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L ist of Tables

2.1 C lustering the sorted membership matrix to þnd sub-communit ies. We

move downward, grouping together all the vert ices whose correspond-

ing rows are closer together than D m in unt il we arrive at a row that is

farther away than D m in . Then we start a new group and begin group-

ing the subsequent vert ices together unt il we again þnd a row that is

farther away than D m in , and so forth. T his is repeated using the next

smallest D M ( i  1; i) as D m in . T his has a course-graining eÞect: as we

use larger values of D m in , farther vert ices will start grouping together. 26

3.1 B ipart ivity for various networks. A network becomes \ more bipart ite "

as b ! 1. In pract ice, the diÞerence between min, mean, and max can

be appreciable (although this is rare), but the diÞerences decrease as

b ! 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A .1 Notat ion for the confusion matrix n i j of part it ions V and W , as well

as row and column sums n : j and n i : . Both row and column sums

themselves sum up to N . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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L ist of F igu res

2.1 Two real-world networks with community structure. Shown is (a) the

2005 N C A A football schedule, and (b) the network of character inter-

act ions from Les M iserables by V ictor Hugo [23]. T he N C A A network

is composed of teams who have played against each other in the regular

season, and exhibits a community structure based on the conferences

the teams are organized in, since teams tend to play within their own

conference more often. T he nodes in (a) are colored according to their

conference a Ž liat ion, while the nodes in (b) are colored from the result

in F ig. 2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 T he cut number R for a part it ion of two equally sized groups. . . . . 13

2.3 T he Zachary K arate C lub [32], a famous community detect ion bench-

mark due to the fact that Zachary observed the club split in half over

an argument about membership dues [3]. Edges with higher Between-

ness are thicker. Note that betweenness has not been shared equally

over paths of equal length, as is usually the case. T his is best seen in

the two edges leading to the right-most node. . . . . . . . . . . . . . 16

2.4 An example divisive community part it ioning where edges with higher

betweenness are cut þrst . Shown is a graph with 0 cuts (a); 100 cuts

(b); 120 cuts, where the graph þrst splits (c); and 500 cuts. . . . . . 17

2.5 Unsorted and sorted Membership matrices, N C A A 2005 season. T he

four bot tom rows are the independent teams (Army, Navy, Notre Dame,

and Temple). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



2.6 (a) T he sorted membership matrix for the Les M is network with Þ =

6:9 and (b) a plot of the cumulat ive row distances from (a). . . . . . 25

2.7 T he dendrogram of sub-communit ies for the Les M is network, calcu-

lated using the change in corresponding row distances shown in F ig.

2.6(b). T he coloring applied at the bot tom was generat ing by cut t ing

the dendrogram 8 levels from the top, and is also shown in F ig. 2.1(b). 27

2.8 (a) T he community C is surrounded by a boundary of explored nodes

B . T his explorat ion implies an addit ional layer of nodes that are known

only due to their adjacencies with B . (b) Two nodes i and j in B ,

with  i = 2=3 and  j =  1. Moving node j into C will give improved

community structure, compared to moving i . . . . . . . . . . . . . . . 30

2.9 Comparison between quality measures for the C lauset algorithm, R ,

and the method presented here, M ou t . Shown are the average of 500

realizat ions of the 128 node ad hoc networks (Sec. 2.3.3), for zou t =

1; 2; : : : ; 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.10 Comparison of a seminal physics text and a popular D V D ( # 1 seller

at the t ime of calculat ion) on the amazon.com co-purchasing network.

F luctuat ions in M ou t in both items indicate the presence of non-trivial

community structure. T he smooth curve at bot tom is for a 2D periodic

lat t ice of 500 ð 500 nodes and the Erd }os-R  enyi graph has N = 104 and

hk i = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 T he rewiring scheme to build the new art iþcial networks. For two com-

munit ies (gray), two external edges (solid lines) are removed and two

internal edges (dashed) are created, further separat ing the communi-

t ies. One must make sure that the dashed edges do not already exist ,

otherwise edges are being destroyed instead of moved. . . . . . . . . . 34
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2.12 T he \ strong to not " and trailing least squares stopping criteria for the

128-node ad hoc networks using the C lauset method and the new al-

gorithm presented here. E ach point is averaged over 1000 realizat ions.

Inset: an example of the trailing least-squares þt t ing procedure. . . . 40

2.13 Comparison of various p-strong stopping criteria for the 128 node ad

hoc networks using the new algorithm shown in Sec. 2.3. . . . . . . . 41

2.14 An overall comparison of the various methods for the 128-node ad hoc

networks, averaged over 1000 realizat ions. T he LW P method is by far

the most accurate for low zou t , while the trailing least-squares methods

oÞer the best performance at higher values. ( T he art iþcial behavior of

both `best of f pg' criteria for large zou t is discussed in Appendix 2.3.4.) 42

2.15 Using the \ best of f pg-strong " criteria on the 512-node rewired scale-

free networks, for f pg = 0:75; 0:76; : : : ; 1. E ach point is the average of

500 realizat ions. T he eÞect of reject ing any individual p-strong results

where M ou t = 0 (R = 1) (see Appendix 2.3.4) is more apparent for

these networks, especially for hub nodes. . . . . . . . . . . . . . . . . 43

2.16 A comparison of the trailing least-squares criteria for both the new al-

gorithm and the C lauset method, using the rewired scale-free networks.

Start ing from a hub tends to be the most accurate, except when the

communit ies are very well separated. . . . . . . . . . . . . . . . . . . 44

2.17 T he LW P algorithm used on the rewired scale-free networks. LW P

performs very well for large numbers of rewirings, but becomes pro-

gressively worse as less edges are moved. Both extremes, hubs and

leaves, decrease overall accuracy. . . . . . . . . . . . . . . . . . . . . . 45
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3.1 Scat ter plot of edge perimetricity (horizontal) versus edge betweenness

(vert ical). E ach data point represents an edge in the graph. (a) An

Erd }os-R  enyi graph with 300 nodes and p = 0:03. (b) A Barab  asi-

A lbert graph with 300 nodes and m = 3. While there is some cor-

relat ion between the two quant it ies, it is very weak, especially in (a).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 T he notat ion used in Sec. 3.2. T he dashed semi-circles indicate the

l-th shell. Shown is ks , the degree of the chosen start ing node;  l , the

total number of open connect ions exit ing G l ; S l , the number of edges

connect ing G l  1 to G l ; and T l , the total number of open connect ions

outside of G l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 T he number of nodes per shell, from Eq. 3.2.4 (  ), compared to sim-

ulat ions averaged over 50 runs ( ð ). Shown is an Erd }os-R  enyi network

of 2000 nodes with p = 0:005 (a) and a Molloy-Reed (conþgurat ion

model) network of 5000 nodes with P (k) ¾ k  2:5 (b). For E R graphs,

the number of perimetric edges per shell is simply N l (N l  1)p=2. A

degree-one start ing node was chosen for both theory and simulat ion. 54

3.4 T he number of nodes per shell, from Eq. 3.2.4 (  ), compared to simula-

t ions averaged over 100 runs ( ð ). Shown is a Barab  asi-A lbert network

of 5 ð 105 nodes with m = 2. T his network, unlike those shown in

F ig. 3.3, has correlat ions, and this is evident in the lack of alignment

between the two curves. T hese correlat ions lower the diameter, push-

ing the curve both leftward and upward, compared to the uncorrelated

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 P lanar embeddings and adjacency matrices for a small network. I t is

di Ž cult to tell visually that these represent the same network, even at

such a small size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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4.2 A B -Matrix (larger values are darker (brighter), logorithmic color scale,

row and column 0 omit ted). Note the degree distribut ion, slight ly visi-

ble in the þrst row. as well as the turning point about row 4, represent-

ing þnite-size eÞects. Shown is the network of the ten percent most

connected actors taken from the movie actor collaborat ion network

stored in the Internet Movie Database (www . i mdb . com) [82]. . . . . . 61

4.3 T he B -matrix from F ig. 4.2 but with a logarithmic horizontal axis.

T he degree distribut ion in row 1 is now plainly visible. . . . . . . . . 62

4.4 Erd }os-R  enyi (E R) graphs [13]. (a) one graph with N = 1000 nodes

and p = 0:008. (b) T he average of 100 graphs from (a). V isualizing

percolat ion: N = 104 (c) below percolat ion, p = (1:1N )  1; (d) at

percolat ion, p = N  1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Regular 40 ð 40 lat t ices with defects. (a) A periodic and (b) non-

periodic lat t ice; (c) a lat t ice with skew-periodic boundaries; and (d) a

periodic lat t ice with a random 5 percent of all nodes missing. Observe

the strong linear slope, indicat ing the underlying two-dimensional lat-

t ice, as well as the narrowness of the distribut ions in (a), (c), and (d),

due to the regularity of the periodic lat t ice. . . . . . . . . . . . . . . 64

4.6 Comparison of B for periodic and non-periodic three-dimensional lat-

t ices of 15 ð 15 ð 15 nodes. T he quadrat ic growth, present in both

matrices, indicates the three dimensions of the underlying networks. 65

4.7 Scale-Free models. T he average of 100 instances of the (undirected)

K rapivsky-Redner (r = 1=2) [83]; Barab  asi-A lbert (B A) (m = 2) [4];

and Molloy-Reed (MR) (drawn from P (k) ¾ k  3) [18] networks; as

well as the (1,3)-F lower at generat ion 6 [84]; (a) { (d), respect ively. A ll

have N = 2732,  ³ 3, but hk i varies. . . . . . . . . . . . . . . . . . 66
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4.8 Sequent ial emergence of small-world. (a { d) B for a 40 ð 40 two-

dimensional periodic lat t ice with 1 random pair of edges permuted,

then 4, 5, and 10 more, respect ively. T he change is drast ic when

rewiring just 40 out of 3200 edges. T he hard edge of slope 4 remains

in the þrst shells; it is st ill possible to ident ify that this graph is (lo-

cally) very lat t ice-like. (e { h) Newman-Wat ts-Strogatz graphs [85] with

N = 1000; k = 4; and p = 1=20; 1=10; 1=5, and 2=5, respect ively. . . . 67

4.9 Two real-world networks: (a) collaborat ion network of complex net-

works researchers [37], and (b) a snapshot of the internet's autonomous

systems, taken by Mark Newman on 22 July 2006. . . . . . . . . . . 67

4.10 Several real world networks. (a) T he western states power grid (un-

weighted) [10], (b) US airlines network [73, 78], and (c) { (f ) directed

metabolic networks for H . in  uenzae, R . capsulatus, M . jannaschii, and

C . elegens [7], respect ively. T he metabolic networks appear similar to

one another yet unlike the power grid and airlines networks. . . . . . 68

4.11 (a) T he original metabolic network of M . genitalium [7] with assor-

tat ivity A =  0:174216 and (b) with A = 0:000757 after permut ing

random edge pairs while preserving the degree distribut ion. T he þne-

scale structure in the upper-most shells of (a) is no longer present in

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.12 Four possible embeddings for both the Desargues graph (a) and the Do-

decahedral graph (b) [91, 92]. Both are cubic distance-regular graphs

with N = 20, M = 30, and ident ical B matrices, from Eq. (4.1.1).

T he third embedding from left best illustrates the subt le diÞerences

between the two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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4.13 A connected graph G is dist ance-regular if it is regular of degree

k , and if for any two nodes u; v 2 G at distance i = d(u; v), there

are precisely c i neighbors of v in G i  1(u) and b i neighbors of v in

G i + 1(u) [93]. D istance-regular graphs possess large amounts of elegant ,

higher-order symmetries. For example, all of the platonic solids, when

represented as graphs, are distance-regular. . . . . . . . . . . . . . . . 71

4.14 (left) Row-wise stat ist ic K l . Shown are two Erd }os-R  enyi graphs with

N = 104 and p = 0:002; and a Barab  asi-A lbert (diameter 10) versus

a Molloy-Reed network (drawn from P (k) ¾ k  3 , diameter 14), both

with N = 5 ð 104 . Both the Barab  asi-A lbert and Molloy-Reed networks

have the same degree distribut ion, so the þrst few rows are fairly close

to one another. Yet diÞerences in, e.g., assortat ivity, soon become

evident: even networks with ident ical degree distribut ions may not be

similar. (right) Table containing the values of Ð , given by Eq. 4.4.6,

for the four networks shown. . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Why are these men so famous? Why is E instein so much more famous

than Newton or Euler, besides being so \ photogenic " ? . . . . . . . . . 76

5.2 Schemat ic of the Patron-Artwork model. Node i is chosen to make a

new recommendat ion. W ith probability r , i listens to neighbor j and

recommends artwork a. W ith probability 1  r , i instead recommends

artwork b, chosen uniformly at random. T his process is then repeated

many t imes for mult iple nodes and the distribut ion of recommendat ions

per artwork is measured. . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Simulat ions for the case A ! 1 , r = 1
4 , 1

2 , 3
4 (left to right). E ach

simulat ion was run unt il t = 8 ð 106 . Solid lines indicate ½ = 1 + 1=r . 79
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5.4 Scaling of the fame distribut ion in each of the two phases at r = 1
4 (a),

r = 3
4 (b) and at the transit ion point r = 1

2 (c). T he inset in (b) shows

the right-hand tail with logarithmic axes. Convergence to the scaling

form is rapid for r = 1
4 and r = 3

4 but logarithmically slow for r = 1
2

| note that in the lat ter case the data (over exponent ially increasing

t imes) is slowly creeping toward the G aussian limit of (5.1.24) (solid

line). T he theoret ical limit of (5.1.23) (solid line) þts the case of r = 1
4

perfect ly, but the predict ion (5.1.30) from the rate equat ion approach

(solid line) þts the case of r = 3
4 only qualitat ively (besides agreeing

with the overall scaling). . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Simulat ions of K leinberg Navigat ion on a two-dimensional lat t ice con-

þrm that Þm in ! d. Shown is the average of 1000 runs where the

source and target were posit ioned L = 104 lat t ice steps apart . . . . . 94

5.6 K leinberg Navigat ion and anisotropy. Example message paths from a

source node s to a target node t along intermediary nodes ł . (Unused

long-range connect ions have been omit ted.) T he þnal long range con-

nect ion in (b), despite its length, has only shortened the path by one

step, since it lands so far \ oÞ-axis. " Note that s and t are closer in

(b) than in (a). Angular anisotropy is shown with histograms of 106

uniformly random angles in Eq. (5.2.6) with (c) b = 1 and (d) b = 3=2 . 96

5.7 Simulat ions for lat t ice anisotropy. A ll curves approach Þ( 1 ), regard-

less of b. T here is also a crossover eÞect where curves for b > 1 dip

below the b = 1 curve. T his is further explored in F ig. 5.10. See

F ig. 5.9 for the extrapolated Þ( 1 ). A horizontal scale of 1= ln2 L is

used throughout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.8 Simulat ions for angular anisotropy. A ll curves approach Þ( 1 ), regard-

less of b. Curves for b < 1 approach the inþnite limit at diÞering rates,

while curves for b > 1 evetually collapse onto the b = 1 curve. T his is

further explored in F ig. 5.11. See F ig. 5.9 for the extrapolated Þ( 1 ). 99
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5.9 Extrapolat ing to 1= ln2 L ! 0 with a linear least squares þt to the

curves in F igs. 5.7 and 5.8 shows excellent convergence of Þ( 1 ) to the

expected value of d = 2. Good values should occur when the curves

are  at test , which happens roughly around 0.25. A more robust þt t ing

procedure could be used, but the accuracy of these results imply that

it is unnecessary. T he horizontal lines at Þ = 2 provides a guide for

the eye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.10 To provide a measure of smoothing, cubic polynomials pb were þt ted to

the curves in F ig. 5.7. To clarify the impact of anisotropy, we show the

behavior relat ive to the isotropic case, by subtract ing p1 from each pb .

T his maps the isotropic curve to a horizontal line and introduces only

minor distort ion. T he crossover behavior for b > 1 is clearly displayed.

A more robust þt t ing may be necessary, but these results are st ill useful.101

5.11 Similar to F ig. 5.10 but for angular anisotropy. T his clearly shows the

b > 1 curves collapsing onto the b = 1 curve as L ! 1 , while the

b < 1 curves approach Þ( 1 ) at diÞering rates. . . . . . . . . . . . . . 102

5.12 Evidence that the crossover locat ions for b > 1 exhibit a power law

dependence on b. T he straight line is of slope 2. T he mechanism

generat ing this behavior remains unknown. I t is also an open quest ion

whether or not the power law exponent depends on the underlying
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A bst ract

T his thesis is concerned with three main areas of complex networks research. One is

on developing and test ing new methods to þnd communit ies, especially methods that

do not need knowledge of the ent ire network. T he second is on the applicat ion of shells

and their usage when characterizing and ident ifying important network propert ies.

F inally, we oÞer several contribut ions toward the usage of complex networks as a tool

for studying social dynamics.

T he study of communit ies, densely interconnected subsets of nodes, is a di Ž cult

and important problem. Methods to ident ify communit ies are developed which have

the rare ability to funct ion with only local knowledge of the network. A new bench-

marking and evaluat ion procedure is introduced to compare the performance of both

exist ing and new local community algorithms.

Using shells, we introduce a new matrix structure that allows for quant itat ive

comparison and visualizat ion of networks of all sizes, even extremely large ones. T his

\ portrait " encodes a great deal of informat ion including dimensionality and regularity,

and imparts immediate intuit ion about the network at hand. A distance metric

generated by comparing two portraits allows one to test if, e.g., two networks were

created by the same underlying generat ing mechanism. Generalizat ions to weighted

networks are studied, as is applicability to the Graph Isomorphism problem.

We introduce the Patron-Artwork model as a new means of generat ing a distribu-

t ion of fame or knowledge from an underlying social network, and give a full analysis

for a network where all members are neighbors. In addit ion, the so-called Small World

Phenomenon has been studied in the context of social networks, speciþcally that of

xviii
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K leinberg navigat ion. We studied the impact of modifying the underlying K leinberg

lat t ice by introducing an anisotropy: the lat t ice is either stretched along one axis or

long-distance connect ions are made more favorable along a preferred direct ion.
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I nt ro d uct ion

Complex, non-uniform interconnectedness is present in such diverse areas as human

society and social interact ion [1, 2, 3]; man-made technology such as the world wide

web [4, 5]; and even organic systems including food webs [6, 3], cellular biology [7], and

evolut ionary relat ionships [8]. Mot ivated by the discrete, nonlinear aspects present

in such areas, the þeld of Complex Networks has arisen to study these systems with a

variety of mathemat ical tools. A ll such systems consist of objects (people, web pages,

chemicals, etc.) and relat ionships (people that are friends, chemicals that react , web

pages that link to each other, etc.). Complex networks quant ify these structures

using Graphs, where nodes and edges represent the ob jects and their relat ionships,

respect ively.

Graph theory has a long, illustrious history, start ing with Euler and the bridges of

K  onigsberg [9], but it hasn't been unt il the recent availability of fast , cheap computers

that graph techniques were applicable to the very large networks of everyday life that

are most interest ing. T his has enabled the use of tools from Stat ist ical Mechanics

and other þelds, which are most viable for such (stat ist ically) large systems.

T he results presented here cover three broad areas of complex networks interest .

One is in the area of þnding com mu ni t ies, densely interconnected groups of nodes,

inside networks. Another is the applicat ion of shells, a non-local, non-global means

of decomposing a network, to study and characterize network structure. F inally, we

present several useful contribut ions to the area of social networ ks, using complex

networks to model intrinsic human behavior (and other phenomena).

We begin in Chapter 1 with a review of the most prominent terminology and

1
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background related to complex networks. T his includes graph theoret ic background,

such as the degree distribut ion, cycles, shells, etc., as well as the more famous random

graphs used to model various large-scale systems. Following this, in Chapter 2 we

introduce the problem of þnding communit ies, covering background material and

exist ing techniques as well as our own contribut ions (including a new local community

detect ion algorithm) and open quest ions.

Mot ivated by their appearance in our local community methods, in Chapter 3 we

present our study of shel ls, an interest ing property of networks that is neither local nor

global. We present a recursive system of equat ions meant to enumerate quant it ies of

interest related to shells, several new stat ist ics to help e Ž cient ly characterize networks

based on shells, and a new measure of bipart ivity, a means of quant ifying how \ close "

a network is to being bipart ite (two-colorable).

Informed by our work on shells, Chapter 4 introduces the network \ portrait , " an

ent irely new and very excit ing means to visualize and compare networks of any size.

We use these portraits to derive a distance metric between networks as well as pose

a variety of interest ing open quest ions including generalizat ion to weighted networks,

brute-force graph searching, and applicability to the Graph Isomorphism problem.

F inally, in Chapter 5 we present two contribut ions to the study of social dynamics,

one of the key applicat ions of complex networks. We introduce the Patron-Artwork

model as a tool to study how ob jects (movies, art , celebrit ies, etc.) become famous

by means of a simple recommendat ion mechanism inside a social network. Our sec-

ond contribut ion is to the study of K leinberg navigat ion, a social network model that

exhibits the smal l world phenomenon, the empirical fact that well-separated people

tend to be connected by surprisingly short chains of acquaintances. K leinberg nav-

igat ion is famous for its richness despite consist ing of a single parameter, although

it is not the most realist ic model for a society. We modify the K leinberg model by

introducing an anisotropy in the underlying lat t ice. A variety of open quest ions are

posed, including modiþcat ion of the navigat ion scheme in the face of a lat t ice with

\ voids, " which increase the model's realism by represent ing uninhabitable regions
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such as deserts, mountains, and so forth.

A þnal summary of this thesis, including a discussion of contribut ions as well as

open quest ions and avenues for future work, is presented in Chapter 6.



C hap ter 1

N etwor k D eþ ni t ions an d R ev iew

T he area of Complex networks is a relat ively recent þeld of study, but much of the

associated terminology comes from Graph theory, which has a much longer history.

Due to this close relat ionship, and the inherent interdisciplinary nature of the þeld,

compet ing, equivalent terms have arisen in many areas. Here we present a brief

overview of the most salient terminology, including alternat ives when available, but

this list is far from comprehensive.

ž A N etwor k is formally represented by a G rap h G = fV ; E g where V is the set

of no des (or vert ices), represent ing the ob jects in the network, and E is the set

of edges (or links) in the network, represent ing the connect ions or relat ionships

between the network's ob jects. T he total number of nodes is N = jV j and the

total number of edges is M = j E j. T he edge connect ing nodes i and j is typically

denoted e i j , e( i; j ), or somet imes just ( i; j ). A graph is sparse if M = O (N ).

ž T he degree (or valency) of a node is the number of connect ions it has to other

nodes. For graphs where at most a single edge is allowed between any two

nodes, the degree of a node is equivalent to the number of nodes ad jacent

to that node. Adjacent nodes are neighb ors and the set of nodes adjacent

to i is the neighb or hoo d of i . T he degree dist r ib u t ion P (k) gives the

probability for a node to have degree k in the network. T he number of nodes

4
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with degree k may be denoted as nk so that the \ empirical " degree distribut ion

is P (k) = nk =N . T he degree of node i is generally denoted k i .

ž For u n di rected graphs e i j = e j i . For di rected graphs (or digraphs), this is

not true, and edges are visualized as \ arrows " point ing from the t ail node to

the head node. T he head node is adjacent to the tail node, but the tail node

is not adjacent to the head node (unless there exists another connect ion).

ž A su bgrap h of G is a graph whose edges and vert ices are subsets of G 's.

ž A pa t h (or trail) between source node i and target node j is an alternat ing

sequence of nodes and edges, beginning with i and ending with j . T he pa t h

lengt h is the number of edges traversed in the path. T he shor test pa t h is

the path(s) with the smallest number of edges, and is typically the quant ity

of interest . A cycle (or circuit) is a closed path (one with the same source

and target). Simple paths and cycles are those where each node and edge

is traversed exact ly once. Unless otherwise stated, all paths and cycles will be

considered simple. T he dist ance between two nodes is the length of the shortest

(simple) path between them. ( T his shortest paths distance is somet imes known

as chemical distance or chemical space.) A t r iangle is the shortest simple cycle,

of length 3.

ž T he eccent r ici t y of a node is the length of the longest of all the shortest paths

from that node to any other node. T he dia meter of a graph is the length of

the longest of al l shortest paths; the maximum of all eccentricit ies.

ž If a path exists from every node to every other node, then that graph is con-

nected . If this is not true, then the graph consists of two or more con nected

com p onents: subsets of vert ices where each node in a component has a path

to every other node in that component .

ž An acyclic graph is one in which no cycles are present , and is called a forest .

A connected, acyclic graph is called a t ree.
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ž A weighted grap h is a graph where every edge is labeled with a weight (or

cost). T hese weights are typically real numbers, though they are somet imes

restricted to rat ional numbers or even integers. T he weight of a path, cycle, or

tree is the sum of the weights of the included edges. Shortest paths in weighted

graphs are those paths with the minimum weight , not the minimum length.

Unless otherwise stated, we consider graphs to be unweighted.

ž A mul t igrap h (or pseudograph) is one where mult iple edges (mul t i-edges or

parallel edges) can connect the same pair of nodes. A self-loop is an edge that

connects a node to itself. In the graphs throughout this work, unless otherwise

stated, neither are allowed.

