
compare them. |t is important that the stopping criteria is also local; a criteria which
spreads to the entire network then pnds, e.g., the largest values of D M, is no longer
a local algorithm.

These stopping criteria are essentially divorced from the agglomeration schemes of
most local algorithms, allowing one to mix and match to pnd more accurate methods.
We show this with the Clauset and new method from Sec. 2.3. The LWP algorithm
already contains a stopping criteria and we use it unaltered.

Strong communities

As per [44, 21], a subgraph C 2 G is a strong community (denoted \ideal" in [44])
when every node in C has more neighbors inside C than outside:

Kn(C) > KU(C), 8i 2 C: (2.3.9)

This local quantity allows for a very simple, natural stopping criteria: agglomerate
nodes until the community becomes strong then, at each agglomeration step, check
k™ and k°'! for the newly chosen node and stop agglomerating if the community
would cease to be strong. If C never becomes strong, the algorithm won't termi-
nate, indicating a possible lack of community structure in the explored region of the
network.

As shown in Fig. 2.12, this \strong to not" criteria works well for sharply sepa-
rated communities, but tends to fail as the contrast decreases. In a sense, a strong
community is foo strong of a requirement: as the distinction between communities
blurs, some nodes must fail Eq. (2.3.9), despite probable membership in C.

We generalize the notion of a strong community in the following way. A commu-
nity is p-strong if Eq. (2.3.9) holds, not for all, but only a fraction p (or more) of the
nodes: ¥ h i

KN(C) > KUY(C) % pjCj: (2.3.10)
i2C
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Equations (2.3.9) and (2.3.10) are equivalent when p = 1, while the requirement
becomes increasingly lenient as p decreases. This allows one to tune the sensitivity
by varying p. See Fig. 2.13.

An additional benept of Eq. (2.3.10) is that multiple values of p can be used
simultaneously,’® since a community that is ps-strong is also p.-strong (p1 > po).

More specipcally, for the actual fraction pep,

1 Xh i

- " KNC) s kM) ; 2.3.11
o = gy KO > K(O) (23.11)

C is p-strong for all p  pep, and not p-strong for all p > pep.

To use, simply choose a set of appropriate parameters, fpy, p.,; .. .g, perform the
local algorithm, and maintain the state of C as each p; stopping criteria is satisped.
One can further use a quality value, such as My, or R, and choose the best corre-
sponding C; (in this case, that with the smallest M, or largest R'*). This \best of
fpg" stopping criterion does not entirely negate the introduction of a new parameter;
choosing p too small (e.g. p = 0.1) can lead to stopping very early. For this work,
we use fpg = f0.75,0.76,:::;1.0g, but this may be worth further exploration. See
Figs. 2.14 and 2.15.

In addition to strong communities, weak communities have been depned [21]. A
community is weak when M;, > %Mout. We have found the usage of a \weak-to-not"
stopping criteria to be problematic. The impact of a single agglomeration is so small
that the community will blissfully continue to grow, far past an appropriate stopping
point. Just as the strong stopping criteria is too strong, a weak stopping criteria is
too weak. See Sec. 2.3.5 for further ideas, however.

Furthermore, it should be kept in mind that these strong communities can be
satisped by random networks [46, 58], so perhaps this is not the best starting point

3Indeed, since stopping criteria are often divorced from agglomeration, all manner of criteria may
be used simultaneously, to the point where testing to stop can be more expensive than agglomerating.

14\We limit ourselves to choosing the smallest Moyt > 0 (R < 1), unless every C; has Moy = 0
(R =1). This distinction is important for pnite graphs, causing a curious (and artipcial) increase in
accuracy for larger values of Z, ¢ (smaller numbers of rewirings). This is because inaccurate results
that previously spread to most of the network now spread to the entire network and are subsequently
being ignored, raising the average value of /(Pg, Pr).
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for a local stopping criteria. Our benchmarking procedure will also show (Sec. 2.3.5)
that there is room for improvement, especially when the communities are less clearly
separated.

Trailing least squares

Inspired by plots of R and My, and in an ePort to increase accuracy when community
structure is less favorable, we propose another stopping criteria, based on ptting a
polynomial to M, (or R) to pnd local minima/maxima. Suppose 7 nodes have been
agglomerated, pt y = ax? + bx + ¢ to the prst n 3 values of My,:. Then extrapolate
ytopointsn 2, n 1, nand test the following:

1. parabola opens downward, a < 0 and,
2. n 3> b=2aand,

3. Mot (i) >y(i), i=nn 1;n 2 and,
4. Mour(n) 7% Mowe(n 1) % Mowr(n  2).

If all are satisped, stop agglomerating (and remove the pnal three nodes).

As shown in Fig. 2.12's inset, when you pass the border of the community, Moyt
will start to increase, while the parabola, unaware of the next three values, continues
downward. This works whether the minima is a cusp or just an in ection point, so
one need not resort to testing prst versus second diPerences in My, etc. The ptting
also provides a degree of smoothing.

This criteria is somewhat involved and has several semi-arbitrary factors: one
could extrapolate to a diPerent number of points, relax some of the constraints, pt
a diPerent order polynomial, continue ptting until the criteria ceases to be satisped,
etc. These choices (especially criteria 3 and 4) were actually informed by running
the benchmarking procedure over multiple possibilities, and choosing the best one,
showing that one can use the benchmarks and Eq. (2.3.8) to actually design new
algorithms. Our results indicate that the criterion as chosen work well, but further
repnement is certainly possible. We also use this with the Clauset method by ptting
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Figure 2.12: The \strong to not" and trailing least squares stopping criteria for the
128-node ad hoc networks using the Clauset method and the new algorithm presented
here. Each point is averaged over 1000 realizations. Inset: an example of the trailing
least-squares ptting procedure.

a line to R, since Eq. (2.3.1) tends to grow linearly in the prst community. Both pts
have similar accuracy, as shown in Fig. 2.12.

2.3.5 Results and discussion

The results of simulations, shown in Figs. 2.14{2.17, indicate the relative accuracies
of the various algorithms and stopping criteria. These pgures show how performance
degrades as the communities become less separated (larger z,,¢ or smaller number of
rewirings). Error bars representing the variance have been omitted for clarity, but
note that they are comparable across all algorithms, increase as the communities
become more diZcult to pbnd, and are larger than for the global method.

As shown in Figs. 2.14 and 2.17, the LWP method performs extremely well for
clearly separated communities, with a rapid decrease in accuracy as the separation
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Figure 2.13: Comparison of various p-strong stopping criteria for the 128 node ad hoc
networks using the new algorithm shown in Sec. 2.3.

blurs. The \best of fpg-strong" (Figs. 2.14 and 2.15) and trailing least-squares
(Figs. 2.14 and 2.16) stopping criteria prst perform at comparable accuracy for both
algorithms for the 128-node ad hoc networks, but the trailing least-squares tends to
perform better as community distinction blurs. Trailing least-squares outperforms
fpg-strong in the 512-node networks (Fig. 2.15 vs. Fig. 2.16), suggesting that the size
of the community impacts accuracy (which might be expected when ptting data).

Overall, the best of fpg-strong has the least accuracy but is also least aPected
by the degree of the starting node. Meanwhile, trailing least-squares performs better
overall but is more dependent on the starting node. The LWP algorithm is also quite
accurate overall, though trailing least-squares can outperform it when the community
separation is less clear.

The \take-home message" from Figs. 2.14{2.17 is this: the performance of a lo-
cal algorithm is far more dependent on the stopping criteria than the agglomeration
scheme. Both the new algorithm and the Clauset algorithm have nearly identical
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Figure 2.14: An overall comparison of the various methods for the 128-node ad hoc
networks, averaged over 1000 realizations. The LWP method is by far the most accu-
rate for low Zt, while the trailing least-squares methods oPer the best performance
at higher values. (The artipcial behavior of both "best of fpg' criteria for large zy is
discussed in Appendix 2.3.4.)

accuracy when using the same stopping criterion. Additionally, there is no clear
winner among the algorithms, and they don't perform nearly as well as global meth-
ods. The benchmarking procedure shows that these local methods can benept from
improvements.

The agglomeration schemes presented share many similarities, and a certain amount
of \cross-pollination" is possible. For example, accuracy may improve if one main-
tains the outwardness of nodes after agglomeration and, as per LWP, remove every
node from C with positive outwardness. Another possibility is simply agglomerating
all nodes with the minimum  together, instead of breaking ties. This is not neces-
sarily a trivial diPerence: the agglomeration histories may diverge since the sequence
of nodes exposed to B can diPer.



43

1 i
0.8
& 0.6
o«
-
=~ 04 - Hub
Leaf
«~ Random
09| Hub, Clauset
' Leaf, Clauset I
Random, Clauset
. CNM

1300 1200 1100 1000 900 800 700 600
number of rewirings, ¢t

Figure 2.15: Using the \best of fpg-strong" criteria on the 512-node rewired scale-free
networks, for fpg = 0.75,0.76,:.:,1. Each point is the average of 500 realizations.
The ePect of rejecting any individual p-strong results where Myt = 0 (R = 1) (see
Appendix 2.3.4) is more apparent for these networks, especially for hub nodes.

There is much room open to develop accurate stopping criteria, and this should be
a primary focus of further research. For example, the notion of a weak community can
also be generalized to provide a (perhaps improved) stopping criteria. As depned, a
community is weak when M, > %Mout. This can be generalized by introducing
a parameter to control how strict the constraint is: a community is p-weak when
M, > pMyy. Thus, a weak community corresponds to %-weak, and the LWP stopping
criteria is 1-weak. While the introduction of a further parameter is not ideal, and
the lack of performance of the p-strong criteria versus the trailing least-squares is not
promising, it may still be worth pursuing this and other, similar stopping criteria.
Furthermore, stopping criteria using LS-sets and k-cores, as mentioned in [21], may
also be worth investigation.

In addition to pnding a single community, any local method could be easily
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Figure 2.16: A comparison of the trailing least-squares criteria for both the new
algorithm and the Clauset method, using the rewired scale-free networks. Starting
from a hub tends to be the most accurate, except when the communities are very well
separated.

adapted to pnd more community structure, simply by running the local algorithm
multiple times (possibly without repeated agglomeration of nodes or similar modip-
cations). These quasi-local methods may not have the same level of accuracy as a
global method | agglomerating communities sequentially may lead to compounding
errors | but it may still be worth pursuing, even if only as an initialization step for
a diPerent algorithm.

There is an implicit assumption, in all these methods, that the underlying network
is truly undirected. Of course, this is not generally true. In the WWW it is easy to
know what pages an explored web page links to, but it is impossible to know how many
other pages may link to the explored page. These back links are simply disregarded
by the local methods, and it seems a diZcult problem to overcome, especially when
applying a quasi-local method (with back links continually being discovered as more
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Figure 2.17: The LWP algorithm used on the rewired scale-free networks. LWP
performs very well for large numbers of rewirings, but becomes progressively worse
as less edges are moved. Both extremes, hubs and leaves, decrease overall accuracy.

communities are found). One possible way to overcome this is to maintain , after
agglomeration, then go through all the found communities, remove nodes with, say,

> 0, then re-agglomerate them into the community with the smallest outwardness.
Another idea, suggested in [44] is to use a global index, such as a search engine,
to list all the back links. It seems that in a diPerent context, such as a partially
explored social network, one has no choice but to ignore these back links until they
are discovered, then adjust the results accordingly.

2.3.6 Conclusions

Much recent work has been applied to the problem of pnding communities in complex
networks. We have focused on the idea of pnding a particular community inside of a
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network without relying on global knowledge of the entire network's structure, knowl-
edge that is unavailable in a variety of areas. We have introduced a new and very
simple local method, with a running time of O(jCjlogjCj). Several types of stop-
ping criteria have been introduced, which can be used in conjunction with diPerent
agglomeration schemes.

Using Normalized Mutual Information, we have introduced a simple and unam-
biguous means of quantifying the accuracy of a local algorithm when applied to a
synthetic network with pre-depned community structure. Synthetic networks with
generalized degree distributions have been used to allow one to test the impact of the
starting node's degree, something not possible with existing ad hoc networks.

These techniques have been applied to compare the accuracy of a variety of ag-
glomeration schemes and stopping criteria and we feel they will be of great use when
testing newly designed local algorithms. The fact that multiple stopping criteria
and algorithms can perform with comparable accuracy shows that the community
problem is ill-posed to the point of requiring heuristic methods, and thus it is worth
using an evaluation scheme to compare and contrast alternative methods. Developing
improved stopping criteria should be a primary goal for future work in this area.

2.4 Conclusions and Open Questions

The problem of identifying communities in complex networks has yielded a diverse
collection of possible solutions. From the original spectral bisection methods, through
to the divisive and agglomerative techniques, all have provided unique and interest-
ing solutions to this diZcult problem. The emergence of modularity as a means of
quantifying the guality of a discovered partition has allowed for rigorous comparison
and evaluation of community detection algorithms.

Here we presented a unique method for detecting communities based on how
shells are more interconnected within communities than between them. This also
allows for a community to be detected within a network without requiring knowledge
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of the entire network, a rare and extremely useful property. A global application
of this method was devised as well as a means of identifying the hierarchy of sub-
communities and future work will consist of modulating between these two extremes,
to pbnd a good balance between eZciency and accuracy.

Much work has been done following the introduction of our original shell-based
local algorithm. In response to this, we have created a new benchmarking procedure
which allows researchers to create new algorithms and determine quantitatively how
they perform. This method used artipcial benchmark networks and a partition simi-
larity measure built around normalized mutual information and showed that stopping
criteria are more important for accuracy than agglomeration schemes. Several stop-
ping criteria were studied, with mixed results. Improvements for these criteria should
become the primary focus of research on such local methods. Other problems inher-
ent to local methods, including back links, were discussed, as were new applications
for pnding multiple communities (quasi-local methods). There remains many fruitful
areas of research worth exploring with this problem.



