
CLARKSON UNIVERSITY

Inverse Problems for Image Processing of Spatiotemporal
Dynamical Systems

A Dissertation

By

Ranil Kumara Basnayake

Department of Mathematics

Submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy, Mathematics

July 03, 2014

Accepted by the Graduate School

,
Date, Dean

Abstract

Optical flow is a classical problem in computer vision which was developed to de-

termine the rigid body motion based on observed images. These concepts must be

adapted for applications to other fields such as fluid mechanics and dynamical sys-

tems. Our approaches are based on an inverse problem formulation considering the

physics of the observed density evolution and imposed prior knowledge of the solution.

This presents itself in the form of a cost function which is a functional. The desired

solution is a velocity field which is uncovered by minimizing the specifically designed

functional in each individual scenario. This leads to a practical approach to analyze

an observed dynamical system. Additionally we introduce a multi-frame version of

the functional coupling of multiple images. Following the calculus of variations, this

yields a coupled set of Euler-Lagrange PDEs which serve as an assimilation method

that inputs video frames as driving terms. In this dissertation, we are especially in-

terested in remotely observed fluid flows on a planetary scale such as oceanography

as well as weather patterns here on Earth and on Jupiter. To overcome the coriolis

effects on these systems, we introduce for the first time here a new method to recon-

struct velocity fields incorporating quasi-static equations. Further, we illustrate the

significance of these flow fields on analysis of mixing and mass transport in the fluid

system being imaged.

ii

Acknowledgments

This work is dedicated to those who believed in me, lead me to the best I could
be and cheered me up during the tough times. I would personally like to thank all
the supportive people around me, without whom it would not have been possible to
accomplish this milestone.

First and the foremost, I would like to thank my advisor, Prof. Erik Bollt for making
me a part of his research group. A simple email from him took me all the way to
Clarkson and made me who I am today. I truly appreciate his guidance, insight,
patience and all the opportunities he has given to me throughout these years.

I would like to thank Prof. Aaron Luttman, even though I missed his presence in
Clarkson as my co-advisor. I’m extremely grateful for his advice, encouragement and
support on an academic and personal level.

I would like to thank Professors Joseph Skufca, Scott Fulton, Daniel ben-Avraham and
Jie Sun for serving as my thesis committee members and for their vision, comments
and suggestions. Also I acknowledge the entire faculty of the Dept. of Mathematics
for contributing to widen my subject knowledge.

I very much appreciate the financial support, received from the Office of Navel Re-
search under grant N00014-09-1-0647 and the Department Mathematics at Clarkson
University which allowed me to complete my Ph.D without any interruption.

I cherish all the memories I had with my “Chaos Lab Mates”; Sean, Ryan, Jiongxuan,
Mike, Tian, Kelum, Linchen and Matt. I appreciate the true friendship and stress free
work environment that my lab mates have provided. Special thanks goes to Matt,
Tian and Dr. Cafero for helping me to finish the thesis and defense on time while
thinking of their own work.

I thank from the bottom of my heart my parents for giving me freedom to make
my own decisions while being supportive by all means. I’m thankful to my sisters
and brother for their unconditional love and support. Also to my wife’s family for
strengthening me with love and care.

And finally, I must thank my wife for being with me to achieve this milestone scari-
fying her opportunities. Dinusha’s support and encouragement made me succeed in
my graduate studies. Also my son, Raveen and daughter, Ridmi for giving me a new
meaning to my life. Their love simply refreshed my days and kept me going through
the barriers.

iii

The undersigned have examined the thesis/dissertation entitled “Inverse Problems
for Image Processing of Spatiotemporal Dynamical Systems ” presented by
Ranil Kumara Basnayake, a candidate for the degree of Doctor of Philosophy
(Mathematics), and hereby certify that it is worthy of acceptance.

Date Erik Bollt (Advisor)

Daniel ben-Avraham

Scott Fulton

Joseph D. Skufca

Jie Sun

Contents

Abstract ii

Acknowledgments iii

List of Tables viii

List of Figures xii

1 Introduction 1

2 Classical Optical Flow Method 15

2.0.1 Euler-Lagrange Equations . 19

2.1 Existence and Uniqueness of the Solution 22

2.2 Solution to the Optical Flow Problem 24

2.3 Synthetic Data . 26

2.4 Results of Optical Flow Calculations 29

3 A Stream/Potential Function Method 32

3.1 A Stream/Potential Function Formulation 37

3.1.1 Construction of a Derivative Operator 38

3.2 Results from the Synthetic Flows . 45

3.3 Application and Examples . 53

3.3.1 An Example Using Sea Surface Temperature Data 53

v

3.3.2 Example from GOCI satellite 56

3.4 Another Advantage of Stream Function Method over the u-v Method 59

4 Regularization of Optical Flow Problem 61

4.1 A Simple Explanation about Regularization 62

4.2 Scientific Priors . 67

4.2.1 An Illustrative Example . 69

4.3 Comparison of Different Data Terms and Regularization Terms 76

4.4 Mean Angular Error (MAE) . 80

4.5 Results and Error Analysis . 82

4.6 Regularization Parameter Selection 86

5 Lagged Diffusivity Fixed Point Iteration Method 93

5.1 Optical flow with Total Variation Regularization 95

5.2 Lagged Diffusivity Fixed Point Iteration (LDFPI) Method 101

5.2.1 Optical Flow with LDFPI method 102

5.3 Lagged Diffusivity Fixed Point Method in Stream Function Formulation106

5.3.1 Flow for Oceanic Data . 109

5.4 Convergence Analysis of LDFPI for Optical Flow 110

6 Multi-Time Step Method 112

6.1 Multi-Time Step Method . 113

6.2 Results from Multi-Time Step Method 120

6.2.1 An Oceanographic Data Set 126

6.2.2 A Planetary Data Set . 130

7 Quasi-Static Equations with Coriolis Force in Optical Flow Method132

7.1 Coriolis Force . 133

7.2 Quasi-Static Equations . 135

vi

7.3 Quasi-Static Optical Flow Model . 138

7.3.1 Quasi-Static Euler-Lagrange Equations 139

7.4 Benchmark Data Set . 144

7.5 Jupiter . 147

7.6 Quasi-Static Multi-Time Step Method 153

8 Lagrangian Coherent Structures 164

8.1 Mixing and Transport Barriers . 165

8.1.1 Example: Double Gyre . 168

8.1.2 Example: Gulf of Mexico Oil Spill 171

8.2 FTLE field for the SST data . 177

8.3 FTLE field for the Jupiter . 180

9 Conclusion and Future work 182

vii

List of Tables

3.1 The table shows the elements of a given 2D array of size 3 × 5 and

they are labeled by considering the given array as a column vector. . 39

3.2 The table shows the elements of a given array of size 3× 5 with added

boundary points. We assume that the reflexive boundary conditions

are appropriate and added two columns to the both left and right of

the table. The boundary points are highlighted in bold letters. 39

3.3 The table shows the operator matrix needed to compute partial deriva-

tive of any real valued array of size 3× 5 with respect to x. All the en-

tries have a multiplication factor of 1
12h and we must include this when

we compute the derivatives. For the computation we use the fourth

order finite difference approximation, as shown in Eq.(3.14) with re-

flexive boundary conditions. The resulting matrix has five non-zero

diagonals. 41

4.1 Stream function formulation regularization terms are represented in u-v

formulation. Six different regularization terms in Eqs.(4.23) - (4.28) are

written in u-v formulation and listed in the first column. The second

column shows two Euler-Lagrange equations for for each regularization

term. 80

viii

4.2 Combining two data terms which represents the Continuity Equation

(CE) in Eq.(4.17) and the Conservation of Intensity (CI) in Eq.(4.16)

with six different regularization terms will produce 12 different algo-

rithms in potential formulation and 10 different algorithms in u-v for-

mulation. Note that there is no regularization term R1 in u-v formula-

tion. In addition, the combination of the regularization terms R1 +R2

and R1 + R3 which ensure the uniqueness of the solution in stream

function formulation and R2 + R3 in u-v formulation with both data

terms produce another six different algorithms. The values in the table

represent the mean angular error of reconstructed vector fields for the

Hyperbolic Fig. 2.3 data set from all 28 different combinations of al-

gorithms. MAE from the stream function formulation are represented

in Second and Third Columns whereas the MAE from u-v formulation

are represented in fourth and fifth columns. The regularization term

R� in the last row of the table represents R1 in stream function for-

mulation and R2 in u-v formulation. When the formulation does not

exist, the MAE is replaced by an ∗. 83

4.3 The table provides the MAE of reconstructed vector fields for the Gyre

data set in Fig. 2.4 from all 28 different combinations of algorithms.