ž A com plete graph of N nodes, often denoted K N , is the graph where all nodes

are adjacent . A complete subgraph is known as a clique.

ž T he cluster ing coe Ž cient C i of node i is a measure of how well-connected

the neighbors of i are to each other [10]. Speciþcally, for i having degree k i :

C i  
2 E i

k i (k i  1)
; (1.0.1)

where E i represents the number of edges between neighbors of i . T he maximum

number of edges between neighbors is k i (k i  1)=2, therefore 0  C i  1. T he

clustering coe Ž cient of the ent ire graph is taken as the average clustering over

all nodes, C = hC i i .

ž A ssor t a t i v i t y measures the degree-degree (and other) correlat ions between

nodes in the network [11, 12]. A network is considered assor t a t i ve when nodes

of like degree tend to connect to one another, and dissor t a t i ve (or disassor-

tat ive) when high-degree nodes tend to connect to low-degree nodes and vice

versa. T he assor t a t i v i t y coe Ž cient is essent ially the Pearson correlat ion

coe Ž cient between pairs of nodes:

r =
Tr e  jje2 jj

1  jje2 jj
; (1.0.2)
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where e i ; j denotes the fract ion of edges in the network that connect nodes of

type i to nodes of type j and jjx jj denotes the sum of all elements in x . For

degree-degree correlat ions, the type of a node is its degree.

0 1

2

34

5

6

7

11

12

13

14

15

16

17

18

19

20

21

22

23

8

24

9

26

27

28

10

29

25

One of the overriding themes of this work is the no-

t ion of shells (or layers). T he l-th shell of a node v is

the set of all nodes in G that are at a distance l from v .1

T hese shells are denoted as l-shells, or G l (v), and the

node v is somet imes referred to as the st ar t ing no de.

T he shell decom p osi t ion of G \ about " v is the set

f G 1(v); G 2(v); : : : ; G " (v)g, where " is the eccentricity of

v . An interest ing property of these shell decomposit ions is that they are neither a

local property, since they depend on all of G , nor are they a global property, since

they depend on a part icular start ing node. A decomposit ion is found in O (N + M )

steps using, e.g., the B read t h F i rst Search (B FS) or another search algorithm.

Regarding implementat ion, networks are typically represented in several ways.

One is the ad jacency m a t r i x A , where A i j = 1 if edge e i ; j exists, and zero otherwise.

T his matrix has many interest ing propert ies but becomes intractably large for very

large networks, since it is of size N ð N . Another storage format , which is more

e Ž cient than the adjacency matrix, is the edgelist , which can be thought of as

an M ð 2 matrix where row e contains the two nodes composing edge e. T his is

especially e Ž cient for sparse graphs, since it will only be of size O (N ). In addit ion, a

single network can be represented by many adjacency matrices and edgelists, since the

ordering of nodes and edges is arbitrary. T hese data structures are easily extended

to directed, weighted, and mult i- graphs.

Many types of ran dom networks have been proposed, typically consist ing of a

generat ing mechanism giving the subsequent degree distribut ion and other propert ies.

Here we list some of the more famous network models.
1Somet imes the shell is deþned as the subgraph of G consist ing of all nodes (and edges be-

tween those nodes) that are l steps away from node v . In this work , the deþnit ions are typically
interchangeable.
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ž T he earliest random network was the eponymous Erd }os-R  enyi (E R) graph, pro-

posed in 1959 [13]. T his graph consists of N nodes with an edge exist ing between

any two nodes with probability p. T he degree distribut ion is then B inomial

(Poissonian as N ! 1 ). An important characterist ic of E R graphs is that

they undergo a phase transit ion as p increases past a crit ical value, pc . For

small values of p, the graph most ly consists of small, separate groups of nodes,

but when p = pc = 1=N , the graph becomes connected (a \ giant " connected

component emerges).

ž Wat ts and Strogatz proposed a famous random network model in 1998, to de-

scribe how the Smal l World phenomenon arises [10]. T his describes the fact

that people tend to be much closer to each other than one would expect , based

on the E R model (the famous six degrees of separat ion ). T heir model consists

of a circular graph where nodes are connected to k-nearest neighbors. T his net-

work has a very high diameter (large world) unt il one begins to randomly rewire

a few edges, creat ing long-range contacts. T hese edges will rapidly collapse the

diameter of the graph, illustrat ing the small-world transit ion.2

ž In response to the empirical fact that many real-world networks have a few

highly connected nodes (or hubs), but most nodes have low degree, Barab  asi and

A lbert (B A) proposed their seminal model for generat ing scale-free networks:

networks with a power-law degree distribut ion, P (k) ¾ k  ½ [4, 14]. T heir model

consists of taking an init ial seed network of n ½ 2 nodes, introducing one or

more new nodes of degree m to the network at each t ime step, and connect ing

these newcomers to exist ing nodes based on their degree. T his model contains

two propert ies, growth and preferent ial attachment (rich-get-richer), that are

necessary to generate a power-law degree distribut ion. T he B A model always

generates scale-free networks with ½ = 3 but there exist other models that can

generate diÞerent values for ½.
2 We discuss a similar model illustrat ing the small world phenomenon, using a two-dimensional

lat t ice, in Chapter 5.
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ž One of the most general random network models is the con þgu ra t ion mo del,

somet imes referred to as the Molloy-Reed (MR) or Maximally Random (also

MR) model [15, 16, 17, 18]. Unlike the previous networks, this model accepts

the degree distribut ion as an input. To build a network, each node i out of N is

assigned k i \ stubs, " where k i is drawn from the chosen P (k). Uniformly random

pairs of these stubs are chosen and wired together, unt il all stubs are þlled.3

For two nodes of degree kv and kw , the probability that they are connected is

kv kw =2M , where M = 1
2

P
i k i . Since edges are placed at random, conþgurat ion

model networks exhibit none of the degree-degree correlat ions inherent in many

other models.

3 One should be concerned if a graph can be made that will satisfy a particular sample sequence:
the sum of the sampled degrees must be even, for example, or an empty connect ion will remain. In
general, we limit ourselves to graphs so large that the introduct ion of a single edge to avoid this will
not alter their propert ies. Self-loops and multi-edges are likewise neglible.
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A topic of current interest in the area of networks has been

the idea of communit ies and their detect ion. A C om-

mu ni t y could be loosely described as a collect ion of ver-

t ices within a graph that are densely connected amongst

themselves while being loosely connected to the rest of the

graph [19, 20, 21]. T his descript ion, however, is somewhat

vague and open to interpretat ion. T his leads to the pos-

sibility that diÞerent techniques for detect ing these com-

munit ies may lead to slight ly diÞerent yet equally valid

results. T hus, the community problem becomes that of

creat ing a part it ioning which maximally ident iþes the community structure.

Many social, technological, and biological networks exhibit community structure.

Applicat ions include studying the spread of disease (or, more generally, informat ion)

in social and communicat ion networks, since one expects faster transport within com-

munit ies than between; reducing very large graphs to smaller ones by studying only

the community structure (collapsing communit ies down to a single node); and even

the e Ž cient rout ing of both hardware and software within mult i-processor computers,

since the interconnect ions between separate C PUs will be slower than internal con-

nect ions, and their use should be minimized. See F ig. 2.1 for two example networks

10
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F igure 2.1: Two real-world networks with community structure. Shown is (a) the
2005 N C A A football schedule, and (b) the network of character interact ions from Les
M iserables by V ictor Hugo [23]. T he N C A A network is composed of teams who have
played against each other in the regular season, and exhibits a community structure
based on the conferences the teams are organized in, since teams tend to play within
their own conference more often. T he nodes in (a) are colored according to their
conference a Ž liat ion, while the nodes in (b) are colored from the result in F ig. 2.7.

which exhibit such community structure.

T he number of ways to part it ion a graph is extremely large, and it is intractable

to enumerate all of them. In fact , it has been shown that the problem of maximizing

modularity (see Sec. 2.1.3), often taken as equivalent to detect ing communit ies, is NP-

Complete, meaning it is easy to check a solut ion but di Ž cult to þnd one [22]. Due to

this, many detect ion methods are approximate, greedy opt imizat ions. Since þnding

communit ies is di Ž cult and has many applicat ions, it is an interest ing problem.
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2.1 E x ist ing M et ho ds

We begin by detailing the most historically important classes of community detect ion

methods. I t is a fairly new þeld; early results date from the 1970s, but it has only

recent ly become popular, in the past six years or so.

2.1.1 Sp ect ral grap h par t i t ioning

T he earliest form of community detect ion was the spectral graph part it ioning methods

due to F iedler in the 1970s and later Pothen, Simon, and L iou in 1990 [24, 25, 26]. T his

method splits the network into communit ies based on the eigenvalues and eigenvectors

of the G rap h L aplacian L (G ):

L i j  

8
>><

>>:

k i ; if i = j ;

 1; if i 6= j and 9 e i j ;

0; otherwise;

(2.1.1)

where G is an undirected, unweighted graph and k i is the degree of node i . T his is

also known as the Laplacian matrix, Combinatorial Laplacian, K irchhoÞ 's Matrix, or

the Admit tance Matrix.

Brie  y, some interest ing propert ies of the Graph Laplacian.

ž T his matrix is symmetric, singular (rows sum to zero), and posit ive-semideþnite.

ž T he number of dist inct span ning t rees of G is equal to any cofactor of L [27],
[28, page 57] . T his is known as the matrix-tree theorem or K irchhoÞ 's T heorem.

ž Since L is symmetric, its eigenvalues are real and its eigenvectors are real and
orthogonal.

ž T he number of connected components in G is equal to the mult iplicity of zero
as an eigenvalue. T his means that ½1 = 0 and ½2 6= 0 iÞ G is connected.

ž T he eigenvalues are nonnegat ive: 0 = ½1  ½2  Ð Ð Ð  ½N .

ž T he second smallest eigenvalue ½2 is known as the algeb raic con nect i v i t y of
G and acts as a lower bound on the number of edges connect ing two part it ions
in G . In other words, the larger ½2 is, the more \ di Ž cult " it is to cut G into
pieces [28].
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R
F igure 2.2: T he cut

number R for a part i-

t ion of two equally sized

groups.

T he actual part it ioning algorithm is quite simple and exploits the values of the

eigenvector v2 (often known as the F ied ler Vector ), corresponding to ½2: for each

node n in V , if v2(n) < 0, put n in group N  ; otherwise, put n in group N + . If

one wishes to þnd further sub-communit ies (sub-part it ions), this algorithm can be

repeated by treat ing each part it ion as a separate graph.

To see the algorithm, let us derive the cut number R [24, 25, 26], [28, pages 268 {

270]. We wish to divide the graph's nodes into two groups while minimizing the

number of edges R that must be cut to disconnect them:

R =
1
2

X

i ; j in

diÞeren t

grou ps

A i j =
1
4

X

i ; j

A i j (1  s is j ) ; (2.1.2)

where

s i =

8
<

:
+ 1; if vertex i belongs to group 1,

 1; if vertex i belongs to group 2.
(2.1.3)

T he spectral bisect ion method seeks to choose an appropriate part it ion to minimize

R . Rewrit ing the þrst sum,

X

i ; j

A i j =
X

i

k i =
X

i

s2
i k i =

X

i ; j

s is j k i Ž i j ; (2.1.4)
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gives R solely in terms of the Laplacian:

R =
1
4

X

i ; j

s is j (k i Ž i j  A i j ) =
1
4

s T Ls; (2.1.5)

where s is the vector with elements deþned by Eq. (2.1.3). Writ ing s in terms of the

normalized eigenvectors v i of L ,

s =
NX

i = 1

a i v i (2.1.6)

where a i = v T
i s, reduces R :

R =
1
4

X

i

a i v T
i L

X

j

a j v j =
1
4

X

i

a2
i ½ i : (2.1.7)

T hus, R for a given part it ion depends ent irely on the eigenvalues and eigenvectors of

L .

T here is a trivial solut ion which must be avoided. Since L is singular, v1 =

(1; 1; 1; : : :)=
p

N is always an eigenvector with eigenvalue ½1 = 0. If one chooses s = v1

then R = 1
4

P
i a2

i ½ i = 1
4 a2

1½1 = 0, which is certainly minimized. T his corresponds to

choosing a group of size N and a group of size zero. In other words, the graph has

not been part it ioned at all. To avoid this solut ion, þx the two group sizes at N 1 and

N 2 . T his constrains a1:

a2
1 =

 
v T

1 s
Ð2 =

(N 1  N 2)2

N
: (2.1.8)

Instead, minimize R by focusing on v2 (hence it's known as the F iedler vector).

Since ½2 is the next smallest eigenvalue, we (roughly) minimize R by maximizing a2 .

To do this, we want s to be parallel to v2 but the elements of s are constrained to

š 1. T he basic method is an at tempt to do the best we can:

s i =

8
<

:
+ 1 if v2( i) ½ 0;

 1 if v2( i) < 0:
(2.1.9)

with some swapping to sat isfy a1 . T his also just iþes the importance of ½2 (the alge-

braic connect ivity), since it places a lower bound on the value of R .
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Overall, this method works very well, but may not always be ideal. A part it ion

is always returned, regardless of whether or not the graph naturally possesses com-

munit ies, and the size of each group is arbitrary. T his may or may not be useful,

depending on the applicat ion. A lso, the number of part it ions found is always even,

which may not be natural for a part icular network.

Due to the drawbacks with spectral graph part it ioning, and the recent rise in

interest in networks in other areas, completely diÞerent methods to þnd communit ies

have been invest igated. T hese methods generally fall into one of two categories:

di v isi ve methods, where (typically) the edges of the graph are cut in a speciþc order,

usually based on a centrality measure, or agglomera t i ve methods, where all nodes

begin in their own community (of size 1), and these communit ies are then merged

step-wise in some prescribed order [29].

2.1.2 D i v isi ve com mu ni t y par t i t ioning

Perhaps the most famous divisive method is the one due to Newman and G irvan

[3, 30, 31], it uses E dge B etween ness, and is very intuit ive. T he betweenness of

an edge is the number of t imes that edge appears in the all-pairs shortest paths.

Edges that often part icipate in shortest paths are more \ central " in that they are

more responsible for transportat ion across the network. Cut t ing high-betweenness

edges then part it ions the network. T his method is expensive, however. F inding edge

betweenness for a graph scales like O (N 2), since one must þnd all the shortest paths,

and this must be recalculated after each edge is cut , for a total cost of O (N 3). T his

becomes prohibit ive for larger networks. For an example of a progressive sequence of

divisive part it ioning, see F ig. 2.4

In addit ion to edge betweenness, one can deþne part it ioning schemes based on a

variety of centrality measures such as closeness centrality,1 which uses the sum of all
1 O ther centrali ty measures include Degree centrali ty, which is just the node's degree; Straightness

centrali ty, which uses the inverse of the shortest path lengths; E igenvector centrali ty, which uses
the elements of the eigenvector corresponding to the largest eigenvalue of the adjacency matrix;
and Information centrali ty, which uses the change in a quantity similar to straightness under node
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F igure 2.3: T he Zachary K arate C lub [32], a famous community detect ion bench-
mark due to the fact that Zachary observed the club split in half over an argument
about membership dues [3]. Edges with higher Betweenness are thicker. Note that
betweenness has not been shared equally over paths of equal length, as is usually the
case. T his is best seen in the two edges leading to the right-most node.

shortest path lengths from a node, and one can use other divisive measures such as

node removal [19, 1]. T hese methods typically scale no bet ter than betweenness with

equivalent or lower accuracy (for testable cases such as the Zachary karate club) [2],

so betweenness has remained the deþnit ive centrality measure used within divisive

part it ioning algorithms.

delet ion.
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(a) (b)

(c) (d)

F igure 2.4: An example divisive community part it ioning where edges with higher
betweenness are cut þrst . Shown is a graph with 0 cuts (a); 100 cuts (b); 120 cuts,
where the graph þrst splits (c); and 500 cuts.
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2.1.3 M o d ular i t y an d agglomera t i ve com mu ni t y detect ion

To combat the expense of betweenness, and to measure the accuracy of a discovered

part it ion, Newman introduced a quant ity called M o d ular i t y [31], and then an ag-

glomerat ive algorithm using it to þnd communit ies [33]. T his algorithm was then

reþned, giving a cost of O (N log N ) [34]. T his is one of the most computat ionally

e Ž cient algorithm to date and recent improvements [35] have made it up to 70 t imes

faster, allowing analysis of networks with 5 ð 106 or more nodes.

Modularity is a stat ist ic used to evaluate how \ good " a part icular community

part it ioning is; it does not þnd the part it ioning. Since a good part it ion will maximize

the number of edges inside each community, it makes sense to deþne a stat ist ic that

measures the rat io of intra-community edges to the total number of edges for that

part it ion. For a community part it ioning such that vertex v belongs to community cv ,

the fract ion of edges within communit ies compared to the total number of edges is
P

v;w A v;w Ž(cv ; cw )
P

v;w A v;w
=

1
2M

X

v;w

A v;w Ž(cv ; cw );

where Ž(cv ; cw ) = 1 if v and w are in the same community and 0 otherwise. T his

stat ist ic has its largest value of 1 in the trivial case where all vert ices belong to a

single community. To correct this, subtract the expected value of the same quant ity

in the case where edges were randomly placed (no community structure present). T he

probability of an edge exist ing between vert ices v and w if connect ions are made at

random (and respect ing exist ing vertex degrees) is kv kw =2M , where k i is the degree

of vertex i . T hen, modularity is deþned to be2

Q  
1

2M

X

v;w

 
A v;w  

kv kw

2M

 
Ž(cv ; cw ): (2.1.10)

Following modularity, an agglomerat ive algorithm was introduced [38]. T his works

by þrst considering each node a community of its own and, at each step, merging the

two communit ies (by re-introducing an edge) that will give the largest (posit ive)

2 Further reþnements and a more compact matrix notation are presented in [36] and [37].
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change in Q , Ð Q . T his is then repeated unt il only one community remains, and

the step with the maximum Q is chosen as the þnal part it ion. In other words, an

approximate (greedy) opt imizat ion of Q is employed. Combined with certain data

structures,3 this yields an extremely e Ž cient algorithm, with O (N log N ) cost [34].

2.2 A L ocal C om mu ni t y D etect ion M et ho d4

O ften a network is too large to be fully represented or it's too expensive to explore

in its ent irety. For example, the internet has too many hyperlinks that are changing

too much to be succinct ly stored in a central locat ion. Another example would be

researchers surveying a social populat ion, perhaps in a prison or an isolated tribe.

T hey might not have the t ime or resources to interview every member of the society,

but they might st ill want to know the community of a part icular person such as a

leader or authority þgure. Local methods, capable of þnding a part icular community

within a network without requiring knowledge of every single node and edge are thus

of extreme importance.

Here we present a unique community detect ion algorithm: it uses only local infor-

mat ion and is wholly unlike the previously ment ioned spectral bisect ion, divisive, or

agglomerat ive methods. T his method þnds a single community inside the network's

full structure; global applicat ions capable of þnding the full community part it ion as

well as a hierarchy of sub-communit ies will also be introduced.

T he proposed algorithm consists of an l-shell spreading outward from a start ing

vertex, l = 0; 1; : : : ; " . As the start ing vertex's nearest neighbors and next-nearest

neighbors, etc., are visited by the l-shell, two quant it ies are computed: the emerging

degree and tot al emerging degree. T he emerging degree of a vertex is deþned as

the number of edges that connect that vertex to vert ices the l-shell has not already
3 Essentially, instead of calculating Q , instead store and update a matrix containing Ð Q i ; j , the

change in modularity when merging communit ies i and j . T his is more e Ž cient since Ð Q will always
have fewer entries than A and merging two communit ies will only alter a few elements in Ð Q .

4 P u b lished i n [39]
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visited as it expanded from the previous l  1; l  2; : : : ; 0-shells. Edges between

vert ices within the same l-shell do not contribute to the emerging degree.

Let us introduce the following notat ion:

ke
i ( j )  emerging degree of vertex i from a

shell started at vertex j ; (2.2.1)

K l
j  total emerging degree of a shell of

depth l start ing from vertex j . (2.2.2)

T he total emerging degree of an l-shell is then the sum of the emerging degrees of

all vert ices on the leading edge of the l-shell. T his can also be thought of as the

total number of emerging edges from that l-shell [40]. At depth 0, the total emerging

degree is just the degree of the start ing vertex. At depth l , it is the total number of

edges from vert ices at depth l connected to vert ices at depth l + 1. T he total emerging

degree at depth l is not necessarily the number of vert ices at depth l + 1, though this

approximat ion is often valid.

I t follows from (2.2.1) and (2.2.2) that

K l
j =

X

i 2 G l ( j )

ke
i ( j ); (2.2.3)

with K 0
j = k j . In addit ion, let us deþne the relat ive change in total emerging degree

Ð K l
j ,

Ð K l
j  

K l
j

K l  1
j

; (2.2.4)

for a shell at depth l start ing from vertex j .

T he algorithm works by expanding outward from some start ing vertex j and

comparing the change in total emerging degree to some threshold Þ. When

Ð K l
j < Þ; (2.2.5)

the l-shell ceases to grow and all vert ices covered by shells of a depth  l are listed

as members of vertex j 's community. More speciþcally:

1. Start at l = 0, at vertex j , add j to the list of community members, and compute
K 0

j .
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2. Spread outward, l = 1, add the neighbors of j to the list , and compute K 1
j .

3. Compute Ð K 1
j . If Ð K 1

j < Þ, then a community has been found. Stop the
algorithm.

4. E lse repeat from step 2 for increasing l , unt il Þ is crossed or the ent ire connected
component of j has been added to the community list .

T he total emerging degree of an l-shell started from within a community will

tend to increase as l increases, since there tend to be many interconnect ions within

communit ies. When the l-shell reaches the \ border " of the community, the number

of emerging edges tends to decrease sharply. T his is because, at this point , the only

emerging edges are those connect ing the community to the rest of the graph which

should be, by deþnit ion, less in number than those within the community.

By introducing a single parameter, Þ, and monitoring Ð K l
j , the l-shell's growth

can be stopped when it has covered the community. I t is this fact that allows for the

start ing vertex to detect its community locally: at the last depth before Þ is crossed,

it does not mat ter where the emerging edges lead.

Our method is not perfect , however, and it is possible for the l-shell to \ spill

over " the community it is detect ing. T his is dependent on how the start ing vertex

is situated within the graph: if it is closer (or equally close) to some non-community

vertex or vert ices than to some community vert ices, the l-shell may spread along two

or more communit ies at the same t ime. To alleviate this eÞect , one can run the

algorithm N t imes, using each vertex as a start ing vertex, and then achieve a group

consensus as to which vert ices belong to which communit ies.

T he idea of having an expanding l-shell encompass a community is not in it-

self new. T he algorithm in [40] expands mult iple l-shells simultaneously from the n

vert ices of highest degree (the hubs) unt il all vert ices are within an l-shell. While

computat ionally inexpensive, the number of communit ies detected is arbitrarily pre-

assigned and the possibility of two hubs within the same community is neglected. In

addit ion, it requires simultaneous knowledge of the ent ire network.

T his method has also been generalized to weighted networks, by using summing
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the weights on the emerging edges instead of count ing them [41].

2.2.1 G lobal ap plica t ion

T he above local algorithm is a method for a single vertex to determine something

about its own community membership. I t seems reasonable that , by surveying all the

locally-determined membership list ings, one should be able to generate an idea of the

global structure of the network. Here we propose a simple method using a member-

ship matrix to obtain such a picture and to overcome membership overlap (vert ices

claimed by mult iple communit ies; the part it ion is now a cover) when determining a

\ consensus " part it ioning of the network.

For any given start ing vertex j , the algorithm can return a vector v j of size N ,

where the i th component is 1 if vertex i is a member of the start ing vertex's community

and 0 otherwise. T hese vectors can be assembled to form an N ð N \ membership

matrix "

M = (v1 jv2 j Ð Ð Ð jv N ) T ; (2.2.6)

where the j th row contains the results from using vertex j as the algorithm's start ing

point . T his allows for a good way to visualize the resultant data when start ing the

algorithm from mult iple vert ices.

Unfortunately, this matrix is arbitrarily ordered depending on how vert ices are

mapped to rows. We introduce a simple sort ing step to overcome this. To begin,

we deþne a \ distance " D M between rows i and j as the total number of diÞerences

between their elements:

D M ( i; j )  
NX

k = 1

h
M ( i; k) 6= M ( j ; k)

i
; (2.2.7)

where [P ] = 1 if proposit ion P is true and 0 otherwise. In other words, this is the

Hamming distance between rows i and j .

Now we perform a simple sort ing algorithm on M . Start ing at row i = 1:

1. F ind D M ( i; j ) for all rows j > i .
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2. P ick the row that is the \ closest " to row i (call it row k) and interchange it
with row i + 1. T his requires swapping rows i + 1 and k and swapping columns
i + 1 and k . Columns are swapped because a row interchange is equivalent to
a renumbering of the involved vert ices, so that new numbering must be kept
consistent throughout M .