Chapter 3

Shells

The concept of shells (Ch. 1) and the decomposition of graphs into shells, also known
as the inter-vertex distance distribution or shell tomography, has been an important,
underlying concept in the majority of the work presented here. The local community
detection scheme, presented in Sec. 2.2, used the variation in shell interconnectivity
due to the underlying community structure to partition a network without resorting
to computationally expensive global statistics or centrality measures. A method to
enumerate cycles based on shells (and to relate cycles with community-like structure)
is also presented in App. B. Here we delve into the topic directly, deriving new statis-
tics for quantifying networks, estimating said statistics based on assuming an uncor-
related degree distribution, and pnally presenting a new way to measure bipartivity,
a means of quantifying how \close" a network is to being bipartite (two-colorable).
The study of shells will also inform the primary results of Ch. 4.

3.1 Perimetric Edges’

We propose that a useful measure of a network is the distribution of what we refer to as
Perimetric Edges.” Edge ¢, is perimetric to a starting node /when d(/;j) = d(i; k),

"Work conducted while visiting Los Alamos National Laboratory, T-7, summer 2005.
2Properly, the decomposition of edges into perimetric and non-perimetric groups.
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where d(x;y) represents the length (number of edges) of the shortest path between
nodes x and y in G. Perimetric edges always lie within shells.

A perimetric edge inside the d-th shell always participates in at least one odd
cycle. One would like to use these perimetric edges to estimate the number of cycles
in a network® but, while every odd cycle does contain a perimetric edge, cycles can
easily share these edges, so the relationship is not clear in general.

Using perimetric edges, we depne the following statistic:

the number of edges that are peri-
Wee: (1) metric to node /. (311)

In addition, we can depne a similar statistic for edges:

the number of nodes that edge ¢;;

Eper(ery) is perimetric to. (3.1.2)

It seems reasonable to expect that perimetric edges are related to network prop-
erties such as feedback and redundancy, due to the relationship with cycles, and to
have networks manifest diPerent properties when the distributions of perimetric to
non-perimetric edges are diPerent. For example, trees will have no perimetric edges,
while large random networks (with uncorrelated degree distributions) should have a
very narrow distribution of Npe (/) and Epe(6;;). Meanwhile, these statistics are very
inexpensive to compute, compared to the full distribution of cycles [62].

Intuitively, we expect that edges with a very large Epe, will be less central, since
such edges will participate in a lower number of shortest paths. In other words,
Erer and edge betweenness should be anti-correlated. Figure 3.1 explores this, and
conprms such intuition, but the relationship is quite weak. Qutliers in these plots
may be due to regions of peculiar odd-cycle overlap in the network. This remains an
open question, however.

3The importance of the distribution of cycles is discussed more fully in App. B.
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Figure 3.1: Scatter plot of edge perimetricity (horizontal) versus edge betweenness
(vertical). Each data point represents an edge in the graph. (a) An Erdds-Renyi
graph with 300 nodes and p = 0.03. (b) A Barabasi-Albert graph with 300 nodes and
m = 3. While there is some correlation between the two quantities, it is very weak,
especially in (a).

3.2 Shell Distributions

We wish to compute the expected number of edges that are perimetric to a starting
node of degree ks in a random network with a given (uncorrelated) degree distribution
P(k). Much work has been done studying the shell decompositions (sometimes re-
ferred to as fomography) of random networks [63, 64, 65, 66]. We proceed as in [65, 66]
with identical notation but several small alterations to improve the results for small
networks or small starting node degree. Essentially, we will \build" the network by
wiring shells together, one at a time, from a starting node. By keeping track of
the distributions of edges within and between shells, we can calculate quantities of
interest such as the node perimetricity.

We consider a graph with A/ nodes of degree given by some distribution P(k) with
k 2[m; K]. At this point, the graph consists of N/ detached nodes with node / having
k; open connections (or stubs), like the conpguration model. We choose a starting
vertex with ks open connections, and we wire those connections to ks other nodes,
thus generating the prst shell. (See Fig. 3.2 for a helpful illustration of this section's
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All the nodes in shell 1 have one link taken, while the rest of their connections
are open. Then, when wiring shell 1 to the remaining open connections, one can wire
links to nodes outside of the shell or to other nodes within the shell. Wiring a link
back to the same shell generates a perimetric edge. After all the open connections
in shell 1 are wired, shell 2 is generated and the process repeats until all connections
are closed.

Let us derive the probability that a node with degree k is outside of the prst /
shells, denoted by P,(k). First, the number of open connections outside of shell /is

X
To= N kPik): (3.2.1)
k

The probability that an open connection in shell /links to a free node with degree k is
W, where ,is the number of open connections exiting shell /and hk;i 2 =N,
is the average out-degree of nodes in shell /, with N, as the number of nodes in shell
[. The  hk;i term tries to account for self-loops.

Now, we can get the conditional probability for a node with degree k to be outside
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the prst /+ 1 shells, given it is outside of the prst /shells. This is the probability that

the node does not connect to any of the , open connections exiting shell /.

P Yy /
P(k;1+1j) = 1 m : (3.2.2)

The probability that a node with degree k will be outside shell / + 1 is P;.1(k) =
P(k; I+ 1jl)P,(k). Finally:
Iyt P Y
P/(k) = Py(k) . 1 T ki : (3.2.3)
We can also use P, to count the number of nodes in a shell:
X X
Ny=N P 1(k) N  Plk): (3.2.4)
K k
Now, let's look at the behavior of , and S, where S;,1 is the number of links
entering the / + 1 shell. This equals the number of connections exiting shell / minus
twice the number of perimetric edges in shell / (since each perimetric edge uses two
outgoing connections).
For any given open connection in shell /, there are , + T, hk;i possible sites to
connect to. Of those sites, ;, #hk;ilead to a perimetric edge. Thus, the (approximate)
probability for a perimetric edge within shell /is

hk;i
Pi(per) = / /

m.’ (3.2.5)

Since there are ;=2 possible perimetric edges in shell /, then the number of perimetric
edges in shell /, denoted by t, is

_ / / /Ik// i

Any open connections in shell / that do not form perimetric edges must then
connect to shell / + 1. Therefore:

Sip1= 4 1 L
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The number of connections emerging from all nodes in shell /+1is 7, 7T,.4. This
is the number of connections from shell / to shell /+ 1, which is S,.+, plus the number
of connections leaving shell /+ 1, which is ,,1. Rearranging this gives

11 = T Theq ;1 L

T Ty (3.2.8)

Now, Egs. (3.2.1), (3.2.3), and (3.2.8) form a recursive system that can be iterated
numerically with initial conditions o = ks and Py(k) 2 P(k), kK 2 [m, K], with P(k),
m, K, and N known. Equations (3.2.4) and (3.2.6) let us compute quantities of
interest to our statistics such as the number of nodes per shell and the number of
edges perimetric to a starting node / with degree Ks: Npe(7) 5t

Figure 3.3 compares these results with simulations. Small networks have been
purposefully simulated to illustrate accuracy despite pnite size ePects.* Both of these
networks are uncorrelated, however, and Fig. 3.4 illustrates how the theory breaks
down when this assumption is no longer true.

3.3 Bipartivity

A network is bipartite (two-colorable) if it can be successfully partitioned (colored)
into two groups such that no nodes of the same group are neighbors. Bipartite
networks have many applications in areas including social networks [67, 68]. Recently,
interest has emerged in bipartivity, a quantity measuring how c/ose to bipartite a
network is [69, 70]. This previous work has introduced bipartivity measures based
on frustrated edges of the Ising model [69] or by using spectral measures of the total
number of cycles in a graph versus even-cycles [70].

A relationship between bipartivity and perimetric edges is expected, since a net-
work is bipartite when no odd-cycles are present [71]. Motivated by this, and by

“For the theoretical result, we have chosen the approximate degree distribution P(k) 3 ng=N,
taken from a corresponding simulated network.
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Figure 3.3: The number of nodes per shell, from Eq. 3.2.4 ( ), compared to simu-
lations averaged over 50 runs (). Shown is an Erdés-Renyi network of 2000 nodes
with p = 0.005 (a) and a Molloy-Reed (conpguration model) network of 5000 nodes
with P(k) % k 23 (b). For ER graphs, the number of perimetric edges per shell is
simply N,(N, 1)p=2. A degree-one starting node was chosen for both theory and
simulation.

previous measures of bipartivity, we introduce the following related measures:

min (N
Dmax 1 —EW Per),_ (3.3.1)
mean (N
brmean 1 —ﬂ(ﬂ Per),, (3.3.2)
) maX(NPer).
bin -~ 1 — (3.3.3)

with Npe (/) given by Eq. (3.1.1). For a bipartite network, no odd-cycles are present
and Npe (/) = 0 for all /. Meanwhile, Npe (/) must grow as odd-cycles are introduced.
Therefore, b = 1 for bipartite networks and decreases as more edges in the network
violate \two-colorability". We expect the diPerences between bmin, Omax, and bmean t0
be minimal, since the distribution of Npe (/) should be sharply-peaked, especially for
larger networks.” See Table 3.1 for the bipartivity measures of various networks, for
b depned using the min, the mean, and the max of Npe,.

SThis is usually true, but exceptions are possible (see Table 3.1, specipcally the airline network).
If one consistently uses min, mean, or max when comparing networks, this should not pose a problem,
since b is a relative quantity.
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Figure 3.4: The number of nodes per shell, from Eq. 3.2.4 ( ), compared to simu-
lations averaged over 100 runs (). Shown is a Barabasi-Albert network of 5 0 10°
nodes with m = 2. This network, unlike those shown in Fig. 3.3, has correlations, and
this is evident in the lack of alignment between the two curves. These correlations
lower the diameter, pushing the curve both leftward and upward, compared to the
uncorrelated case.

To pnd a lower bound on b, let us consider the complete graph of A/ nodes. This
graph has M = N(N 1)=2 edges. All but /¥ 1 of these edges are perimetric to
any node, giving b =1 (N 2)=N. It follows that /Ji;n1 b =0, therefore0 < b 1
for any pnite network. In practice, b < 1=2 or even 2=3 can be interpreted as being
far from bipartite.

3.4 Conclusions and Open Problems

We have presented a recursive analysis of the shell distributions of uncorrelated net-
works, introduced a new set of statistics to study large networks eZciently, and ap-
plied these statistics to generate a computationally eZcient calculation of bipartivity.
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Table 3.1: Bipartivity for various networks. A network becomes \more bipartite" as
b ! 1. In practice, the diPerence between min, mean, and max can be appreciable
(although this is rare), but the diPerences decrease as & / 1.

Network N M | bnax  DOmean  Dmin
Karate [32] 34 78 | 0.731 0.664 0.564
Prison [72] 67 142 |1 0.739 0.659 0.585
CS PhD?[73] 1025 1043 | 0.994 0.993 0.988
NCAA 2005° [74, 75] | 117 616 | 0.576 0.465 0.386
Grassland [76] 88 137 |1 0.839 0.795 0.730
Scot. Corps.c [73, 77] | 228 358 | 1.000 1.000 1.000
Les Miserables [23] 77 255 | 0.557 0.482 0.392
USAIr97 [73, 78] 332 2126 | 0.602 0.424 0.276
Rogets [73, 79] 994 3640 | 0.605 0.580 0.555
ODLIS [73, 80] 2898 16376 | 0.561 0.494 0.410

4This network is composed of PhD advisors and their students, and is very nearly a tree (cycles

are introduced by students with multiple advisors).
bFrom published schedule at www.ncaa.org.
¢This network is composed of corporations and their executives as nodes, and is bipartite.

Further study of the fundamental impact of the distributions of perimetric versus
non-perimetric edges, including their relationship to the distribution of cycles, is im-
portant. One can also improve our current bipartivity measures by using a random
sampling of starting nodes, and then study how the \partial" hconverges to the actual
value. Additionally, larger simulations such as those shown in Fig. 3.3 can be used to
judge the accuracy of Eqgs. (3.2.1){(3.2.8), especially when computing t,.



Chapter 4
Network Portraits

Building upon our earlier work with shell distributions, we introduce a new tool for
analyzing complex networks. This tool, a network portrait, will be shown to have
several unique properties, making it highly useful for both quantitative and qualitative
analysis.

4.1 Introduction’

A diZcult problem when studying networks is that of comparison and identipcation.
Given two networks, how similar are they? Are they identical or, more appropriately,
do they arise from the same generating mechanism? Given a real-world network, such
as a protein-protein interaction network or an electrical network, how can one deter-
mine which random network model most accurately captures the relevant structure?

At the most rigorous level, this is the Graph Isomorphism problem: G = (V; E)
is isomorphic to G’ = (V!; EY) if there is a bijection : V' / V?’such that e(x;y) 2 E
iPe( (x); (y)) 2 E"[28]. Like many diZcult problems, it is often easier to disprove
isomorphism: if N & N’ then G and G’ can never be isomorphic. In addition,
discrepancies between the degree distributions would also disprove isomorphism. Of
course, these comparisons do not capture all of a graph's structure. In addition,

"Published in [81].

af
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Figure 4.1: Planar embeddings and adjacency matrices for a small network. It is
diZcult to tell visually that these represent the same network, even at such a small
size.

for very large random networks, which are of the most interest, the probability of
two networks randomly chosen out of the ensemble of all possible networks being
isomorphic is negligible. Graph Isomorphism is, in a sense, too strict of a result: we
wish to determine if networks are statistically \similar," not identical.

Ideally, one would like to have a data structure that exactly and uniquely encodes
the network. Existing structures such as adjacency matrices and edge- or adjacency-
lists fail to do this: permutations of rows and columns in the adjacency matrix allow
for isomorphic graphs to have diPerent adjacency matrices (though such operations
preserve spectra), Meanwhile, edge-lists and other structures are also vulnerable to
relabeling, and pnding the mapping between two such lists is the entirety of the graph
isomorphism problem. See Fig 4.1.

To answer these questions, we propose a new matrix structure B that is truly
independent of vertex labeling; it is isomorph-invariant:

the number of starting nodes with
Bk K nodes in shell /. (41.1)

This matrix captures a great deal of structural information about the network, start-
ing with the degree distribution in the prst row. Second-, third-neighbors, and so
forth, are captured in subsequent rows. In addition, since every node is counted once
as a starting node, B is independent of node labeling and permutations: Given a
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network @, there is only one B that can be constructed. We term B a network
portrait due to this invariance, in that it provides a truly unique snapshot of the
network and (it will be shown) captures a variety of information about important net-
work properties, similar to how a portrait or photograph contains much information
about its subject.