MAE from the stream function formulation is represented in Second

and Third Columns whereas the MAE from u-v formulation is repre-

sented in the fourth and fifth columns. The regularization term R� in

the last row of the table represents R1 in stream function formulation

and R2 in u-v formulation. When the formulation does not exist, the

MAE is replaced by an ∗. 84

ix

4.4 The mean angular error for the reconstructed vector fields for the

source data set in Fig. 2.5 from all 28 different combinations of al-

gorithms. MAEs from the stream function formulation represent in

Second and Third Columns whereas the MAEs from u-v formulation

represent in fourth and fifth columns. The regularization term R� in

the last row of the table represents R1 in stream function formulation

and R2 in u-v formulation. When the formulation does not exist, the

MAE is replaced by an ∗. 85

5.1 Mean Angular Errors for the hyperbolic fixed point, gyre, and source

flows using TV regularizer with conservation of intensity (CI) and con-

tinuity equation (CE) data fidelities are shown in the second and third

columns respectively. In this case, the u-v formulation is used with the

gradient descent method. 99

5.2 Mean Angular Errors from the LDFPI method for the hyperbolic fixed

point, gyre, and source flows using TV regularizer with conservation of

intensity (CI) and continuity equation (CE) data fidelities are shown

in the second and third columns respectively. In this case, the u-v

formulation and the algorithm with the conservation of intensity data

fidelity produces small MAEs. 106

x

6.1 The MAE values for the six source images shown in Fig. 6.3 are com-

puted. In the computation, the multi-time step method in potential

function formulation was applied and flow fields were computed for

step sizes n = 1, 2, 3 and 4. The first row represents the MAE values

for six images for n = 1 and the second row is for n = 2 etc. In general,

MAE improves until n = 3 and then becomes unpredictable. However,

the MAE corresponding to the flows on image 4 improves even after

step size n = 3. 124

xi

List of Figures

1.1 Rigid body motion – Images (a) and (b) show two consecutive time

instances of the motion of a rotating sphere from right to left. The

optical flow field between these two images is shown in image (c) [10]. 2

1.2 Hurricane Sandy – Image shows one time instance of Hurricane Sandy

in November 29 in 2012 [43]. 9

1.3 Jupiter data – This image was taken by Voyager 2 space craft which

shows the violent storms in the region of Jupiter extending from the

equator to the southern polar latitudes in the neighborhood of the

Great Red Spot [44]. 10

1.4 The coriolis effect – The image shows the coriolis effect in the moving

objects on the earth. In northern hemisphere deviation is to the right

and in southern hemisphere the deviation is to the left [45]. 11

1.5 Coriolis effect in nature – Image (a) shows the Cyclone Ingrid stormed

over the northern Australia. Since this is in the southern hemisphere,

the storm swirl in counter-clockwise direction. The image (b) shows

the Hurricane Katrina above the Gulf of Mexico. The storm swirls in

clockwise direction since this is in the northern hemisphere [46]. . . . 12

1.6 Sacramento River – The image shows two branches of Sacramento river

meeting at this point. After they meet, a natural barrier forms between

murky water and the clear water [48]. 13

xii

2.1 Intensity changes – Images 1 and 2 show two time adjacent images of

an observed system which is not still. Five selected points are shown

in image 1. In image 2, whether those points are moving or not, the

color of those points does not change. 15

2.2 Conservation of image intensity – Image 1 and image 2 represent two

time adjacent images of a moving system. The point (x, y) in the image

1 moves to the point (x+ uδt, y + vδt) in image 2, but the the color

does not change. 16

2.3 Saddle data and true flow – Images (a) and (b) show two later time in-

stances of an initial density that has evolved according to Eq.(2.29)

with velocity components given by Eq.(2.32). The vector field in

Eq.(2.32) is shown in (c). 27

2.4 Gyre data and true flow – Images (a) and (b) show two later time

instances of an initial density that has evolved according to Eq.(2.29)

with velocity components given by Eq.(2.34) . The true flow field is

shown in (c). 28

2.5 Source data and true flow – Images (a) and (b) show two later time

instances of an initial density that has evolved according to Eq.(2.29)