3. Repeat for row i + 1.

Unfortunately, the sort ing step can be computat ionally expensive. F inding each

distance costs O (N ). When the sort ing algorithm begins at the þrst row, there are

N  1 distances to þnd, so the cost of the þrst sort is O (N (N  1)) ¾ O (N 2). Sort ing

the next row requires þnding N  2 distances, and so forth. T herefore, since there

are N rows, the total cost is
NX

i = 1

N (N  i) = N
 

N 2  
1
2

N (N + 1)
 

¾ O (N 3): (2.2.8)

T he result of this sort ing / renumbering is a matrix that is much more indicat ive

of structure. Well-separated communit ies appear as blocks along the diagonal and

imperfect ions within the blocks can indicate substructure. See F igs. 2.5 and 2.6(a).

T he þnal set of D 's can also be used to generate the hierarchy of subcommunit ies.

2.2.2 F in ding a hierarchy of su b-com mu ni t ies

Sort ing the membership matrix already provides a useful means of visualizing the

results of all the diÞerent runs of the local algorithm, but this is not enough to

determine how any present sub-communit ies relate to larger communit ies. T herefore,

we introduce a further operat ion to apply to M to generate a dendrogram of the

community structure.

For row i , we compute a cumulat ive row distance, C D i :

C D1 = 0;

C D i = D M ( i; i  1) + C D i  1

=
iX

j = 2

D M ( j  1; j ): (2.2.9)
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(a) (b)

F igure 2.5: Unsorted and sorted Membership matrices, N C A A 2005 season. T he four
bot tom rows are the independent teams (Army, Navy, Notre Dame, and Temple).

P lot t ing the row number i versus the cumulat ive distance C D i will yield a collec-

t ion of points of increasing value falling into discrete bands that indicate the members

of each community. See F ig. 2.6(b) for an example. Note that the row number i is

the new sorted number i for that vertex: one needs to keep track of all the individual

sort ing operat ions to maintain the original number of that vertex. T hese plots are

useful for visualizat ion but are not strict ly necessary to generate the sub-community

hierarchy. F inally, to yield a dendrogram of the community structure, perform the

operat ion out lined in Table 2.1.

Grouping the rows of the sorted M as per Table 2.1 is equivalent to grouping the

vert ices of the graph together into a sub-community hierarchy. T his is also similar

in form to many agglomerat ive or clustering techniques, with the row distances of M

used as a similarity measure. T hese groupings can then be used to generate a den-

drogram of the sub-community structure if we assume that each vertex is a singleton

before we started grouping and that after the largest distance is used, all vert ices are

grouped together. See F ig. 2.7 for an example dendrogram. T his algorithm was later

applied by Porter, et . al. [41] to þnd the hierarchical structure of the US House of

Representat ives, based on commit tee vot ing pat terns, and was shown to be the most
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F igure 2.6: (a) T he sorted membership matrix for the Les M is network with Þ = 6:9
and (b) a plot of the cumulat ive row distances from (a).

accurate of the tested methods.

2.2.3 C onclusions an d fu t u re wor k

I t is worth point ing out that one can apply the same sort ing algorithm to the adja-

cency matrix, and this will often give a similar block-diagonal structure when commu-

nit ies are present . T his does not mean that we do not need the membership matrix.

Instead, this is an indicat ion of þnite-size eÞects: for real-world networks such as the

N C A A football schedule, nodes within the same community are typically neighbors.

T his is why the adjacency matrix will exhibit the same block diagonal structure. T his

should not be expected in general, and thus the local algorithm is st ill important .

T he disadvantage of M is the expense of calculat ing, storing, and sort ing it .5 In

principle, one need not init iate the local algorithm from all N vert ices, but instead

from just O (C ) vert ices, where C is the number of communit ies present , since you

really only need one start ing node per community. T his will be much more e Ž cient ,

since we typically expect C − N . Future research will study the eÞect iveness of the
5 I t is worth noting that the sorting cost in Eq. (2.2.8) is rather naive and improvements, such as

using a heap, may reduce this cost to O (N 2 ln N ), for example.
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Table 2.1: C lustering the sorted membership matrix to þnd sub-communit ies. We
move downward, grouping together all the vert ices whose corresponding rows are
closer together than D m in unt il we arrive at a row that is farther away than D m in .
T hen we start a new group and begin grouping the subsequent vert ices together unt il
we again þnd a row that is farther away than D m in , and so forth. T his is repeated
using the next smallest D M ( i  1; i) as D m in . T his has a course-graining eÞect: as we
use larger values of D m in , farther vert ices will start grouping together.

1. d   1.

2. For the sorted M , compute D M ( i  1; i) for all i = 2; : : : ; n .

3. Choose the smallest D M ( i  1; i) (often zero for ident ical rows). Call it D m in .

4. Cd   empty queue. / / clustering queue

5. enqueue 1st vertex  ! Cd .

6. For i = 2; : : : ; n :

(a) If D M ( i  1; i) > D m in :

i. d   d + 1.
ii. Cd   empty queue.

(b) enqueue i-th vertex  ! Cd .

7. Repeat from 3 for next smallest D M ( i  1; i), generat ing next level of the den-
drogram, unt il all have been used.

discovered part it ioning both as a funct ion of Þ and as a funct ion of the fract ion of

start ing nodes.6 Another area that must be studied when start ing from less than N

nodes is the fract ion of the network that is detected, since it is possible to never visit

nodes if no l-shells spread to them. T his will be a funct ion of both the number of

start ing nodes and Þ, since a very large Þ will allow even a single l-shell to spread very

far.7 Porter, et al. have also generalized our local algorithm to weighted networks and
6 Perhaps a three dimensional plot showing modularity as a funct ion of the fract ion of start ing

nodes and Þ . One expects this to reach a saturation point for some number of start ing nodes, after
which increasing the number of start ing nodes will not improve the detected partit ioning. T his
remains an open quest ion.

7 Perhaps another three dimensional plot , showing the fract ion of the network \ discovered " as a
funct ion of both Þ and the number of start ing nodes.
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 1 2 5 6 7 8 9 10  46 47  54 53 35 36 37 38 39  30 19 20 21 22 23 18 17  24 31  69 70 76  42  43 41 26  51  40 56 57 55 58 68 60 62 64 66  63  65 59 67 61 77 49 74 75 48 28  16 14 33 15 12  11 34  44 73 45 29  4  3 32 13 25 27  50 52  71 72

F igure 2.7: T he dendrogram of sub-communit ies for the Les M is network, calculated
using the change in corresponding row distances shown in F ig. 2.6(b). T he coloring
applied at the bot tom was generat ing by cut t ing the dendrogram 8 levels from the
top, and is also shown in F ig. 2.1(b).

methods have been developed to choose Þ based on maximizing the modularity [41].

We hope to apply these results in our future work, as well.

2.3 I m p roved L ocal C om mu ni t y M et ho ds8

Since the publicat ion of the local method described in Sec. 2.2, several new algorithms

have appeared. In this sect ion, we brie  y detail some of these algorithms, as well

as propose a very simple yet surprisingly eÞect ive new local method. Due to the

proliferat ion of compet ing methods, an ob ject ive b ench m ar k ing scheme would allow

a researcher to compare methods, as well as create and reþne methods for improved

accuracy. Here we propose such a scheme.

We will focus our new benchmarking procedure on two exist ing algorithms, due

to C lauset [42] and Luo, Wang, and Promislow (L W P ) [43], as well as a simple new

8 To a p p ea r , J . St a t . M ech.
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method. Several other local methods exist , including those due to F lake, Lawrence,

and G iles [44] and Bagrow and Bollt [39] (Sec. 2.2), but these are either reliant on

a priori assumpt ions of network propert ies (limit ing applicability to speciþc types of

networks, such as the W W W), or tend to be accurate only when used as part of a more

global method. O ther methods (for example, [45, 46, 47, 48]) concern themselves with

local community structure, but either require global knowledge to þrst determine this

structure, or are deþned locally but do not provide a deþnit ive part it ion necessary

for evaluat ion [49, 47, 50]. Some of these methods may work locally with simple

est imates of global values such as the total number of nodes but we neglect these as

well, mainly for brevity. A lso, some works (e.g. [51]) use similar terminology but are

not concerned with local methods in the sense discussed here (they are local in the

space of all possible graph part it ions, not in the network itself ).

A ll three algorithms begin exploring the network from a start ing node s and divide

the explored port ion into two regions: the community C , and the set of nodes adjacent

to the community, B (each has at least one neighbor in C ). At each step, one or more

nodes from B are chosen and agglomerated into C using some agglomerat ion scheme,

then B is updated to include any newly discovered nodes so that all neighbors of

nodes in C are known. T his cont inues unt il an appropriate stop ping cr i ter ia has

been sat isþed.9 When the algorithms begin, C = fsg and B contains the neighbors

of s: B = f n(s)g. See F ig. 2.8(a).

2.3.1 E x ist ing local met ho ds

T he C lauset algorithm focuses on nodes inside C that form a \ border " with B : each

has at least one neighbor in B . Denot ing this set C b or der , and focusing on incident

edges, C lauset deþnes the following local modularity:

R =

P
i ; j þ i j [i =2 B ][ j =2 B ]

P
i ; j þ i j

; (2.3.1)

9 Many \ methods " actually consist of just the agglomerat ion scheme, including most of what is
discussed in Sec. 2.3.1. We will discuss stopping criteria later in Sec. 2.3.4.
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where þ i j is the adjacency matrix comprising only those edges with one or more

endpoints in C b or der and [P ] = 1 if proposit ion P is true, and zero otherwise. E ach

node in B that can be agglomerated into C will cause a change in R , Ð R , which

may be computed e Ž cient ly. At each step, the node whose agglomerat ion would give

the largest Ð R is agglomerated. T his modularity R lies on the interval 0  R  1

(deþning R = 1 when jC b or der j = 0) and local maxima indicate good community

separat ion, as shown in F ig. 2.9. For a network of average degree d, the cost to

agglomerate jC j nodes is O (jC j2d).

T he LW P algorithm deþnes a diÞerent local modularity, which is closely related

to the idea of a weak community [21]. Deþne the number of edges inside and exit ing

C as M in and M ou t , respect ively:

M in =
1
2

X

i ; j

A i j [i 2 C ][ j 2 C ]; (2.3.2)

M ou t =
X

i ; j

A i j [i 2 C ][ j 2 B ]: (2.3.3)

T he LW P local modularity M f is then:

M f (C ) =
M in

M ou t
: (2.3.4)

When M f > 1=2, C is a weak community, according to [21]. T he algorithm consists

of agglomerat ing every node in B that would cause an increase in M f , Ð M f > 0,

then removing every node from C that would also lead to Ð M f > 0 so long as the

node's removal does not disconnect the subgraph induced by C . (Removed nodes are

not returned to B , they are never re-agglomerated.) F inally, B is updated and the

process repeats unt il a step where the net number of agglomerat ions is zero. T he

algorithm returns a community if M f > 1 and s 2 C . Similar to the C lauset method,

the cost of agglomerat ing jC j nodes is O (jC j2d).

2.3.2 O u twar d ness agglomera t ion

F inally, we present a new (almost toy model) algorithm, as an illustrat ion of how sim-

ple a local method can be and as a new test set t ing for our benchmarking procedure.
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F igure 2.8: (a) T he community C is surrounded by a boundary of explored nodes
B . T his explorat ion implies an addit ional layer of nodes that are known only due to
their adjacencies with B . (b) Two nodes i and j in B , with  i = 2=3 and  j =  1.
Moving node j into C will give improved community structure, compared to moving
i .

Let us deþne the \ outwardness "  v (C ) of node v 2 B from community C :

 v (C ) =
1
kv

X

i 2 n (v )

 ð
i =2 C

Ł
 

ð
i 2 C

Ł  
(2.3.5)

=
1
kv

 
kou t

v  k in
v

Ð
; (2.3.6)

where n(v) are the neighbors of v . In other words, the outwardness of a node is the

number of neighbors outside the community minus the number inside, normalized by

the degree. T hus,  v has a minimum value of  1 if all neighbors of v are inside C ,

and a maximum value of 1  2=kv , since any v 2 B must have at least one neighbor

in C . Since þnding a community corresponds to maximizing its internal edges while

minimizing external ones, we agglomerate the node with the smallest  at each step,

breaking t ies at random. See F ig. 2.8(b).

T his method is e Ž cient for the following reasons. When a node v 2 B is moved

into C , only the neighbors of v will have their outwardness' altered. For a neighbor

node i 2 n(v), the change in  i is just Ð  i =  2=k i since only a single link can exist
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between v and i . If node i was not previously in B , it will now have a single edge

to C and  i = 1  2=k i . Calculat ing  i at each step thus requires knowing only k i ,

which may be expensive (for example, on the W W W), but need only be calculated

upon the init ial discovery of i .

For e Ž ciency, one can maintain a min-heap of the outwardness' of all nodes in B

then, at each step, extract the minimum with cost O (log jB j), and update or insert

the neighboring  's. For a network with average degree d, the cost of this updat ing is

O (d2 log jB j). T his is often an overest imate, depending on the community structure,

since a node's degree need only be calculated once. T hen, the cost of agglomerat ing

jC j nodes is O (jC jd2 log jB j). T he relat ive sizes of C and B are highly dependent on

the part icular network and the current state of the algorithm, but jB j ¾ jC j seems

reasonable. A sparse network with rich community structure would give a cost of

O (jC j log jC j).

While seeking to agglomerate the least outward nodes at each step seems natural,

it lacks a nicely deþned quality measure, analogous to R in the C lauset agglomer-

at ion (or Q for global algorithms). To overcome this we simply track M ou t during

agglomerat ion. T he smaller this is the bet ter the community separat ion, so we expect

local minima in M ou t when a community has been fully agglomerated. In addit ion,

M ou t can be easily computed alongside agglomerat ion. A fter agglomerat ing node v ,

the change in M ou t is just Ð M ou t = 2kou t
v  kv : As shown in F ig. 2.10, M ou t provides

useful informat ion about a real-world networks' community structure, in this case the

amazon.com co-purchasing network.10

Using M ou t as a measure of quality is not ideal, however: it's not normalized,

and (like the C lauset modularity) obtains a trivial value when the ent ire network has

been agglomerated. T he lat ter is less of an issue for local methods. More worrisome

is the fact that M ou t may also be trivially small when C is small. See F ig. 2.9 for a

comparison of R and M ou t . We cont inue to use M ou t for the sake of simplicity, but

more involved measures may certainly lead to improved results.
10 T his data was generated by crawling the actual links on each amazon product page that point

to co-purchased products. T his network evolves over t ime and results are necessarily altered.
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F igure 2.9: Comparison between quality measures for the C lauset algorithm, R , and
the method presented here, M ou t . Shown are the average of 500 realizat ions of the
128 node ad hoc networks (Sec. 2.3.3), for zou t = 1; 2; : : : ; 6.

2.3.3 B ench m ar k ing

We now reach the main focus of this sect ion, a speciþc method for test ing the accuracy

of local algorithms. We will show that our new method provides insight into how and

why a local algorithm performs well or poorly. I t will also be shown to be useful for

designing new algorithms as well as comparing exist ing ones.

T he procedure consists of two components: the construct ion of suitable art iþcial

\ test " networks, which possess a tunable degree of community structure, and a means

of measuring how accurate the algorithm's result is compared to the test network's

built in communit ies. We discuss new and exist ing test networks and an informat ion

theoret ic means of comparing the \ real " and \ found " community part it ions.
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500 ð 500 lat t ice
Erd }os-R  enyi
P lanet E arth: B B C Series, D V D
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F igure 2.10: Comparison of a seminal physics text and a popular D V D ( # 1 seller
at the t ime of calculat ion) on the amazon.com co-purchasing network. F luctuat ions
in M ou t in both items indicate the presence of non-trivial community structure. T he
smooth curve at bot tom is for a 2D periodic lat t ice of 500 ð 500 nodes and the
Erd }os-R  enyi graph has N = 104 and hk i = 3.

Test grap hs

I t has become standard pract ice to test community algorithms with synthet ic net-

works that possess a given community structure and a parameter to control how well

separated the communit ies are. T he tradit ional example is the so-called \ ad hoc "

network [31, 52], which typically possess 128 nodes divided into four equally sized

communit ies. E ach node has (on average) degree z = z in + zou t = 16, where zou t is

the number of links a node has to nodes outside its community. A smaller zou t (and

correspondingly larger z in ) leads to communit ies that are easier to detect .

T hese ad hoc networks have a sharply peaked degree distribut ion. Since local

algorithms are dependent on a part icular start ing node, their accuracy might be
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i j

k l

F igure 2.11: T he rewiring scheme to build the
new art iþcial networks. For two communit ies
(gray), two external edges (solid lines) are re-
moved and two internal edges (dashed) are cre-
ated, further separat ing the communit ies. One
must make sure that the dashed edges do not al-
ready exist , otherwise edges are being destroyed
instead of moved.

aÞected if the start ing node is a hub or a leaf.11 So one would also like more realist ic

synthet ic networks which possess a wider degree distribut ion, such as a power law.

To do this, we propose the following:

1. Build a graph G of N nodes and M edges, perhaps using the conþgurat ion model
and a given degree distribut ion. T hroughout this work, we use Barab  asi-A lbert
graphs of N = 512, and m0 = 8.12

2. Randomly part it ion the nodes of G into two or more groups. T hese will serve as
the \ actual " communit ies. We limit ourselves to four equally sized part it ions.

3. Choose random pairs of edges that are between the same two groups and rewire
them to be within the groups, in such a way that the degree distribut ion is
unaltered.

T his rewiring (or switching) technique, replacing edges ( i; j ) and (k ; l) with edges ( i; k)

and ( j ; l) [55, 56], has been used in the past to destroy the presence of community

structure, allowing for a null model to test for false posit ives [57]. Here we do the

opposite, and communit ies become more sharply separated as the number of rewirings

increases. See F ig. 2.11.

Since the part it ion is random, the init ial modularity Q 0 will be very small. As

edges are moved within communit ies, the þrst sum in Eq. (2.1.10) will grow but

the second term will remain unchanged, since the degree distribut ion is unaÞected.
11 We term the lowest degree node in the network the \ leaf, " which is not necessarily of degree 1.
12 T hese are built quickly by relaxing the constraint on mult i-edges, which are then removed [53,

54]. T he total number of edges will vary slightly, and the lowest degree nodes often have less than
m0 neighbors.
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T herefore, the modularity of the actual part it ion Q (t) after t pairs of edges have been

moved is

Q (t) = Q 0 +
2
M

t: (2.3.7)

Rewiring M =4 pairs of edges will give Q ³ 1=2.

I t has been shown that even random networks can possess large values of Q [58, 46].

T his is due to the sparsity of such networks when, e.g., hk i  2. T he benchmark

networks used here possess much higher hk i .

E valua t ion

Any local method creates a binary part it ion of the network into the community itself,

C , and the remaining non-communnity nodes, ~C = V  C . In a realist ic set t ing V is

unknown, but synthet ic benchmarks allow one to know the full division. In addit ion,

for a synthet ic benchmark, the true part it ion PR = f C R ; ~C R g is already known, while

the found part it ion P F = f C F ; ~C F g may diÞer.

Tradit ionally, the accuracy of the found communit ies is quant iþed by the fract ion

of correct ly ident iþed nodes. T his has been shown to have drawbacks [52] and the

binary part it ioning of a local algorithm poses further problems. For example, if the

algorithm fails to stop in t ime, it has st ill ident iþed every node in the community

correct ly, there are just addit ional nodes incorrect ly at tributed to that community.

Should each incorrect node give a penalty? If the algorithm incorrect ly þnds one

community of N nodes, when there were actually K communit ies of N = K nodes

each, one could assign a + 1=N for each correct node and  1=N for each incorrect

node, giving a composite score of 2= K  1. T his means that synthet ic networks

with diÞerent K 's cannot be direct ly compared. While scores could be subsequent ly

re-normalized to lie between 0 and 1, we propose an alternat ive that avoids these

problems and is unambiguous. (Sec. I X of [46] provides another alternat ive.)
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Following the applicat ion introduced in [59], we use Normalized Mutual Informa-

t ion [60, 61] to measure how well PR and P F correspond to each other:

I (PR ; P F ) =
 2

P
i

P
j X i j log

 
X i j N

X i : X : j

 

P
i X i : log

 X i :
N

Ð
+

P
j X : j log

 
X : j
N

 ; (2.3.8)

where X is a 2 ð 2 matrix with X i j being the number of nodes from real group i that

were placed in found group j , X : j = X 1 j + X 2 j , and X i : = X i1 + X i2 . In a sense,

I (PR ; P F ) is a measure of how much is known about part it ion PR by knowing part it ion

P F , with I = 1 corresponding to perfect knowledge, and I = 0 to no knowledge at all.

A plot of I versus zou t or the number of rewirings will give a picture of how accurate

an algorithm manages to ident ify the benchmark's communit ies as they become more

di Ž cult to þnd.

In general, the confusion matrix X is N R ð N F where N R and N F are the number of

real and found communit ies, respect ively. T he applicat ion of Eq. (2.3.8) is a limit ing

case corresponding to the binary part it ioning inherent to local algorithms. Comparing

part it ions is a problem more general than the scope presented here: see App. A for

other ideas and general background material, including a derivat ion of Eq. (2.3.8).

In most þgures, we have included a \ faked " global method, the C lauset-Newman-

Moore (C NM) algorithm [33, 34], for comparison. T his was done by running C NM to

þnd the part it ioning with the highest modularity, one random community was desig-

nated C , and the other communit ies were grouped together in ~C . A local algorithm

is unlikely to match the accuracy of a global method, as shown. More accurate algo-

rithms than C NM exist , meaning the gap between local and global methods is often

worse than illustrated.

2.3.4 Stop ping cr i ter ia

A fter ident ifying an appropriate agglomerat ion scheme, a local method must also be

able to correct ly stop adding nodes. T his point is often neglected and, as will be

shown, is a crit ical component in the accuracy of a local algorithm. Here we suggest
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two possible schemes and will use the techniques and benchmarks of Sec. 2.3.3 to

compare them. I t is important that the stopping criteria is also local; a criteria which

spreads to the ent ire network then þnds, e.g., the largest values of Ð M ou t is no longer

a local algorithm.

T hese stopping criteria are essent ially divorced from the agglomerat ion schemes of

most local algorithms, allowing one to mix and match to þnd more accurate methods.

We show this with the C lauset and new method from Sec. 2.3. T he LW P algorithm

already contains a stopping criteria and we use it unaltered.

St rong com mu ni t ies

As per [44, 21], a subgraph C ² G is a st rong community (denoted \ ideal " in [44])

when every node in C has more neighbors inside C than outside:

k in
i (C ) > kou t

i (C ); 8 i 2 C : (2.3.9)

T his local quant ity allows for a very simple, natural stopping criteria: agglomerate

nodes unt il the community becomes strong then, at each agglomerat ion step, check

k in and kou t for the newly chosen node and stop agglomerat ing if the community

would cease to be strong. If C never becomes strong, the algorithm won't termi-

nate, indicat ing a possible lack of community structure in the explored region of the

network.

As shown in F ig. 2.12, this \ strong to not " criteria works well for sharply sepa-

rated communit ies, but tends to fail as the contrast decreases. In a sense, a strong

community is too strong of a requirement: as the dist inct ion between communit ies

blurs, some nodes must fail Eq. (2.3.9), despite probable membership in C .

We generalize the not ion of a strong community in the following way. A commu-

nity is p-st rong if Eq. (2.3.9) holds, not for all, but only a fract ion p (or more) of the

nodes:
X

i 2 C

h
k in

i (C ) > kou t
i (C )

i
½ p jC j : (2.3.10)
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Equat ions (2.3.9) and (2.3.10) are equivalent when p = 1, while the requirement

becomes increasingly lenient as p decreases. T his allows one to tune the sensit ivity

by varying p. See F ig. 2.13.

An addit ional beneþt of Eq. (2.3.10) is that mult iple values of p can be used

simultaneously,13 since a community that is p1-strong is also p2-strong (p1 > p2).

More speciþcally, for the actual fract ion peÞ ,

peÞ =
1

jC j

X

i 2 C

h
k in

i (C ) > kou t
i (C )

i
; (2.3.11)

C is p-strong for all p  peÞ , and not p-strong for all p > peÞ .

To use, simply choose a set of appropriate parameters, f p1; p2; : : :g, perform the

local algorithm, and maintain the state of C as each p i stopping criteria is sat isþed.

One can further use a quality value, such as M ou t or R , and choose the best corre-

sponding C i (in this case, that with the smallest M ou t or largest R14). T his \ best of

f pg " stopping criterion does not ent irely negate the introduct ion of a new parameter;

choosing p too small (e.g. p = 0:1) can lead to stopping very early. For this work,

we use f pg = f 0:75; 0:76; : : : ; 1:0g, but this may be worth further explorat ion. See

F igs. 2.14 and 2.15.

In addit ion to strong communit ies, weak communit ies have been deþned [21]. A

community is weak when M in > 1
2 M ou t . We have found the usage of a \ weak-to-not "

stopping criteria to be problemat ic. T he impact of a single agglomerat ion is so small

that the community will blissfully cont inue to grow, far past an appropriate stopping

point . Just as the strong stopping criteria is too strong, a weak stopping criteria is

too weak. See Sec. 2.3.5 for further ideas, however.