Note that there is some ambiguity regarding how certain quantities are depned.
Notably, this matrix has a row 0 and column 0. The zeroth row gives the distribution
of nodes in the zeroth shell, which we take to identically be 1 for all nodes: By =
N 8Z(1; k). In addition, the zeroth column contains the distribution of empty shells,
i.e., how many starting nodes have zero nodes in a shell. The distribution of By
increases with /, since a starting node with zero nodes in shell / can not have nodes
in shells greater than /. Additionally, we count any starting nodes with zero nodes in
shell / as also having zero nodes in all shells /. / < P < d, where d is the diameter of
the graph. This normalizes the rows of B, , B« = N for all /, and may have other
benepts.

4.2 Examples and Applications

We begin by introducing B for a variety of networks. We begin with a very large real-
world network, shown in Figs. Figure 4.2{4.3. (All plots of B are with a logarithmic
color scale.) Figure 4.4 shows the portraits of several ER graphs, including how the
ensemble average appears and how percolation is readily visible.

Figures 4.5 and 4.6 show B for a variety of periodic and non-periodic lattices.
These illustrate the presence of dimensionality with B, the ability to detect defects
and imperfections in otherwise homogeneous graphs, and the large-scale impact of
boundary conditions on such pnite lattices. With periodic boundaries, every node is
indistinguishable and this is shown by the single non-zero value in each row of Fig.
4.5(a). The sharp lines illustrate that this representation encodes the dimensionality
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of the graph.? The non-periodic lattice in 4.5(b) shows a symmetric hierarchy of node
types, corresponding to starting nodes' relations to the boundary, yet the dimension-
ality is still visible. In both, the maximum non-zero value reaches a turning point at
a particular row and then decreases; this illustrates pnite size ePects.

When studying scale-free networks, much focus is placed on the scale-free exponent
%.  As shown in Fig. 4.7 however, scale-free networks with the same /% can have
radically diPerent properties, and this must be considered when comparing diPerent
networks.

Figures 4.9, 4.10, and 4.11 show a variety of real-world networks, including an elec-
tric power grid [4.10(a)], the network of airlines inside the United States [4.10(b)], a
snapshot of part of the internet backbone [4.9(b)], a collaboration network [4.9(a)],
and a variety of cellular metabolic networks [4.10(c-f), 4.11(a)]. Note the distinc-
tive similarity between the various metabolic networks, which is not present in some
other networks, such as the power grid. Some of these networks are extremely large;
visualizing such networks was previously impossible. Figure 4.8 also shows several
sequential illustrations of the emergence of small-world; animations of such quantities
are also possible.

4.3 Network Properties

Some network properties are easily calculate from a given B. For example, the number
of nodesis N = Byy = , Bjx, [ 210, D], for an undirected graph with diameter
D. Similarly, since the prst row of B captures the degree distribution, the number of
edges in Gis M =} P y Bik Also, P(k) = Biy=N.

Certain mean values are also contained within B. Since the prst row contains
P(k), we can easily get hki = 1W PkkBH(. We can also use B to calculate the

2Indeed, the non-zero values in B form a vertical line (constant slope) for the periodic one-
dimensional lattice (the circle graph) and grow quadratically for the three-dimensional periodic
lattice.
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Figure 4.2: A B-Matrix (larger values are darker (brighter), logorithmic color scale,
row and column 0 omitted). Note the degree distribution, slightly visible in the prst
row. as well as the turning point about row 4, representing pnite-size ePects. Shown
is the network of the ten percent most connected actors taken from the movie actor
collaboration network stored in the Internet Movie Database (www. imdb.com) [82].
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Figure 4.3: The B-matrix from Fig. 4.2 but with a logarithmic horizontal axis. The
degree distribution in row 1 is now plainly visible.
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average shortest path length:

" all-pairs shortest 1 X X

path length TNV 1) / / ) kB, (4.3.1)

with the denominator being N2 if including paths of length 0. Meanwhile, the mean
eccentricity can be calculated using the zeroth column:

X
/ B/;o B/ 10 1: (432)
/=1

heccentricity / = —

The diameter is also simple to calculate: it's just the number of rows of B minus
1. Or, since every row sums up to A/ (when counting empty shells as speciped), the



N

N

20

40¢
60

80r

Figure 4.4: Erdds-Renyi (ER) graphs [13].
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(a) one graph with &/ = 1000 nodes and

p = 0.008. (b) The average of 100 graphs from (a). Visualizing percolation: N/ = 104
(c) below percolation, p = (1:AN) '; (d) at percolation, p= N .
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Figure 4.5: Regular 40 0 40 lattices with defects. (a) A periodic and (b) non-periodic
lattice; (c) a lattice with skew-periodic boundaries; and (d) a periodic lattice with a
random 5 percent of all nodes missing. Observe the strong linear slope, indicating
the underlying two-dimensional lattice, as well as the narrowness of the distributions
in (a), (c), and (d), due to the regularity of the periodic lattice.
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Figure 4.6: Comparison of B for periodic and non-periodic three-dimensional lattices
of 15 0 15 0 15 nodes. The quadratic growth, present in both matrices, indicates the
three dimensions of the underlying networks.
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diameter is also ;XX

By 1 (4.3.3)

/ k
Comparing this with the number of rows in B is an easy way to determine whether

a graph is directed solely from B, since Eq. (4.3.3) holds only for undirected graphs.
Unfortunately, many quantities that are not directly related to distance currently
elude us. For example, how to calculate or even estimate clustering or assortativity
remains an open question, since correlations between nodes are mostly lost when
creating B. Yet some of these ePects may be indirectly present in B: see Fig. 4.11.
In regards to the graph isomorphism problem, B provides a strong way to disprove
isomorphism, which appears to be as good or better than known results [86, 87, 88,
89, 90]. A counterexample exists, however, showing that two non-isomorphic graphs
can generate the same B. These graphs are the dodecahedron graph [91] and the
Desargues graph [92]. See Fig. 4.12 for several planar embeddings of both graphs.
Both are cubic distance-regular graphs with &/ = 20 [93] (see also Fig. 4.13) and will
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Figure 4.7: Scale-Free models. The average of 100 instances of the (undirected)
Krapivsky-Redner (r = 1=2) [83]; Barabasi-Albert (BA) (m = 2) [4]; and Molloy-
Reed (MR) (drawn from P(k) % k 3) [18] networks; as well as the (1,3)-Flower at
generation 6 [84]; (a){(d), respectively. All have N = 2732, 2 3, but hk/ varies.
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Figure 4.8: Sequential emergence of small-world. (af{d) B for a 40 0 40 two-
dimensional periodic lattice with 1 random pair of edges permuted, then 4, 5, and 10
more, respectively. The change is drastic when rewiring just 40 out of 3200 edges.
The hard edge of slope 4 remains in the prst shells; it is still possible to identify that
this graph is (locally) very lattice-like. (e{h) Newman-Watts-Strogatz graphs [85]
with // = 1000; & = 4; and p = 1=20,1=10,1=5, and 2=5, respectively.
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Figure 4.9: Two real-world networks: (a) collaboration network of complex networks
researchers [37], and (b) a snapshot of the internet's autonomous systems, taken by

Mark Newman on 22 July 2006.



68

- N ' l/;/} | //Mw WH m me'V' T
i : (b) m
x iy (IWM o o E B
15 (d) : (e) . m

Figure 4.10: Several real world networks. (a) The western states power grid (un-
weighted) [10], (b) US airlines network [73, 78], and (c){(f) directed metabolic net-
works for H. in uenzae, R. capsulatus, M. jannaschii, and C. elegens [7], respectively.
The metabolic networks appear similar to one another yet unlike the power grid and
airlines networks.

have exactly one nonzero entry per row in B.2

4.4 Network Similarity Testing

To try and tell whether two networks are \alike," or if they come from the same un-
derlying source or generating mechanism,* we introduce the following metric® between
two networks, based on a weighted row-wise comparison of their B matrices.

3 In principle, this may be exploited to search for undiscovered distance-regular graphs by taking
a random k-regular graph and rewiring edges along some scheme to minimize the number of nonzero
elements per row while respecting node degree. This would likely be cost-prohibitive in practice.

4\We admit that this depnition is not rigorous.

5|t remains an open question whether this is a true topological metric, semi-metric, or neither.
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Figure 4.11: (a) The original metabolic network of M. genitalium [7] with assortativity
A = 0174216 and (b) with A = 0.000757 after permuting random edge pairs while
preserving the degree distribution. The pne-scale structure in the upper-most shells
of (a) is no longer present in (b).

Given two networks G and G’, with corresponding matrices B and B, we propose
that B and B’encode a great deal of information regarding the generating mechanisms
of each network; we expect that B and B’ will be similar if G and G’ were created
using the same generating mechanism, since B captures such a large hierarchy of local
and non-local structure. We exploit this in the following way.

The empirical cumulative distribution function (cdf) S, for n observations x; is

1 X3d t
== Xi X (4.4.1)

i=1

where [x; x] = 1if x;, x and 0 otherwise. This is a step-function that increases

Sn(X)

by 1=n at the position of each observation and is constant otherwise. The largest
diPerence between two such distributions is the fest statistic T for the two-sample
Kolmogorov-Smirnov (KS) test:

T(X1, Xz) SUXDES(X; X1)  S(x, Xz)Ei (4.4.2)

where S(X) denotes the empirical cdf for distribution X with the subscript indicating
the size of X dropped.
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Figure 4.12: Four possible embeddings for both the Desargues graph (a) and the
Dodecahedral graph (b) [91, 92]. Both are cubic distance-regular graphs with &/ = 20,
M = 30, and identical B matrices, from Eq. (4.1.1). The third embedding from left
best illustrates the subtle diPerences between the two.

The two-sample KS test is a useful nonparametric method for comparing two
sample sets, due to its sensitivity to changes in both the shape and location of the
respective empirical cdfs and the fact that it makes no assumptions about the data's
distribution [94, 95]. Motivated by this, we introduce a row-wise statistic K, between
corresponding pairs of rows /.

K/(B; B = mgxﬁc/,-k c,”,.kﬁ; (4.4.3)
where C is the matrix of cumulative distributions of B:
X X
C/,-k = B/}-ka = B/;k.' (4.4.4)
Kk k

Thus every row in C is the cdf of the corresponding row's pdf in B.
It has been shown that the lower shells have a greater impact on network properties
such as the average path length [96, 64]. This can be considered by weighting shells.
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Figure 4.13: A connected graph G is distance-regular if it is reqular of degree &, and
if for any two nodes u; v 2 G at distance / = d(u, v), there are precisely ¢; neighbors
of vin G, 1(u) and b; neighbors of vin G,,1(u) [93]. Distance-regular graphs possess
large amounts of elegant, higher-order symmetries. For example, all of the platonic
solids, when represented as graphs, are distance-regular.

One set of weights A, based on shell \mass," could be

X X
b, = B+ ng (4.4.5)
k721 k2

Finally, we choose a scalar \distance" D, generated by:
|
X X
D(G,G" D(B;B = bPK, = P (4.4.6)
/ /

See Fig. 4.14 for examples comparing two Erdds-Renyi graphs against each other as
well as a Barabasi-Albert against a Molloy-Reed network.

An open question regarding D is whether it can be shown to be a true toplog-
ical metric, semi-metric, or not. The values shown in Fig. 4.14 satisfy the triangle
inequality as well as D(x;y) 720 and D(x;y) = D(y,x). The last two are both due
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¥ ER1 vs. ER2
08 | +BA ERT ER2  BA MR
08 ER10 0.01223 0.65409 0.61945
o4 | ER2 | 0.01223 0 0.65414 0.61935
02 | BA | 0.65409 0.65414 0 0.23157
0 - . MR | 0.61945 061935 0.23157 0
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Row /

Figure 4.14: (left) Row-wise statistic A, Shown are two Erdds-Renyi graphs with
N = 10* and p = 0.002; and a Barabasi-Albert (diameter 10) versus a Molloy-Reed
network (drawn from P(k) % k 3, diameter 14), both with / = 5 0 10*. Both the
Barabasi-Albert and Molloy-Reed networks have the same degree distribution, so the
brst few rows are fairly close to one another. Yet diPerences in, e.g., assortativity,
soon become evident: even networks with identical degree distributions may not be
similar. (right) Table containing the values of D, given by Eq. 4.4.6, for the four

networks shown.

to the absolute value present in K. Discernibility® in B(B; B’) appears to hold as
well, but the dodecahedral and Desargues graphs disprove discernibility in B (G, G’),
if only because their B-matrices are indiscernable. If metric properties of D can be
proven, then this would allow for rigorous comparisons between abstract processes

such as graph convergence.’

4.5 Conclusions and Open Problems

Equation (4.1.1) encompasses directed graphs and may be generalized to weighted
graphs by extending the notion of shells (with shortest paths found by Dijkstra's algo-

depning the shell boundaries. One may also generalize B to edges by depning the

D (x;y) =0iP x = y.

"For example, comparing a deterministic growth algorithm such as replacing every edge with a
2-path once per time step, versus randomly replacing edges with 2-paths. Can the random graph
approach the deterministic graph, as time increases? Despite continued growth in both, D might

allow the study of such topological convergence.
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distance from a node v; to an edge (v;, vx) as the mean of distances d(v;, v;) and
d(vi; vk)2 This \edges matrix" has half-integer rows with row 1=2 encoding the de-
gree distribution, By« = NP(k), and so forth. Both these generalizations will be
investigated.

The non-isomorphic dodecahedral and Desargues graphs show that B does not
uniquely encode a network but, in practice, the probability of two large non-isomorphic
graphs chosen from a statistically-large ensemble having identical B-matrices is van-
ishingly small. We propose that B is a \very good" answer to graph isomorphism.
It is also worth noting that the Desargues and dodecahedral graphs have diPerent
edge matrices: we conjecture that graphs are uniquely identiped with both matrices.
In fact, every possible graph of seven nodes or less is uniquely depned by both. In
general, this remains an open question, however, and will be investigated.

In our opinion, the intuition one gains simply by /ooking at these portraits is of
great value. Classipcation and comparison are immediate (Fig. 4.10). Dimensionality
and regularity are encoded in the overall slope and row variances (Figures 4.5{4.6),
while small-world behavior is displayed in the \aspect ratio" (Fig. 4.8). Even correla-
tion ePects, which one should not expect to be present, may be discernable based on
the pne scale structure of the higher rows (Fig. 4.11). Properties such as assortativity
were previously impossible to visualize for even moderately sized networks.