with velocity components given by Eq.(2.36). The true flow field which

is given in Eq.(2.36) is shown in image (c). 29

2.6 Computed flow from gradient descent method – Images (a), (b) and (c)

show the computed velocity fields from the Gradient Descent formula-

tion for the saddle, gyre and source images shown in Fig. 2.3, Fig. 2.4

and Fig. 2.5 respectively. 30

xiii

2.7 Computed flow from Gauss-Seidel method – Images (a), (b) and (c)

show the computed velocity fields from the Gauss-Seidel formulation

for the saddle, gyre and source images shown in Fig. 2.3, Fig. 2.4 and

Fig. 2.5 respectively. 30

3.1 Dy with two different boundary conditions – Image (a) and (b) show

two views of operator matrices to compute the partial derivative of a

given 6×5 matrix with respect to y. The operator Dy in image (a) uses

reflexive boundary condition and in that case the number of non-zero

elements is 100 out of 900. However, the Dy operator in image (b) uses

zero boundary condition and then the number of non-zero elements is

90 out of 900. 42

3.2 Source with R2 – Reconstructed flow fields for source data from the po-

tential function formulation shown in first column and u-v formulation

in second column using the regularization term R2. Flow fields in the

first row are computed using continuity equation data fidelity whereas

the second row using the conservation of intensity data fidelity. Results

from both formulations with R2 capture the source flow field accurately. 46

3.3 Source with R3 – Computed flow fields for the source data from the

potential function formulation (first column) and u-v formulation (sec-

ond column) using the regularization term R3. Flow fields in the first

row are computed using continuity equation data fidelity whereas the

second row using the conservation of intensity data fidelity. Results

from both frameworks are reasonable other than near the boundaries

of the flow fields from continuity equation data fidelity. 47

xiv

3.4 Hyperbolic Flow with R2 – Reconstructed flow fields for the Hyperbolic

data from the stream function formulation (first column) and u-v for-

mulation (second column) using the regularization term R2. Flow fields

in the first row are computed using continuity equation data fidelity

whereas the second row flow fields are from conservation of intensity

data fidelity. Both stream function and the u-v formulations with R2

reconstruct the hyperbolic fixed point accurately. 48

3.5 Hyperbolic Flow with R3 – Reconstructed flow fields for the hyper-

bolic data from the stream function formulation (first column) and u-v

formulation (second column) using the regularization term R2. Flow

fields in the first row are computed using continuity equation data

fidelity whereas the second row flow fields are from conservation of in-

tensity data fidelity. Reconstructed flow fields from the stream function

method with both data fidelities are successful, but the u-v approach

with both data fidelities is unable to capture the hyperbolic fixed point. 50

3.6 Gyre Flow with R2 – Reconstructed flow fields for the gyre data from

the stream function formulation (first column) and u-v formulation

(second column) using the regularization term R2. Flow fields in the

first row are computed using continuity equation data fidelity whereas

the second row flow fields are from conservation of intensity data fi-

delity. Both flow fields from the stream function formulation with both

data fidelities are successfully reconstructed. In the u-v formulation,

only the data fidelity from the conservation of intensity captures the

flow successfully, whereas continuity equation data fidelity does not

capture the gyre flow. 51

xv

3.7 Gyre Flow with R3 – Reconstructed flow fields for the gyre data from

the stream function formulation (first column) and u-v formulation

(second column) using the regularization term R3. Flow fields in the

first row are computed using continuity equation data fidelity whereas

the second row flow fields are from conservation of intensity data fi-

delity. Only stream function formulation with both data fidelities suc-

cessfully reconstructed gyre flow, whereas none of the data fidelity with

u-v approach captured the gyre flow. 52

3.8 SST full image – Image shows the variations of the sea surface temper-

ature off the coast of Oregon, USA. Since the local structures are not

clearly visible, a selected area from the white rectangle is used for the

calculations. 54

3.9 Sea Surface Temperature Flow – Images (a) and (b) represent two

different time instances (one hour apart from each other) of an image

sequence of sea surface temperature along the coast of Oregon (USA)

on August, 1, 2002. Six different optical flow algorithms which include

conservation of intensity data fidelity are employed on images (a) and

(b). The images (c) and (d) show the reconstructed flow fields using

the stream function method with the regularization terms R2 and R3

respectively. Also images (e) and (f) show the computed flow field

from the potential function method with the regularizations R2 and

R3, and images (g) and (h) show the computed optical flow field using

the u-v approach with R2 and R3. As can be seen here, only the

stream function formulation captures the gyres very well, but none of

the potential or u-v methods captures any of these gyres presented on

data. 57

xvi

3.10 GOCI Flow – Images (a) and (b) show two time instances, with the

temporal resolution of 10 minutes, of products movements in the seas

of South Korea. Image (c) displays the computed flow field from the

stream function method with R2 regularization and the image (d)

shows the reconstructed second image by evolving the first image in

(a) forward in time under the evolution model (3.2) with the computed

flow field as shown in image (c). The mean relative error is 2.21%for

the stream function formulation and 5.32%for the u− v formulation. 58

4.1 l2 solution – Image shows the graphical representation of the solution

after introducing the l2 regularization. 65

4.2 l1 solution – Image shows the graphical representation of the solution

under the l1 regularization. 65

4.3 l1 solution – Image shows the graphical representation of the solution

under the l1 regularization. 66

4.4 Histogram of Angular Errors – The histogram shows the frequency of

the points with respect to the angular error for the computed flow field

for the saddle images. The flow field was computed using the stream

function formulation with conservation of intensity data fidelity and

the smoothness regularization term. 82

4.5 L-curve and U -curve on gyre data – The images (a) and (b) show the L-

curve and U -curve plot plots for the stream function approach with the

conservation of energy data fidelity and the Tikhonov regularization

term on the gyre data set. 90

xvii

4.6 L-curve and U -curve on hyperbolic data – The image (a) shows the

L-curve plot for the stream function approach with the conservation

of energy data fidelity and the Tikhonov regularization term on the

hyperbolic data set. The image (b) shows the U -curve plot from the

same formulation on the hyperbolic data set. 90

4.7 The best regularization parameter – The image (a) represents the

graphs of mean angular error versus regularization parameter from the

stream function method with conservation of Intensity data fidelity and

the regularization term R4 on the gyre data set. The image(b) is also

a graph mean angular error versus regularization parameter with the

same data set and the same formulation replacing R4 by R2. In each

case, the best regularization parameters determined by the L-curve,

U -curve, and GCV methods are highlighted. 92

5.1 Flow from CI+TV with gradient descent method – Reconstructed flow

fields for the hyperbolic, gyre and source data from the u-v formulation

with the conservation of intensity data term and the TV regularization

term. The source flow is very close to the true flow as the MAE is

1.650◦, but the others are not reasonable. 98

5.2 Flow from CE+TV with gradient descent method – Images (a), (b),

and (c) show the reconstructed flow fields for the hyperbolic, gyre and

source data from the TV regularization and continuity equation data

fidelity in u-v formulation. The MAE for the hyperbolic flow is 2.759◦,

whereas other two flows have high MAEs. As we can see, the hyperbolic

flow is reasonable and the source flow is accurate at the center but not

near the boundaries. Also the algorithm is unable to reconstruct the

gyre flow. 99

xviii

5.3 Computed mean angular error and the flow errors of successive iter-

ates for 100,000 iterations on hyperbolic flow are shown in images (a)

and (b) respectively. We applied the gradient descent approach with

the conservation of intensity data term and the TV regularizer in u-v

formulation to compute the errors. Both of the errors are improving

even after 100,000 iterations. 100

5.4 Computed flow from CI data fidelity– Images (a), (b) and (c) show

the computed velocity fields from the conservation of intensity data

fidelity with TV regularization term for the saddle, gyre and source

flow images shown in Fig. 2.3, Fig. 2.4 and Fig. 2.5 respectively. All the

reconstructions are very accurate as they have smaller mean angular

errors as shown in Table 5.2. 104

5.5 Computed flow from CE data fidelity– Images (a), (b) and (c) show

the computed velocity fields from the continuity equation data fidelity

with TV regularization term for the saddle, gyre and source images

shown in Fig. 2.3, Fig. 2.4 and Fig. 2.5 respectively. Both hyperbolic

and source flows are reasonable, where as the gyre flow is not even

close to the true flow field. 105

5.6 Computed flow from CI+TV stream function method – Images (a),

(b) and (c) show the computed velocity fields from the stream func-

tion formulation for the hyperbolic fixed point, gyre and source images

shown in Fig. 2.3, Fig. 2.4 and Fig. 2.5 respectively. Here we use the

conservation of intensity data fidelity. 108

xix

5.7 Sea Surface Temperature Flow Computations – Images (a) and (b)

represent sea surface temperature off the coast of Oregon in August

2002 one hour apart. The lighter gray regions correspond to warmer

surface temperatures and the darker regions to cooler temperatures.

The computed flow with α = 10−5 is shown in (c). 109

5.8 MAE vs. Iteration Number – The computed mean angular error for

the first 50 iterations with a fixed α for the hyperbolic, single gyre,

and source data sets. 111

6.1 Gyre image sequence – Images (a) - (f) show 6 time-adjacent images of

the gyre image sequence. These images are generated as we explained

in Chapter (2). Two other images and the true vector field are shown

in Fig. 2.4 . 121

6.2 Gyre flow from Multi-Time Step Method – Images (a), (b), (c), and

(d) show vector fields computed on the image (c) in Fig. 6.1 by the

multi-time step method with n = 1, 2, 3, and 4 respectively. While

all estimated vector fields are visually similar, the mean angular error

improve up to n = 3. 122

6.3 Source image sequence – Images (a) - (f) show 6 time-adjacent images

of the source data image sequence. These images are generated as we

explained in Chapter 2. Two other images and the true vector field are

shown in Fig. 2.5. 123

xx

6.4 MAE on six images for different n – The graph shows the mean angular

error for the computed flow by changing the step size n on the six

images shown in Fig. 6.3. The blue and green curves represent the

step size n = 1 and n = 2 and the mean angular errors are relatively

high. The red and magenta color curves are for n = 3 and n = 4 and

their mean angular errors are lower as well as close to each other along

the image sequence because of the more regularity in time direction. . 125

6.5 Source flow fields with n = 3 – Images (a) - (f) show 6 time-adjacent

velocity fields computed on the six images in Fig. 6.3. In the computa-

tion, we used multi-time step method in potential function formulation

with n = 3. Flow field in image (b) produces the minimum mean an-

gular error of 2.565◦. However, qualitative differences of the flow fields

are hardly visible. 126

6.6 SST data and true flow – Three consecutive images of the SST data

set are shown in (a), (b) and (c) respectively. The flow on image (b)

is shown in the image (d) . 127

6.7 SST Flow – The computed flow fields for the data showed in 6.6 with

n equals to 1, 2 and 3 are shown in (a), (b), (c) and (d) respectively.