Furthermore, it should be kept in mind that these strong communit ies can be

sat isþed by random networks [46, 58], so perhaps this is not the best start ing point
13 Indeed, since stopping criteria are often divorced from agglomerat ion, all manner of criteria may

be used simultaneously, to the point where test ing to stop can be more expensive than agglomerat ing.
14 We limit ourselves to choosing the smallest M o u t > 0 (R < 1), unless every C i has M o u t = 0

(R = 1). T his dist inct ion is important for þnite graphs, causing a curious (and artiþcial) increase in
accuracy for larger values of zo u t (smaller numbers of rewirings). T his is because inaccurate results
that previously spread to most of the network now spread to the enti re network and are subsequently
being ignored, raising the average value of I (P R ; P F ).
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for a local stopping criteria. Our benchmarking procedure will also show (Sec. 2.3.5)

that there is room for improvement , especially when the communit ies are less clearly

separated.

Trailing least squares

Inspired by plots of R and M ou t , and in an eÞort to increase accuracy when community

structure is less favorable, we propose another stopping criteria, based on þt t ing a

polynomial to M ou t (or R) to þnd local minima / maxima. Suppose n nodes have been

agglomerated, þt y = ax2 + bx + c to the þrst n  3 values of M ou t . T hen extrapolate

y to points n  2, n  1, n and test the following:

1. parabola opens downward, a < 0 an d ,

2. n  3 >  b=2a an d ,

3. M ou t ( i) > y( i), i = n; n  1; n  2 an d ,

4. M ou t (n) ½ M ou t (n  1) ½ M ou t (n  2).

If all are sat isþed, stop agglomerat ing (and remove the þnal three nodes).

As shown in F ig. 2.12's inset , when you pass the border of the community, M ou t

will start to increase, while the parabola, unaware of the next three values, cont inues

downward. T his works whether the minima is a cusp or just an in  ect ion point , so

one need not resort to test ing þrst versus second diÞerences in M ou t , etc. The þt t ing

also provides a degree of smoothing.

T his criteria is somewhat involved and has several semi-arbitrary factors: one

could extrapolate to a diÞerent number of points, relax some of the constraints, þt

a diÞerent order polynomial, cont inue þt t ing unt il the criteria ceases to be sat isþed,

etc. T hese choices (especially criteria 3 and 4) were actually informed by running

the benchmarking procedure over mult iple possibilit ies, and choosing the best one,

showing that one can use the benchmarks and Eq. (2.3.8) to actually design new

algorithms. Our results indicate that the criterion as chosen work well, but further

reþnement is certainly possible. We also use this with the C lauset method by þt t ing
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F igure 2.12: T he \ strong to not " and trailing least squares stopping criteria for the
128-node ad hoc networks using the C lauset method and the new algorithm presented
here. E ach point is averaged over 1000 realizat ions. Inset: an example of the trailing
least-squares þt t ing procedure.

a line to R , since Eq. (2.3.1) tends to grow linearly in the þrst community. Both þts

have similar accuracy, as shown in F ig. 2.12.

2.3.5 R esul ts an d discussion

T he results of simulat ions, shown in F igs. 2.14 { 2.17, indicate the relat ive accuracies

of the various algorithms and stopping criteria. These þgures show how performance

degrades as the communit ies become less separated (larger zou t or smaller number of

rewirings). Error bars represent ing the variance have been omit ted for clarity, but

note that they are comparable across all algorithms, increase as the communit ies

become more di Ž cult to þnd, and are larger than for the global method.

As shown in F igs. 2.14 and 2.17, the LW P method performs extremely well for

clearly separated communit ies, with a rapid decrease in accuracy as the separat ion
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F igure 2.13: Comparison of various p-strong stopping criteria for the 128 node ad hoc
networks using the new algorithm shown in Sec. 2.3.

blurs. T he \ best of f pg-strong " ( F igs. 2.14 and 2.15) and trailing least-squares

( F igs. 2.14 and 2.16) stopping criteria þrst perform at comparable accuracy for both

algorithms for the 128-node ad hoc networks, but the trailing least-squares tends to

perform bet ter as community dist inct ion blurs. Trailing least-squares outperforms

f pg-strong in the 512-node networks ( F ig. 2.15 vs. F ig. 2.16), suggest ing that the size

of the community impacts accuracy (which might be expected when þt t ing data).

Overall, the best of f pg-strong has the least accuracy but is also least aÞected

by the degree of the start ing node. Meanwhile, trailing least-squares performs bet ter

overall but is more dependent on the start ing node. T he LW P algorithm is also quite

accurate overall, though trailing least-squares can outperform it when the community

separat ion is less clear.

T he \ take-home message " from F igs. 2.14 { 2.17 is this: the performance of a lo-

cal algorithm is far more dependent on the stopping criteria than the agglomerat ion

scheme. Both the new algorithm and the C lauset algorithm have nearly ident ical
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F igure 2.14: An overall comparison of the various methods for the 128-node ad hoc
networks, averaged over 1000 realizat ions. T he LW P method is by far the most accu-
rate for low zou t , while the trailing least-squares methods oÞer the best performance
at higher values. ( T he art iþcial behavior of both `best of f pg' criteria for large zou t is
discussed in Appendix 2.3.4.)

accuracy when using the same stopping criterion. Addit ionally, there is no clear

winner among the algorithms, and they don't perform nearly as well as global meth-

ods. T he benchmarking procedure shows that these local methods can beneþt from

improvements.

T he agglomerat ion schemes presented share many similarit ies, and a certain amount

of \ cross-pollinat ion " is possible. For example, accuracy may improve if one main-

tains the outwardness of nodes after agglomerat ion and, as per LW P, remove every

node from C with posit ive outwardness. Another possibility is simply agglomerat ing

all nodes with the minimum  together, instead of breaking t ies. T his is not neces-

sarily a trivial diÞerence: the agglomerat ion histories may diverge since the sequence

of nodes exposed to B can diÞer.
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F igure 2.15: Using the \ best of f pg-strong " criteria on the 512-node rewired scale-free
networks, for f pg = 0:75; 0:76; : : : ; 1. E ach point is the average of 500 realizat ions.
T he eÞect of reject ing any individual p-strong results where M ou t = 0 (R = 1) (see
Appendix 2.3.4) is more apparent for these networks, especially for hub nodes.

T here is much room open to develop accurate stopping criteria, and this should be

a primary focus of further research. For example, the not ion of a weak community can

also be generalized to provide a (perhaps improved) stopping criteria. As deþned, a

community is weak when M in > 1
2 M ou t . T his can be generalized by introducing

a parameter to control how strict the constraint is: a community is p-weak when

M in > pM ou t . T hus, a weak community corresponds to 1
2 -weak, and the LW P stopping

criteria is 1-weak. While the introduct ion of a further parameter is not ideal, and

the lack of performance of the p-strong criteria versus the trailing least-squares is not

promising, it may st ill be worth pursuing this and other, similar stopping criteria.

Furthermore, stopping criteria using LS-sets and k-cores, as ment ioned in [21], may

also be worth invest igat ion.

In addit ion to þnding a single community, any local method could be easily
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F igure 2.16: A comparison of the trailing least-squares criteria for both the new
algorithm and the C lauset method, using the rewired scale-free networks. Start ing
from a hub tends to be the most accurate, except when the communit ies are very well
separated.

adapted to þnd more community structure, simply by running the local algorithm

mult iple t imes (possibly without repeated agglomerat ion of nodes or similar modiþ-

cat ions). T hese quasi-local methods may not have the same level of accuracy as a

global method | agglomerat ing communit ies sequent ially may lead to compounding

errors | but it may st ill be worth pursuing, even if only as an init ializat ion step for

a diÞerent algorithm.

T here is an implicit assumpt ion, in all these methods, that the underlying network

is truly undirected. O f course, this is not generally true. In the W W W it is easy to

know what pages an explored web page links to, but it is impossible to know how many

other pages may link to the explored page. T hese back links are simply disregarded

by the local methods, and it seems a di Ž cult problem to overcome, especially when

applying a quasi-local method (with back links cont inually being discovered as more



45

C NM
Random
Leaf
Hub

number of rewirings, t

I(
P

R
;P

F
)

1300 1200 1100 1000 900 800 700 600

1

0.8

0.6

0.4

0.2

0

F igure 2.17: T he LW P algorithm used on the rewired scale-free networks. LW P
performs very well for large numbers of rewirings, but becomes progressively worse
as less edges are moved. Both extremes, hubs and leaves, decrease overall accuracy.

communit ies are found). One possible way to overcome this is to maintain  v after

agglomerat ion, then go through all the found communit ies, remove nodes with, say,

 > 0, then re-agglomerate them into the community with the smallest outwardness.

Another idea, suggested in [44] is to use a global index, such as a search engine,

to list all the back links. I t seems that in a diÞerent context , such as a part ially

explored social network, one has no choice but to ignore these back links unt il they

are discovered, then adjust the results accordingly.

2.3.6 C onclusions

Much recent work has been applied to the problem of þnding communit ies in complex

networks. We have focused on the idea of þnding a part icular community inside of a
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network without relying on global knowledge of the ent ire network's structure, knowl-

edge that is unavailable in a variety of areas. We have introduced a new and very

simple local method, with a running t ime of O (jC j log jC j). Several types of stop-

ping criteria have been introduced, which can be used in conjunct ion with diÞerent

agglomerat ion schemes.

Using Normalized Mutual Informat ion, we have introduced a simple and unam-

biguous means of quant ifying the accuracy of a local algorithm when applied to a

synthet ic network with pre-deþned community structure. Synthet ic networks with

generalized degree distribut ions have been used to allow one to test the impact of the

start ing node's degree, something not possible with exist ing ad hoc networks.

T hese techniques have been applied to compare the accuracy of a variety of ag-

glomerat ion schemes and stopping criteria and we feel they will be of great use when

test ing newly designed local algorithms. T he fact that mult iple stopping criteria

and algorithms can perform with comparable accuracy shows that the community

problem is ill-posed to the point of requiring heurist ic methods, and thus it is worth

using an evaluat ion scheme to compare and contrast alternat ive methods. Developing

improved stopping criteria should be a primary goal for future work in this area.

2.4 C onclusions an d O p en Q uest ions

T he problem of ident ifying communit ies in complex networks has yielded a diverse

collect ion of possible solut ions. From the original spectral bisect ion methods, through

to the divisive and agglomerat ive techniques, all have provided unique and interest-

ing solut ions to this di Ž cult problem. T he emergence of modularity as a means of

quant ifying the quality of a discovered part it ion has allowed for rigorous comparison

and evaluat ion of community detect ion algorithms.

Here we presented a unique method for detect ing communit ies based on how

shells are more interconnected within communit ies than between them. T his also

allows for a community to be detected within a network without requiring knowledge
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of the ent ire network, a rare and extremely useful property. A global applicat ion

of this method was devised as well as a means of ident ifying the hierarchy of sub-

communit ies and future work will consist of modulat ing between these two extremes,

to þnd a good balance between e Ž ciency and accuracy.

Much work has been done following the introduct ion of our original shell-based

local algorithm. In response to this, we have created a new benchmarking procedure

which allows researchers to create new algorithms and determine quant itat ively how

they perform. T his method used art iþcial benchmark networks and a part it ion simi-

larity measure built around normalized mutual informat ion and showed that stopping

criteria are more important for accuracy than agglomerat ion schemes. Several stop-

ping criteria were studied, with mixed results. Improvements for these criteria should

become the primary focus of research on such local methods. O ther problems inher-

ent to local methods, including back links, were discussed, as were new applicat ions

for þnding mult iple communit ies (quasi-local methods). T here remains many fruitful

areas of research worth exploring with this problem.



C hap ter 3

Shells

T he concept of shells (Ch. 1) and the decomposit ion of graphs into shells, also known

as the inter-vertex distance distribut ion or shell tomography, has been an important ,

underlying concept in the ma jority of the work presented here. T he local community

detect ion scheme, presented in Sec. 2.2, used the variat ion in shell interconnect ivity

due to the underlying community structure to part it ion a network without resort ing

to computat ionally expensive global stat ist ics or centrality measures. A method to

enumerate cycles based on shells (and to relate cycles with community-like structure)

is also presented in App. B . Here we delve into the topic direct ly, deriving new stat is-

t ics for quant ifying networks, est imat ing said stat ist ics based on assuming an uncor-

related degree distribut ion, and þnally present ing a new way to measure bipar t i v i t y ,

a means of quant ifying how \ close " a network is to being bipart ite (two-colorable).

T he study of shells will also inform the primary results of Ch. 4.

3.1 Per i met r ic E dges1

We propose that a useful measure of a network is the distribut ion of what we refer to as

Per i met r ic E dges.2 Edge e j ;k is perimetric to a start ing node i when d( i; j ) = d( i; k),

1 W or k con d uc t ed w h ile v isi t i ng L os A la m os N a t ion al L a b or a t or y, T -7, su m m er 2005.
2 Properly, the decomposi t ion of edges into perimetric and non-perimetric groups.
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where d(x; y) represents the length (number of edges) of the shortest path between

nodes x and y in G . Perimetric edges always lie within shells.

A perimetric edge inside the d-th shell always part icipates in at least one odd

cycle. One would like to use these perimetric edges to est imate the number of cycles

in a network3 but , while every odd cycle does contain a perimetric edge, cycles can

easily share these edges, so the relat ionship is not clear in general.

Using perimetric edges, we deþne the following stat ist ic:

N Per ( i)  the number of edges that are peri-
metric to node i .

(3.1.1)

In addit ion, we can deþne a similar stat ist ic for edges:

E Per (e i ; j )  the number of nodes that edge e i ; j
is perimetric to. (3.1.2)

I t seems reasonable to expect that perimetric edges are related to network prop-

ert ies such as feedback and redundancy, due to the relat ionship with cycles, and to

have networks manifest diÞerent propert ies when the distribut ions of perimetric to

non-perimetric edges are diÞerent . For example, trees will have no perimetric edges,

while large random networks (with uncorrelated degree distribut ions) should have a

very narrow distribut ion of N Per ( i) and E Per (e i ; j ). Meanwhile, these stat ist ics are very

inexpensive to compute, compared to the full distribut ion of cycles [62].

Intuit ively, we expect that edges with a very large E Per will be less central, since

such edges will part icipate in a lower number of shortest paths. In other words,

E Per and edge betweenness should be ant i-correlated. F igure 3.1 explores this, and

conþrms such intuit ion, but the relat ionship is quite weak. Out liers in these plots

may be due to regions of peculiar odd-cycle overlap in the network. T his remains an

open quest ion, however.
3 T he importance of the distribution of cycles is discussed more fully in App. B .
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F igure 3.1: Scat ter plot of edge perimetricity (horizontal) versus edge betweenness
(vert ical). E ach data point represents an edge in the graph. (a) An Erd }os-R  enyi
graph with 300 nodes and p = 0:03. (b) A Barab  asi-A lbert graph with 300 nodes and
m = 3. While there is some correlat ion between the two quant it ies, it is very weak,
especially in (a).

3.2 Shell D ist r ib u t ions

We wish to compute the expected number of edges that are perimetric to a start ing

node of degree ks in a random network with a given (uncorrelated) degree distribut ion

P (k). Much work has been done studying the shell decomposit ions (somet imes re-

ferred to as tomography ) of random networks [63, 64, 65, 66]. We proceed as in [65, 66]

with ident ical notat ion but several small alterat ions to improve the results for small

networks or small start ing node degree. Essent ially, we will \ build " the network by

wiring shells together, one at a t ime, from a start ing node. By keeping track of

the distribut ions of edges within and between shells, we can calculate quant it ies of

interest such as the node perimetricity.

We consider a graph with N nodes of degree given by some distribut ion P (k) with

k 2 [m; K ]. At this point , the graph consists of N detached nodes with node i having

k i open connect ions (or stubs), like the conþgurat ion model. We choose a start ing

vertex with ks open connect ions, and we wire those connect ions to ks other nodes,

thus generat ing the þrst shell. (See F ig. 3.2 for a helpful illustrat ion of this sect ion's
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F igure 3.2: T he notat ion used
in Sec. 3.2. T he dashed semi-
circles indicate the l-th shell.
Shown is ks , the degree of the
chosen start ing node;  l , the to-
tal number of open connect ions
exit ing G l ; S l , the number of
edges connect ing G l  1 to G l ; and
T l , the total number of open con-
nect ions outside of G l .

notat ion.)

A ll the nodes in shell 1 have one link taken, while the rest of their connect ions

are open. T hen, when wiring shell 1 to the remaining open connect ions, one can wire

links to nodes outside of the shell or to other nodes within the shell. W iring a link

back to the same shell generates a perimetric edge. A fter all the open connect ions

in shell 1 are wired, shell 2 is generated and the process repeats unt il all connect ions

are closed.

Let us derive the probability that a node with degree k is outside of the þrst l

shells, denoted by P l (k). F irst , the number of open connect ions outside of shell l is

T l = N
X

k

kP l (k): (3.2.1)

T he probability that an open connect ion in shell l links to a free node with degree k is
k

 l + T l  hk l i , where  l is the number of open connect ions exit ing shell l and hk l i ³  l=N l

is the average out-degree of nodes in shell l , with N l as the number of nodes in shell

l . T he  hk l i term tries to account for self-loops.

Now, we can get the condit ional probability for a node with degree k to be outside
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the þrst l + 1 shells, given it is outside of the þrst l shells. T his is the probability that

the node does not connect to any of the  l open connect ions exit ing shell l:

P (k ; l + 1jl) =
 

1  
k

 l + T l  hk l i

½  l

: (3.2.2)

T he probability that a node with degree k will be outside shell l + 1 is P l + 1(k) =

P (k ; l + 1jl)P l (k). F inally:

P l (k) = P0(k)
l  1Y

i = 0

 
1  

k
 i + T i  hk i i

½  i

: (3.2.3)

We can also use P l to count the number of nodes in a shell:

N l = N
X

k

P l  1(k)  N
X

k

P l (k): (3.2.4)

Now, let's look at the behavior of  l and S l , where S l + 1 is the number of links

entering the l + 1 shell. This equals the number of connect ions exit ing shell l minus

twice the number of perimetric edges in shell l (since each perimetric edge uses two

outgoing connect ions).

For any given open connect ion in shell l , there are  l + T l  hk l i possible sites to

connect to. O f those sites,  l  hk l i lead to a perimetric edge. T hus, the (approximate)

probability for a perimetric edge within shell l is

P l (per) =
 l  hk l i

 l + T l  hk l i
: (3.2.5)

Since there are  l=2 possible perimetric edges in shell l , then the number of perimetric

edges in shell l , denoted by ł l , is

ł l =
 l

2

 
 l  hk l i

 l + T l  hk l i

 
: (3.2.6)

Any open connect ions in shell l that do not form perimetric edges must then

connect to shell l + 1. T herefore:

S l + 1 =  l

 
1  

 l  hk l i
 l + T l  hk l i

 
: (3.2.7)
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T he number of connect ions emerging from all nodes in shell l + 1 is T l  T l + 1 . T his

is the number of connect ions from shell l to shell l + 1, which is S l + 1 , plus the number

of connect ions leaving shell l + 1, which is  l + 1 . Rearranging this gives

 l + 1 = T l  T l + 1   l

 
1  

 l  hk l i
 l + T l  hk l i

 
: (3.2.8)

Now, Eqs. (3.2.1), (3.2.3), and (3.2.8) form a recursive system that can be iterated

numerically with init ial condit ions  0 = ks and P0(k) ³ P (k), k 2 [m; K ], with P (k),

m, K , and N known. Equat ions (3.2.4) and (3.2.6) let us compute quant it ies of

interest to our stat ist ics such as the number of nodes per shell and the number of

edges perimetric to a start ing node i with degree ks: N Per ( i) ³
P

l ł l .

F igure 3.3 compares these results with simulat ions. Small networks have been

purposefully simulated to illustrate accuracy despite þnite size eÞects.4 Both of these

networks are uncorrelated, however, and F ig. 3.4 illustrates how the theory breaks

down when this assumpt ion is no longer true.

3.3 B ipar t i v i t y

A network is bipart ite (two-colorable) if it can be successfully part it ioned (colored)

into two groups such that no nodes of the same group are neighbors. B ipart ite

networks have many applicat ions in areas including social networks [67, 68]. Recent ly,

interest has emerged in bipar t i v i t y , a quant ity measuring how close to bipart ite a

network is [69, 70]. T his previous work has introduced bipart ivity measures based

on frustrated edges of the Ising model [69] or by using spectral measures of the total

number of cycles in a graph versus even-cycles [70].

A relat ionship between bipart ivity and perimetric edges is expected, since a net-

work is bipart ite when no odd-cycles are present [71]. Mot ivated by this, and by

4 For the theoret ical result , we have chosen the approximate degree distribution P (k) ³ n k =N ,
taken from a corresponding simulated network .
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F igure 3.3: T he number of nodes per shell, from Eq. 3.2.4 (  ), compared to simu-
lat ions averaged over 50 runs ( ð ). Shown is an Erd }os-R  enyi network of 2000 nodes
with p = 0:005 (a) and a Molloy-Reed (conþgurat ion model) network of 5000 nodes
with P (k) ¾ k  2:5 (b). For E R graphs, the number of perimetric edges per shell is
simply N l (N l  1)p=2. A degree-one start ing node was chosen for both theory and
simulat ion.

previous measures of bipart ivity, we introduce the following related measures:

bm a x  1  
min (N Per )

M
; (3.3.1)

bmea n  1  
mean (N Per )

M
; (3.3.2)

bm in  1  
max (N Per )

M
; (3.3.3)

with N Per ( i) given by Eq. (3.1.1). For a bipart ite network, no odd-cycles are present

and N Per ( i) = 0 for all i . Meanwhile, N Per ( i) must grow as odd-cycles are introduced.

T herefore, b = 1 for bipart ite networks and decreases as more edges in the network

violate \ two-colorability " . We expect the diÞerences between bm in , bm a x , and bmea n to

be minimal, since the distribut ion of N Per ( i) should be sharply-peaked, especially for

larger networks.5 See Table 3.1 for the bipart ivity measures of various networks, for

b deþned using the min, the mean, and the max of N Per .
5 T his is usually true, but exceptions are possible (see Table 3.1, speciþcally the airline network).

If one consistently uses min, mean, or max when comparing networks, this should not pose a problem,
since b is a relat ive quantity.
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F igure 3.4: T he number of nodes per shell, from Eq. 3.2.4 (  ), compared to simu-
lat ions averaged over 100 runs ( ð ). Shown is a Barab  asi-A lbert network of 5 ð 105

nodes with m = 2. T his network, unlike those shown in F ig. 3.3, has correlat ions, and
this is evident in the lack of alignment between the two curves. T hese correlat ions
lower the diameter, pushing the curve both leftward and upward, compared to the
uncorrelated case.

To þnd a lower bound on b, let us consider the complete graph of N nodes. T his

graph has M = N (N  1)=2 edges. A ll but N  1 of these edges are perimetric to

any node, giving b = 1  (N  2)=N . I t follows that lim
N ! 1

b = 0, therefore 0 < b  1

for any þnite network. In pract ice, b < 1=2 or even 2=3 can be interpreted as being

far from bipart ite.

3.4 C onclusions an d O p en P roblems

We have presented a recursive analysis of the shell distribut ions of uncorrelated net-

works, introduced a new set of stat ist ics to study large networks e Ž cient ly, and ap-

plied these stat ist ics to generate a computat ionally e Ž cient calculat ion of bipart ivity.
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Table 3.1: B ipart ivity for various networks. A network becomes \ more bipart ite " as
b ! 1. In pract ice, the diÞerence between min, mean, and max can be appreciable
(although this is rare), but the diÞerences decrease as b ! 1.

Network N M bm a x bmea n bm in

K arate [32] 34 78 0.731 0.664 0.564

Prison [72] 67 142 0.739 0.659 0.585

CS PhD a [73] 1025 1043 0.994 0.993 0.988

N C A A 2005b [74, 75] 117 616 0.576 0.465 0.386

Grassland [76] 88 137 0.839 0.795 0.730

Scot . Corps.c [73, 77] 228 358 1.000 1.000 1.000

Les M iserables [23] 77 255 0.557 0.482 0.392

USA ir97 [73, 78] 332 2126 0.602 0.424 0.276

Rogets [73, 79] 994 3640 0.605 0.580 0.555

O DLIS [73, 80] 2898 16376 0.561 0.494 0.410

a T his network is composed of PhD advisors and their students, and is very nearly a tree (cycles

are introduced by students with mult iple advisors).
b From published schedule at www . ncaa . o r g.
c T his network is composed of corporations and their executives as nodes, and is bipart ite.