The mathematical properties of D need to be further explored, and new applica-
tions can always be developed. With such a distance metric in hand, it is now possible
to apply data clustering methods such as K-means or QT-clustering [98] to families
of graphs. For example, generating evolutionary (phylogenetic) trees [99, 100] from a
collection of metabolic networks. These trees indicate the evolutionary relationships
of various organisms and are of great interest to biologists studying the taxonomy
and inter-connectedness of Life.

Many physical processes, such as dynamical systems, are captured in stochastic or
transition matrices which can be represented as weighted networks, so it is imperative

8 B,.« is now the number of nodes with k edges at distance /.
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that we apply our B-matrices to weighted networks. How to best choose the set of
shell-depning weights is the most important open question. These parameters control
not only the number of shells present but also their width distribution: should the
weights be linearly spaced or logarithmically, for example. Perhaps the number of
shells chosen should be based on a binning \rule of thumb" such as the square root
of the number of nodes, or perhaps the number of shells should be chosen to equal
the diameter of the un-weighted projection of the network?



Chapter 5
Social Networks

One of the most prominent applications of Complex Networks is in the area of mod-
eling human society. Human populations are geographically distributed in highly
non-regular, even fractal ways [101, 102]; the distribution of city size, wealth, and
other quantities follows a well known power law: Zipf's law [103]; and the number
of acquaintances people tend to have is also far from uniform [4, 104, 105]. Mecha-
nisms governing the emergence of such structure within populations continue to be
analyzed. Understanding population interactions and dynamics has specipc applica-
tions to game theory; epidemiology, including vaccination and disease containment;
the spread of information or opinions such as political aZliations; and improving
eZciency when allocating and disbursing various resources.

We focus our ePorts on two areas: our newly-proposed Patron-Artwork model, and
the study of Kleinberg navigation in the presence of anisotropic underlying lattices.

5.1 The Patron-Artwork Model

The emergence of fame appears to be endemic to human societies, yet it is not always
fully understood [106, 107, 108, 109]. Simple models, including the Voter [110] and
Sznajd [111] model have been introduced to study how opinions and information

73
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Figure 5.1: Why are these men so famous? Why is Einstein so much more famous
than Newton or Euler, besides being so \photogenic"?

Figure 5.2: Schematic of the Patron-
g Artwork model. Node /is chosen to make
a new recommendation. With probabil-
ity r, /i listens to neighbor j and recom-
mends artwork a. With probability 1 r,
/i instead recommends artwork b, chosen
uniformly at random. This process is
7] p then repeated many times for multiple
nodes and the distribution of recommen-
dations per artwork is measured.

ow through a model society, represented as a network. We introduce the Patron-
Artwork model as a means to study fame directly. This model consists of a dynamics
depned upon a network (of patrons) coupled with and creating a fame distribution
on an external population (of artwork).
The model is as follows. Begin with an underlying social network G and a line of
A artworks. At each time step, a randomly chosen node / 2 G is allowed to make a
new artwork recommendation. With probability r, / listens to a random neighbor j
and recommends an artwork that j has previously recommended (chosen randomly
from j's history of recommendations). With probability 1  r, node / instead listens
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to no one, and recommends an artwork chosen uniformly at random. The fame of an
artwork is taken to be the number of recommendations it has received. See Fig. 5.2.

The beauty of this one-parameter model’ is that it captures important character-
istics despite it's simplicity. Every node is \equal" in the sense that they all get the
same votes, but authority pgures (hubs in G) have votes that are more important,
since nodes are more likely to recommend artwork that the hubs have recommended,
meaning artwork lucky enough to be chosen by the hubs garners fame more rapidly.
In general, the more fame an artwork has, the more it can gain additional fame, so a
\rich-get-richer" mechanism, which is quite popular [112, 113], is naturally built into
the model.

5.1.1 The complete graph?

We begin our analysis with the simplest type of G, the large complete graph.® Here
every node is a neighbor of every other node, so the probability of \redirecting" to a
particular artwork is entirely proportional to the total number of recommendations
that artwork already has (a pure rich-get-richer mechanism). This can be thought
of as a mean-peld approximation, such that the social network ceases to exist in the
model, and one can instead envision a large hand doling out packets of fame either
proportional to the artwork's current wealth (rich-get-richer process), or uniformly at
random (homogenous process), and r governs the relative strengths of these processes.

For the complete graph, we use two diPerent analytic approaches, as well as nu-
merical simulations, to study both a pnite and an inpnite number of artwork. For
the pnite case, at short times, we recover the Pareto law observed for an unbounded
number of agents. In later times, the (moving) distribution can be scaled to reveal
a phase transition with a Gaussian asymptotic form for r < % and a Pareto-like tail

TTwo parameters, if one considers the dependence on G.

2This special case of the Patron-Artwork model was published in [114].

3This analysis was prst presented in [114], but the Patron-Artwork model was not directly invoked.
The discussion instead focused on \wealth" and \agents," roughly analogous to fame and artwork
for this G.
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(on the positive side) and a novel stretched exponential decay (on the negative side)
for r > 1.

5.1.2 Thelimitof A / 1

For A / 1, artworks with positive fame form a set of measure zero for any pnite
time. Thus choosing an artwork uniformly at random is equivalent to the \birth"
of a new artwork / with fame &, = 1. We analyze this case with a master equation
approach, following the techniques and notation of [83]. The number of artworks with
fame k > 0 at time ¢, N(7), obeys the master equation:

d h i

Y r
E/Vk = (1 f)ij + —w (k 1)Nk 1 kN (511)

This limit is characterized by both growth and preferential attachment, hence we
expect a power-law distribution of fame.
Since one \fame unit" is disbursed per unit time,

X
KNy = t; (5.1.2)
k

setting the normalization termin (5.1.1). Meanwhile, at each time step a new artwork
appears with probability 1  r, therefore the total number of artworks with positive
fame is M(f) = (1 r)t. The mean fame per artwork is then

hki = (5.1.3)

1 r"

The linear growth in time of artworks and fame suggests a solution of the form
Ni(t) = ngt; (5.1.4)

where the n, are constant. Indeed, upon substituting this ansatz into (5.1.1) one
obtains a recurrence equation for the ny, independent of #, whose solution is

1 r Y e 1)

_1+rkﬂ=21+rk”'

ny (5.1.5)
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Figure 5.3: Simulations for the case A / 7, r = 1, 5, 3 (left to right). Each
simulation was run until £ =8 4 10°. Solid lines indicate % = 1 + 1=r.

The actual distribution of fame, P(k), is obtained directly from ny:
B nyt _ ng
P(k) = A (5.1.6)

The limiting behavior for large k is most easily analyzed by taking the logarithm

of (5.1.5), rendering the product into a more manageable sum. Expanding for large

k and approximating the sum by an integral we pnd a power-law tail:
P(k) % k *: Vz=1+1r: (5.1.7)
See Fig. 5.3 for simulations.
It is instructive to obtain this distribution in yet another way [14]. Instead of the
master equation we now write the rate equation for the average fame of artwork /.
d r )
E‘k’(t) = ?k,-(t). (5.1.8)
Because A / 7, the rate at which artwork / is selected by the homogeneous ran-

dom process is zero, while the rate of selection by the rich-get-richer mechanism is
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ki= P j ki, where P ; ki is simply the total fame, and equals #, see Eq. (5.1.2). Assum-
ing that artwork 7 got its prst unit of fame at time ¢; the initial condition for (5.1.8)
is ki(f;) = 1. Thus, )

ki(ti) = Tt ; (5.1.9)
is a monotonically decreasing function of #;. It follows that the probability that &; > k

is the same as the probability that ¢, <ZT, where k;(f; = T) = k. In other words,

(k) Pr(k; > k) = 7 P(KYdK = Pr(t; < T): (5.1.10)
k

But 7 = tk ', from (5.1.9), and since the probability that artwork / gets its prst
unit of fame (by the homogeneous random process) is uniform in time, Pr(t; < T) =
=t = k '=". We then have

d_i( (k) = lrk RS A (5.1.11)

i.e., a Pareto distribution with the same power-law tail as in (5.1.7). Note that this

P(k) =

distribution is properly normalized (taking k to be a continuous variable) and that
its prst moment agrees with (5.1.3).

The limitof r /0

When the number of artworks A is pnite, the N, obey the normalization condition

X Ne(t) = A, (5.1.12)
k=0
where now we include in the counting artwork with zero fame (k = 0), and the
distribution of fame is P(k; f) = Ni(t)=A. The mean fame per artwork is no longer
constant but increases linearly with time:
t

ki = (5.1.13)

Consider the limit of r / 0, where fame is disbursed only by the homogeneous random
process. The corresponding master equation is

d 1
T = Ny Ny (5.1.14)
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with initial and boundary conditions N(0) = AZ and N 1(f) = 0. This is a simple
Poisson process, as conprmed by the solution of (5.1.14):

Ni(t) = Al =k|)kexp t=A . (5.1.15)

For t x A we apply the Sterling approximation to obtain the distribution

1 1 (k t=A)?
Pkil) = p—exp A . 5.1.16
(60 = b o0 A (5.1.16)

Thus, P(k; t) has a power-law tail in the limit A / 7 (5.1.2), but is Gaussian when
Ais pnite and r / 0.

5.1.3 Finite A and r

Our analysis proceeds along the same two approaches used for the A / 7 case. We
will show that each works for only certain values of r, and that one approach has
problems which are not well understood.

Master equation approach

In the general case of A < 7 and r > 0 the master equation for the process is

%/\/,@% Ne v Ny +—; (k DONyg+  kNg (5.1.17)
The system is then simultaneously pulled toward the two diPerent limiting behaviors
analyzed in Sec. 5.1.2. We will show that for r > } the rich-get-richer mechanism
dominates the process and the fame distribution develops a power-law tail (as for
the limit of A / 1), while for r < % the homogeneous random process dominates
and the fame distribution tends to a Gaussian (as for r / 0). Because A is pnite,
hki = t=A increases linearly with time. The width of the distribution of 4 around
the average grows like t°, where the scaling exponent p = r for r > % and P = % for
r < 3. At the transition point, r = 1, the width scales as Pt



82

To see these results, begin by approximating the discrete distribution N, (f) by its
continuous counterpart, P(k; t). Expanding to prst-order, Eq. (5.1.17) now reads
@ 1 re re

@P(k; 0 = — @P —t@((kP); (5.1.18)
and the method of characteristics yields the scaling solution
k =A
P(k;t)y =t Pf % ; b=r: (5.1.19)

This, however, cannot be true for all values of r, as it disagrees with the distri-
bution (5.1.16) found for r = 0, where the scaling exponent is p = % instead of
b = r = 0. The reason for this discrepancy is that, in this case, the Kramers-Moyal
expansion [115] of (5.1.17) must be carried out beyond the prst order. Indeed, upon
substituting the scaling form (5.1.19) into the master equation (with unspeciped P),
and carrying out the expansion to second-order, we pnd

(P NEPF(xX) + (P r)tszf”(x)+ﬁz‘f””(x) - 0; (5.1.20)

where prime denotes diPerentiation with respect to x = (k  t=A)=t", and we have
omitted terms proportional to #° (these are negligible compared to #”, as t / 7).
It P > % the term proportional to f can be neglected in the long-time limit, and
(5.1.20) is satisped provided that A = r. Thus, the scaling form (5.1.19) is valid only
for r > 1. For r < J, however, the second-order term in (5.1.20) may not be ignored.
The only non-trivial way to cancel out the time dependence is then to have 2?7 = t.
Thus, for r < J the scaling exponent is # = 1. At the transition point, r = 3, there
is no way to get rid of the time dependence in (5.1.20) with the scaling form (5.1.19).
Taking a cue from other phase transitions we guess a scaling form with logarithmic
dependence:
1 k t=A 1

PUH = ivgs! (Fmpr "7 2 (5.1.21)

On expanding the master equation with this scaling form the leading behavior in

time cancels out, provided that the scaling exponent is P = % The next largest
terms (smaller by a In ¢ factor), yield the equation

F(x) + xfU(x) + %f””(x) =0, r=g; (5.1.22)
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where now x = (k z‘=A)=pm. In all three cases (for r), expanding to third-
or higher-order yields additional subdominant terms. From the largest subdominant
term one can deduce how fast the system reaches the scaling regime: the transient
dies ob as t " U for r > 1, as t "2 for r < J, and as (In#) ' for r = }. Thus at
the transition point, r = % there occurs a critical slowing down as the system creeps
into the eventual scaling regime logarithmically slow.
For r < % we can use (5.1.20) to pnd 7(x) and show that the limiting form of the
fame distributiop is Gaussian: s
—A(123t2r) exp %A(1 oK =AY ;=A) ;
as t ! 1. The divergence of the width of this distribution as r / % is reconciled

P(k:t) ! ;o (5.1.29)

| —

r<

with the fact that at the limit r = % the scaling parameter picks up a (diverging)
logarithmic component. The scaling function at the transition is still Gaussian, as
can be deduced from (5.1.22):
r
A 1 (k t=A)? 1
CERTTY, exp EA—tInt ; r= 7" (5.1.24)
For r > % Eq. (5.1.20) yields a tautology and one is unable to determine f(x). It is

Y
P(k:t) ! :

possible, neverthelgss, to infer the limiting behavior:

x 1 1= x ! 1;
f(x) % h i r>

1 (5.1.25)
Zexp (1 N(Axp)™ x| 1;

| —

The limit for x / 7 follows from comparing the distribution P(k;t) for the case
of A ! 1 with f(x)ja,7 = f(kt ). For x /1, we observe that the density
of artworks with zero fame decays as Ny %2 exp[ (1 r)t=A], see Eq. (5.1.28), and
we compare to f(X)jo = f( ' ’=A), leading to the second line of (5.1.25). An
alternative derivation is presented next, using the rate equation approach.

Rate equation approach

The rate equation for the fame of artwork /, in the general case, is
) 1 r

ki) = +—;k,-(z‘),' (5.1.26)
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with initial condition k;(f;) = 1. The solution,

ki(t) = 1 (5.1.27)

ti
A
is monotonically decreasing in f,.