While all these are roughly similar and so not immediately different

to visual inspection, there are visible differences appear upon closer

inspection. 128

6.8 Percentage MAE vs Step size – The graph shows the percentage of the

mean angular error for the computed flow by changing the step size n

on the image (b) shown in Fig. 6.6. For the specified parameters at

n = 3, multi-time step method is best overall. 129

xxi

6.9 GRS images [97] – Two consecutive images captured by the spacecraft

Voyager 2 are shown in images (a) and (b) respectively. The two images

are one Jovian day apart. 130

6.10 Multi-time step flow for the GRS – images (a) - (c) show the computed

flow from the multi-time step method on the image (a) in Fig. 6.9 with

step sizes n = 1, 2 and 3, respectively. Resulting flow fields from each

step size are reasonable, especially around the GRS. When the step size

increases, the flow on the lower part of the GRS captures the structure. 131

7.1 Coriolis effect – The upper disks of all three images represent the iner-

tial frame of reference and the lower disks represent the rotating frame

of reference. The black ball is an object and the red dot is the ob-

server. Even though the object moves in a straight line with respect to

the inertial frame of reference, the observer thinks the object moves in

a curved path. The initial position of object is shown in image (a), a

midway position is shown in image (b) and the final position is shown

in image (c). A complete explanation with a movie is available in [98] 134

7.2 Gyre on Rotating coordinates – The images (a) and (b) show the ini-

tial flow field and a selected flow field after 5 seconds on the rotating

coordinates respectively. An initial density on the flow in Eq.(7.27)

evolved according to Eq.(2.29). Images (d) represents the evolution of

image (c) under the flow field in image (b). 146

7.3 Computed flow on Rotating gyre – The first image shows the computed

flow field from the quasi-static algorithm on images (c) and (d) in

Fig. 7.2. The true flow is shown in image (a) of Fig. 7.2. The second

image shows the computed flow field from the conservation of intensity

data term and the smoothness regularization term in u-v formulation.

The true flow field is shown in image (b) of Fig. 7.2. 147

xxii

7.4 Jupiter Images –Images (a) and (b) show two consecutive observations

of Jupiter’s atmospheric motion that are one Jovian day apart. The

complete data set consists of 7 images and was obtained by NASA’s

Cassini spacecraft from October, 1, 2000 to October, 5, 2000 [102]. The

latitudes of these images ranged from 50 degrees south to 50 degrees

north and longitude expands 100 degrees from east to west. 149

7.5 Jupiter Images in Matlab – Images (a) and (b) show the appearance

of two consecutive gray images shown in Fig. 7.4 in Matlab according

to the default color scale. The color of each pixel represents the image

intensity and it varies from 0 to 255. The same color scale is used for

the rest of this work for the sake of clear visualization 150

7.6 Jupiter smooth images – Images (a) and (b) show the first two consec-

utive images after smoothing seven images in the data set in both time

and spatial direction. When we smooth in time direction, we include

four artificial images in between two actual images. Therefore, image

(a) represents the same image in Fig. 7.5 despite the spatial smoothing.

However the image (b) represents an artificial image just after small

motion of image (a). 151

7.7 The GRS – The image shows the rectangular area selected on image (a)

in Fig. 7.6. This rectangular area contains the GRS whose dynamics

of atmospheric motion we are interested in analyzing. 151

7.8 GRS Images –Images (a) and (b) show the selected area around the

GRS on the images (a) and (b) in the Fig. 7.8. The spatial resolution

of these cropped images has been increased by two. 152

xxiii

7.9 Computed flow on GRS – Image (a) shows the computed velocity field

for the images shown in Fig. 7.8 using stream function method. Im-

age (b) shows the computed vector field from the quasi-static method.

Both solutions are reasonable for the boundaries of the GRS. The quasi-

static method tries to produce a vortex flow inside the GRS as the

expected flow field shown in [19]. 153

7.10 GRS image sequence – Images (a) - (c) show 10 - 12 cropped images

from the initial images are shown in Fig. 7.8. The complete data set is

available at [102]. 160

7.11 Quasi-Static multi-time step flow - images (a) - (c) shows the computed

flow from the quasi-static multi-time step method on the image (a) in

Fig. 7.10 with step sizes n = 1, 2 and 3, respectively. Resulting flow

fields from each step size are reasonable, especially around the GRS.

It is clearly visible that the vortex structure improves with the step size.162

7.12 GRS particle advection – Images (a) shows points inside GRS and

points outside the GRS using a handmade boundary. We integrated

the points in image (a) using the computed flow from the quasi-static

multi-time step method with n = 2. Positions after 25 images are

shown in image (b). Other than a few points, inside and outside points

do not cross the boundary. 163

8.1 Separation of two points – Two points with initial distance δ evolves

for time period T . The distance between two points after time T is ε. 166

8.2 LCS as a stable manifold – Two points on either side of a stable man-

ifold (red) in a hyperbolic fixed point are advected forward in time.