Further study of the fundamental impact of the distribut ions of perimetric versus

non-perimetric edges, including their relat ionship to the distribut ion of cycles, is im-

portant . One can also improve our current bipart ivity measures by using a random

sampling of start ing nodes, and then study how the \ part ial " b converges to the actual

value. Addit ionally, larger simulat ions such as those shown in F ig. 3.3 can be used to

judge the accuracy of Eqs. (3.2.1) { (3.2.8), especially when comput ing ł l .
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N etwor k Por t rai ts

Building upon our earlier work with shell distribut ions, we introduce a new tool for

analyzing complex networks. T his tool, a network portrait , will be shown to have

several unique propert ies, making it highly useful for both quant itat ive and qualitat ive

analysis.

4.1 I nt ro d uct ion1

A di Ž cult problem when studying networks is that of comparison and ident iþcat ion.

G iven two networks, how similar are they? Are they ident ical or, more appropriately,

do they arise from the same generat ing mechanism? G iven a real-world network, such

as a protein-protein interact ion network or an electrical network, how can one deter-

mine which random network model most accurately captures the relevant structure?

At the most rigorous level, this is the G rap h Isomor p hism problem: G = (V ; E )

is isomorphic to G 0 = (V 0; E 0) if there is a bi ject ion  : V ! V 0 such that e(x; y) 2 E

iÞ e(  (x);  (y)) 2 E 0 [28]. L ike many di Ž cult problems, it is often easier to disprove

isomorphism: if N 6= N 0 , then G and G 0 can never be isomorphic. In addit ion,

discrepancies between the degree distribut ions would also disprove isomorphism. O f

course, these comparisons do not capture all of a graph's structure. In addit ion,
1 P u b lished i n [81].
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F igure 4.1: P lanar embeddings and adjacency matrices for a small network. I t is
di Ž cult to tell visually that these represent the same network, even at such a small
size.

for very large random networks, which are of the most interest , the probability of

two networks randomly chosen out of the ensemble of all possible networks being

isomorphic is negligible. Graph Isomorphism is, in a sense, too strict of a result: we

wish to determine if networks are stat ist ically \ similar, " not ident ical.

Ideally, one would like to have a data structure that exact ly and uniquely encodes

the network. Exist ing structures such as adjacency matrices and edge- or adjacency-

lists fail to do this: permutat ions of rows and columns in the adjacency matrix allow

for isomorphic graphs to have diÞerent adjacency matrices (though such operat ions

preserve spectra), Meanwhile, edge-lists and other structures are also vulnerable to

relabeling, and þnding the mapping between two such lists is the ent irety of the graph

isomorphism problem. See F ig 4.1.

To answer these quest ions, we propose a new matrix structure B that is truly

independent of vertex labeling; it is isomorph-invariant:

B l ;k  the number of start ing nodes with
k nodes in shell l .

(4.1.1)

T his matrix captures a great deal of structural informat ion about the network, start-

ing with the degree distribut ion in the þrst row. Second-, third-neighbors, and so

forth, are captured in subsequent rows. In addit ion, since every node is counted once

as a start ing node, B is independent of node labeling and permutat ions: G iven a
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network G , there is only one B that can be constructed. We term B a networ k

p or t rai t due to this invariance, in that it provides a truly unique snapshot of the

network and (it will be shown) captures a variety of informat ion about important net-

work propert ies, similar to how a portrait or photograph contains much informat ion

about its sub ject .

Note that there is some ambiguity regarding how certain quant it ies are deþned.

Notably, this matrix has a row 0 and column 0. T he zeroth row gives the distribut ion

of nodes in the zeroth shell, which we take to ident ically be 1 for all nodes: B 0;k =

N Ð Ž(1; k). In addit ion, the zeroth column contains the distribut ion of empty shel ls,

i.e., how many start ing nodes have zero nodes in a shell. T he distribut ion of B l ;0

increases with l , since a start ing node with zero nodes in shell l can not have nodes

in shells greater than l . Addit ionally, we count any start ing nodes with zero nodes in

shell l as also having zero nodes in all shells l0 , l < l0 < d, where d is the diameter of

the graph. T his normalizes the rows of B ,
P

k B l ;k = N for all l , and may have other

beneþts.

4.2 E xa m ples an d A p plica t ions

We begin by introducing B for a variety of networks. We begin with a very large real-

world network, shown in F igs. F igure 4.2 { 4.3. (A ll plots of B are with a logarithmic

color scale.) F igure 4.4 shows the portraits of several E R graphs, including how the

ensemble average appears and how percolat ion is readily visible.

F igures 4.5 and 4.6 show B for a variety of periodic and non-periodic lat t ices.

T hese illustrate the presence of dimensionality with B , the ability to detect defects

and imperfect ions in otherwise homogeneous graphs, and the large-scale impact of

boundary condit ions on such þnite lat t ices. W ith periodic boundaries, every node is

indist inguishable and this is shown by the single non-zero value in each row of F ig.

4.5(a). T he sharp lines illustrate that this representat ion encodes the dimensionality
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of the graph.2 T he non-periodic lat t ice in 4.5(b) shows a symmetric hierarchy of node

types, corresponding to start ing nodes' relat ions to the boundary, yet the dimension-

ality is st ill visible. In both, the maximum non-zero value reaches a turning point at

a part icular row and then decreases; this illustrates þnite size eÞects.

When studying scale-free networks, much focus is placed on the scale-free exponent

½. As shown in F ig. 4.7 however, scale-free networks with the same ½ can have

radically diÞerent propert ies, and this must be considered when comparing diÞerent

networks.

F igures 4.9, 4.10, and 4.11 show a variety of real-world networks, including an elec-

tric power grid [4.10(a)], the network of airlines inside the United States [4.10(b)], a

snapshot of part of the internet backbone [4.9(b)], a collaborat ion network [4.9(a)],

and a variety of cellular metabolic networks [4.10(c-f ), 4.11(a)]. Note the dist inc-

t ive similarity between the various metabolic networks, which is not present in some

other networks, such as the power grid. Some of these networks are extremely large;

visualizing such networks was previously impossible. F igure 4.8 also shows several

sequent ial illustrat ions of the emergence of small-world; animat ions of such quant it ies

are also possible.

4.3 N etwor k P rop er t ies

Some network propert ies are easily calculate from a given B . For example, the number

of nodes is N = B 0;1 =
P

k B l ;k ; l 2 [0; D ], for an undirected graph with diameter

D . Similarly, since the þrst row of B captures the degree distribut ion, the number of

edges in G is M = 1
2

P
k B 1;k . A lso, P (k) = B 1;k =N .

Certain mean values are also contained within B . Since the þrst row contains

P (k), we can easily get hk i = 1
N

P
k k B 1;k . We can also use B to calculate the

2 Indeed, the non-zero values in B form a vert ical line (constant slope) for the periodic one-
dimensional lat t ice (the circle graph) and grow quadratically for the three-dimensional periodic
lat t ice.
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F igure 4.2: A B -Matrix (larger values are darker (brighter), logorithmic color scale,
row and column 0 omit ted). Note the degree distribut ion, slight ly visible in the þrst
row. as well as the turning point about row 4, represent ing þnite-size eÞects. Shown
is the network of the ten percent most connected actors taken from the movie actor
collaborat ion network stored in the Internet Movie Database (www . i mdb . com) [82].
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F igure 4.3: T he B -matrix from F ig. 4.2 but with a logarithmic horizontal axis. T he
degree distribut ion in row 1 is now plainly visible.

average shortest path length:
−

all-pairs shortest
path length

×
=

1
N (N  1)

X

l

l
X

k

k B l ;k ; (4.3.1)

with the denominator being N 2 if including paths of length 0. Meanwhile, the mean

eccentricity can be calculated using the zeroth column:

h eccentricity i =
1
D

DX

l = 1

l
 

B l ;0  B l  1;0

 
 1: (4.3.2)

T he diameter is also simple to calculate: it's just the number of rows of B minus

1. Or, since every row sums up to N (when count ing empty shells as speciþed), the
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(a) (b)

(c) (d)

F igure 4.4: Erd }os-R  enyi (E R) graphs [13]. (a) one graph with N = 1000 nodes and
p = 0:008. (b) T he average of 100 graphs from (a). V isualizing percolat ion: N = 104

(c) below percolat ion, p = (1:1N )  1; (d) at percolat ion, p = N  1 .
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(a) (b)

(c) (d)

F igure 4.5: Regular 40 ð 40 lat t ices with defects. (a) A periodic and (b) non-periodic
lat t ice; (c) a lat t ice with skew-periodic boundaries; and (d) a periodic lat t ice with a
random 5 percent of all nodes missing. Observe the strong linear slope, indicat ing
the underlying two-dimensional lat t ice, as well as the narrowness of the distribut ions
in (a), (c), and (d), due to the regularity of the periodic lat t ice.
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(a) (b)

F igure 4.6: Comparison of B for periodic and non-periodic three-dimensional lat t ices
of 15 ð 15 ð 15 nodes. T he quadrat ic growth, present in both matrices, indicates the
three dimensions of the underlying networks.

diameter is also

D =
1
N

X

l

X

k

B l ;k  1: (4.3.3)

Comparing this with the number of rows in B is an easy way to determine whether

a graph is directed solely from B , since Eq. (4.3.3) holds only for undirected graphs.

Unfortunately, many quant it ies that are not direct ly related to distance current ly

elude us. For example, how to calculate or even est imate clustering or assortat ivity

remains an open quest ion, since correlat ions between nodes are most ly lost when

creat ing B . Yet some of these eÞects may be indirect ly present in B : see F ig. 4.11.

In regards to the graph isomorphism problem, B provides a strong way to disprove

isomorphism, which appears to be as good or bet ter than known results [86, 87, 88,

89, 90]. A counterexample exists, however, showing that two non-isomorphic graphs

can generate the same B . T hese graphs are the dodecahedron graph [91] and the

Desargues graph [92]. See F ig. 4.12 for several planar embeddings of both graphs.

Both are cubic distance-regular graphs with N = 20 [93] (see also F ig. 4.13) and will
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(a) (b)

(c) (d)

F igure 4.7: Scale-Free models. T he average of 100 instances of the (undirected)
K rapivsky-Redner (r = 1=2) [83]; Barab  asi-A lbert (B A) (m = 2) [4]; and Molloy-
Reed (MR) (drawn from P (k) ¾ k  3) [18] networks; as well as the (1,3)-F lower at
generat ion 6 [84]; (a) { (d), respect ively. A ll have N = 2732,  ³ 3, but hk i varies.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

F igure 4.8: Sequent ial emergence of small-world. (a { d) B for a 40 ð 40 two-
dimensional periodic lat t ice with 1 random pair of edges permuted, then 4, 5, and 10
more, respect ively. T he change is drast ic when rewiring just 40 out of 3200 edges.
T he hard edge of slope 4 remains in the þrst shells; it is st ill possible to ident ify that
this graph is (locally) very lat t ice-like. (e { h) Newman-Wat ts-Strogatz graphs [85]
with N = 1000; k = 4; and p = 1=20; 1=10; 1=5, and 2=5, respect ively.

(a) (b)

F igure 4.9: Two real-world networks: (a) collaborat ion network of complex networks
researchers [37], and (b) a snapshot of the internet's autonomous systems, taken by
Mark Newman on 22 July 2006.
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(a) (b) (c)

(d) (e) (f )

F igure 4.10: Several real world networks. (a) T he western states power grid (un-
weighted) [10], (b) US airlines network [73, 78], and (c) { (f ) directed metabolic net-
works for H . in  uenzae, R . capsulatus, M . jannaschii, and C . elegens [7], respect ively.
T he metabolic networks appear similar to one another yet unlike the power grid and
airlines networks.

have exact ly one nonzero entry per row in B .3

4.4 N etwor k Si m ilar i t y Test ing

To try and tell whether two networks are \ alike, " or if they come from the same un-

derlying source or generat ing mechanism,4 we introduce the following metric5 between

two networks, based on a weighted row-wise comparison of their B matrices.
3 In principle, this may be exploited to search for undiscovered distance-regular graphs by taking

a random k-regular graph and rewiring edges along some scheme to minimize the number of nonzero
elements per row while respect ing node degree. T his would likely be cost-prohibit ive in pract ice.

4 We admit that this deþnit ion is not rigorous.
5 I t remains an open quest ion whether this is a true topological metric, semi-metric, or nei ther.
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(a) (b)

F igure 4.11: (a) T he original metabolic network of M . genitalium [7] with assortat ivity
A =  0:174216 and (b) with A = 0:000757 after permut ing random edge pairs while
preserving the degree distribut ion. T he þne-scale structure in the upper-most shells
of (a) is no longer present in (b).

G iven two networks G and G 0 , with corresponding matrices B and B 0 , we propose

that B and B 0 encode a great deal of informat ion regarding the generat ing mechanisms

of each network; we expect that B and B 0 will be similar if G and G 0 were created

using the same generat ing mechanism, since B captures such a large hierarchy of local

and non-local structure. We exploit this in the following way.

T he empirical cumulat ive distribut ion funct ion (cdf ) Sn for n observat ions x i is

Sn (x) =
1
n

nX

i = 1

ð
x i  x

Ł
; (4.4.1)

where [x i  x] = 1 if x i  x and 0 otherwise. T his is a step-funct ion that increases

by 1=n at the posit ion of each observat ion and is constant otherwise. T he largest

diÞerence between two such distribut ions is the test stat ist ic T for the two-sample

Kolmogorov-Smirnov ( KS) test:

T ( X 1; X 2)  sup
x

þþþS (x; X 1)  S (x; X 2)
þþþ; (4.4.2)

where S ( X ) denotes the empirical cdf for distribut ion X with the subscript indicat ing

the size of X dropped.
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(a)

(b)

F igure 4.12: Four possible embeddings for both the Desargues graph (a) and the
Dodecahedral graph (b) [91, 92]. Both are cubic distance-regular graphs with N = 20,
M = 30, and ident ical B matrices, from Eq. (4.1.1). T he third embedding from left
best illustrates the subt le diÞerences between the two.

T he two-sample KS test is a useful nonparametric method for comparing two

sample sets, due to its sensit ivity to changes in both the shape and locat ion of the

respect ive empirical cdfs and the fact that it makes no assumpt ions about the data's

distribut ion [94, 95]. Mot ivated by this, we introduce a row-wise stat ist ic K l , between

corresponding pairs of rows l:

K l (B ; B 0) = max
k

þþþC l ;k  C 0
l ;k

þþþ; (4.4.3)

where C is the matrix of cumulat ive distribut ions of B :

C l ;k =
X

k0  k

B l ;k0 =
X

k

B l ;k : (4.4.4)

T hus every row in C is the cdf of the corresponding row's pdf in B .

I t has been shown that the lower shells have a greater impact on network propert ies

such as the average path length [96, 64]. T his can be considered by weight ing shells.
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u

v

G

G i − 1(u)

G i + 1(u)

1

i

c i

b i

neighbors of v

F igure 4.13: A connected graph G is dist ance-regular if it is regular of degree k , and
if for any two nodes u; v 2 G at distance i = d(u; v), there are precisely c i neighbors
of v in G i  1(u) and b i neighbors of v in G i + 1(u) [93]. D istance-regular graphs possess
large amounts of elegant , higher-order symmetries. For example, all of the platonic
solids, when represented as graphs, are distance-regular.

One set of weights Þ, based on shell \ mass, " could be

Þ l =
X

k½1

B l ;k +
X

k½1

B 0
l ;k : (4.4.5)

F inally, we choose a scalar \ distance " Ð , generated by:

Ð (G ; G 0)  Ð (B ; B 0) =

 
X

l

Þ l K l

!

=
X

l

Þ l : (4.4.6)

See F ig. 4.14 for examples comparing two Erd }os-R  enyi graphs against each other as

well as a Barab  asi-A lbert against a Molloy-Reed network.

An open quest ion regarding Ð is whether it can be shown to be a true toplog-

ical metric, semi-metric, or not . T he values shown in F ig. 4.14 sat isfy the triangle

inequality as well as Ð (x; y) ½ 0 and Ð (x; y) = Ð (y; x). T he last two are both due
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B A vs. M R
E R1 vs. E R2

Row l

K l

1412108642

1

0.8

0.6

0.4

0.2

0

E R1 E R2 B A MR

E R1 0 0.01223 0.65409 0.61945

E R2 0.01223 0 0.65414 0.61935

B A 0.65409 0.65414 0 0.23157

MR 0.61945 0.61935 0.23157 0

F igure 4.14: (left) Row-wise stat ist ic K l . Shown are two Erd }os-R  enyi graphs with
N = 104 and p = 0:002; and a Barab  asi-A lbert (diameter 10) versus a Molloy-Reed
network (drawn from P (k) ¾ k  3 , diameter 14), both with N = 5 ð 104 . Both the
Barab  asi-A lbert and Molloy-Reed networks have the same degree distribut ion, so the
þrst few rows are fairly close to one another. Yet diÞerences in, e.g., assortat ivity,
soon become evident: even networks with ident ical degree distribut ions may not be
similar. (right) Table containing the values of Ð , given by Eq. 4.4.6, for the four
networks shown.

to the absolute value present in K . D iscernibility6 in Ð (B ; B 0) appears to hold as

well, but the dodecahedral and Desargues graphs disprove discernibility in Ð (G ; G 0),

if only because their B -matrices are indiscernable. If metric propert ies of Ð can be

proven, then this would allow for rigorous comparisons between abstract processes

such as graph convergence.7

4.5 C onclusions an d O p en P roblems

Equat ion (4.1.1) encompasses directed graphs and may be generalized to weighted

graphs by extending the not ion of shells (with shortest paths found by D i jkstra's algo-

rithm [97]). Shells can be deþned by introducing a set of weights W = f w1; w2; : : : ; wdg,

deþning the shell boundaries. One may also generalize B to edges by deþning the
6 Ð (x; y) = 0 iÞ x = y .
7 For example, comparing a determinist ic growth algorithm such as replacing every edge with a

2-path once per t ime step, versus randomly replacing edges with 2-paths. Can the random graph
approach the determinist ic graph, as t ime increases? Despite continued growth in both, Ð might
allow the study of such topological convergence.
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distance from a node v i to an edge (v j ; vk ) as the mean of distances d(v i ; v j ) and

d(v i ; vk ):8 T his \ edges matrix " has half-integer rows with row 1=2 encoding the de-

gree distribut ion, B 1=2;k = N P (k), and so forth. Both these generalizat ions will be

invest igated.

T he non-isomorphic dodecahedral and Desargues graphs show that B does not

uniquely encode a network but , in pract ice, the probability of two large non-isomorphic

graphs chosen from a stat ist ically-large ensemble having ident ical B -matrices is van-

ishingly small. We propose that B is a \ very good " answer to graph isomorphism.

I t is also worth not ing that the Desargues and dodecahedral graphs have diÞerent

edge matrices: we conjecture that graphs are uniquely ident iþed with both matrices.

In fact , every possible graph of seven nodes or less is uniquely deþned by both. In

general, this remains an open quest ion, however, and will be invest igated.

In our opinion, the intuit ion one gains simply by looking at these portraits is of

great value. C lassiþcat ion and comparison are immediate ( F ig. 4.10). D imensionality

and regularity are encoded in the overall slope and row variances ( F igures 4.5 { 4.6),

while small-world behavior is displayed in the \ aspect rat io " ( F ig. 4.8). Even correla-

t ion eÞects, which one should not expect to be present , may be discernable based on

the þne scale structure of the higher rows ( F ig. 4.11). Propert ies such as assortat ivity

were previously impossible to visualize for even moderately sized networks.

T he mathemat ical propert ies of Ð need to be further explored, and new applica-

t ions can always be developed. W ith such a distance metric in hand, it is now possible

to apply data clustering methods such as K -means or Q T -clustering [98] to families

of graphs. For example, generat ing evolut ionary (phylogenet ic) trees [99, 100] from a

collect ion of metabolic networks. T hese trees indicate the evolut ionary relat ionships

of various organisms and are of great interest to biologists studying the taxonomy

and inter-connectedness of L ife.

Many physical processes, such as dynamical systems, are captured in stochast ic or

transit ion matrices which can be represented as weighted networks, so it is imperat ive
8 B l ; k is now the number of nodes with k edges at distance l .
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that we apply our B -matrices to weighted networks. How to best choose the set of

shell-deþning weights is the most important open quest ion. T hese parameters control

not only the number of shells present but also their width distribut ion: should the

weights be linearly spaced or logarithmically, for example. Perhaps the number of

shells chosen should be based on a binning \ rule of thumb " such as the square root

of the number of nodes, or perhaps the number of shells should be chosen to equal

the diameter of the un-weighted pro ject ion of the network?



C hap ter 5

Social N etwor ks

One of the most prominent applicat ions of Complex Networks is in the area of mod-

eling human society. Human populat ions are geographically distributed in highly

non-regular, even fractal ways [101, 102]; the distribut ion of city size, wealth, and

other quant it ies follows a well known power law: Zipf 's law [103]; and the number

of acquaintances people tend to have is also far from uniform [4, 104, 105]. Mecha-

nisms governing the emergence of such structure within populat ions cont inue to be

analyzed. Understanding populat ion interact ions and dynamics has speciþc applica-

t ions to game theory; epidemiology, including vaccinat ion and disease containment;

the spread of informat ion or opinions such as polit ical a Ž liat ions; and improving

e Ž ciency when allocat ing and disbursing various resources.

We focus our eÞorts on two areas: our newly-proposed Patron-Artwork model, and

the study of K leinberg navigat ion in the presence of anisotropic underlying lat t ices.

5.1 T he P a t ron- A r twor k M o del

T he emergence of fame appears to be endemic to human societ ies, yet it is not always

fully understood [106, 107, 108, 109]. Simple models, including the Voter [110] and

Szna jd [111] model have been introduced to study how opinions and informat ion

75
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F igure 5.1: Why are these men so famous? Why is E instein so much more famous
than Newton or Euler, besides being so \ photogenic " ?

a

bi

j
r

1 − r

G

F igure 5.2: Schemat ic of the Patron-
Artwork model. Node i is chosen to make
a new recommendat ion. W ith probabil-
ity r , i listens to neighbor j and recom-
mends artwork a. W ith probability 1  r ,
i instead recommends artwork b, chosen
uniformly at random. T his process is
then repeated many t imes for mult iple
nodes and the distribut ion of recommen-
dat ions per artwork is measured.

 ow through a model society, represented as a network. We introduce the P a t ron-

A r twor k model as a means to study fame direct ly. T his model consists of a dynamics

deþned upon a network (of patrons) coupled with and creat ing a fame distribut ion

on an external populat ion (of artwork).

T he model is as follows. Begin with an underlying social network G and a line of

A artworks. At each t ime step, a randomly chosen node i 2 G is allowed to make a

new artwork recommendat ion. W ith probability r , i listens to a random neighbor j

and recommends an artwork that j has previously recommended (chosen randomly

from j 's history of recommendat ions). W ith probability 1  r , node i instead listens
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to no one, and recommends an artwork chosen uniformly at random. T he fame of an

artwork is taken to be the number of recommendat ions it has received. See F ig. 5.2.

T he beauty of this one-parameter model1 is that it captures important character-

ist ics despite it's simplicity. Every node is \ equal " in the sense that they all get the

same votes, but authority þgures (hubs in G ) have votes that are more important ,

since nodes are more likely to recommend artwork that the hubs have recommended,

meaning artwork lucky enough to be chosen by the hubs garners fame more rapidly.

In general, the more fame an artwork has, the more it can gain addit ional fame, so a

\ rich-get-richer " mechanism, which is quite popular [112, 113], is naturally built into

the model.

5.1.1 T he com plete grap h2

We begin our analysis with the simplest type of G , the large complete graph.3 Here

every node is a neighbor of every other node, so the probability of \ redirect ing " to a

part icular artwork is ent irely proport ional to the total number of recommendat ions

that artwork already has (a pure rich-get-richer mechanism). T his can be thought

of as a mean-þeld approximat ion, such that the social network ceases to exist in the

model, and one can instead envision a large hand doling out packets of fame either

proport ional to the artwork's current wealth (rich-get-richer process), or uniformly at

random (homogenous process), and r governs the relat ive strengths of these processes.

For the complete graph, we use two diÞerent analyt ic approaches, as well as nu-

merical simulat ions, to study both a þnite and an inþnite number of artwork. For

the þnite case, at short t imes, we recover the Pareto law observed for an unbounded

number of agents. In later t imes, the (moving) distribut ion can be scaled to reveal

a phase transit ion with a G aussian asymptot ic form for r < 1
2 , and a Pareto-like tail

1 T wo parameters, if one considers the dependence on G .
2 T h is sp ecial case of t he P a t ron- A r t wor k m o del was p u b lished i n [114].

3 T his analysis was þrst presented in [114], but the Patron-A rtwork model was not direct ly invoked.
T he discussion instead focused on \ wealth " and \ agents, " roughly analogous to fame and artwork
for this G .
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(on the posit ive side) and a novel stretched exponent ial decay (on the negat ive side)

for r > 1
2 .

5.1.2 T he li m i t of A ! 1

For A ! 1 , artworks with posit ive fame form a set of measure zero for any þnite

t ime. T hus choosing an artwork uniformly at random is equivalent to the \ birth "

of a new artwork i with fame k i = 1. We analyze this case with a master equat ion

approach, following the techniques and notat ion of [83]. T he number of artworks with

fame k > 0 at t ime t, N k (t), obeys the master equat ion:

d
dt

N k = (1  r )Žk ;1 +
rP

k0 k 0 N k0

h
(k  1)N k  1  k N k

i
: (5.1.1)

T his limit is characterized by both growth and preferent ial at tachment , hence we

expect a power-law distribut ion of fame.