The probability (f) that an artwork still has zero fame at time ¢ satispes the
equation J 1

r

Ji (1) = 7 (1), (5.1.28)

so (f) =exp[ (1 r)t=A]. It follows that the probability that artwork / has been

introduced (gets its prst unit of fame) by time 7, given that it has been introduced

by time ¢, is

;
1 o T

(n=—°%r. (5.1.29)
e 7!
Note that this has the limit 7=t, as A / 7, that we used in Sec. 5.1.2.

Finally, P(k;f) = @ (T)=@k, where T(k) is the solution to k;(7) = k. Since
Eq. (5.1.27) cannot be inverted analytically (other than for special values of r), we ex-
press P in parametric form: P(k(T); 1) = @ (T)=@k = (dk;=dt;j;,-7) '@ (T)=@T,
and k(T) is obtained by putting #; = 7 in (5.1.27). The (scaled) fame distribution in
parametric form is then

_ [ (@ 0T g
(N=1 2 T5 HN=ggpare © (5.1.30)

where we have used the scaled expressions x = (kK t=A)=t" and f = t'P, taking the
limit of t / 7 at the end (the fact that the limit exists and is pnite conprms this
scaling).

It is now easy to verify the asymptotic behavior (5.1.25). The limit x / 7
corresponds to 7 / 0. In this limit, the second equation of (5.1.30) gives f % T+,
But since 7 % x =/, from the prst equation, we conclude that f % x ' '=/. The limit
x ! 1 corresponds to 7 / 7. In this limit, the second equation of (5.1.30) gives
f %expl (1 r)T=A], while from the prst equation x % (1=A)T' ". We conclude
that f %exp[ (1 r)(A"jxj)' =00 1.
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Figure 5.4: Scaling of the fame distribution in each of the two phases at r = } (a),
r =3 (b) and at the transition point r = 1 (c). The inset in (b) shows the right-hand
tail with logarithmic axes. Convergence to the scaling form is rapid for r = } and
r = 3 but logarithmically slow for r = } | note that in the latter case the data
(over exponentially increasing times) is slowly creeping toward the Gaussian limit of
(5.1.24) (solid line). The theoretical limit of (5.1.23) (solid line) pts the case of r = }
perfectly, but the prediction (5.1.30) from the rate equation approach (solid line) pts
the case of r = % only qualitatively (besides agreeing with the overall scaling).
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Clearly, the foregoing rate equation method does not apply to 0 r % for it
fails to reproduce the appropriate scaling forms in this range. Thus the rate equation
approach is viable only when the second-order in the Kramers-Moyal expansion of
the corresponding master equation may be neglected. In Fig. 5.4 we show numerical
simulations for r below, above, and at the transition point. The results conprm the
scaling forms found analytically above. For r < % convergence to the Gaussian pdf is
relatively fast, while the critical slowing down at the transition point, r = % prevents
us from attaining the analytical limit (5.1.24) in practice. For r > % convergence
to the scaling pdf is again quick, however the explicit form predicted by the rate
equation approach is correct only qualitatively: we ascribe this to the fact that the
second-order is implicitly missing in this approach.

5.1.4 Future work

The case of G as a large complete graph is not a realistic social network; it lacks
authority pgures, for example. A natural next choice for G is the complete bipartite
graph K., consisting of two groups of nodes, one of size 4 (call them hubs) and the
other of size L (call them leaves). Every hub node is connected to every leaf node,
and vice versa, while no hubs are connected to other hubs, and similarly for leaves.
The limiting case K., corresponds to the star graph. The star graph represents a
society where there is a single authority pgure that everyone listens to, and no besides
the authority pgure listens to anyone else.

As before, one recommendation is made per time step, so the total number of
recommendations is M = t. Depne the total number of recommendations made from
hubs at time tas My (f) and leaves as M, (f). Then M = My + M, = t. A hub (leaf)
is selected to make a new recommendation with probability H=(H + L) (L=(H + L)),
irrespective of r. Therefore

My(1) = t: (5.1.31)

M (1) = t: (5.1.32)
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Depne N(kq, ko) as the number of artworks with &y recommendations from hubs and
k> recommendations from Ieave”s. This quantity is governed by the master equation:

d ] 1 r , ]
E/V(k1,k2) = AH+ D HN(ki 1, k) HN(k, k)
#
+ LN(kijko 1) LN(k, k)
! (5.1.33)
ot 1) Lok k)
t L L
#
+£k N(ki; k1) Ak N (ki ko)
H 1 1, A2 H 1 1, A2)
with the total fame distribution given by
X
N(k) = N(k K k): (5.1.34)

ko =0

For a large star graph (H =1, L x H) ora nearly star graph (L x H), Eq.5.1.33
can be greatly simpliped with approximations H=(H + L) %41=L, L=(H + L) %1 and
L=H % L, reducing the master equation I’I[O

#
d 1 r r
E‘N(/ﬁ,’kg): T+_1‘Lk1 N(ki ko 1) N(ki, k) (5.1.35)

where O(1=L) terms have been dropped. Note that no dependence on k; remains; it
is a parameter. The remaining k> can be dealt with using a generating function:

X
Gy (2) N (ki ko)Z*2; (5.1.36)

giving J 1
r
EGM (Z) =

Separation of variables gives

—;L/ﬁ (z 1)Gi(2): (5.1.37)

Ctlhz ”6'%(2 1)t
n #

Ttv rikiInt z (5.1.38)

Glﬂ (Z)

1
= Ct "thg 7 texp

1
A
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Therefore
ko

¢ e UM ik (5.1.39)

. _ Y oyrlkg
/V(/ﬁ,kg) = kglt g /I‘D Y
with C determined from normalization, ., N(ki, k») = A. Substituting (5.1.39)

into (5.1.35) conprms that this is a solution. For the star graph, one need not resort

to Eq. (5.1.34) since any individual artwork can have at most a single connection to
the hub. Therefore, N(k) = N(0,k) + N(1,k 1) 32 N(0;k). Thus we expect a
Poisson distribution with mean (1 r)t=A,

1 o, 1 7 f
mm%ﬂa%ffrj: (5.1.40)

The validity of these star graph approximations remains an open question. Sim-
ulations will be used to conprm these results.

The next step up the \ladder of heterogeneity" would be a G with an arbi-
trary, uncorrelated degree distribution.* In principle, a master equation can be

tions from degree 1 nodes, k» recommendations from degree 2 nodes, ..., and kg
recommendations from the highest degree K nodes. The total fame would then be
N(k) = P P N(ki, ko, o0 kk)lky + ko + 880+ kg = k]. The question of solv-
ability for such a master equation remains open.

Further generalizations may prove fruitful as well. For example, when G is a
complete bipartite graph, one can use a diPerent redirection probability for each of
the two groups. Meaning that hubs may be more or less likely to listen to leaves
than leaves are to listen to hubs. While this increases the number of parameters in
the model, it may lead to improved realism without something as complicated as the
aforementioned uncorrelated degree distribution master equation. Using directed or
weighted patron networks may also be fruitful.

40r perhaps a binomial or Erdés-Renyi graph.
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5.1.5 Summary and discussion

In summary, we have introduced the Patron-Artwork model where A works of art
accrue \fame" by a simple one-parameter dynamic on a social (patron) network. Our
current analysis has focused on the case where G is an asymptotically large complete
graph. We have shown that in the early time regime, or, equivalently, when A / 7
there results a Pareto distribution for fame k. P(k) % k %, with % = 1 + 1=r. In
the long time asymptotic limit, the system is attracted to one of two opposite poles,
and there is a kinetic phase transition as a function of the parameter r. If r < % the
distribution tends to a Gaussian of width t=f(1 2r)A]. If r > % the distribution
keeps its power-law tail % k 1 1= for large k.

In all cases the fame distribution tends to an asymptotic scaling form as a function
of x = (k hki)=w(t), where hki = t=A is the average fame amassed by an artwork up
to time f, and w(t) = t” is a measure of the width of the distribution. The exponent
P undergoes a phase transition: P = % for r < 5, and P = rfor r > At the
transition point, r = ‘5 there appear logarithmic corrections: w(f) = (tIn t)'=2.

The scaling form of the fame distribution 7(x) = P in the regime r >

| —

~—

s
characterized by two more exponents (in addition to the width exponent P = r):
f(x) % x ' 1 for x I 71,and f(x) decays as a stretched-exponential, with power
1=1 r),as x / 7. Finally, the approach to the eventual scaling form %4t “ is
characterized by a fourth exponent: z = J for r < J,and z = 2r 1for r > J. At the
transition point convergence to the scaling form proceeds exceedingly slow, % 1=Int,
in a fashion reminiscent of critical slowing down in equilibrium phase transitions.
Several applications come to mind. For example, complex networks could be grown
according to this model where the nodes are pxed at the outset (corresponding to the
A artwork) and links are connected to the nodes by a proper mix of homogeneous
selection and preferential attachment. For r > % one could thus create scale-free
nets with a pxed degree distribution exponent and a pxed number of nodes, and
with a tunable average connectivity hk/ = t=A that grows linearly with time. Wealth
distributions with a stretched-exponential decay on one side and a power-law decay
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on the other, such as we pnd for r > % are regularly observed in various economic
settings [116, 117].

An intriguing pnding concerns the method of rate equations that is often used
to obtain the degree distribution of complex networks [14, 118, 119, 120, 121]. Our
analysis suggests that this method is only valid when the second-order terms in the
Kramers-Moyal expansion of the master equation for the system may be safely ne-
glected. Even then the method yields results that scale correctly but that are oth-
erwise only qualitatively correct, at least in our case. Perhaps the most important
open problem is to establish the range of validity of the rate equation approach more
rigorously, and to pnd ways to extend it to the cases where it fails.

5.2 Kleinberg Navigation

The small-world phenomenon, one of the most intriguing properties of human society,
was touched upon in Ch. 1. This describes the fact that unrelated people in a society,
who are a very large geographic distance apart from one another, tend to be connected
by surprisingly short chains of acquaintances. This phenomenon was hypothesized in
1929 by Hungarian author Frigyes Karinthy [122, 123] and was prst observed experi-
mentally in the 1960's with sociologist Stanley Milgram's seminal experiment wherein
randomly chosen people were selected to mail a letter to an unknown target person,
but were only allowed to send the letter to a friend, who would pass the letter along
to another friend, etc., until the target was reached. It ended up taking surprisingly
few people to send such letters. Hence the turn of phrase “six degrees of separation,’
popularized by Karinthy, was quite accurate. Understanding this phenomenon is an
important sociological problem.

To study the underlying mechanism that led to Milgram's results, computer scien-
tist Jon Kleinberg modeled a society as follows [124, 125]. Begin with a large, regular
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lattice.> Each node is connected to its nearest lattice neighbors and to a single ran-
dom node a large distance away. The probability of nodes /and j being connected
by such a long range connection is

Pi(P)=rP= rf; (5.2.)
k& i
where r;; is the euclidian distance between nodes / and j and the sum runs over
all nodes in the network except /. Physically, the local lattice connections represent
associations with immediate neighbors, fellow townspeople, etc., while long-range
contacts model friends or relatives in another city or country, for example.

The following algorithm, proposed by Kleinberg, models the message-passing ex-
periment of Milgram on this network [124]. Choose a starting node s and a target
node fa distance L apart.° The current message-holding node, starting with node s,
passes the message along to whichever of its contacts is closest to 7, until the message
reaches . We wish to know the number of steps 7 required to reach the target and
what value of P gives the lowest T, corresponding to optimally eZcient transport. Of
great importance is the fact that each node has no information beyond the locations
of its contacts and node £, the algorithm is greedy in that it seeks to locally minimize
the distance to t at each step without regard to the possibility that another node's
contact may be closer to 7 than the current node's contacts.

We begin by reproducing the proof in [126] that navigation is fastest when long-
range connections are chosen from Eq. (5.2.1) with A = d, where d is the dimension
of the underlying lattice.’

Since the number of nodes at a distance rscales like ¢ ' and each node contributes

5See [126] for a generalization to underlying fractal lattices.

6Existing work has instead chosen s and t at random from within a lattice of size L d L. The
average (lattice) distance between a random s and ¢ is %L % L anyway, so we choose to eliminate
this additional randomness.

"This includes lattices of non-integer dimension, with the only requirements being that there are
no (pnite) areas where the message can become trapped and must backtrack, so called \overhangs,"
and that the lattice distance scales like the euclidean distance.
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r P to the sum, then the normalization term in Eq. (5.2.1) scales like

8
X Z, 3T AP A Pl
r’ % rPritdr= IntL; p=d (5.2.2)
K i ! L g0 P, P <d:

To show that navigation is most eZcient when P = d, we proceed by pnding the
expected speed for P = d and show that it grows more slowly than the best-case
expected speed for P& d,as L | 1.

For the case where P = d, surround the target node with concentric shells of
exponentially increasing radii e” ' < r < 6", m = 1;2;:::;M.2 The probability
that a message holder in shell m has its long-range connection be to a node in shell

m 1 scales like, from Eq. (5.2.2),

oy ] Lo dpd 1 1
Am o rr® tdr= m.' (5.2.3)
If the message holder does not have a long-range connection to the next closest shell,
then the message will not reach the next shell within one step (with overwhelming
probability). Therefore, the probability that the message will take more than x steps
to reach the next shell is (x) = (1 1=In L)*, and the expected number of steps

spent in the current shell is®

Z 1
hxi = (X) dx = m14113 %In L: (5.2.4)
0 InL

The largest shell is of size e¥ 3 L, so the number of shells separating the source
and target nodes is on the order of M = In L. It's expected to require In L steps to
traverse each shell, therefore the total number of steps to reach the target is % In® L

8These are shells in the Euclidian plane, not the shells in chemical space that we have previously
focused on.