After a sufficient time, they move away from each other and they do

not cross the stable manifold. 168

xxiv

8.3 Autonomous double gyre – Image (a) shows the vector field of the

autonomous double gyre and image (b) shows the computed FTLE

field with T = 10. Red ridges are the transport barriers. 169

8.4 Non-autonomous double gyre – The flow field for the non-autonomous

double gyre at time t = 13 and the computed FTLE field for T = 15 are

shown in images (a) and (b) respectively. Red ridges are the transport

barriers. 170

8.5 Satellite view – The satellite view of the Gulf of Mexico near Louisiana

during the oil spill. The image was taken by NASA’s Terra satellite on

May 24, 2010. The spreading oil slick is visible and it can see in white. 172

8.6 Gulf Velocity Field – Vector field from the HYCOM model is available

in [116] on May 24, 2010. The image covers the velocity field in the

area of the Gulf of Mexico where the longitudes and the latitudes are

displaced. The Gulf Stream is clearly visible in the flow field and is

close to the south of Louisiana near the source of the oil spill. 173

8.7 FTLE on May 24, 2010 – Computed FTLE field for the Gulf of Mexico

on May 24, 2010 using the HYCOM data. The integration time is

T = 72 hours and red ridges are the strong transport barriers for the

fluid. 174

8.8 Vector field on July 27, 2010 – Image shows the HYCOM velocity

field for July 27, 2010. There is a circulation in the center that is

not connected to the Gulf Stream. Hence the central eddy does not

transport oil to the Gulf Stream and that reduced the spread of oil. . 175

xxv

8.9 FTLE field on July 27, 2010 – As seen in the vector field in Fig. 8.8,

the central eddy and the Gulf Stream are not connected thus reduce

oil transport into the Gulf Stream. This can be observed in the FTLE

field from the two orange ridges, in west of Florida which act as barriers

to oil transport. 176

8.10 SST images – Images (a) and (b) show two consecutive images of the

SST data set on August 1st, 2002. Red represents low temperature

whereas orange represents high temperature. Green is the land. . . . 177

8.11 SST flow and FTLE field – The computed flow field for the SST data

on the image (a) in Fig. 8.10 from CI data fidelity and smoothness

regularization term in stream function formulation is shown in image

(a). The FTLE field with T = 15 on image (a) in Fig. 8.10 is shown

in image(b). 178

8.12 SST flow and FTLE field – The computed flow field for the SST data

and the FTLE field are shown in images (a) and (b) respectively . . . 179

8.13 GRS flow and FTLE field – The computed flow field for the GRS data

and the FTLE field are shown in images (a) and (b) respectively. Flow

field is computed from quasi-geostrophi multi-time step method with

n = 2. The integration time for the FTLE is 2 Jovian days. 181

9.1 Contour plot of GRS – Image shows a contour plot of the Jupiter’s

atmospheric motion which is shown in image (a) of Fig. 6.9. 186

xxvi

Chapter 1

Introduction

A dynamical system is defined by a flow from a non-autonomous vector field ẋ =

f (x, t) that describes the evolution of the state x(t) at time t. We infer the vector

field f (x, t) to determine and analyze the characteristics that govern the system. Re-

cently, there has been a great deal of work analyzing in fluid systems such as ocean

currents, cloud movements [1,2] in scientific research. Analysis of fluids, a broad area

which includes predictions, mixing and transport barriers, and the behavior of the

motion of the fluid helps to understand the past, present and future behaviour of the

system. Some analytical tools help to identify the hidden structures of systems which

can not be seen by the human eye. Analysis of unsteady fluid flow dynamics requires

non-autonomous velocity fields, however, the prior models to determine the velocity

fields directly are not available for all such systems. One of the possible ways to get

the information of these systems is to observe the system from a camera or a satellite

and get a sequence of images during a particular time frame. In this work, our goal is

to use such images of an observed system to approximate the velocity fields governing

the motion of the system. These approximated velocity fields may be used to analyze

the observed system with the help of analytical tools. Therefore, we mainly focus on

analysis of unsteady fluid flow dynamics inferred using a sequence of image data of

1

the system, taken by a movie camera or even from a satellite.

Since the researchers have been successful with their techniques on systems like

ocean currents and cloud movements, they expanded their interest to the fluid sys-

tems on other planets such as Jupiter [3–5]. In the process of analysis, most of the

analytical tools such as Lagrangian Coherent Structures (LCS) [1, 6, 7] and coherent

pairs [8] require the time-varying velocity fields of the system. However, in the ab-

sence of a prior model to determine the velocity fields of a fluid system, most of the

analytical tools are inadequate. The technique we use to approximate the velocity

fields is the optical flow computation which was introduced by Horn and Schunck [9]

in 1981.

In the optical flow computation, the motion of a three-dimensional object is pro-

jected to a two-dimensional screen (image) and then two time-adjacent images of

the scene are used to compute the motion field. The resulting flow field is a two-

dimensional, representation of the apparent motion of the brightness patterns in the

image. In Fig. 1.1, images (a) and (b) are two time-adjacent images of a rotating

sphere which has different colors at neighboring points, and the image (c) shows the

corresponding optical flow between images (a) and (b).

(a) (b) (c)

Figure 1.1: Rigid body motion – Images (a) and (b) show two consecutive time
instances of the motion of a rotating sphere from right to left. The optical flow field
between these two images is shown in image (c) [10].

2

The optical flow field and the motion field of a moving object are not always the

same. For instance, consider a single color rotating sphere. Since there is no change

in the brightness pattern between two images, the optical flow is zero even though

there is motion. On the other hand, if we take two images of a still sphere in front of

a moving light source, then the optical flow field is non-zero because the brightness

pattern changes with the changes in illumination, but there is no actual motion. For

convenience, researchers consider a simple system that assumes the motion field of

an object can be directly identified by an optical flow field.

Determining the optical flow field involves solving inverse problems. If we have

an initial image and the vector field is known, we can advect the first image using

the known vector field to get the second image according to an appropriate model;

this is called a forward problem. But in the optical flow computation, for two given

images, we have to determine the governing motion field between those two images;

that is an inverse problem.

The motivation of an optical flow computation is to determine vector fields either

of a moving object or of an observed system, by considering the apparent motion be-

tween time-adjacent images of the same scene. Horn and Schunck [9] introduced the

original optical flow algorithm to detect the motion field of a moving object. In their

work, they made two assumptions. The first assumption, a brightness constraint,

states that the image brightness of a point on the brightness pattern is constant over

time for small motions. This includes a notion of rigid body motion. Then an energy

functional is obtained measuring the errors of the brightness constraint over the image

domain so that the velocity components u and v, along the x and y directions respec-

tively, are obtained by minimizing the energy functional. In general, minimizing this

energy functional is an ill-posed problem. Hence the above functional is regularized,

see [11, 12], by making the second assumption, the smoothness constraint, that the

expected flow is smooth. While the Horn and Schunck derivation was made in terms

3

of local considerations only, the same Partial Differential Equation (PDE) could be

derived as a conservation law. The functionals obtained from the brightness con-

straint and the smoothness constraint are called the data term and the regularization

term respectively. The total energy functional includes a regularization term to the

data term with weighting factor α, which is called the regularization parameter.

After regularizing the energy functional, the flow components u and v can be re-

constructed by minimizing the derived energy functional. We achieve this by choosing

a suitable regularization parameter α [13–15] not only to balance the desire with the

data term, but also to compromise with some form of regularity. We minimize the

energy functional using a Calculus of Variations [16] approach. The Calculus of Varia-

tions was originally studied in the seventeenth century in Europe in the investigation

of a number of mechanical and physical problems such as the work of Fermat on

geometrical optics (1662) and the problem of Newton (1685) for the study of bod-

ies moving in fluids [17]. However the brachistochrone problem proposed by John

Bernoulli in 1696 played a significant role in the development of the Calculus of Vari-

ations. The Greek word brachistochrone means minimal time. The brachistochrone

problem solved by John Bernoulli, James Bernoulli, Leibniz and Newton involved the

determination of the minimum transit time of a particle between two fixed points

along a wire under the influence of gravity. The resulting brachistochrone path was

a cycloid [16].

Euler and Lagrange, who worked on a systematic way of dealing with problems

in the Calculus of Variations, turned a new chapter by the first order necessary con-

ditions to have an extremum for a functional. The Euler– Lagrange equation they

introduced was a strong influence on future researchers, and their work was extended

in many ways by Bolza, Hahn, Hamilton, Hilbert, Jacobi, Weierstrass and others [17].

Further, Euler – Lagrange equations appeared to be a convenient tool in minimizing

functionals. We apply Euler-Lagrange equations to the optical flow energy functional,

4

as explained in Sec. 2.0.1. For this problem, we have two coupled Euler-Lagrange

equations to be solved for u and v. The resulting PDE system generally allows for

known and relatively simpler numerical techniques like the Gauss-Seidel method, the

gradient descent method, or the LU factorization with Gaussian elimination to de-

termine the solution.

While Horn and Schunck developing the optical flow algorithm to capture the

motion of an object, Mitchell [18] introduced a method to compute vector fields in

fluid systems. In this manual method, two-time adjacent images of an observed fluid

motion are considered. First a special feature such as clouds is identified on first

image then, the displacement of the special feature between two images is measured.