Since one \ fame unit " is disbursed per unit t ime,

X

k

k N k = t ; (5.1.2)

set t ing the normalizat ion term in (5.1.1). Meanwhile, at each t ime step a new artwork

appears with probability 1  r , therefore the total number of artworks with posit ive

fame is N (t) = (1  r )t. T he mean fame per artwork is then

hk i =
1

1  r
: (5.1.3)

T he linear growth in t ime of artworks and fame suggests a solut ion of the form

N k (t) = nk t ; (5.1.4)

where the nk are constant . Indeed, upon subst itut ing this ansatz into (5.1.1) one

obtains a recurrence equat ion for the nk , independent of t, whose solut ion is

nk =
1  r
1 + r

kY

k0 = 2

r (k 0  1)
1 + rk 0 : (5.1.5)



79

r = 3=4
r = 1=2
r = 1=4

k

N k
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F igure 5.3: Simulat ions for the case A ! 1 , r = 1
4 , 1

2 , 3
4 (left to right). E ach

simulat ion was run unt il t = 8 ð 106 . Solid lines indicate ½ = 1 + 1=r .

T he actual distribut ion of fame, P (k), is obtained direct ly from nk :

P (k) =
nk t

N (t)
=

nk

1  r
: (5.1.6)

T he limit ing behavior for large k is most easily analyzed by taking the logarithm

of (5.1.5), rendering the product into a more manageable sum. Expanding for large

k and approximat ing the sum by an integral we þnd a power-law tail:

P (k) ¾ k  ½ ; ½ = 1 +
1
r

: (5.1.7)

See F ig. 5.3 for simulat ions.

I t is instruct ive to obtain this distribut ion in yet another way [14]. Instead of the

master equat ion we now write the rate equat ion for the average fame of artwork i:

d
dt

k i (t) =
r
t

k i (t) : (5.1.8)

Because A ! 1 , the rate at which artwork i is selected by the homogeneous ran-

dom process is zero, while the rate of select ion by the rich-get-richer mechanism is
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k i =
P

j k j , where
P

j k j is simply the total fame, and equals t, see Eq. (5.1.2). Assum-

ing that artwork i got its þrst unit of fame at t ime t i , the init ial condit ion for (5.1.8)

is k i (t i ) = 1. T hus,

k i (t i ) =
 

t
t i

 r

; (5.1.9)

is a monotonically decreasing funct ion of t i . I t follows that the probability that k i > k

is the same as the probability that t i < T , where k i (t i = T ) = k . In other words,

 (k)  Pr(k i > k) =
Z 1

k
P (k 0) dk 0 = Pr(t i < T ) : (5.1.10)

But T = tk  1=r , from (5.1.9), and since the probability that artwork i gets its þrst

unit of fame (by the homogeneous random process) is uniform in t ime, Pr(t i < T ) =

T =t = k  1=r . We then have

P (k) =  
d

dk
 (k) =

1
r

k  1  1=r ; k ½ 1 ; (5.1.11)

i.e., a Pareto distribut ion with the same power-law tail as in (5.1.7). Note that this

distribut ion is properly normalized (taking k to be a cont inuous variable) and that

its þrst moment agrees with (5.1.3).

T he li m i t of r ! 0

When the number of artworks A is þnite, the N k obey the normalizat ion condit ion
1X

k = 0

N k (t) = A ; (5.1.12)

where now we include in the count ing artwork with zero fame (k = 0), and the

distribut ion of fame is P (k ; t) = N k (t)=A . T he mean fame per artwork is no longer

constant but increases linearly with t ime:

hk i =
t
A

: (5.1.13)

Consider the limit of r ! 0, where fame is disbursed only by the homogeneous random

process. T he corresponding master equat ion is

d
dt

N k =
1
A

 
N k  1  N k

 
; (5.1.14)
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with init ial and boundary condit ions N k (0) = AŽk ;0 and N  1(t) = 0. T his is a simple

Poisson process, as conþrmed by the solut ion of (5.1.14):

N k (t) = A
(t=A )k

k!
exp  t=A : (5.1.15)

For t × A we apply the Sterling approximat ion to obtain the distribut ion

P (k ; t) =
1

p
2 ³ (t=A )

exp
 

 
1
2

A
(k  t=A )2

t

 
: (5.1.16)

T hus, P (k ; t) has a power-law tail in the limit A ! 1 (5.1.2), but is G aussian when

A is þnite and r ! 0.

5.1.3 F ini te A an d r

Our analysis proceeds along the same two approaches used for the A ! 1 case. We

will show that each works for only certain values of r , and that one approach has

problems which are not well understood.

M aster equa t ion ap p roach

In the general case of A < 1 and r > 0 the master equat ion for the process is

d
dt

N k =
1  r

A

 
N k  1  N k

 
+

r
t

 
(k  1)N k  1  k N k

 
: (5.1.17)

T he system is then simultaneously pulled toward the two diÞerent limit ing behaviors

analyzed in Sec. 5.1.2. We will show that for r > 1
2 the rich-get-richer mechanism

dominates the process and the fame distribut ion develops a power-law tail (as for

the limit of A ! 1 ), while for r < 1
2 the homogeneous random process dominates

and the fame distribut ion tends to a G aussian (as for r ! 0). Because A is þnite,

hk i = t=A increases linearly with t ime. T he width of the distribut ion of k around

the average grows like tÞ , where the scaling exponent Þ = r for r > 1
2 and Þ = 1

2 for

r < 1
2 . At the transit ion point , r = 1

2 , the width scales as
p

t ln t.
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To see these results, begin by approximat ing the discrete distribut ion N k (t) by its

cont inuous counterpart , P (k ; t). Expanding to þrst-order, Eq. (5.1.17) now reads

@
@ t

P (k ; t) =  
1  r

A
@

@k
P  

r
t

@
@k

(kP ) ; (5.1.18)

and the method of characterist ics yields the scaling solut ion

P (k ; t) = t  Þ f
 

k  t=A
tÞ

 
; Þ = r : (5.1.19)

T his, however, cannot be true for all values of r , as it disagrees with the distri-

but ion (5.1.16) found for r = 0, where the scaling exponent is Þ = 1
2 instead of

Þ = r = 0. T he reason for this discrepancy is that , in this case, the K ramers-Moyal

expansion [115] of (5.1.17) must be carried out beyond the þrst order. Indeed, upon

subst itut ing the scaling form (5.1.19) into the master equat ion (with unspeciþed Þ),

and carrying out the expansion to second-order, we þnd

(Þ  r )t2Þ f (x) + (Þ  r )t2Þ x f 0(x) +
1

2A
t f 00(x) = 0 ; (5.1.20)

where prime denotes diÞerent iat ion with respect to x = (k  t=A )=tÞ , and we have

omit ted terms proport ional to tÞ (these are negligible compared to t2Þ , as t ! 1 ).

If Þ > 1
2 , the term proport ional to t can be neglected in the long-t ime limit , and

(5.1.20) is sat isþed provided that Þ = r . T hus, the scaling form (5.1.19) is valid only

for r > 1
2 . For r < 1

2 , however, the second-order term in (5.1.20) may not be ignored.

T he only non-trivial way to cancel out the t ime dependence is then to have t2Þ = t.

T hus, for r < 1
2 the scaling exponent is Þ = 1

2 . At the transit ion point , r = 1
2 , there

is no way to get rid of the t ime dependence in (5.1.20) with the scaling form (5.1.19).

Taking a cue from other phase transit ions we guess a scaling form with logarithmic

dependence:

P (k ; t) =
1

(t ln t)Þ f
 

k  t=A
(t ln t)Þ

 
; r =

1
2

: (5.1.21)

On expanding the master equat ion with this scaling form the leading behavior in

t ime cancels out , provided that the scaling exponent is Þ = 1
2 . T he next largest

terms (smaller by a ln t factor), yield the equat ion

f (x) + x f 0(x) +
1
A

f 00(x) = 0 ; r =
1
2

; (5.1.22)
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where now x = (k  t=A )=
p

t ln t. In all three cases (for r ), expanding to third-

or higher-order yields addit ional subdominant terms. From the largest subdominant

term one can deduce how fast the system reaches the scaling regime: the transient

dies oÞ as t  (2r  1) for r > 1
2 , as t  1=2 for r < 1

2 , and as (ln t)  1 for r = 1
2 . T hus at

the transit ion point , r = 1
2 , there occurs a crit ical slowing down as the system creeps

into the eventual scaling regime logarithmically slow.

For r < 1
2 we can use (5.1.20) to þnd f (x) and show that the limit ing form of the

fame distribut ion is G aussian:

P (k ; t) !

r
A (1  2r )

2 ³ t
exp

 
 

1
2

A (1  2r )
(k  t=A )2

t

½
; r <

1
2

; (5.1.23)

as t ! 1 . T he divergence of the width of this distribut ion as r ! 1
2 is reconciled

with the fact that at the limit r = 1
2 the scaling parameter picks up a (diverging)

logarithmic component . T he scaling funct ion at the transit ion is st ill G aussian, as

can be deduced from (5.1.22):

P (k ; t) !
r

A
2 ³ t ln t

exp
 

 
1
2

A
(k  t=A )2

t ln t

½
; r =

1
2

: (5.1.24)

For r > 1
2 , Eq. (5.1.20) yields a tautology and one is unable to determine f (x). I t is

possible, nevertheless, to infer the limit ing behavior:

f (x) ¾

8
><

>:

x  1  1=r x ! 1 ;

exp
h

 (1  r )(A r jx j)
1

1  r

i
x !  1 ;

r >
1
2

: (5.1.25)

T he limit for x ! 1 follows from comparing the distribut ion P (k ; t) for the case

of A ! 1 with f (x)j A ! 1 = f (kt  r ). For x !  1 , we observe that the density

of artworks with zero fame decays as N 0 ¾ exp[  (1  r )t=A ], see Eq. (5.1.28), and

we compare to f (x)jk = 0 = f (  t1  r =A ), leading to the second line of (5.1.25). An

alternat ive derivat ion is presented next , using the rate equat ion approach.

R a te equa t ion ap p roach

T he rate equat ion for the fame of artwork i , in the general case, is
d
dt

k i (t) =
1  r

A
+

r
t

k i (t) ; (5.1.26)
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with init ial condit ion k i (t i ) = 1. T he solut ion,

k i (t i ) =
 

1  
t i

A

  
t
t i

 r

+
t
A

; (5.1.27)

is monotonically decreasing in t i .

T he probability  (t) that an artwork st ill has zero fame at t ime t sat isþes the

equat ion
d
dt

 (t) =  
1  r

A
 (t) ; (5.1.28)

so  (t) = exp[  (1  r )t=A ]. I t follows that the probability that artwork i has been

introduced (gets its þrst unit of fame) by t ime T , given that it has been introduced

by t ime t, is

 (T ) =
1  e  1  r

A T

1  e  1  r
A t

: (5.1.29)

Note that this has the limit T =t, as A ! 1 , that we used in Sec. 5.1.2.

F inally, P (k ; t) =  @  (T )=@k , where T (k) is the solut ion to k i (T ) = k . Since

Eq. (5.1.27) cannot be inverted analyt ically (other than for special values of r ), we ex-

press P in parametric form: P (k(T ); t) =  @  (T )=@k =  (dk i =dt i j t i = T )  1@  (T )=@ T ,

and k(T ) is obtained by put t ing t i = T in (5.1.27). T he (scaled) fame distribut ion in

parametric form is then

x(T ) =
 

1  
T
A

 
T  r ; f (T ) =

(1  r )T 1 + r

A r + (1  r )T
e  1  r

A T ; (5.1.30)

where we have used the scaled expressions x = (k  t=A )=t r and f = t r P , taking the

limit of t ! 1 at the end (the fact that the limit exists and is þnite conþrms this

scaling).

I t is now easy to verify the asymptot ic behavior (5.1.25). T he limit x ! 1

corresponds to T ! 0. In this limit , the second equat ion of (5.1.30) gives f ¾ T 1 + r .

But since T ¾ x  1=r , from the þrst equat ion, we conclude that f ¾ x  1  1=r . T he limit

x !  1 corresponds to T ! 1 . In this limit , the second equat ion of (5.1.30) gives

f ¾ exp[  (1  r )T =A ], while from the þrst equat ion x ¾  (1=A )T 1  r . We conclude

that f ¾ exp[  (1  r )(A r jx j)1=(1  r ) ].
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F igure 5.4: Scaling of the fame distribut ion in each of the two phases at r = 1
4 (a),

r = 3
4 (b) and at the transit ion point r = 1

2 (c). T he inset in (b) shows the right-hand
tail with logarithmic axes. Convergence to the scaling form is rapid for r = 1

4 and
r = 3

4 but logarithmically slow for r = 1
2 | note that in the lat ter case the data

(over exponent ially increasing t imes) is slowly creeping toward the G aussian limit of
(5.1.24) (solid line). T he theoret ical limit of (5.1.23) (solid line) þts the case of r = 1

4
perfect ly, but the predict ion (5.1.30) from the rate equat ion approach (solid line) þts
the case of r = 3

4 only qualitat ively (besides agreeing with the overall scaling).
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C learly, the foregoing rate equat ion method does not apply to 0  r  1
2 , for it

fails to reproduce the appropriate scaling forms in this range. T hus the rate equat ion

approach is viable only when the second-order in the K ramers-Moyal expansion of

the corresponding master equat ion may be neglected. In F ig. 5.4 we show numerical

simulat ions for r below, above, and at the transit ion point . T he results conþrm the

scaling forms found analyt ically above. For r < 1
2 convergence to the G aussian pdf is

relat ively fast , while the crit ical slowing down at the transit ion point , r = 1
2 , prevents

us from at taining the analyt ical limit (5.1.24) in pract ice. For r > 1
2 convergence

to the scaling pdf is again quick, however the explicit form predicted by the rate

equat ion approach is correct only qualitat ively: we ascribe this to the fact that the

second-order is implicit ly missing in this approach.

5.1.4 Fu t u re wor k

T he case of G as a large complete graph is not a realist ic social network; it lacks

authority þgures, for example. A natural next choice for G is the complete bipart ite

graph K H ; L consist ing of two groups of nodes, one of size H (call them hubs) and the

other of size L (call them leaves). Every hub node is connected to every leaf node,

and vice versa, while no hubs are connected to other hubs, and similarly for leaves.

T he limit ing case K 1; L corresponds to the star graph. T he star graph represents a

society where there is a single authority þgure that everyone listens to, and no besides

the authority þgure listens to anyone else.

As before, one recommendat ion is made per t ime step, so the total number of

recommendat ions is M = t. Deþne the total number of recommendat ions made from

hubs at t ime t as M H (t) and leaves as M L (t). T hen M = M H + M L = t. A hub (leaf )

is selected to make a new recommendat ion with probability H =(H + L ) (L=(H + L )),

irrespect ive of r . T herefore

M H (t) =
H

H + L
t; (5.1.31)

M L (t) =
L

H + L
t: (5.1.32)
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Deþne N (k1; k2) as the number of artworks with k1 recommendat ions from hubs and

k2 recommendat ions from leaves. T his quant ity is governed by the master equat ion:

d
dt

N (k1; k2) =
1  r

A (H + L )

"

H N (k1  1; k2)  H N (k1; k2)

+ L N (k1; k2  1)  L N (k1; k2)

#

+
r
t

"
H
L

k2 N (k1  1; k2)  
H
L

k2 N (k1; k2)

+
L
H

k1 N (k1; k2  1)  
L
H

k1 N (k1; k2)

#

;

(5.1.33)

with the total fame distribut ion given by

N (k) =
kX

k 2 = 0

N (k  k2; k2): (5.1.34)

For a large star graph (H = 1, L × H ) or a nearly star graph (L × H ), Eq. 5.1.33

can be great ly simpliþed with approximat ions H =(H + L ) ¾ 1=L , L=(H + L ) ¾ 1 and

L=H ¾ L , reducing the master equat ion to

d
dt

N (k1; k2) =
 

1  r
A

+
r
t

Lk1

 "

N (k1; k2  1)  N (k1; k2)

#

(5.1.35)

where O (1=L ) terms have been dropped. Note that no dependence on k1 remains; it

is a parameter. T he remaining k2 can be dealt with using a generat ing funct ion:

G k 1 (z )  
1X

k 2 = 0

N (k1; k2)z k 2 ; (5.1.36)

giving
d
dt

G k 1 (z ) =
 

1  r
A

+
r
t

Lk1

 
(z  1)G k 1 (z ): (5.1.37)

Separat ion of variables gives

G k 1 (z ) = C t r L k 1 (z  1) e
1  r

A (z  1) t

= C t  r L k 1 e  1  r
A t exp

"  
1  r

A
t + r Lk1 ln t

 
z

#

: (5.1.38)
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T herefore

N (k1; k2) =
C
k2!

t  r L k 1 e  1  r
A t

 
1  r

A
t + r Lk1 ln t

 k 2

; (5.1.39)

with C determined from normalizat ion,
P

k 1 ;k 2
N (k1; k2) = A . Subst itut ing (5.1.39)

into (5.1.35) conþrms that this is a solut ion. For the star graph, one need not resort

to Eq. (5.1.34) since any individual artwork can have at most a single connect ion to

the hub. T herefore, N (k) = N (0; k) + N (1; k  1) ¾ N (0; k). T hus we expect a

Poisson distribut ion with mean (1  r )t=A ,

N (k) ¾
1
k!

e  1  r
A t

 
1  r

A
t

 k

: (5.1.40)

T he validity of these star graph approximat ions remains an open quest ion. Sim-

ulat ions will be used to conþrm these results.

T he next step up the \ ladder of heterogeneity " would be a G with an arbi-

trary, uncorrelated degree distribut ion.4 In principle, a master equat ion can be

writ ten governing N (k1; k2; : : : ; k K ), the number of artworks with k1 recommenda-

t ions from degree 1 nodes, k2 recommendat ions from degree 2 nodes, . . . , and k K

recommendat ions from the highest degree K nodes. T he total fame would then be

N (k) =
P

k 1 ;k 2 ;:::;k K
N (k1; k2; : : : ; k K )[k1 + k2 + Ð Ð Ð + k K = k]. T he quest ion of solv-

ability for such a master equat ion remains open.

Further generalizat ions may prove fruitful as well. For example, when G is a

complete bipart ite graph, one can use a diÞerent redirect ion probability for each of

the two groups. Meaning that hubs may be more or less likely to listen to leaves

than leaves are to listen to hubs. While this increases the number of parameters in

the model, it may lead to improved realism without something as complicated as the

aforement ioned uncorrelated degree distribut ion master equat ion. Using directed or

weighted patron networks may also be fruitful.
4 Or perhaps a binomial or E rd }os-R  enyi graph.
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5.1.5 Su m m ar y an d discussion

In summary, we have introduced the Patron-Artwork model where A works of art

accrue \ fame " by a simple one-parameter dynamic on a social (patron) network. Our

current analysis has focused on the case where G is an asymptot ically large complete

graph. We have shown that in the early t ime regime, or, equivalent ly, when A ! 1

there results a Pareto distribut ion for fame k : P (k) ¾ k  ½ , with ½ = 1 + 1=r . In

the long t ime asymptot ic limit , the system is at tracted to one of two opposite poles,

and there is a kinet ic phase transit ion as a funct ion of the parameter r . If r < 1
2 , the

distribut ion tends to a G aussian of width t=[(1  2r )A ]. If r > 1
2 , the distribut ion

keeps its power-law tail ¾ k  1  1=r for large k .

In all cases the fame distribut ion tends to an asymptot ic scaling form as a funct ion

of x = (k  hk i )=w(t), where hk i = t=A is the average fame amassed by an artwork up

to t ime t, and w(t) = tÞ is a measure of the width of the distribut ion. T he exponent

Þ undergoes a phase transit ion: Þ = 1
2 for r < 1

2 , and Þ = r for r > 1
2 . At the

transit ion point , r = 1
2 , there appear logarithmic correct ions: w(t) = (t ln t)1=2 .

T he scaling form of the fame distribut ion f (x) = t r P in the regime r > 1
2 is

characterized by two more exponents (in addit ion to the width exponent Þ = r ):

f (x) ¾ x  1  1=r for x ! 1 , and f (x) decays as a stretched-exponent ial, with power

1=(1  r ), as x !  1 . F inally, the approach to the eventual scaling form ¾ t  z is

characterized by a fourth exponent: z = 1
2 for r < 1

2 , and z = 2r  1 for r > 1
2 . At the

transit ion point convergence to the scaling form proceeds exceedingly slow, ¾ 1= ln t,

in a fashion reminiscent of crit ical slowing down in equilibrium phase transit ions.

Several applicat ions come to mind. For example, complex networks could be grown

according to this model where the nodes are þxed at the outset (corresponding to the

A artwork) and links are connected to the nodes by a proper mix of homogeneous

select ion and preferent ial at tachment . For r > 1
2 one could thus create scale-free

nets with a þxed degree distribut ion exponent and a þxed number of nodes, and

with a tunable average connect ivity hk i = t=A that grows linearly with t ime. Wealth

distribut ions with a stretched-exponent ial decay on one side and a power-law decay
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on the other, such as we þnd for r > 1
2 , are regularly observed in various economic

set t ings [116, 117].

An intriguing þnding concerns the method of rate equat ions that is often used

to obtain the degree distribut ion of complex networks [14, 118, 119, 120, 121]. Our

analysis suggests that this method is only valid when the second-order terms in the

K ramers-Moyal expansion of the master equat ion for the system may be safely ne-

glected. Even then the method yields results that scale correct ly but that are oth-

erwise only qualitat ively correct , at least in our case. Perhaps the most important

open problem is to establish the range of validity of the rate equat ion approach more

rigorously, and to þnd ways to extend it to the cases where it fails.

5.2 K leinb erg N av iga t ion

T he small-world phenomenon, one of the most intriguing propert ies of human society,

was touched upon in Ch. 1. T his describes the fact that unrelated people in a society,

who are a very large geographic distance apart from one another, tend to be connected

by surprisingly short chains of acquaintances. T his phenomenon was hypothesized in

1929 by Hungarian author Frigyes K arinthy [122, 123] and was þrst observed experi-

mentally in the 1960's with sociologist Stanley M ilgram's seminal experiment wherein

randomly chosen people were selected to mail a let ter to an unknown target person,

but were only allowed to send the let ter to a friend, who would pass the let ter along

to another friend, etc., unt il the target was reached. I t ended up taking surprisingly

few people to send such let ters. Hence the turn of phrase `six degrees of separat ion,'

popularized by K arinthy, was quite accurate. Understanding this phenomenon is an

important sociological problem.

To study the underlying mechanism that led to M ilgram's results, computer scien-

t ist Jon K leinberg modeled a society as follows [124, 125]. Begin with a large, regular
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lat t ice.5 E ach node is connected to its nearest lat t ice neighbors and to a single ran-

dom node a large distance away. T he probability of nodes i and j being connected

by such a long range connect ion is

P i j (Þ) = r  Þ
i j =

X

k6= i

r  Þ
i k ; (5.2.1)

where r i j is the euclidian distance between nodes i and j and the sum runs over

all nodes in the network except i . Physically, the local lat t ice connect ions represent

associat ions with immediate neighbors, fellow townspeople, etc., while long-range

contacts model friends or relat ives in another city or country, for example.

T he following algorithm, proposed by K leinberg, models the message-passing ex-

periment of M ilgram on this network [124]. Choose a start ing node s and a target

node t a distance L apart .6 T he current message-holding node, start ing with node s,

passes the message along to whichever of its contacts is closest to t, unt il the message

reaches t. We wish to know the number of steps T required to reach the target and

what value of Þ gives the lowest T , corresponding to opt imally e Ž cient transport . O f

great importance is the fact that each node has no informat ion beyond the locat ions

of its contacts and node t; the algorithm is greedy in that it seeks to locally minimize

the distance to t at each step without regard to the possibility that another node's

contact may be closer to t than the current node's contacts.

We begin by reproducing the proof in [126] that navigat ion is fastest when long-

range connect ions are chosen from Eq. (5.2.1) with Þ = d, where d is the dimension

of the underlying lat t ice.7

Since the number of nodes at a distance r scales like rd  1 and each node contributes
5See [126] for a generalizat ion to underlying fractal lat t ices.
6 E xist ing work has instead chosen s and t at random from within a lat t ice of size L ð L . T he

average (lat t ice) distance between a random s and t is 2
3 L ¾ L anyway, so we choose to eliminate

this addit ional randomness.
7 T his includes lat t ices of non-integer dimension, with the only requirements being that there are

no (þnite) areas where the message can become trapped and must backtrack , so called \overhangs, "
and that the lat t ice distance scales like the euclidean distance.
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r  Þ to the sum, then the normalizat ion term in Eq. (5.2.1) scales like

X

k6= i

r  Þ
i k ¾

Z L

1
r  Þ rd  1 dr =

8
>><

>>:

1  L d  Þ

Þ  d ¾ (Þ  d)  1 ; Þ > d;

ln L ; Þ = d;
L d  Þ  1

d  Þ ¾ Ld  Þ ; Þ < d:

(5.2.2)

To show that navigat ion is most e Ž cient when Þ = d, we proceed by þnding the

expected speed for Þ = d and show that it grows more slowly than the best-case

expected speed for Þ 6= d, as L ! 1 .