9 This is best seen by working backwards. Let p(x)dx be the probability to reach the next shell
within x and x + dx steps. Then (x) = X’ p(x)dx,and Y(x) =p(1) p(x) = p(x). Integration
by parts gives

Z 4 Ly Z
(X)dx = x ()()E0 x (x)dx = Xp(X) dx = hxi;
0 0 0

since (7) = 0, by depnition.
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When 0 P < d, begin by surrounding the target node with a ball of radius
I = L% 0 <Z <1. The probability that a randomly chosen node / has its long-range
connection be to a node j within this ball is, from Eq. (5.2.2), % r;;”=L? » 1=L9 P
Then the probability that node / is connected to any node inside the ball will not
exceed //=L9 P = [Z d+P_ Since the source node is not within this ball (for a
large enough lattice), then any short path of length % / must contain a long range
connection to a node within the ball. The probability that a node with such a
connection is encountered within / steps is, at best, / d L% 9+ |f this probability
can vanish as L / 7, then it will always take more than /steps to reach the target.
This happens when Z < (¢ P)=(d + 1), so the expected number of steps must exceed
L(d P):(d+1)_

Meanwhile, for P > d, the probability that a node has a long-range connection

longer than r= L , 0 < <1, scales, again from Eq. (5.2.2), as
VA 1

(d P)

g 5

P d (P 4

%L P (5.2.5)

Then the probability to travel a distance greater than L within L? steps (0 < p < 1)
is less than L# L (¢ P)_|f this probability can vanishas L / 7, then the total distance
covered in L? steps will never exceed L? L . Since we must reach the target eventually,
and the source and target are L steps apart, we require p + = 1. Meanwhile, the
probability to make steps longer than L will vanish when p + (d P) < 0. Both
conditions are satisped when p < (P d)=(P d+ 1) and it will always take more
than L(P @=(P d+1) steps to reach the target.

In summary, we have shown the expected transit time 7 to be approximately
In®> L when P = ¢ to be more than L(¢ P=(d+1) when P < ¢ and to be more than
LP d=(P d+1) when P > d. In the limit L / 7, In? L will grow more slowly than
any positive power of L, therefore the optimum algorithm occurs for P = d. See also
Fig. 5.5.
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5.2.1 Anisotropic lattices

A followup to Kleinberg's original work studied his navigation algorithm upon fractal
lattices, in particular the Sierpinski carpet and gasket [126]. The gasket has the
shape of an equilateral triangle, but in simulations it was embedded in a square
geometry to simplify programming. This distorts the lengths of connections, altering
the probability for long-range contacts (nodes in the \stretched" direction were less
likely to be connected). They observed an appreciable discrepancy between the ideal
b = d (in the limit L / 7) and the ideal P extrapolated from simulations for pnite
L and hypothesized that the anisotropy was responsible.

We wish to study the isolated ePect of anisotropy on Kleinberg navigation. To
do this, we begin with a regular lattice (d = 2) and introduce one of two forms of
anisotropy.

7 Lattice Anisotropy: The underlying lattice is stretched horizontally by a
factor b > 0 such that the area of each cell goes from 1 d 1 to b 0 1. See Fig.
5.6(a){(b).

Z Angular Anisotropy: Long-range connections are made more probable be-
tween nodes separated more horizontally than vertically. To accomplish this,
the probability for a long-range connection is not drawn from Eq. (5.2.1) but



95

instead in the following, essentially equivalent, way: a connection from node /
of random length r, chosen from the distribution P(r) % r ?, and random angle
0 2 3, chosen uniformly, is placed upon the lattice at /. This is connected
to node j, the node closest to where it lands. To favor connections along one
direction, is modiped by a factor b

"= arctan (5.2.6)

bcos '

where b > 0. See Fig. 5.6(c){(d) for histograms showing the impact of 4.

5.2.2 Simulations

We began our study of these anisotropic ePects with simulations, undertaken in the
summer of 2006 along with visiting undergraduate Mauricio Campuzano. The source
and target nodes are separated by L horizontal lattice steps. Since the underlying
lattice has no \voids" and the navigation algorithm is greedy, the message will always
progress toward the target. Thus it remains within a disc of radius L centered on
the target node. In addition, long-range connections (for both anisotropy types) are
created based on the previously mentioned scheme of choosing a radius and angle,
eliminating the need to compute the normalization term in Eq. (5.2.1). In combina-
tion, this allows for an \inpnite" lattice to be simulated in that boundary conditions
and other concerns can be neglected.

Simulations were performed for various values of b over a large range of P and L,
each averaged 1000 times. For each 6 and L, the minimum P was computed by prst
btting a pfth-order polynomial’® to the averaged data, then using Newton's Method
on the polynomial's derivative. Finally Pni, was plotted as a function of 1=In? L for
each chosen value of 4. These are shown in Figs. 5.7{5.8 and indicate that Pni, ! d
as L !/ 1, regardless of b (see also Fig. 5.9).

10A parabola could be ptted to the data closest to the minimum, but we must prst know what is
“closest,' and if we know that then we know the location of the minimum. A higher-order polynomial
overcomes this, similar to including higher order terms in a series expansion near the minmum of a
function.
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Figure 5.6: Kleinberg Navigation and anisotropy. Example message paths from a
source node s to a target node ¢ along intermediary nodes :. (Unused long-range
connections have been omitted.) The pnal long range connection in (b), despite its
length, has only shortened the path by one step, since it lands so far \oP-axis." Note
that sand fare closer in (b) thanin (a). Angular anisotropy is shown with histograms
of 108 uniformly random angles in Eq. (5.2.6) with (¢) 6 =1 and (d) b = 3=2 .
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To further clarify the behavior shown in Figs. 5.7{5.8, the following procedure
was performed. First pt a cubic polynomial p,, using least squares, to each 4's curve.
Then, subtract that polynomial from the isotropic case, p, p;. This maps b = 1
to the horizontal axis and gives the behavior of the b & 1 curves \relative" to the
isotropic curve. These are shown in Figs. 5.10{5.11. The diPerent behavior for each
type of anisotropy is clear: for the lattice case, the b < 1 curves converge to P( 7)
at the same rate as & = 1, while b > 1 curves eventually converge similarly, but
start above the 6 = 1 curve and eventually dip below it. Meanwhile, for the angular
anisotropy, Fig. 5.11 shows that the & > 1 curves collapse onto the 6 = 1 curve while
the b < 1 curves approach P( 7) at a diPerent rate than the b = 1 curve.

The observed \crossover" present in the lattice anisotropy, especially for large b, is
somewhat unexpected. The crossover size, as a function of b, Lcrossover(£) iS explored
by pnding the zero of each p, py. These are plotted in Fig. 5.12, and seem to indicate
a power law relationship."" What is responsible for this remains an open question.

This analysis depends on a three types of least squares pts: the pfth-order poly-
nomial pt to pnd each Pnin, the linear pt to the tails of the curves of Ppin vs. 1=In? L
to extrapolate P( 7), and the cubic pt to the entire Py, Vs. 1=In? L curves. Least
squares ptting is not robust to outliers, nor does it yield optimum estimators in the
presence of non-normal errors (Gauss-Markov theorem). Since the minimum was
found by ptting plots of In 7 vs. P the errors are not gaussian. However, all the pts
are reasonable to the eye, especially for very large L. In addition, the data is attest
near the minimum, and thus its error distribution is less distorted by the natural log.

Several improvements to this regression analysis are possible, though unlikely to
improve the results.”> More robust techniques, such as weighted least squares (to deal
with non-gaussian error) or iteratively reweighed least squares (to mitigate outliers),
may be used for the pts. When pnding each A.;,, one can also weigh the points such
that the data with smaller values of In 7 are given stronger weights, emphasizing

" The data presented spans roughly a single decade in b, making it less than conclusive. Further-
more, it is possible for other kinds of functions to appear as straight lines on log-log plots, especially
when the data doesn't span a suZcient range.

2They would allow for rigorous error analysis, however.
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Figure 5.7: Simulations for lattice anisotropy. All curves approach P( 7), regardless
of b. There is also a crossover ePect where curves for & > 1 dip below the o = 1
curve. This is further explored in Fig. 5.10. See Fig. 5.9 for the extrapolated P( 7).
A horizontal scale of 1=In? L is used throughout.

data closest to the minimum. The presence of non-gaussian errors due to the natural
log in the In 7 vs. P curves can be removed by computing In 7 for each simulation
then taking the average, instead of taking the natural log of the average 7. Doing
so will not alter the location of Pni,, only its height. Since the simulation runs are
iid (for pxed L and b), the central limit theorem ensures gaussian distributions. An
alternative option is to simply pt the polynomials to a// of the data instead of prst
taking the average. This makes the ptting calculation more expensive, but it can
already be done so eZciently that the increased cost is negligible.

5.2.3 Conclusions and future work

Simulations have shown that P, / das L ! 1 regardless of anisotropy, but the
overall behavior is quite diPerent for the lattice and angular anisotropies. A variety of
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Figure 5.8: Simulations for angular anisotropy. All curves approach A( 7), regardless
of b. Curves for b < 1 approach the inpnite limit at diPering rates, while curves for
b > 1 evetually collapse onto the & = 1 curve. This is further explored in Fig. 5.11.
See Fig. 5.9 for the extrapolated A( 7).

open questions remain regarding Kleinberg navigation in the presence of anisotropy.
The underlying phenomenon generating the crossover ePect present in Figs. 5.7 and
5.10 is not well understood. The apparent power-law dependence of Lgrossover ON b,
shown in Fig. 5.12, remains an open question. The apparent lack of similar behavior
in Figs. 5.8 and 5.11 is also not well understood. It is also an open question if the
power law exponent depends on the dimension of the underlying lattice.

The scaling arguments constituting the proof that lim, , ; Pnin = d are unable to
capture salient details introduced by such anisotropy, since the number of nodes at
distance r from the current node continues to scale as r? ', regardless of 4. Thus, one
needs an entirely new approach to analytically study the impact of anisotropy.

Regarding the general problem of optimum navigation in social and other net-
works, there are many avenues of open research to be pursued. The underlying
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Figure 5.9: Extrapolating to 1=In? L / 0 with a linear least squares pt to the curves
in Figs. 5.7 and 5.8 shows excellent convergence of P( 7) to the expected value of
d = 2. Good values should occur when the curves are attest, which happens roughly
around 0.25. A more robust ptting procedure could be used, but the accuracy of
these results imply that it is unnecessary. The horizontal lines at P = 2 provides a
guide for the eye.

lattice used in the Kleinberg model has no gaps or holes, therefore the message will
never need to \backtrack" during its journey, but this is not generally realistic. Can
the Kleinberg navigation scheme be modiped to account for such dead ends, or can
it be shown that an entirely diPerent procedure allows optimum navigation? If the
gaps are large enough,’ the message may never reach its goal: perhaps an optimum
navigation scheme can only guarantee successful transport some fraction of the time.

Reasonable alterations to Kleinberg navigation in the face of such adversities
include the introduction of randomness, where the current message holder may just
randomly pass along the message if it cannot move closer to the target; the message
holder may be allowed further knowledge of the network, such as the coordinates of
its neighbors' neighbors; or perhaps a node's concept of distance will be altered in the
presence of such gaps in the underlying lattice's geography (nodes on the \far shore"
of a void may be considered farther away than indicated by their geographic distance
alone). Unfortunately, it appears that all of these strategies introduce parameters

131 they scale with the size of the lattice or worse.
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Figure 5.10: To provide a measure of smoothing, cubic polynomials p, were ptted
to the curves in Fig. 5.7. To clarify the impact of anisotropy, we show the behavior
relative to the isotropic case, by subtracting p; from each p,. This maps the isotropic
curve to a horizontal line and introduces only minor distortion. The crossover behav-
ior for b > 1 is clearly displayed. A more robust ptting may be necessary, but these
results are still useful.

which must be studied. Kleinberg navigation is so intriguing due to the model's
simplicity, it seems that more realistic models must necessitate more complications.

5.3 Conclusions

Complex networks provide an ideal setting for studying the dynamics underlying
human society. Our work on modeling social networks can be divided along two main
fronts. One is the introduction and analysis of the Patron-Artwork model, which
provides a simple mechanism of how \fame" (more generally knowledge) can arise in
a pnite population. The other is the study of Kleinberg navigation, which provides a
model of the famous small-world “six degrees of separation' phenomenon.
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Figure 5.11: Similar to Fig. 5.10 but for angular anisotropy. This clearly shows the
b > 1 curves collapsing onto the &/ = 1 curve as L / 7, while the & < 1 curves
approach P( 7) at diPering rates.

The Patron-Artwork model is a very promising mechanism to explain how \fame"
or knowledge of an external population (the art) arises by means of a simple recom-
mendation mechanism inside a social network (the patrons). This model has proven
tractable when the social network is either a very large complete graph or a very
large star graph, and simulations conprm our results for the former. Our analysis has
also served to illustrate some interesting concerns when using the master equation
approach versus the rate equation approach, namely that the rate equation seems to
only work when second-order terms in the Kramers-Moyal expansion of the master
equation can be neglected, and even then it appears to give only qualitatively correct
answers. Future work in this area would be to use simulations to conprm the results
in Sec. 5.1.4, to analyze more interesting social networks, to collect real-world data for
comparison (such as IMDb votes), and to consider interesting generalizations (such as
allowing diPerent values of r for diPerent types of nodes, directed or weighted social
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Figure 5.12: Evidence that the crossover locations for & > 1 exhibit a power law
dependence on 4. The straight line is of slope 2. The mechanism generating this
behavior remains unknown. It is also an open question whether or not the power law
exponent depends on the underlying lattice dimension.

networks, etc.).

Our work on Kleinberg navigation in the presence of anisotropic lattices shows
several interesting facts. Simulations conprmed to high accuracy that P, ! d as
L ! 17, regardless of the amount or type of anisotropy. But the behavior at pnite
sizes (some of which are very large) was not well understood. The apparent crossover
behavior for the lattice anisotropy is not well understood, nor is it known why the
angular anisotropy does not display a similar phenomenon. Future work on Kleinberg
navigation may include modipcations to the algorithm in the face of more realistic
networks, such as those with gaps or voids. In such circumstances, convergence to
the target is not guaranteed, and a greedy algorithm can get stuck. Whether or not
a means of optimum navigation exists under these circumstances remains an open
question. It would also be interesting to explore whether there really is a power law
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dependence of Lgossover ON 6, and if the power law exponent is (generically) related
to the dimension of the underlying lattice.