Using the displacement and the time lapse between the two images, the velocity vec-

tor is defined at the center of the identified feature. However, the obtained vector

fields are sparse, hence, they are inadequate for analytical tools as it is not possible

to compute partial derivatives spatially of the vector field accurately [19]. Because

of the sparsity of the velocity field and of errors which occur in the manual method

when selecting features, automated algorithms such as Particle Image Velocimetry

(PIV) [20,21] and Correlation Image Velocimetry (CIV) [22] have been developed to

determine the vector fields of the fluid flows. The basic experiment setup for PIV

method is set by seeding the flow with small particles. Then the velocity of the tracer

particles is computed. It is assumed that the flow and the tracer particles have the

same velocity field. In the computation of velocity fields, correlations between two

(or more) images is obtained. These automatic methods are capable of computing

large numbers of velocity vectors compared to the manual method. However, the

correlation between two images is obtained only if the time between the two images

is less than 50 minutes for motions like Jupiter’s atmospheric motion. Therefore, a

new method, Advected Correction Correlation Image Velocimetry(ACCIV) [19] was

developed to determine the velocity fields between two images which more than two

5

hours apart. In the ACCIV method, the authors use CIV as a subroutine to compute

the velocity fields. Then, in the second step, they advect each point in the first image

forward in time and the second image backward in time using the computed velocity.

If an advected point does not match with its tie-point in the other image, a new

path is obtained by interpolating two mismatched paths. In this way, they make a

correction for the velocity vector by developing a new vector for the corresponding

point by interpolation.

However, the above image-based methods can only be employed under rigid experi-

mental settings. Therefore, to achieve the same goal as the image-based methods, sim-

ple optical flow algorithms have been developed for computation of geophysical fluid

flows [23, 24], atmospheric motion [25] and laboratory experimental fluid flows [26].

Since the optical flow-based techniques may be applied in more general settings and

use simpler algorithms, there is a tendency to develop optical flow-based approaches

to determine the fluid flows. For instance, the authors in [27] have analyzed the dy-

namics of species transport in the ocean and we have analyzed the transport barriers

for the sea surface temperature [28] by employing optical flow methods on satellite

images without any experimental setup.

As we already know, the Horn and Schunck optical flow formulation with its as-

sumptions of conservation of image intensity and smoothness of velocity field was

developed for computing flow fields of rigid-body motions with non-reflectant sur-

faces. However, later researchers have incorporated different physics into the energy

functional by introducing new data terms and the regularization terms. In most of

the above cases, researchers introduced new terms to adapt the optical flow algorithm

from rigid-body motion to fluid motion. The authors in [29–33] proposed an impor-

tant assumption that a fluid system is evolving according to the continuity equation

rather than according to the conservation of energy. In addition to the data term, they

also proposed a new regularization term using the “second-order div-curl” in [34]. Af-

6

ter that the authors in [35] reformulated the optical flow problem with “second-order

div-curl” regularization to capture the curl-free and divergence-free components. This

was a big step forward from classical optical flow problems to the fluidic optical flow

algorithms.

The developments in the optical flow methods for fluid motions motivated us to

develop our own method to capture the motion of a fluid system. In our first ap-

proach in the field of optical flow, we developed an algorithm to compute velocity

fields of a fluid system [36, 37] using observed images. This work is motivated by

the work in [29–33], but in our approach, we represent the flow as a gradient of a

potential function or the symplectic gradient of a stream function. In this way we

need to determine only one unknown which is either a potential function or a stream

function. Rather than reconstructing the horizontal and vertical components of the

flow separately, this new approach allow us to reconstruct only one potential function

or a stream function and then derive the horizontal and vertical components of the

flow field. However, it is not always possible to represent large-scale fluid flows, such

as oceanic flows and atmospheric flows from a gradient of a single potential function

or a symplectic gradient of a stream function. In that case, local features such as

vortices, saddle points and sources which are available very often in fluid flows need

be modeled. We have applied our algorithm to these kinds of local structures, and

the corresponding results are promising. Our method is very simple, simpler than

that used in [35], and hence it is easy to implement the algorithm computationally.

Another advantage of our method is we need to solve only one problem rather than

two coupled problems as in other methods. More importantly the algorithm allows

us to impose scientific priors via regularization directly on the potential or stream

function rather than on the separate flow components u and v .

To check the accuracy of the algorithms we develop, we generated three bench-

mark data sets which represent a source, a gyre and a hyperbolic fixed point. We

7

constructed these data sets by evolving an initial condition according to the conti-

nuity equation with known velocity fields. A detailed explanation and the data sets

are available in Sec. 2.3. We will demonstrate stream function formulation on these

three benchmark data sets, and also the sea surface temperature (SST) data from the

coast of Oregon, U.S.A. as explained in Sec. 3.3.1.

Another way to extend the optical flow computations is to introduce new nu-

merical approaches to improve the convergence of the flow-computation algorithms.

In [36, 38], it is shown that rather than reconstructing the components 〈u, v〉 of the

flow, it is possible to reconstruct the stream function associated with the flow instead

when the flow is the symplectic gradient of a stream function. For either case of

reconstructing the velocity components or the associated stream function, the optical

flow functional can be regularized with the total variation of the flow components

or the total variation of the stream function, in order to more accurately capture

the dynamical structures in the flow. It is well known that regularizing via the total

variation results in signals that are approximately piecewise constant. In the case

of regularizing with the total variation of the flow components, a flow whose com-

ponents are piecewise constant will be favored. This is especially appropriate for

laminar flows or flows that are approximately parallel to the coordinate axes. In the

case of regularizing with the total variation of the stream function, the stream will be

piecewise constant. This is especially appropriate for sparse flows. In this work we

show that Total Variation (TV) regularization also leads to excellent reconstructions

of other flow structures such as vortices, hyperbolic fixed points and sources in both

the component-based and stream function formulations.

In order to minimize the TV-regularized optical flow functional, we linearize the

associated Euler-Lagrange equations by adapting the Lagged Diffusivity Fixed Point

Iteration (LDFPI) from [39]. In Sec. 5.1, we present the TV optical flow formulation

and the LDFPI method. This is followed by results for synthetic data in Sec. 2.3

8

representing the dynamical structures of greatest interest for fluid flows, as well as to

data generated from a data-driven ocean model of sea surface temperature data off

the coast of Oregon, U.S.A.

This method has been extended in many directions, including the introduction

of new data fidelities [29, 40] and regularization terms [34, 41], as well as on numer-

ical methods to enhance the accuracy and convergence of the corresponding algo-

rithms [42]. In the case of imaging fluid dynamics, the flow is generally not smooth,

and the the turbulent structures are those of greatest interest. In addition to the

above, we extended the optical flow computation for more than one time step to in-

corporate some temporal regularity to the energy functional.

Figure 1.2: Hurricane Sandy – Image shows one time instance of Hurricane Sandy in
November 29 in 2012 [43].

Our main goal here is to analyze unsteady fluid flow dynamics using a sequence

of image data of the system taken by a movie camera or even from a satellite. For

instance, suppose we have to deal with systems like Hurricane Sandy and the storms

near Jupiter’s great red spot as shown in Fig. 1.2 and Fig. 1.3. Previous methods

9

Figure 1.3: Jupiter data – This image was taken by Voyager 2 space craft which
shows the violent storms in the region of Jupiter extending from the equator to the
southern polar latitudes in the neighborhood of the Great Red Spot [44].

required that there were only small changes of scene between each image, but oth-

erwise the optimization approach just described yields a spatially regularized vector

field in as far as the regularity term in the cost function is emphasized. However, if

the scene in the movie data changes significantly between frames of the movie due

to a relatively fast changing non-autonomous system, then there can be undesirable

irregularity in the inferred vector field. This motivated us to develop a new approach

to emphasize temporal regularity. The new approach of computing optical flow uses

multiple images rather than just two. We call this approach a multi-time step optical

flow for use when a sequence of images is available. For the computation of one stream

function at a time, the multi-time step method and the stream function methods are

the same. However, when we compute more than one stream function for consecutive

time points of the system, we wish to adjust the functional simultaneously to empha-

size that the stream functions of two consecutive time adjacent motions have similar

behavior. This new assumption would incorporate an additional term in the energy

10

functional with a weighting factor β.