For the case where Þ = d, surround the target node with concentric shells of

exponent ially increasing radii em  1 < r < em , m = 1; 2; : : : ; M .8 T he probability

that a message holder in shell m has its long-range connect ion be to a node in shell

m  1 scales like, from Eq. (5.2.2),

¾
1

ln L

Z e m

e m  1
r  d rd  1 dr =

1
ln L

: (5.2.3)

If the message holder does not have a long-range connect ion to the next closest shell,

then the message will not reach the next shell within one step (with overwhelming

probability). T herefore, the probability that the message will take more than x steps

to reach the next shell is  (x) = (1  1= ln L )x , and the expected number of steps

spent in the current shell is9

hx i =
Z 1

0
 (x) dx =

 1
ln

 
1  1

ln L

Ð ¾ ln L : (5.2.4)

T he largest shell is of size e M ³ L , so the number of shells separat ing the source

and target nodes is on the order of M = ln L . I t's expected to require ln L steps to

traverse each shell, therefore the total number of steps to reach the target is ¾ ln2 L
8 T hese are shells in the Euclidian plane, not the shells in chemical space that we have previously

focused on.
9 T his is best seen by working backwards. Let p(x)dx be the probabili ty to reach the next shell

within x and x + dx steps. T hen  (x) =
R 1

x p(x) dx , and  0(x) = p( 1 )  p(x) =  p(x). Integration
by parts gives

Z 1

0
 (x) dx = x  (x)

þþþ
1

0
 

Z 1

0
x  0(x) dx =

Z 1

0
xp(x) dx = hx i ;

since  ( 1 ) = 0, by deþnit ion.
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When 0  Þ < d, begin by surrounding the target node with a ball of radius

l = LŽ , 0 < Ž < 1. T he probability that a randomly chosen node i has its long-range

connect ion be to a node j within this ball is, from Eq. (5.2.2), ¾ r  Þ
i j =Ld  Þ  1=Ld  Þ .

T hen the probability that node i is connected to any node inside the ball will not

exceed ld=Ld  Þ = LŽd  d + Þ . Since the source node is not within this ball (for a

large enough lat t ice), then any short path of length ¾ l must contain a long range

connect ion to a node within the ball. T he probability that a node with such a

connect ion is encountered within l steps is, at best , l ð LŽd  d + Þ . If this probability

can vanish as L ! 1 , then it will always take more than l steps to reach the target .

T his happens when Ž < (d  Þ)=(d + 1), so the expected number of steps must exceed

L (d  Þ )=(d + 1) .

Meanwhile, for Þ > d, the probability that a node has a long-range connect ion

longer than r = L  , 0 <  < 1, scales, again from Eq. (5.2.2), as

1
Þ  d

Z 1

L  
r  Þ rd  1 dr =

L  (d  Þ )

(Þ  d)2 ¾ L  (d  Þ ) : (5.2.5)

T hen the probability to travel a distance greater than L  within L þ steps (0 < þ < 1)

is less than L þ L  (d  Þ ) . If this probability can vanish as L ! 1 , then the total distance

covered in L þ steps will never exceed L þ L  . Since we must reach the target eventually,

and the source and target are L steps apart , we require þ +  = 1. Meanwhile, the

probability to make steps longer than L  will vanish when þ +  (d  Þ) < 0. Both

condit ions are sat isþed when þ < (Þ  d)=(Þ  d + 1) and it will always take more

than L (Þ  d)=(Þ  d + 1) steps to reach the target .

In summary, we have shown the expected transit t ime T to be approximately

ln2 L when Þ = d; to be more than L (d  Þ )=(d + 1) when Þ < d; and to be more than

L (Þ  d)=(Þ  d + 1) when Þ > d. In the limit L ! 1 , ln2 L will grow more slowly than

any posit ive power of L , therefore the opt imum algorithm occurs for Þ = d. See also

F ig. 5.5.
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F igure 5.5: Simulat ions of K lein-
berg Navigat ion on a two-
dimensional lat t ice conþrm that
Þm in ! d. Shown is the average
of 1000 runs where the source
and target were posit ioned L =
104 lat t ice steps apart .

5.2.1 A nisot ropic la t t ices

A followup to K leinberg's original work studied his navigat ion algorithm upon fractal

lat t ices, in part icular the Sierpinski carpet and gasket [126]. T he gasket has the

shape of an equilateral triangle, but in simulat ions it was embedded in a square

geometry to simplify programming. T his distorts the lengths of connect ions, altering

the probability for long-range contacts (nodes in the \ stretched " direct ion were less

likely to be connected). T hey observed an appreciable discrepancy between the ideal

Þ = d (in the limit L ! 1 ) and the ideal Þ extrapolated from simulat ions for þnite

L and hypothesized that the anisotropy was responsible.

We wish to study the isolated eÞect of anisotropy on K leinberg navigat ion. To

do this, we begin with a regular lat t ice (d = 2) and introduce one of two forms of

anisotropy.

ž L a t t ice A nisot ropy: T he underlying lat t ice is stretched horizontally by a
factor b > 0 such that the area of each cell goes from 1 ð 1 to b ð 1. See F ig.
5.6(a) { (b).

ž A ngular A nisot ropy: Long-range connect ions are made more probable be-
tween nodes separated more horizontally than vert ically. To accomplish this,
the probability for a long-range connect ion is not drawn from Eq. (5.2.1) but
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instead in the following, essent ially equivalent , way: a connect ion from node i
of random length r , chosen from the distribut ion P (r ) ¾ r  Þ , and random angle
0    2 ³ , chosen uniformly, is placed upon the lat t ice at i . T his is connected
to node j , the node closest to where it lands. To favor connect ions along one
direct ion,  is modiþed by a factor b:

 0 = arctan
 

sin  
b cos  

 
; (5.2.6)

where b > 0. See F ig. 5.6(c) { (d) for histograms showing the impact of b.

5.2.2 Si mula t ions

We began our study of these anisotropic eÞects with simulat ions, undertaken in the

summer of 2006 along with visit ing undergraduate Mauricio Campuzano. T he source

and target nodes are separated by L horizontal lat t ice steps. Since the underlying

lat t ice has no \ voids " and the navigat ion algorithm is greedy, the message will always

progress toward the target . T hus it remains within a disc of radius L centered on

the target node. In addit ion, long-range connect ions (for both anisotropy types) are

created based on the previously ment ioned scheme of choosing a radius and angle,

eliminat ing the need to compute the normalizat ion term in Eq. (5.2.1). In combina-

t ion, this allows for an \ inþnite " lat t ice to be simulated in that boundary condit ions

and other concerns can be neglected.

Simulat ions were performed for various values of b over a large range of Þ and L ,

each averaged 1000 t imes. For each b and L , the minimum Þ was computed by þrst

þt t ing a þfth-order polynomial10 to the averaged data, then using Newton's Method

on the polynomial's derivat ive. F inally Þm in was plot ted as a funct ion of 1= ln2 L for

each chosen value of b. T hese are shown in F igs. 5.7 { 5.8 and indicate that Þm in ! d

as L ! 1 , regardless of b (see also F ig. 5.9).

10 A parabola could be þt ted to the data closest to the minimum, but we must þrst know what is
`closest ,' and if we know that then we know the location of the minimum. A higher-order polynomial
overcomes this, similar to including higher order terms in a series expansion near the minmum of a
funct ion.
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F igure 5.6: K leinberg Navigat ion and anisotropy. Example message paths from a
source node s to a target node t along intermediary nodes ł . (Unused long-range
connect ions have been omit ted.) T he þnal long range connect ion in (b), despite its
length, has only shortened the path by one step, since it lands so far \ oÞ-axis. " Note
that s and t are closer in (b) than in (a). Angular anisotropy is shown with histograms
of 106 uniformly random angles in Eq. (5.2.6) with (c) b = 1 and (d) b = 3=2 .
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To further clarify the behavior shown in F igs. 5.7 { 5.8, the following procedure

was performed. F irst þt a cubic polynomial pb , using least squares, to each b's curve.

T hen, subtract that polynomial from the isotropic case, pb  p1 . T his maps b = 1

to the horizontal axis and gives the behavior of the b 6= 1 curves \ relat ive " to the

isotropic curve. T hese are shown in F igs. 5.10 { 5.11. T he diÞerent behavior for each

type of anisotropy is clear: for the lat t ice case, the b < 1 curves converge to Þ( 1 )

at the same rate as b = 1, while b > 1 curves eventually converge similarly, but

start above the b = 1 curve and eventually dip below it . Meanwhile, for the angular

anisotropy, F ig. 5.11 shows that the b > 1 curves collapse onto the b = 1 curve while

the b < 1 curves approach Þ( 1 ) at a diÞerent rate than the b = 1 curve.

T he observed \ crossover " present in the lat t ice anisotropy, especially for large b, is

somewhat unexpected. T he crossover size, as a funct ion of b, L crossover (b) is explored

by þnding the zero of each pb  p1 . T hese are plot ted in F ig. 5.12, and seem to indicate

a power law relat ionship.11 What is responsible for this remains an open quest ion.

T his analysis depends on a three types of least squares þts: the þfth-order poly-

nomial þt to þnd each Þm in , the linear þt to the tails of the curves of Þm in vs. 1= ln2 L

to extrapolate Þ( 1 ), and the cubic þt to the ent ire Þm in vs. 1= ln2 L curves. Least

squares þt t ing is not robust to out liers, nor does it yield opt imum est imators in the

presence of non-normal errors (G auss-Markov theorem). Since the minimum was

found by þt t ing plots of ln T vs. Þ the errors are not gaussian. However, all the þts

are reasonable to the eye, especially for very large L . In addit ion, the data is  at test

near the minimum, and thus its error distribut ion is less distorted by the natural log.

Several improvements to this regression analysis are possible, though unlikely to

improve the results.12 More robust techniques, such as weighted least squares (to deal

with non-gaussian error) or iterat ively reweighed least squares (to mit igate out liers),

may be used for the þts. When þnding each Þm in , one can also weigh the points such

that the data with smaller values of ln T are given stronger weights, emphasizing
11 T he data presented spans roughly a single decade in b, making it less than conclusive. Further-

more, i t is possible for other kinds of funct ions to appear as straight lines on log-log plots, especially
when the data doesn't span a su Ž cient range.

12 T hey would allow for rigorous error analysis, however.
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F igure 5.7: Simulat ions for lat t ice anisotropy. A ll curves approach Þ( 1 ), regardless
of b. T here is also a crossover eÞect where curves for b > 1 dip below the b = 1
curve. T his is further explored in F ig. 5.10. See F ig. 5.9 for the extrapolated Þ( 1 ).
A horizontal scale of 1= ln2 L is used throughout .

data closest to the minimum. T he presence of non-gaussian errors due to the natural

log in the ln T vs. Þ curves can be removed by comput ing ln T for each simulat ion

then taking the average, instead of taking the natural log of the average T . Doing

so will not alter the locat ion of Þm in , only its height . Since the simulat ion runs are

iid (for þxed L and b), the central limit theorem ensures gaussian distribut ions. An

alternat ive opt ion is to simply þt the polynomials to al l of the data instead of þrst

taking the average. T his makes the þt t ing calculat ion more expensive, but it can

already be done so e Ž cient ly that the increased cost is negligible.

5.2.3 C onclusions an d fu t u re wor k

Simulat ions have shown that Þm in ! d as L ! 1 regardless of anisotropy, but the

overall behavior is quite diÞerent for the lat t ice and angular anisotropies. A variety of
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F igure 5.8: Simulat ions for angular anisotropy. A ll curves approach Þ( 1 ), regardless
of b. Curves for b < 1 approach the inþnite limit at diÞering rates, while curves for
b > 1 evetually collapse onto the b = 1 curve. T his is further explored in F ig. 5.11.
See F ig. 5.9 for the extrapolated Þ( 1 ).

open quest ions remain regarding K leinberg navigat ion in the presence of anisotropy.

T he underlying phenomenon generat ing the crossover eÞect present in F igs. 5.7 and

5.10 is not well understood. T he apparent power-law dependence of L crossover on b,

shown in F ig. 5.12, remains an open quest ion. T he apparent lack of similar behavior

in F igs. 5.8 and 5.11 is also not well understood. I t is also an open quest ion if the

power law exponent depends on the dimension of the underlying lat t ice.

T he scaling arguments const itut ing the proof that limL ! 1 Þm in = d are unable to

capture salient details introduced by such anisotropy, since the number of nodes at

distance r from the current node cont inues to scale as rd  1 , regardless of b. T hus, one

needs an ent irely new approach to analyt ically study the impact of anisotropy.

Regarding the general problem of opt imum navigat ion in social and other net-

works, there are many avenues of open research to be pursued. T he underlying
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F igure 5.9: Extrapolat ing to 1= ln2 L ! 0 with a linear least squares þt to the curves
in F igs. 5.7 and 5.8 shows excellent convergence of Þ( 1 ) to the expected value of
d = 2. Good values should occur when the curves are  at test , which happens roughly
around 0.25. A more robust þt t ing procedure could be used, but the accuracy of
these results imply that it is unnecessary. T he horizontal lines at Þ = 2 provides a
guide for the eye.

lat t ice used in the K leinberg model has no gaps or holes, therefore the message will

never need to \ backtrack " during its journey, but this is not generally realist ic. Can

the K leinberg navigat ion scheme be modiþed to account for such dead ends, or can

it be shown that an ent irely diÞerent procedure allows opt imum navigat ion? If the

gaps are large enough,13 the message may never reach its goal: perhaps an opt imum

navigat ion scheme can only guarantee successful transport some fract ion of the t ime.

Reasonable alterat ions to K leinberg navigat ion in the face of such adversit ies

include the introduct ion of randomness, where the current message holder may just

randomly pass along the message if it cannot move closer to the target; the message

holder may be allowed further knowledge of the network, such as the coordinates of

its neighbors' neighbors; or perhaps a node's concept of distance will be altered in the

presence of such gaps in the underlying lat t ice's geography (nodes on the \ far shore "

of a void may be considered farther away than indicated by their geographic distance

alone). Unfortunately, it appears that all of these strategies introduce parameters

13 If they scale with the size of the lat t ice or worse.
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F igure 5.10: To provide a measure of smoothing, cubic polynomials pb were þt ted
to the curves in F ig. 5.7. To clarify the impact of anisotropy, we show the behavior
relat ive to the isotropic case, by subtract ing p1 from each pb . T his maps the isotropic
curve to a horizontal line and introduces only minor distort ion. T he crossover behav-
ior for b > 1 is clearly displayed. A more robust þt t ing may be necessary, but these
results are st ill useful.

which must be studied. K leinberg navigat ion is so intriguing due to the model's

simplicity, it seems that more realist ic models must necessitate more complicat ions.

5.3 C onclusions

Complex networks provide an ideal set t ing for studying the dynamics underlying

human society. Our work on modeling social networks can be divided along two main

fronts. One is the introduct ion and analysis of the Patron-Artwork model, which

provides a simple mechanism of how \ fame " (more generally knowledge) can arise in

a þnite populat ion. T he other is the study of K leinberg navigat ion, which provides a

model of the famous small-world `six degrees of separat ion' phenomenon.
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F igure 5.11: Similar to F ig. 5.10 but for angular anisotropy. T his clearly shows the
b > 1 curves collapsing onto the b = 1 curve as L ! 1 , while the b < 1 curves
approach Þ( 1 ) at diÞering rates.

T he Patron-Artwork model is a very promising mechanism to explain how \ fame "

or knowledge of an external populat ion (the art) arises by means of a simple recom-

mendat ion mechanism inside a social network (the patrons). T his model has proven

tractable when the social network is either a very large complete graph or a very

large star graph, and simulat ions conþrm our results for the former. Our analysis has

also served to illustrate some interest ing concerns when using the master equat ion

approach versus the rate equat ion approach, namely that the rate equat ion seems to

only work when second-order terms in the K ramers-Moyal expansion of the master

equat ion can be neglected, and even then it appears to give only qualitat ively correct

answers. Future work in this area would be to use simulat ions to conþrm the results

in Sec. 5.1.4, to analyze more interest ing social networks, to collect real-world data for

comparison (such as IM Db votes), and to consider interest ing generalizat ions (such as

allowing diÞerent values of r for diÞerent types of nodes, directed or weighted social
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F igure 5.12: Evidence that the crossover locat ions for b > 1 exhibit a power law
dependence on b. T he straight line is of slope 2. The mechanism generat ing this
behavior remains unknown. I t is also an open quest ion whether or not the power law
exponent depends on the underlying lat t ice dimension.

networks, etc.).

Our work on K leinberg navigat ion in the presence of anisotropic lat t ices shows

several interest ing facts. Simulat ions conþrmed to high accuracy that Þm in ! d as

L ! 1 , regardless of the amount or type of anisotropy. But the behavior at þnite

sizes (some of which are very large) was not well understood. T he apparent crossover

behavior for the lat t ice anisotropy is not well understood, nor is it known why the

angular anisotropy does not display a similar phenomenon. Future work on K leinberg

navigat ion may include modiþcat ions to the algorithm in the face of more realist ic

networks, such as those with gaps or voids. In such circumstances, convergence to

the target is not guaranteed, and a greedy algorithm can get stuck. Whether or not

a means of opt imum navigat ion exists under these circumstances remains an open

quest ion. I t would also be interest ing to explore whether there really is a power law
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dependence of L crossover on b, and if the power law exponent is (generically) related

to the dimension of the underlying lat t ice.



C hap ter 6

C onclusions

T his thesis has focused on two main areas of complex networks research. One has

been the development of new analysis tools and techniques, allowing a researcher

to study and understand the important propert ies of a given network, whether it

be generated from some model, such as a random network, or from the collect ing

of real-world data. New methods for detect ing communit ies have been introduced,

especially ones capable of detect ing a part icular community within a network that is

too large or too dynamic to be fully explored. Shells, a unique property of a network

that is neither local nor global, were studied, leading to several interest ing stat ist ics

as well as a new measure of bipart ivity. T hese shells have also allowed us to develop

a very interest ing new tool, the network portrait , capable of capturing a great deal

of informat ion in a compact , easy-to-understand representat ion.

T he second main area of this work has been on applicat ions of networks, and has

focused on the usage of social networks as a means to study the complex behavior

inherent in society. We have introduced the Patron-Artwork model to study how fame

can emerge in a populat ion due to a simple recommendat ion dynamic. Meanwhile,

our study of K leinberg Navigat ion, an idealized model of the small world phenomenon,

has led to several intriguing þndings.

105
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6.1 C ont r ib u t ions

T he problem of ident ifying communit ies, dense clusters of interconnected nodes, has

received much at tent ion [24, 30, 33]. In Ch. 2 we have introduced a new type of

community detect ion algorithm [39], one that is local in the sense that it does not

require simultaneous informat ion about every node and edge in the network. T his

informat ion is often unavailable for networks that are either very large, such as the

internet , or very cost ly to explore, such as some social networks. Yet a researcher may

st ill wish to þnd a community in these networks, perhaps belonging to a part icular

node. These algorithms begin with such a start ing node, and þnd the community

containing that node by means of an agglomerat ion scheme, how nodes are added

into the community, and a stopping criterion, how to tell that the ent ire community

has been found and agglomerat ion should stop.

A longside our local algorithm, we have developed a global applicat ion, using a

\ membership matrix " to determine the ent ire community structure. A hierarchy of

sub-communit ies can be generated from this matrix, by means of a simple Hamming

distance-based clustering, and this method has been shown to extract more meaning-

ful informat ion than compet itors [41]. T he method was also generalized to weighted

networks [41].

T his local method is not ideal however, as it is highly dependent on a start ing

node's locat ion within a community. Meanwhile, more realist ic and accurate methods

were subsequent ly introduced (e.g. [42]). In response to the proliferat ion of compet-

ing techniques, we have introduced a simple benchmarking and evaluat ion scheme,

tailored speciþcally to local algorithms, as a means to both compare and improve

the accuracy of these methods. T his benchmarking scheme consists of art iþcial test

networks possessing a tunable degree of community structure (including our newly-

introduced generalized ad hoc networks) coupled with a simple informat ion theoret ic

part it ion similarity measure, to determine how \ close " an algorithm's part it ion is to
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the test network's pre-built community structure. Using this benchmarking proce-

dure, we have shown that many algorithms perform comparably and, most impor-

tant ly, that the accuracy of a local algorithm is far more aÞected by how the method

stops growing the community, than by how it grows the community. Several stopping

criteria were introduced, often independent ly of a part icular agglomerat ion scheme,

and it was shown that there is room for improvement .

Chapter 3 focused on the study of shells, groups of nodes that are at a þxed

distance from a start ing node. Our original local community algorithm (Sec. 2.2)

relied on the relat ionship between shells and communit ies, so further study of shells

was worthwhile. We oÞered a slight improvement to an exist ing calculat ion of the

size and distribut ion of these shells [65, 66], allowing it to be applied more generally,

including to smaller networks. We also studied the concept of perimetric edges, edges

that are within shells, and their relat ionship to odd cycles (every perimetric edge

part icipates in at least one odd cycle). Using this relat ionship, we introduced a new

and inexpensive measure of bipart ivity, how close a network is to being two-colorable.

Inspired by the distribut ion of shells, we then introduced the Network Portrait in

Ch. 4. T hese portraits deþne a sort of \ joint histogram " over the shell distribut ions,

stored as a matrix. T hese matrices are unique for a given network, unlike adjacency

matrices and edgelists, though we showed that they do not uniquely deþne a network.

T hese portraits encode a great deal of informat ion, however, including dimensionality

and regularity, the presence or absence of a small world diameter, and even correla-

t ion eÞects such as assortat ivity. Never before have all these quant it ies been available

from a single plot . Quant itat ive comparison methods were also developed with the

introduct ion of a \ distance " metric between graphs, based on their respect ive por-

traits. T his allows a researcher to, for example, develop a random model and see how

well it represents a real-world network, a very useful tool. F inally, and perhaps most

promising, a second matrix, describing how edges are distributed amongst shells, was

introduced and it was shown that every graph of seven nodes or less was uniquely

deþned by both of these matrices.
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In addit ion to the previous work, we have also worked on two ways to apply

complex networks to problems relat ing to social dynamics and modeling. One was

the introduct ion of the Patron-Artwork model, having some similarit ies to exist ing

work such as the voter model, to describe how a social network (of patrons) can

generate a distribut ion of fame for an external populat ion (of artwork). T his model

was studied for the limit ing case where the social network was the complete graph,

for both an inþnite and a þnite amount of artwork. For the inþnite case, a power law

distribut ion of fame was always generated, but the þnite case led to an interest ing

phase transit ion where the distribut ion went from a gaussian to one with a power

law tail on one side and a stretched exponent ial on the other. D istribut ions of the

lat ter form are often studied by economists [116, 117], and it is very interest ing that

they appear naturally in this context . Calculat ions for the þnite case also illustrate

a discrepancy between two diÞering solut ion techniques, which is an important point

as both are heavily relied upon in other problems.

Another problem in the area of social networks was studied, that of K leinberg

Navigat ion, speciþcally on anisotropic lat t ices. K leinberg navigat ion is an idealized

model of the M ilgram let ter-passing experiment , and consists of a lat t ice of nodes

with each node connected to its nearest lat t ice neighbors and one addit ional long-

range contact , where the distance to the lat ter is given by a power law, P (r ) ¾ r  Þ .

I t has been shown that greedy navigat ion (the let ter passing) is fastest when Þ = d

(in the limit of an inþnite lat t ice) [124, 126]. T he work in [126] generalized this result

to fractal lat t ices, but showed a curious discrepancy between the Þ extrapolated from

þnite simulat ions and the predicted Þ = d. To ease programming, the fractal lat t ices

were embedded in a square geometry, stretching them slight ly in one direct ion. T hey

hypothesized that this anisotropy was the source of the discrepancy.

In this work, we tested that hypothesis direct ly, by introducing two types of

anisotropy for square lat t ices. I t was shown to high accuracy that Þ does approach

d as the lat t ice becomes very large, but interest ing behavior was present \ along the

way. " Speciþcally, a crossover phenomenon was present , where the opt imum value of
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Þ for a part icular amount of anisotropy coincided with the isotropic Þ, at a certain

lat t ice size. Furthermore, this behavior was present in one type of anisotropy and

not the other. T his crossover was observed to have a power law dependence on the

amount of anisotropy, with power law exponent ³ 2. I t is worth not ing that even

though Þ ! d, the study of this phenomenon is of the utmost importance since it

represents more realist ic lat t ices and it st ill occurs at the sizes of the large networks

encountered in everyday circumstances, such as the internet .

6.2 O p en Q uest ions an d Fu t u re R esearch

A ll of the areas of this thesis have raised interest ing quest ions and opened new avenues

for fruitful study. Here we list some of the more important open quest ions and further

research opportunit ies.