Chapter 6

Conclusions

This thesis has focused on two main areas of complex networks research. One has
been the development of new analysis tools and techniques, allowing a researcher
to study and understand the important properties of a given network, whether it
be generated from some model, such as a random network, or from the collecting
of real-world data. New methods for detecting communities have been introduced,
especially ones capable of detecting a particular community within a network that is
too large or too dynamic to be fully explored. Shells, a unique property of a network
that is neither local nor global, were studied, leading to several interesting statistics
as well as a new measure of bipartivity. These shells have also allowed us to develop
a very interesting new tool, the network portrait, capable of capturing a great deal
of information in a compact, easy-to-understand representation.

The second main area of this work has been on applications of networks, and has
focused on the usage of social networks as a means to study the complex behavior
inherent in society. We have introduced the Patron-Artwork model to study how fame
can emerge in a population due to a simple recommendation dynamic. Meanwhile,
our study of Kleinberg Navigation, an idealized model of the small world phenomenon,
has led to several intriguing pndings.
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6.1 Contributions

The problem of identifying communities, dense clusters of interconnected nodes, has
received much attention [24, 30, 33]. In Ch. 2 we have introduced a new type of
community detection algorithm [39], one that is local in the sense that it does not
require simultaneous information about every node and edge in the network. This
information is often unavailable for networks that are either very large, such as the
internet, or very costly to explore, such as some social networks. Yet a researcher may
still wish to pnd a community in these networks, perhaps belonging to a particular
node. These algorithms begin with such a starting node, and pnd the community
containing that node by means of an agglomeration scheme, how nodes are added
into the community, and a stopping criterion, how to tell that the entire community
has been found and agglomeration should stop.

Alongside our local algorithm, we have developed a global application, using a
\membership matrix" to determine the entire community structure. A hierarchy of
sub-communities can be generated from this matrix, by means of a simple Hamming
distance-based clustering, and this method has been shown to extract more meaning-
ful information than competitors [41]. The method was also generalized to weighted
networks [41].

This local method is not ideal however, as it is highly dependent on a starting
node's location within a community. Meanwhile, more realistic and accurate methods
were subsequently introduced (e.g. [42]). In response to the proliferation of compet-
ing techniques, we have introduced a simple benchmarking and evaluation scheme,
tailored specipcally to local algorithms, as a means to both compare and improve
the accuracy of these methods. This benchmarking scheme consists of artipcial test
networks possessing a tunable degree of community structure (including our newly-
introduced generalized ad hoc networks) coupled with a simple information theoretic
partition similarity measure, to determine how \close" an algorithm's partition is to
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the test network's pre-built community structure. Using this benchmarking proce-
dure, we have shown that many algorithms perform comparably and, most impor-
tantly, that the accuracy of a local algorithm is far more aPected by how the method
stops growing the community, than by how it grows the community. Several stopping
criteria were introduced, often independently of a particular agglomeration scheme,
and it was shown that there is room for improvement.

Chapter 3 focused on the study of shells, groups of nodes that are at a pxed
distance from a starting node. Our original local community algorithm (Sec. 2.2)
relied on the relationship between shells and communities, so further study of shells
was worthwhile. We oPered a slight improvement to an existing calculation of the
size and distribution of these shells [65, 66], allowing it to be applied more generally,
including to smaller networks. We also studied the concept of perimetric edges, edges
that are within shells, and their relationship to odd cycles (every perimetric edge
participates in at least one odd cycle). Using this relationship, we introduced a new
and inexpensive measure of bipartivity, how close a network is to being two-colorable.

Inspired by the distribution of shells, we then introduced the Network Portrait in
Ch. 4. These portraits depne a sort of \joint histogram" over the shell distributions,
stored as a matrix. These matrices are unique for a given network, unlike adjacency
matrices and edgelists, though we showed that they do not uniquely depne a network.
These portraits encode a great deal of information, however, including dimensionality
and regularity, the presence or absence of a small world diameter, and even correla-
tion ePects such as assortativity. Never before have all these quantities been available
from a single plot. Quantitative comparison methods were also developed with the
introduction of a \distance" metric between graphs, based on their respective por-
traits. This allows a researcher to, for example, develop a random model and see how
well it represents a real-world network, a very useful tool. Finally, and perhaps most
promising, a second matrix, describing how edges are distributed amongst shells, was
introduced and it was shown that every graph of seven nodes or less was uniquely
depned by both of these matrices.
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In addition to the previous work, we have also worked on two ways to apply
complex networks to problems relating to social dynamics and modeling. One was
the introduction of the Patron-Artwork model, having some similarities to existing
work such as the voter model, to describe how a social network (of patrons) can
generate a distribution of fame for an external population (of artwork). This model
was studied for the limiting case where the social network was the complete graph,
for both an inpnite and a pnite amount of artwork. For the inpnite case, a power law
distribution of fame was always generated, but the pnite case led to an interesting
phase transition where the distribution went from a gaussian to one with a power
law tail on one side and a stretched exponential on the other. Distributions of the
latter form are often studied by economists [116, 117], and it is very interesting that
they appear naturally in this context. Calculations for the pnite case also illustrate
a discrepancy between two diPering solution techniques, which is an important point
as both are heavily relied upon in other problems.

Another problem in the area of social networks was studied, that of Kleinberg
Navigation, specipcally on anisotropic lattices. Kleinberg navigation is an idealized
model of the Milgram letter-passing experiment, and consists of a lattice of nodes
with each node connected to its nearest lattice neighbors and one additional long-
range contact, where the distance to the latter is given by a power law, P(r) % r *.
It has been shown that greedy navigation (the letter passing) is fastest when P = d
(in the limit of an inpnite lattice) [124, 126]. The work in [126] generalized this result
to fractal lattices, but showed a curious discrepancy between the P extrapolated from
bnite simulations and the predicted A = d. To ease programming, the fractal lattices
were embedded in a square geometry, stretching them slightly in one direction. They
hypothesized that this anisotropy was the source of the discrepancy.

In this work, we tested that hypothesis directly, by introducing two types of
anisotropy for square lattices. It was shown to high accuracy that P does approach
d as the lattice becomes very large, but interesting behavior was present \along the
way." Specipcally, a crossover phenomenon was present, where the optimum value of
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b for a particular amount of anisotropy coincided with the isotropic P, at a certain
lattice size. Furthermore, this behavior was present in one type of anisotropy and
not the other. This crossover was observed to have a power law dependence on the
amount of anisotropy, with power law exponent ¢ 2. |t is worth noting that even
though P / d, the study of this phenomenon is of the utmost importance since it
represents more realistic lattices and it still occurs at the sizes of the large networks
encountered in everyday circumstances, such as the internet.

6.2 Open Questions and Future Research

All of the areas of this thesis have raised interesting questions and opened new avenues
for fruitful study. Here we list some of the more important open questions and further
research opportunities.

For the local community methods, it was shown that they do not perform as well
as a global method, which is to be expected, but how close to global accuracy can
one achieve? Furthermore, these local methods suPer a problem of back links, those
links that are later discovered during the process of the algorithm, and it is not clear
how (or even if) this problem can be overcome. Finally, it was shown that stopping
criteria are a critical component of a method's accuracy and that there is room for
further improvement, so developing improved criteria is a prime area for future work.
The new benchmarking procedure will be invaluable in this regard.

The network portraits of Ch. 4 open many possibilities. One is simply: what other
properties can be understood by looking at the portraits themselves? A distance D
was introduced to quantify the similarities and diPerences between networks, but the
metric properties of D remain poorly understood. The fact that the portrait is unique
for a given network immediately applies it to the problem of graph isomorphism, but
the specipcs of this applicability requires further research. It is trivial to construct
the portrait for a given network, but the opposite is not true, and a general construc-
tion algorithm to generate a graph from its portrait alone would be a great boon.
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The conjecture that all graphs are uniquely encoded by both matrices needs to be
conprmed or refuted. A conprmation seems diZcult, but a refutation requires only a
single counter-example. Finally, generalizing the portraits to weighted networks was
brie y discussed, but the best approach to doing this (without introducing a large
number of parameters) is not clear.

Our work on social networks has further promise as well. For the patron-artwork
model, can solutions be found for more realistic social networks? The discrepancy
between the two solution techniques used when analyzing the complete graph is clear,
but the underlying cause requires further study. This is very important, since these
techniques are in widespread use. Moreover, does a generic solution technique exist?
Real-world data on the distribution of fame is available, such as tallies of the number
of reviews per movie on the IMDb. Can the distribution of reviews be reconciled with
the patron-artwork model? It would be a very important result if one could indicate
the general structure of the underlying social network from the fame distribution
alone.

For the Kleinberg navigation problem, how and why does the crossover behavior's
power law dependence on anisotropy occur, and why is it only present for one type of
anisotropy? Does the power law exponent depend on the dimension of the underlying
lattice, is it always 2, or neither? Finally, we discussed further generalizations of the
navigation problem to non-uniform lattices, such as those with large gaps or voids.
Here a simple greedy navigation algorithm will likely fail, with the message becoming
trapped and unable to progress toward the target. Can an optimum navigation
algorithm be discovered for these circumstances? If so, will delivery of the message
be guaranteed or will it be lost some pnite fraction of the time? All of these problems
are quite relevant, since real geographically distributed networks are seldom as tidy
as a perfect lattice, and so results will have immediate application.



Appendix A
Partition Similarity

The analysis of competing local community algorithms hinges upon a means to com-
pare how \similar" community partitions are. This is a problem more general than
partitioning graphs and, for completeness, we present useful background material
covering a variety of ways to compare data partitions. We begin by depning some
terminology and other useful quantities, then discuss the strengths and weaknesses
of various comparison measures. Qur discussion follows those of Meila [127] and
Karrer [128].

A.1 Partitions

D into A (mutually disjoint) subsets ¢, ¢, ..., ¢4 called clusters.” In other words,
¢y | ¢, =, when kK & /and ,"1 ci = D. Let D contain N points and ¢, contain ny
points. Then n =

,n,.

"In terms of pnding communities (Ch. 2) the nodes of the graph form D, the individual com-
munities form the clusters ¢, ¢, .. ¢4, and one seeks the clustering that maximizes the number
of edges between nodes in the same clusters and minimizes the number of edges between nodes in
diPerent clusters.
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W Wo 00 We

Vi | M1 Mz B8 Mg | M Table A.1: Notation for the confusion
Vo | Moy My BB nog | 1o matrix n;; of partitions IV and ¥/, as well
as row and column sums 77.; and ;.. Both
row and column sums themselves sum up
Vg | Ng1 Ngx BI0 ngec | ng: to M.

n{ nNo 000 ne | N

and W are. A useful quantity is the confusion matrix (also known as a contingency
table):

0 the number of points that appear in both v; in one
" clustering and w; in the other (A1)

= /V,' \ W//.'

P : P
;;Mmj = N. Depning row and column sums 7, ;N and

This matrix obeys P
n;. P/n,-,- gives n.; = jw;jand n;- = jv;j. See also Table A.1.

We seek a means to quantity the diPerences between |/ and W, preferably one
normalized to [0;1]. These measures roughly fall into three categories: pair-counting

methods, clustering matching, or information theoretic methods.

A.2 Pair-counting methods

Some measures compare partitions by looking at all possible pairs of points (x;y),
X,y 2 D, and counting how they fall relative to one another in each partition. There
are g’ total pairs, and each can be distributed in one of four ways: either x and y
are in the same cluster in both partitions, diPerent clusters in one partition but the

same cluster in the other, or diPerent clusters in both partitions. Formally, let us
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count the number of pairs meeting these descriptions:

a # of pairs such that x;y 2 v, and x;y 2 w;;

b # of pairs such that x 2 v;, y 2 vy but x;y 2 w;;

¢ # of pairs such that x;y 2 v but x 2 w;, y 2 w;;

d # of pairssuchthat x 2 v, y 2veand x 2 w;, y 2 w,,

where /& kand j & /. These can be calculated directly from the confusion matrix:

X
_ /
a-= o a (A.2.1)
#
X X g
_ / /]
b= ) g (A.2.2)
_ n; njj
¢ = o S0 (A.2.3)
d - ’;’ a b (A.2.4)

Several statistics are built using these quantities. Wallace [129] introduced two
asymmetric quantities:

a

W,V W) = o l]’. (A.2.9)
a

W (V; W) = m (A.2.6)

Since a + b is the number of pairs in the same cluster in W, and a+c is the number
of pairs in the same cluster in I/, then these are the probability that a pair of points
which are in the same cluster in one partition are also in the same cluster in the other.

Fowlkes and Mallows [130] introduced a symmetric criterion, the geometric mean
of Egs. (A.2.5) and (A.2.6):

FUVW) = W (WY W (V W): (A2.7)

Yet another pair-wise statistic was introduced by Rand:

a+d

R(V,'W)=m

(A.2.8)
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Both R and F need to be renormalized to fall over the range [0;1]. This is
typically done by subtracting a \null hypothesis" value, assuming clusters are random
and independent, and then normalizing the range to give 0 for the null case, and 1
for the maximal case where the clusterings are identical. This procedure is similar to
the derivation of modularity given in Ch. 2.

Such adjustments are not ideal for several reasons. Concerns have been expressed
as to the plausibility of the null hypotheses [129]. Another issue is that the value
of the baseline (before subtracting the null model) can vary considerably depending
on the clusterings, and this makes comparing statistics against one another more
problematic. For an in-depth discussion, see [130, 127].

Some other pair-wise statistics include the Jaccard Index [131],

Y a |
J(WVW) = ———— (A.2.9)
and the Mirkin metric [132],
X X X X
MV W) = n. + n?j 2 n?, (A.2.10)
i J 6/' i ¢
=2(b+¢)= NN 1)1 RV W): (A.2.11)

Thus the Mirkin metric is just another adjusted form of the Rand index.

A.21 Edge counting

In addition to counting every pair of points /;j 2 D, one can only count the pairs of
points that correspond to edges in the graph. That is, count all pairs /;j 2 D such
that 9¢; 2 G. This is, in a sense, a weaker criteria, since one only cares about how
edges are distributed amongst clusters, and not how disconnected nodes are situated.

Another possibility is to count the pairs corresponding to neighbors, then next-
nearest neighbors, etc. weighing each count less, to account for the increasing distance
between the pairs.
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Neither of these concepts appear to have been introduced in the literature, but
most researchers have turned to alternatives to the pair-counting measures, for various
reasons, and therefore the pursuit of these ideas may not be worthwhile.

A.3 Cluster matching

One can also compare clusterings based on various set cardinalities. These avoid
assumptions regarding how the clusterings were generated.