We will demonstrate the multi-time step method on two benchmark data sets

representing a gyre and a source as introduce in Sec. 2.3, and also the sea surface

temperature (SST) data from in Sec. 3.3.1. Furthermore, we will employ our method

on a planetary data which represents the Jupiter’s atmospheric motion near the Great

Red Spot as introduce in Sec. 6.2.2.

Figure 1.4: The coriolis effect – The image shows the coriolis effect in the moving
objects on the earth. In northern hemisphere deviation is to the right and in southern
hemisphere the deviation is to the left [45].

Based on the accuracy of the results we obtained after performing our algorithms

on synthetic data, the next step was to apply our algorithms to real data sets such as

Jupiter’s storms in Fig. 1.3. Since planets are rotating about their axes, the coriolis

force may affect the above systems. As an example of a real world scenario for the

coriolis effect, we can consider two storms that occurred few years ago. The image (a)

in Fig. 1.5 shows a one-time instance of Cyclone Ingrid over northern Australia. Wind

flows from high pressure to low pressure and the coriolis effect create the appearance

of the motion as counter-clockwise swirls. The counter-clockwise swirls occur because

11

the storm is in southern hemisphere. On the other hand, in image (b), the wind swirls

clockwise direction in the northern hemisphere. The image represents Hurricane Ka-

trina above the Gulf of Mexico [46].

(a) (b)

Figure 1.5: Coriolis effect in nature – Image (a) shows the Cyclone Ingrid stormed
over the northern Australia. Since this is in the southern hemisphere, the storm swirl
in counter-clockwise direction. The image (b) shows the Hurricane Katrina above the
Gulf of Mexico. The storm swirls in clockwise direction since this is in the northern
hemisphere [46].

Due to the coriolis force, there may be an apparent deflection of the path of an

object that moves on a rotating coordinate system though the object does not actu-

ally deviate. Fig. 1.4 illustrates the deflection clearly. As shown in Fig. 1.5, due to

earth’s rotation, global wind and ocean currents in the northern hemisphere deviate

to the right relative to the direction of motion and wind and currents in the south-

ern hemisphere deviate to the left. Therefore, when we deal with satellite images of

systems affected by coriolis force, we have to incorporate the coriolis effects in the

energy functional to determine the optical flow fields accurately. To achieve this, we

developed a new optical flow algorithm that incorporate with the coriolis force. In

this case we included quasi-static equations [47] in the energy functional and then

used the usual minimization process to determine the solution.

12

We first demonstrate the quasi-static optical flow method, using a benchmark

data set which is affected by the coriolis force as generates in Sec. 7.4. Then we apply

the method on a data set of Jupiter’s atmospheric motions which we introduced in

Sec. 7.5. Then we developed multi-time step method for quasi-static algorithm to

improve the accuracy of the results. We also verify the accuracy of the computed

flow fields for Jupiter data by advecting the points inside and outside the Great Red

Spot using an artificial boundary.

Figure 1.6: Sacramento River – The image shows two branches of Sacramento river
meeting at this point. After they meet, a natural barrier forms between murky water
and the clear water [48].

Once we compute the vector fields for an observed system, the next task is to

analyze the system using the computed vector fields. In this thesis, we analyze the

systems by determining the Lagrangian coherent structures. Lagrangian coherent

structures form barriers between two dynamically distinct systems. As an natural

example, Fig. 1.6 shows two branches of the Sacramento River meet at this intersec-

tion point. One branch carries clear water and the other branch carries murky water.

13

However, even after they meet, a mixing barrier forms between the clear water and

the murky water. This barrier can be treated as a natural Lagrangian Coherent

Structure.

Finally, we will demonstrate the use of the computed vector field to analyze mix-

ing and mass transport in the fluid system being imaged. Several methods such as

determining Lagrangian Coherent Structures (LCSs) [1,6,7] and coherent pairs [8] are

available to achieve this goal. In this endeavor we compute Finite Time Lyapunov

Exponents (FTLE) at each and every point in the system to determine LCSs. In the

computation of FTLEs, we consider two nearby points at time t0 and measure the

separation of the trajectories over the time period [t0, T]. If the separation is rela-

tively high, the set of corresponding points are barriers for mixing and mass transport

in the fluid system. These separation barriers on the FTLE fields are the LCSs. The

LCS for the SST data set are computed using the vector fields obtained from the

multi-time step method and shown in Fig. 8.12. We complete our discussion by com-

puting the LCSs for the Jupiter’s atmospheric motion near the Great Red Spot using

the computed flow from the quasi-static optical flow method.

14

Chapter 2

Classical Optical Flow Method

According to the original Horn and Schunck formulation of optical flow [9], the image

brightness I(x, y, t) at a point (x, y) is assumed to be locally conserved over time if

the motion is small.

Figure 2.1: Intensity changes – Images 1 and 2 show two time adjacent images of
an observed system which is not still. Five selected points are shown in image 1. In
image 2, whether those points are moving or not, the color of those points does not
change.

The Fig. 2.1 demonstrates the motion of five selected points in two time instances

of an observed system. These two images are δt apart with respect to time. Among

the five points, four are moving and one (blue color) is still, but the color of all five

15

points remains unchanged with respect to the motion. This implies that the image

brightness is locally conserved. Now consider a point (x, y) on the image 1 and let u

and v be the velocity components along the x and y directions respectively. Then the

displacement (δx, δy) of the point (x, y) after δt time is given by (x+ uδt, y + vδt).

The first image in Fig. 2.2 shows a specific point (x, y) which is green in color mov-

ing to a new point (x+ uδt, y + vδt) in the second image, but the color of the point

(green) does not change.

Figure 2.2: Conservation of image intensity – Image 1 and image 2 represent two time
adjacent images of a moving system. The point (x, y) in the image 1 moves to the
point (x+ uδt, y + vδt) in image 2, but the the color does not change.

This leads us to make the first assumption that the image brightness of a point

(patch) in the pattern does not change over time; hence we can express the relationship

with the unit time interval δt = 1 as,

I(x+ u, y + v, t+ 1) = I(x, y, t). (2.1)

Now, further assuming the motion between two images is small and taking the first

order Taylor series expansion of the left hand side of Eq.(2.1) about (u, v, t)

I(x, y, t) + (It + Ixu+ Iyv) = I(x, y, t), (2.2)

16

where it is assumed that the higher order terms in Taylor series expansion are equal

to zero. Simplifying Eq.(2.2), we have

It + Ixu+ Iyv = 0, (2.3)

where It, Ix and Iy are partial derivatives of I with respect to t, x and y respectively.

Note that I(x, y, t) is the assumed data function that represents the gray scale color

intensity of a point (x, y) on the scene domain Ω at time t. That is, I : Ω×R+ → R.