For the local community methods, it was shown that they do not perform as well

as a global method, which is to be expected, but how close to global accuracy can

one achieve? Furthermore, these local methods suÞer a problem of back links, those

links that are later discovered during the process of the algorithm, and it is not clear

how (or even if ) this problem can be overcome. F inally, it was shown that stopping

criteria are a crit ical component of a method's accuracy and that there is room for

further improvement , so developing improved criteria is a prime area for future work.

T he new benchmarking procedure will be invaluable in this regard.

T he network portraits of Ch. 4 open many possibilit ies. One is simply: what other

propert ies can be understood by looking at the portraits themselves? A distance Ð

was introduced to quant ify the similarit ies and diÞerences between networks, but the

metric propert ies of Ð remain poorly understood. T he fact that the portrait is unique

for a given network immediately applies it to the problem of graph isomorphism, but

the speciþcs of this applicability requires further research. I t is trivial to construct

the portrait for a given network, but the opposite is not true, and a general construc-

t ion algorithm to generate a graph from its portrait alone would be a great boon.
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T he conjecture that all graphs are uniquely encoded by both matrices needs to be

conþrmed or refuted. A conþrmat ion seems di Ž cult , but a refutat ion requires only a

single counter-example. F inally, generalizing the portraits to weighted networks was

brie  y discussed, but the best approach to doing this (without introducing a large

number of parameters) is not clear.

Our work on social networks has further promise as well. For the patron-artwork

model, can solut ions be found for more realist ic social networks? T he discrepancy

between the two solut ion techniques used when analyzing the complete graph is clear,

but the underlying cause requires further study. T his is very important , since these

techniques are in widespread use. Moreover, does a generic solut ion technique exist?

Real-world data on the distribut ion of fame is available, such as tallies of the number

of reviews per movie on the IM Db. Can the distribut ion of reviews be reconciled with

the patron-artwork model? I t would be a very important result if one could indicate

the general structure of the underlying social network from the fame distribut ion

alone.

For the K leinberg navigat ion problem, how and why does the crossover behavior's

power law dependence on anisotropy occur, and why is it only present for one type of

anisotropy? Does the power law exponent depend on the dimension of the underlying

lat t ice, is it always 2, or neither? F inally, we discussed further generalizat ions of the

navigat ion problem to non-uniform lat t ices, such as those with large gaps or voids.

Here a simple greedy navigat ion algorithm will likely fail, with the message becoming

trapped and unable to progress toward the target . Can an opt imum navigat ion

algorithm be discovered for these circumstances? If so, will delivery of the message

be guaranteed or will it be lost some þnite fract ion of the t ime? A ll of these problems

are quite relevant , since real geographically distributed networks are seldom as t idy

as a perfect lat t ice, and so results will have immediate applicat ion.



A p p en di x A

P ar t i t ion Si m ilar i t y

T he analysis of compet ing local community algorithms hinges upon a means to com-

pare how \ similar " community part it ions are. T his is a problem more general than

part it ioning graphs and, for completeness, we present useful background material

covering a variety of ways to compare data part it ions. We begin by deþning some

terminology and other useful quant it ies, then discuss the strengths and weaknesses

of various comparison measures. Our discussion follows those of Meil½a [127] and

K arrer [128].

A .1 P ar t i t ions

We deþne a cluster ing C = f c1; c2; : : : ; c A g as a part it ion of a set of points (dataset)

D into A (mutually disjoint) subsets c1 , c2 , . . . , c A called clusters.1 In other words,

ck \ c l = ; when k 6= l and
S A

i = 1 c i = D . Let D contain N points and ck contain nk

points. T hen n =
P

i n i .

Suppose we are given a dataset D and two part it ions V = f v1; v2; : : : ; vB g, W =

f w1; w2; : : : ; wC g of that dataset . Our goal here is to measure how similar or related V
1 In terms of þnding communit ies (Ch. 2) the nodes of the graph form D , the individual com-

munit ies form the clusters c1 ; c2 ; : : : ; c A , and one seeks the clustering that maximizes the number
of edges between nodes in the same clusters and minimizes the number of edges between nodes in
diÞerent clusters.
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w1 w2 Ð Ð Ð wC

v1 n11 n12 Ð Ð Ð n1 C n1:

v2 n21 n22 Ð Ð Ð n2 C n2:
...

...
... . . . ...

...

vB n B 1 n B 2 Ð Ð Ð n B C n B :

n :1 n :2 Ð Ð Ð n : C N

Table A .1: Notat ion for the confusion
matrix n i j of part it ions V and W , as well
as row and column sums n : j and n i : . Both
row and column sums themselves sum up
to N .

and W are. A useful quant ity is the confusion m a t r i x (also known as a cont ingency

table):

n i j  
the number of points that appear in both v i in one
clustering and w j in the other

= jv i \ w j j :
(A .1.1)

T his matrix obeys
P

i
P

j n i j = N . Deþning row and column sums n : j  
P

i n i j and

n i :  
P

j n i j gives n : j = jw j j and n i : = jv i j. See also Table A .1.

We seek a means to quant ity the diÞerences between V and W , preferably one

normalized to [0; 1]. T hese measures roughly fall into three categories: pair-count ing

methods, clustering matching, or informat ion theoret ic methods.

A .2 P ai r-cou nt ing met ho ds

Some measures compare part it ions by looking at all possible pairs of points (x; y),

x; y 2 D , and count ing how they fall relat ive to one another in each part it ion. T here

are
 N

2

Ð
total pairs, and each can be distributed in one of four ways: either x and y

are in the same cluster in both part it ions, diÞerent clusters in one part it ion but the

same cluster in the other, or diÞerent clusters in both part it ions. Formally, let us



113

count the number of pairs meet ing these descript ions:

a  # of pairs such that x; y 2 v i and x; y 2 w j ;

b  # of pairs such that x 2 v i , y 2 vk but x; y 2 w j ;

c  # of pairs such that x; y 2 v i but x 2 w j , y 2 w l ;

d  # of pairs such that x 2 v i , y 2 vk and x 2 w j , y 2 w l ,

where i 6= k and j 6= l . T hese can be calculated direct ly from the confusion matrix:

a =
X

i ; j

 
n i j

2

 
; (A .2.1)

b =
X

j

"  
n : j

2

 
 

X

i

 
n i j

2

 #

; (A .2.2)

c =
X

i

"  
n i :

2

 
 

X

j

 
n i j

2

 #

; (A .2.3)

d =
 

N
2

 
 a  b  c: (A .2.4)

Several stat ist ics are built using these quant it ies. Wallace [129] introduced two

asymmetric quant it ies:

W I (V ; W ) =
a

a + b
; (A .2.5)

W I I (V ; W ) =
a

a + c
: (A .2.6)

Since a + b is the number of pairs in the same cluster in W , and a + c is the number

of pairs in the same cluster in V , then these are the probability that a pair of points

which are in the same cluster in one part it ion are also in the same cluster in the other.

Fowlkes and Mallows [130] introduced a symmetric criterion, the geometric mean

of Eqs. (A .2.5) and (A .2.6):

F (V ; W ) =
p

W I (V ; W )W I I (V ; W ): (A .2.7)

Yet another pair-wise stat ist ic was introduced by Rand:

R (V ; W ) =
a + d

N (N  1)=2
(A .2.8)
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Both R and F need to be renormalized to fall over the range [0; 1]. T his is

typically done by subtract ing a \ null hypothesis " value, assuming clusters are random

and independent , and then normalizing the range to give 0 for the null case, and 1

for the maximal case where the clusterings are ident ical. T his procedure is similar to

the derivat ion of modularity given in Ch. 2.

Such adjustments are not ideal for several reasons. Concerns have been expressed

as to the plausibility of the null hypotheses [129]. Another issue is that the value

of the baseline (before subtract ing the null model) can vary considerably depending

on the clusterings, and this makes comparing stat ist ics against one another more

problemat ic. For an in-depth discussion, see [130, 127].

Some other pair-wise stat ist ics include the Jaccard Index [131],

J (V ; W ) =
a

a + b + c
; (A .2.9)

and the M irkin metric [132],

M (V ; W ) =
X

i

n2
i : +

X

j

n2
: j  2

X

i

X

j

n2
i j (A .2.10)

= 2(b + c) = N (N  1)
ð

1  R (V ; W )
Ł

: (A .2.11)

T hus the M irkin metric is just another adjusted form of the Rand index.

A .2.1 E dge cou nt ing

In addit ion to count ing every pair of points i; j 2 D , one can only count the pairs of

points that correspond to edges in the graph. T hat is, count all pairs i; j 2 D such

that 9e i j 2 G . T his is, in a sense, a weaker criteria, since one only cares about how

edges are distributed amongst clusters, and not how disconnected nodes are situated.

Another possibility is to count the pairs corresponding to neighbors, then next-

nearest neighbors, etc. weighing each count less, to account for the increasing distance

between the pairs.
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Neither of these concepts appear to have been introduced in the literature, but

most researchers have turned to alternat ives to the pair-count ing measures, for various

reasons, and therefore the pursuit of these ideas may not be worthwhile.

A .3 C luster m a tching

One can also compare clusterings based on various set cardinalit ies. T hese avoid

assumpt ions regarding how the clusterings were generated.

Meil½a and Heckerman introduced the stat ist ic H as follows [133]. E ach cluster

in V is given a \ closest match " in W . T hen H computes the total \ unmatched "

probability mass in the confusion matrix:

H (V ; W ) = 1  
1
N

max
³

BX

i = 1

n i ; ³ ( i ) ; (A .3.1)

where it is assumed without loss of generality that B ½ C , and ³ ( i) is an injec-

t ive mapping of f 1; : : : ; B g into f 1; : : : C g, and the maximum is taken over all such

mappings. T his stat ist ic is symmetric and has value 1 for ident ical clusterings. See

also [134, 135].

A similar, though asymmetric stat ist ic was also introduced [136]:

L (V ; W ) =
1
K

X

i

max
j

n i j

n i : + n : j
: (A .3.2)

T his asymmetry is less than ideal so van Dongen [137] introduced a related but

symmetric stat ist ic:

D (V ; W ) = 1  
1

2N

"
X

i

max
j

n i j +
X

j

max
i

n i j

#

: (A .3.3)

Note that D is 0 for ident ical clusterings and always smaller than 1 otherwise.

A ll of these stat ist ics suÞer from the \ matching problem " in that L ; H , and D all

þrst þnd a corresponding \ best match " for each cluster within the other clustering,

then sum the contribut ions of these matches. T hey ignore all informat ion related
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to the remaining \ unmatched " parts of each clustering, and this is not ideal. As an

example of this drawback [128], suppose we have three clusterings:

C1 = f f a; b; cg; fd; e; f ; ggg; (A .3.4a)

C2 = f f a; b; cg; fd; eg; f f ; ggg; (A .3.4b)

C3 = f f a; b; cg; fdg; f eg; f f ; ggg: (A .3.4c)

For the van Dongen stat ist ic, D (C1; C2) = D (C1; C3), despite the claim (and support

of other measures) that C1 is more similar to C2 than to C3 . For more discussion,

see [127].

A .4 I nfor m a t ion T heoret ic met ho ds

Instead of looking at how pairs of points in the dataset are distributed one can

consider the probability for points to be placed within clusters in each clustering.

T hus one can assume the confusion matrix deþnes a joint probability P (v i ; w j ) that

a randomly chosen point x appears in both v i and w j . Formally this means that v

and w are assumed to be values of random variables V and W . T hen:

P (v; w)  Pr(V = v; W = w)  
n i j

N
; (A .4.1)

where the suppressed indices i and j are taken to be the indices of the confusion

matrix that correspond to v and w , respect ively. Following this, the row and column

sums then correspond to the marginal distribut ions:

P (v)  Pr(V = v) =
X

j

P i j =
n i :

N
; (A .4.2)

P (w)  Pr(W = w) =
X

i

P i j =
n : j

N
: (A .4.3)

Now, consider the mutual informat ion between clusterings V and W to be equal

to the tradit ional mutual informat ion of the corresponding random variables:

I (V ; W ) =
BX

i = 1

CX

j = 1

P (v; w) log
P (v; w)

P (v)P (w)
(A .4.4)
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Mutual informat ion measures how much knowledge we have about V by having com-

plete knowledge of W , and vice versa. If the clusterings are ident ical, then we know

one completely if we know the other. If there is no correlat ion then we learn nothing.

T his can be visualized by using the fact that P (v; w) = P (v jw)P (w) = P (w jv)P (v).

P lugging this in reduces Eq. (A .4.4) to:

I (V ; W ) =
X

i ; j

P (v; w) log P (v jw)  
X

i

P (v) log P (v)

= H (V )  H (V jW ) = H (W )  H (W jV ) (A .4.5)

where H (V ) is the informat ion (entropy) of V and H (V jW )  
P

j P (w)H (V jW =

w) is the condit ional entropy (the addit ional informat ion needed to know V once

W is known). If W tells us nothing about V then the two terms are equal and

I (V ; W ) = 0. In essence, I contains the same informat ion as the condit ional entropy,

but is symmetric, while the condit ional entropy is not . T his makes I more useful as

a measure of distance or similarity.

T he values of I do not necessarily fall in the range [0,1] so a normalizat ion is often

used. T here are several possibilit ies, one popular choice is the following. Mutual

informat ion is bounded by the entropies of the involved random variables:

I (V ; W ) = H (V )  H (V jW )  H (V )

= H (W )  H (W jV )  H (W );

thus

I (V ; W )  min
ð

H (V ); H (W )
Ł

 
H (V ) + H (W )

2
:

T his provides a t ight upper bound on I (V ; W ), giving the normalized form:

I nor m (V ; W ) =
2I (V ; W )

H (V ) + H (W )
: (A .4.6)

Equat ion (A .4.6) was used in the local community benchmarking and evaluat ion

method presented in 2.3.3.
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H (V |W ) H (W |V )
I (V , W )

H (V ) H (W )

V (V , W )

F igure A .1: D iagramming the rela-
t ionship between V (V ; W ), the shaded
region, and various other quant it ies.
T he two circles represent the entropies
H , while the overlapping region is the
mutual informat ion, and the remain-
ing shaded regions give the condit ional
entropies. T he sum of the condit ional
entropies is the variat ion of informa-
t ion. From [127].

Recent ly, another informat ion theoret ic measure has been introduced, the varia-

t ion of informat ion V [127, 128], deþned as:

V (V ; W ) = H (V ) + H (W )  2I (V ; W )

= H (V jW ) + H (W jV )

=  
X

i ; j

P (v; w) log
P (v; w)
P (w)

 
X

i ; j

P (v; w) log
P (v; w)

P (v)
: (A .4.7)

T his is the sum of the informat ion needed to know V given W and the informat ion

needed to know W given V . I t is a true metric in the space of clusterings, sat isfying

all the requirements of a proper distance [127]. I t is also a local measure in the

sense that the distance between two clusterings that only diÞer in one \ region " of the

dataset does not depend on how the rest of the dataset is clustered. Due to these

propert ies, this measure has become quite popular. See F ig. A .1

T he maximum value that V takes is log N , which happens when V consists of a

single cluster of size N and W consists of N clusters of size 1, or vice versa. T his value

increases with N because larger datasets intrinsically contain more informat ion, but

one can simply renormalize by log N if this is undesired. When comparing two com-

munity part it ions of the same graph, N is the same for both, and this normalizat ion

is irrelevant .



A p p en di x B

Shells, C ycles an d C om mu ni t ies1

In addit ion to the local community methods presented in Secs. 2.2 { 2.3, we have also

explored how short cycles are distributed over community structure. Here we present

some background on the importance of cycles, a means to ident ify and (approxi-

mately) enumerate cycles based on how their component edges are distributed within

shells, and a simple set of algorithms for ident ifying which edges in a network form an

inter-community \ backbone. " T he ident iþcat ion of shells and cycles is also of interest

regarding the material covered in Ch. 3

An important feature of complex networks are the cycles of diÞerent lengths which

underlie the pat terns of connect ivity [62]. T he stat ist ical distribut ion of cycles has

been acknowledged as part icularly important for deþning not only the topology of the

respect ive networks, but also the dynamics of systems running on such frameworks,

due to feedback [138]. T he number of cycles in even a moderately sized network is so

large that it is intractable to discover all of them. Indeed, many algorithms based on,

for example, random walks, have been used to est imate the number of cycles [62, 70].

Generally, the density of cycles tends to increase as more edges are incorporated

into a network, with longer cycles emerging before shorter ones [139]. T herefore, the

density of cycles of diÞerent lengths can be used as an indicator of the connect ivity

between any subset of nodes. In other words, the larger the number of short cycles
1 P u b lished i n [75]
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amongst a subset of nodes, the more connected such nodes are to one another. Longer

cycles tend to grow, \ coiled up, " alongside these shorter cycles, however, blurring

the dist inct ion between nodes based solely on short-cycle part icipat ion. We present

methods to overcome this.

B .1 D escr ibing C ycles wi t h Shells

For a graph G , we are interested in þnding cycles of length 3  l  5 containing a

part icular vertex v . To describe this, we begin by decomposing G into shells G i about

v . Since we are only interested in cycles of length l  5, we need only keep G 1(v) and

G 2(v).

I t is simple to describe short cycles using these shell decomposit ions. For example,

for every edge e i j in G 1(v), there exists a 3-cycle (triangle) v { i { j {v . Similarly, for

every path of length 2 or 3 in S1 , there exists a 4- or 5-cycle, respect ively. Another

4-cycle and two more 5-cycles exist involving both G 1(v) and G 2(v).

One can also describe al l possible cycles in such a manner. For a cycle of length

L ½ 3, the number of such possible \ cases " N (L ) must rapidly grow with L . Since it

requires two edges to visit a shell, any L-cycle can visit at most J shells, where

J =

(
L
2 ; L even;
L  1

2 ; L odd:
(B .1.1)

If the farthest shell the cycle visits is G j (with j < J ), there are at most L  2 j

remaining edges that must be distributed between and within the G 1; G 2; :::; G j shells.

T he number of ways to distribute L  2 j edges over j shells is ( L  2 j + j  1)!
( L  2 j )!( j  1)! . Yet it

is possible for a cycle to \ zig-zag " between shells, using more than the 2 j necessary

edges between shells. T herefore, the total number of possible ways to distribute an

L-cycle is at least

N l (L ) = 1 +
JX

j = 2

J  jX

i = 0

 
i + j  2

i

  
L  2i  j  1
L  2( i + j )

 
; (B .1.2)
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with the outer sum account ing for all the possible shells the cycle can visit , the inner

sum for all the opt ional pairs of edges that can lie between shells and the + 1 for the

3-cycle (triangle). Here i is the number of pairs of edges between shells beyond the j

necessary to visit the j shells.

Furthermore, split t ing the inner sum in Eq. (B .1.2) into cases where extra edges

are distributed ( i > 0) and are not ( i = 0):

N l (L ) = 1 +
JX

j = 2

"  
L  j  1

L  2 j

 
+

J  jX

i = 1

 
i + j  2

i

  
L  2i  j  1
L  2( i + j )

 #

=
1

p
5

 
1 +

p
5

2

! L  1

+
JX

j = 2

J  jX

i = 1

(  1)L + i
 

1  j
i

  
 j

L  2( i + j )

 
: (B .1.3)

T his gives a \ lower " lower bound of 1p
5

 
1 +

p
5

2

 L  1
, which is equivalent to neglect ing

to count those cycles with extraneous edges between shells.

Equat ion (B .1.3) fails to take into account permutat ions of the ordering of edges

between and within adjacent shells. A simple upper \ bound " is possible, however, as

there are certainly no more than L ! possible permutat ions over the whole network:

N u (L ) = 1 +
JX

j = 2

J  jX

i = 0

 
i + j  2

i

  
L  2i  j  1
L  2( i + j )

 
L !; (B .1.4)

with
1

p
5

 
1 +

p
5

2

! L  1

 N l (L )  N (L )  N u (L ): (B .1.5)

T he number of possible cycles grows at least exponent ially with length. If one

were to assume that each part icular case has an equal probability of occurring in a

given network, which is not generally just iþed, then the number of cycles present also

grows exponent ially, as expected.
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B .2 C ycles an d C om mu ni t ies

Community structure can be studied by comparing the edges covered by certain cycles

with the original graph. Let

C l ( i)  the set of edges traversed by all
l-cycles start ing from vertex i . (B .2.1)

Start ing from all vert ices and limit ing ourselves to only short j -cycles,2

C  
[

i 2 V

[

j

C j ( i): (B .2.2)

From this, construct a graph

H = fV ; E n C g (B .2.3)

which is the graph containing only edges that do not part icipate in j -cycles in G . Sep-

arate communit ies in G will appear as disconnected components in H . We interpret

vert ices in H with degree zero as communit ies of size one.

In specifying H , the quest ion of what to choose for j has been left open. Choosing

just j = f 3g will correspond to delet ing all edges from G that part icipate in 3-cycles,

generally not a useful result . One may consider j to be a tunable parameter, used to

get a desired result when applied to a speciþc network.

One issue that can occur is that longer cycles often overlap shorter cycles. In

terms of communit ies, most inter-community edges contain few (if any) short cycles,

but intra-community edges tend to contain both long and short cycles, since a long

cycle can \ coil " inside the community. If one were to just delete all 5-cycles in a

graph, it is very possible to end up delet ing all edges.

T here is quite a bit of leeway in how we choose j and build H and we can use this

to our advantage. For example, pick two cycle lengths s and t (s < t) and compute

Cs and C t . T hen, build another set of edges

C tns  C t n Cs; (B .2.4)

2 We specify \ short cycles " as those of length 3, 4, or 5 but this is not a set rule and, in certain
circumstances, i t may prove advantageous to consider 4- or 5-cycles, or even just 5-cycles.
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containing edges that part icipate in t-cycles but not s-cycles. T he graph H = fV ; C tnsg

will contain edges that tend to be between communit ies and not within, for an ap-

propriate choice of t and s. One can think of this as a \ backbone " of the net-

work, and delet ing these edges may be a useful pre-processing step for applying other

community-detect ion algorithms, including betweenness [39, 3].

B .3 A p plica t ion E xa m ples

We now apply these cycle-based methods to a network of N C A A D ivision I-A football

games held during the 2005 regular season.3 T his example also helps illustrate the

meaning of Eq. (B .2.4). In addit ion, we discuss how these methods can break down

and ways to overcome that .

In N C A A football, teams are grouped into conferences based on locat ion. To save

on transportat ion t ime and cost , more games are played between teams in the same

conference than in diÞerent conferences. A graph of the game schedule, where nodes

are teams and edges connect teams that have played against each other, naturally

exhibits community structure based on these conferences [140].

F igure B .1 displays the original football network; the network generated by using

j = f 3g in Eq. (B .2.1); and the network generated by building C tns using t = 5 and

s = 3 in Eq. (B .2.4). T he graph H = fV ; C tnsg contains no edges between teams

within the same conference.

Choosing j = f 3g deletes all edges that do not part icipate in 3-cycles, most of

which are between conferences, though some edges remain. T his will not split the

network into seperate components based on the communit ies but it may be useful as

a preprocessing step for betweenness or another community detect ion algorithm.

We propose that edges in C5n3 comprise the ma jority of this network's inter-

community structure, its \ backbone. " To test this, one can compare the distribut ions

of edge betweenness for these backbone and non-backbone edges, as shown in F ig. B .2.
3 Data taken from published schedule at h t t p : / / www . ncaa . o r g
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Backbone edges tend to carry much higher betweenness values than the more common

non-backbone edges.

B .4 C onclu ding R em ar ks

T he ident iþcat ion and characterizat ion of the communit ies present in complex net-

works stands out as one of the most important approaches for understanding their

structure and possible format ion and evolut ion. At the same t ime, the distribut ion of

cycles of various lengths in a complex network has important implicat ions for the con-

nect ivity, resilience and dynamics of the respect ively studied networks. T he current

work brought together these two important trends, in the sense of applying short cycle

detect ion as a means to help the ident iþcat ion of communit ies in complex networks.

T he relat ionship between the cycles and communit ies in the football network has been

further invest igated in terms of the betweenness centrality measurement , conþrming

that the obtained backbone edges tend to exhibit higher betweenness values.
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F igure B .1: T he N C A A D iv I-A 2005 regular season with all edges (a), with 3-cycles
only (b), and with just C5n3 edges (c). F ig. (d) is the same graph as (c) but with
a layout emphasizing that no edges within conferences remain (degree zero nodes
omit ted). As per [74], the conferences are: A = At lant ic Coast , B = B ig 12, C =
Conference USA , E = B ig E ast , I = Independent , M = M id-American, P = Paciþc
Ten, S = Southeastern, T = Western Athlet ic, U = Sun Belt , W = Mountain West ,
X = B ig Ten.
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F igure B .2: H istogram of edge
betweenness for non-backbone
edges (red) and backbone edges
(blue) for the N C A A 2005 foot-
ball network. T he mean (unnor-
malized) betweenness is 42.8 for
non-backbone edges and 132.9
for backbone edges. Backbone
and non-backbone histograms
use the same bins; the front-
most bins have been narrowed
for clarity.
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