Meild and Heckerman introduced the statistic A as follows [133]. Each cluster
in I/ is given a \closest match" in W. Then H computes the total \unmatched"
probability mass in the confusion matrix:

mgx Nis(iy, (A31)

mappings. This statistic is symmetric and has value 1 for identical clusterings. See
also [134, 135].
A similar, though asymmetric statistic was also introduced [136]:
X

cun ] nij .
LV W) = - - max s (A.3.2)

This asymmetry is less than ideal so van Dongen [137] introduced a related but
symmetric statistic:
" #
1 X X
o / m/ax nj; + ,- max nj; . (A.3.3)

D(V:W) = 1

Note that D is O for identical clusterings and always smaller than 1 otherwise.

All of these statistics subPer from the \matching problem" in that L, H, and D all
prst pnd a corresponding \best match" for each cluster within the other clustering,
then sum the contributions of these matches. They ignore all information related



116

to the remaining \unmatched" parts of each clustering, and this is not ideal. As an
example of this drawback [128], suppose we have three clusterings:

Ci = ffa b cg; fd; e f;ggg; (A.3.4a)
C, = ffa b cg; fd eg, ff: 999, (A.3.4b)
Cs = ffa b cg; fdg, feg; ff; ggg: (A.3.4c)

For the van Dongen statistic, D(C1,; C2) = D(Cy, C3), despite the claim (and support
of other measures) that C; is more similar to €, than to Cs;. For more discussion,
see [127].

A.4 Information Theoretic methods

Instead of looking at how pairs of points in the dataset are distributed one can
consider the probability for points to be placed within clusters in each clustering.
Thus one can assume the confusion matrix depnes a joint probability P(v;, w;) that
a randomly chosen point x appears in both v; and w;. Formally this means that v
and w are assumed to be values of random variables VV and /. Then:
K

where the suppressed indices / and j are taken to be the indices of the confusion

P(v;w) Pr(V =v,W=w (A41)

matrix that correspond to v and w, respectively. Following this, the row and column
sums then correspond to the marginal distributions:

X |

P) PV =v= " Py= (A42)
X |

Pw) Pr(W=w=  Py="d (A.43)

Now, consider the mutual information between clusterings IV and W to be equal
to the traditional mutual information of the corresponding random variables:

X X .
I(V; W) = P(v; w) |og% (A.4.4)

i=1 j=1
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Mutual information measures how much knowledge we have about IV by having com-
plete knowledge of W, and vice versa. If the clusterings are identical, then we know
one completely if we know the other. If there is no correlation then we learn nothing.
This can be visualized by using the fact that P(v; w) = P(vjw)P(w) = P(wjv)P (V).
Plugging this in reduces Eq. (A.4.4) to:

X X
I(V; W) = P(v;w)log P(vjw) P(v)log P(v)
iij i
= H(V) HVjW) = H(W) H(W,V) (A.4.5)

where H(V) is the information (entropy) of IV and H(VjW) P/-P(W)H(VjW =
w) is the conditional entropy (the additional information needed to know V once
W is known). If W tells us nothing about I/ then the two terms are equal and
I(V; W) = 0. In essence, / contains the same information as the conditional entropy,
but is symmetric, while the conditional entropy is not. This makes / more useful as
a measure of distance or similarity.

The values of / do not necessarily fall in the range [0,1] so a normalization is often
used. There are several possibilities, one popular choice is the following. Mutual

information is bounded by the entropies of the involved random variables:

1(V; W)

I
=
S

HViW)  H(V)
= H(W) HWjV) H(W),

thus
0 t
I[(V; W) min H(V), H(W) H(V);H(W):
This provides a tight upper bound on /(V; W), giving the normalized form:
_ _o2iwy
Inorm(V; W) = AV) + AW (A.4.6)

Equation (A.4.6) was used in the local community benchmarking and evaluation
method presented in 2.3.3.
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Figure A.1: Diagramming the rela-
tionship between V(V; W), the shaded
region, and various other quantities.
The two circles represent the entropies
H, while the overlapping region is the
mutual information, and the remain-
ing shaded regions give the conditional
entropies. The sum of the conditional
entropies is the variation of informa-
tion. From [127].
V(V, W)

Recently, another information theoretic measure has been introduced, the varia-
tion of information V [127, 128], depned as:

V(V:W) = H(V) + H(W)  21(V: W)
= H(VjW) + H(WV)
X . X .
_ P(v; w)log PF(,'(/’WV')/) P(v; w)log P/(D'?V')”) : (A.4.7)
iij iij

This is the sum of the information needed to know I/ given W and the information
needed to know W given V. It is a true metric in the space of clusterings, satisfying
all the requirements of a proper distance [127]. It is also a local measure in the
sense that the distance between two clusterings that only diPer in one \region" of the
dataset does not depend on how the rest of the dataset is clustered. Due to these
properties, this measure has become quite popular. See Fig. A.1

The maximum value that |/ takes is log N/, which happens when V/ consists of a
single cluster of size / and W consists of N clusters of size 1, or vice versa. This value
increases with A because larger datasets intrinsically contain more information, but
one can simply renormalize by log NV if this is undesired. When comparing two com-
munity partitions of the same graph, N is the same for both, and this normalization
is irrelevant.



Appendix B

Shells, Cycles and Communities’

In addition to the local community methods presented in Secs. 2.2{2.3, we have also
explored how short cycles are distributed over community structure. Here we present
some background on the importance of cycles, a means to identify and (approxi-
mately) enumerate cycles based on how their component edges are distributed within
shells, and a simple set of algorithms for identifying which edges in a network form an
inter-community \backbone." The identipcation of shells and cycles is also of interest
regarding the material covered in Ch. 3

An important feature of complex networks are the cycles of diPerent lengths which
underlie the patterns of connectivity [62]. The statistical distribution of cycles has
been acknowledged as particularly important for depning not only the topology of the
respective networks, but also the dynamics of systems running on such frameworks,
due to feedback [138]. The number of cycles in even a moderately sized network is so
large that it is intractable to discover all of them. Indeed, many algorithms based on,
for example, random walks, have been used to estimate the number of cycles [62, 70].

Generally, the density of cycles tends to increase as more edges are incorporated
into a network, with longer cycles emerging before shorter ones [139]. Therefore, the
density of cycles of diPerent lengths can be used as an indicator of the connectivity
between any subset of nodes. In other words, the larger the number of short cycles

T"Published in [75]
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amongst a subset of nodes, the more connected such nodes are to one another. Longer
cycles tend to grow, \coiled up," alongside these shorter cycles, however, blurring
the distinction between nodes based solely on short-cycle participation. We present
methods to overcome this.

B.1 Describing Cycles with Shells

For a graph G, we are interested in pnding cycles of length 3 /5 containing a
particular vertex v. To describe this, we begin by decomposing G into shells G; about
v. Since we are only interested in cycles of length /5, we need only keep G1(v) and
Ga(V).

It is simple to describe short cycles using these shell decompositions. For example,
for every edge e; in Gi(v), there exists a 3-cycle (triangle) v{/{;/{v. Similarly, for
every path of length 2 or 3 in S;, there exists a 4- or 5-cycle, respectively. Another
4-cycle and two more 5-cycles exist involving both Gi(v) and Ga(v).

One can also describe a// possible cycles in such a manner. For a cycle of length
L 73, the number of such possible \cases" N (L) must rapidly grow with L. Since it
requires two edges to visit a shell, any L-cycle can visit at most J shells, where

( L. L even;
2

_ 2
J = L

B.1.1
LA [ odd: ( )

If the farthest shell the cycle visits is G; (with j < J), there are at most L 2j
remaining edges that must be distributed between and within the Gy, G», = G, shells.
The number of ways to distribute L 2/ edges over j shells is % Yet it
is possible for a cycle to \zig-zag" between shells, using more than the 2, necessary
edges between shells. Therefore, the total number of possible ways to distribute an

L-cycle is at least

XX ey 2 1 2 j A

N(L) =1+ /. Lo (B.1.2)

j=2 i=0
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with the outer sum accounting for all the possible shells the cycle can visit, the inner
sum for all the optional pairs of edges that can lie between shells and the +1 for the
3-cycle (triangle). Here /is the number of pairs of edges between shells beyond the j
necessary to visit the j shells.

Furthermore, splitting the inner sum in Eq. (B.1.2) into cases where extra edges
are distributed (/ > 0) and are not (/ = 0):

n ) #
Ni(L) =1+ X Log 1 +JX/ fvjo2 L2
» L2 i i L 2(i+ )
|
p_-L 1 Y . .
1 1+'5 X X/ 1 i
= P= 1)L+ . Coa B.1.3
793 2 +j:2 /:1( ) i L 2(i+ 7)) ( )
p_ L 1
This gives a \lower" lower bound of 4z 12 , which is equivalent to neglecting

to count those cycles with extraneous edges between shells.

Equation (B.1.3) fails to take into account permutations of the ordering of edges
between and within adjacent shells. A simple upper \bound" is possible, however, as
there are certainly no more than L! possible permutations over the whole network:

XX e 2 L o2i j A

Ny,(L) =1+ o LY (B.1.4)
jn2 it i L 2(i+ )
with o pg 1,
+
L N(L)  N(L)  Ny(L): (B.1.5)

The number of possible cycles grows at least exponentially with length. If one
were to assume that each particular case has an equal probability of occurring in a
given network, which is not generally justiped, then the number of cycles present also
grows exponentially, as expected.
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B.2 Cycles and Communities

Community structure can be studied by comparing the edges covered by certain cycles
with the original graph. Let

the set of edges traversed by all

Ci() I-cycles starting from vertex /. (B.2.1)
Starting from all vertices and limiting ourselves to only short j-cycles,?
[
c Ci(h): (B.2.2)
i2v
From this, construct a graph
H="fV,EnCg (B.2.3)

which is the graph containing only edges that do not participate in j-cyclesin G. Sep-
arate communities in G will appear as disconnected components in H. We interpret
vertices in H with degree zero as communities of size one.

In specifying H, the question of what to choose for j has been left open. Choosing
just j = f3g will correspond to deleting all edges from G that participate in 3-cycles,
generally not a useful result. One may consider j to be a tunable parameter, used to
get a desired result when applied to a specipc network.

One issue that can occur is that longer cycles often overlap shorter cycles. In
terms of communities, most inter-community edges contain few (if any) short cycles,
but intra-community edges tend to contain both long and short cycles, since a long
cycle can \coil" inside the community. |f one were to just delete all 5-cycles in a
graph, it is very possible to end up deleting all edges.

There is quite a bit of leeway in how we choose j and build # and we can use this
to our advantage. For example, pick two cycle lengths s and f (s < f) and compute
Cs and C;. Then, build another set of edges

Ctns Ctn Cs:' (824)

2\We specify \short cycles" as those of length 3, 4, or 5 but this is not a set rule and, in certain
circumstances, it may prove advantageous to consider 4- or 5-cycles, or even just 5-cycles.
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containing edges that participate in f-cycles but not s-cycles. Thegraph H = fV, Ci,s9
will contain edges that tend to be between communities and not within, for an ap-
propriate choice of f and s. One can think of this as a \backbone" of the net-
work, and deleting these edges may be a useful pre-processing step for applying other
community-detection algorithms, including betweenness [39, 3].

B.3 Application Examples

We now apply these cycle-based methods to a network of NCAA Division I-A football
games held during the 2005 regular season.® This example also helps illustrate the
meaning of Eq. (B.2.4). In addition, we discuss how these methods can break down
and ways to overcome that.

In NCAA football, teams are grouped into conferences based on location. To save
on transportation time and cost, more games are played between teams in the same
conference than in diPerent conferences. A graph of the game schedule, where nodes
are teams and edges connect teams that have played against each other, naturally
exhibits community structure based on these conferences [140].

Figure B.1 displays the original football network; the network generated by using
j = f3gin Eq. (B.2.1); and the network generated by building C;,s using ¢t = 5 and
s = 3in Eq. (B.2.4). The graph H = fV; Cssg contains no edges between teams
within the same conference.

Choosing j = f3g deletes all edges that do not participate in 3-cycles, most of
which are between conferences, though some edges remain. This will not split the
network into seperate components based on the communities but it may be useful as
a preprocessing step for betweenness or another community detection algorithm.

We propose that edges in Cs,3 comprise the majority of this network's inter-
community structure, its \backbone." To test this, one can compare the distributions
of edge betweenness for these backbone and non-backbone edges, as shown in Fig. B.2.

3Data taken from published schedule at http://www.ncaa.org
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Backbone edges tend to carry much higher betweenness values than the more common
non-backbone edges.

B.4 Concluding Remarks

The identipcation and characterization of the communities present in complex net-
works stands out as one of the most important approaches for understanding their
structure and possible formation and evolution. At the same time, the distribution of
cycles of various lengths in a complex network has important implications for the con-
nectivity, resilience and dynamics of the respectively studied networks. The current
work brought together these two important trends, in the sense of applying short cycle
detection as a means to help the identipcation of communities in complex networks.
The relationship between the cycles and communities in the football network has been
further investigated in terms of the betweenness centrality measurement, conprming
that the obtained backbone edges tend to exhibit higher betweenness values.
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= ,l \r K=" F
Y N

Figure B.1: The NCAA Div I-A 2005 regular season with all edges (a), with 3-cycles
only (b), and with just Cs,; edges (c). Fig. (d) is the same graph as (c¢) but with
a layout emphasizing that no edges within conferences remain (degree zero nodes
omitted). As per [74], the conferences are: A = Atlantic Coast, B = Big 12, C =
Conference USA, E = Big East, | = Independent, M = Mid-American, P = Pacipc
Ten, S = Southeastern, T = Western Athletic, U = Sun Belt, W = Mountain West,
X = Big Ten.



250

200

number of edges
@
o

o
=)

50

I non-backbone edges
Il backbone edges

0 50 100 150 200 250 300

edge betweenness

126

Figure B.2: Histogram of edge
betweenness for non-backbone
edges (red) and backbone edges
(blue) for the NCAA 2005 foot-
ball network. The mean (unnor-
malized) betweenness is 42.8 for
non-backbone edges and 132.9
for backbone edges. Backbone
and non-backbone histograms
use the same bins; the front-
most bins have been narrowed
for clarity.
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