Generally, actual data from a digital movie camera is pixelated at discrete spatial

locations {xi, yj}p,qi,j=1 at times tk as a complete data set {Ii,j,k}p,q,Ti,j,k=1 at times tk,

where t1 = 0 and tk is the time after k − 1 units. In other words, the first image was

taken at t = 0 and the image k was taken after k−1 time units from when image 1 has

been taken. Here p and q are the number of rows and the number of columns of the

input images. This quantization may accumulate some errors and the measurements

we obtained from real scenarios may come with some amount of noise. Therefore,

the functional (data term) to minimize the errors can be obtained by integrating the

errors of the brightness constraint over the image domain as

Eb(u, v) =
∫

Ω
(It + Ixu+ Iyv)2 dΩ. (2.4)

To develop u and v, as suggested by the brightness constraint objective in Eq.(2.3),

we state the functional in Eq.(2.4), however, minimizing Eb(u, v) in Eq.(2.4) is an

ill-posed problem.

Definition 1. [49] Let K : H1 → H2. An operator equation

Kf = g (2.5)

17

is said to be well-posed provided

1. for each g ∈ H2 there exists f ∈ H1, called a solution, for which Eq.(2.5) holds;

2. the solution f is unique; and

3. the solution is stable with respect to perturbations in g. This means that if

Kf∗ = g∗ and Kf = g, then f → f∗ whenever g → g∗.

A problem that is not well-posed is said to be ill-posed.

To avoid the ill-posedness of this problem, the data term must be regularized. We

approach the regularization of this ill-posed problem as explained in Chapter 4 by

assuming the expected flow is smooth. This implies that the partial derivatives of the

velocity components u and v exist and hence the regularization term becomes

R(u, v) =
∫

Ω

(
u2
x + u2

y + v2
x + v2

y

)
dΩ. (2.6)

Now the problem can be reformulated in terms of an energy functional obtained by

combining the data term and the regularization term by weighting the second term

with a non-negative regularization parameter α. Then the total energy functional to

be minimized is given by

E(u, v) =
∫

Ω
(It + Ixu+ Iyv)2 dΩ + α

∫
Ω

(
u2
x + u2

y + v2
x + v2

y

)
dΩ. (2.7)

Here the selection of a suitable regularization parameter is an important step and we

will discuss it in Sec. 4.6 separately. In the process of minimizing the functional in

Eq.(2.7), we need some theoretical background in Calculus of Variations. Therefore,

we include the next section to illustrate how to minimize a functional through Calculus

of Variations.

18

2.0.1 Euler-Lagrange Equations

To minimize the functional in Eq.(2.7), we will use a Calculus of Variations approach.

In this subsection, we will demonstrate methods to minimize our functionals as ex-

plained in [16]. We first consider minimization of a simple functional and necessary

conditions for the functional to have a minimum.

Suppose we are given a functional J(u) and we must determine the optimizer

u(x) = û(x) over the interval a ≤ x ≤ b

J(u) =
∫ b

a
F (x, u, ux) dx. (2.8)

Here F (x, u, ux) is a function with continuous first and second partial derivatives with

respect to all of its arguments. Also, let u(x) be a continuously differentiable function

on [a, b] which satisfies the boundary conditions

u(a) = A and u(b) = B. (2.9)

Optimization necessitates that the first variations are stationary. Analogous to the

first derivative of a function, we obtain the first variation of the given functional.

First we give an increment h(x) to the function u(x) with the boundary conditions

h(a) = h(b) = 0. (2.10)

The corresponding increment ∆J in Eq.(2.8) with respect to the increment of h(x) is

∆J(u) =
∫ b

a
[F (x, u+ h, ux + hx)− F (x, u, ux)] dx. (2.11)

19

Using the second order Taylor series expansion, we can expand the integrand of the

functional in Eq.(2.11) as

∆J(u) =
∫ b

a
[Fuh+ Fuxhx] dx+ 1

2

∫ b

a
[Fuuh2 + 2Fuuxhhx + Fuxuxh

2
x] dx+ ε, (2.12)

where ε represents the higher order terms. The first variation of the functional in

Eq.(2.8) with respect to the argument variable u is defined as the integral of first

order terms in Eq.(2.12) and is given by

δJ(u) =
∫ b

a
[Fuh+ Fuxhx] dx. (2.13)

Just as we set the first derivative equal to zero when determining optimizers, the

first variation is set to be zero to find the optimizers of the functional. The following

theorem explains a necessary condition to determine the optimizers of a functional.

Theorem 2.0.1. [16] A necessary condition for the differentiable functional J(u) to

have an extremum for u = û is that its variation vanish for u = û, i.e., that

δJ(h) = 0 (2.14)

for u = û and all admissible h.

From the above theorem, the necessary condition, called the Euler-Lagrange equa-

tion, for the functional in Eq.(2.8) to have an extrema can be obtained as

∂F

∂u
− d

dx

(
∂F

∂ux

)
= 0. (2.15)

By solving the Euler-Lagrange equation in Eq.(2.15), the optimum argument variable

û which maximizes or minimizes the functional in Eq.(2.8) can be determined. How-

ever, an additional condition is required to determine whether the optimal function û

20

maximizes or minimizes the functional. The new condition is obtained by considering

the second variation of the functional called the Legendre’s condition. By definition,

the second variation of the functional in Eq.(2.8) with respect to the variable u is

the integral with second order terms in Eq.(2.12). Therefore, the second variation is

obtained as

δ2J(u) =
∫ b

a
[Fuuh2 + 2Fuuxhhx + Fuxuxh

2
x] dx. (2.16)

In a similar way of determining whether the optimizers of a function are minimiz-

ers or maximizers using the second derivative test, the sign of the second variation

of a functional is considered to determine whether the optimizer is a minimum or

maximum. The following theorem explains a second variation test for functionals.

Theorem 2.0.2. [16] A necessary condition for the functional J(u) to have a mini-

mum for u = û is that

δ2J(u) ≥ 0 (2.17)

for u = û and all admissible h. For a maximum, the sign ≥ in Eq.(2.17) is replaced

by ≤.

Testing the Legendre’s condition for optical flow functionals is not an easy task.

In the optical flow computation however, we always have to minimize an energy func-

tional to reconstruct the velocity components. Therefore, considering the difficulty

of comparing the sign of the second variation and the expectation that we always

have a minimizer, we do not use the above theorem in the rest of our discussion.

Instead of the Legendre’s condition, we use an alternative approach to show that a

minimizer exists. Further discussion of this approach is available in Sec. 2.1. In this

way, we only need the Euler-Lagrange equation to determine the minimizers of the

functional. Therefore, the next step is to develop the Euler-Lagrange equation for

functionals with more than one variable.

The relationship in Eq.(2.15) can be expanded to allow for many variables so we

21

are interested in expanding the results to a functional of the form

J(u, v) =
∫

Ω
F (x, y, u, v, ux, uy, vx, vy) dΩ, (2.18)

allowing for vector fields 〈u(x, y), v(x, y)〉 in the plane (x, y) ∈ R2. Since there are

two argument functions u and v, we may have two coupled Euler-Lagrange equations.

The Euler-Lagrange equations for the functional in Eq.(2.18) follow as

∂F

∂u
− ∂

∂x

(
∂F

∂ux

)
− ∂

∂y

(
∂F

∂uy

)
= 0

∂F

∂v
− ∂

∂x

(
∂F

∂vx

)
− ∂

∂y

(
∂F

∂vy

)
= 0.

(2.19)

The above Euler-Lagrange equations are specialized below for functionals of the form

in Eq.(2.7) and hence we can determine the velocity components by solving the re-

sulting Euler-Lagrange PDE equations for u and v.

Another way to compute the Euler-Lagrange equations for a functional J(u) in

Eq.(2.8) is to compute the Gateaux derivative J(u) with respect to u and set it to

zero. The Gateaux derivative of the functional J(u) is obtained as

DJ(u) = d

dτ
J(u+ τh)|τ=0 (2.20)

for all admissible h.

2.1 Existence and Uniqueness of the Solution

In general, when we minimize the optical flow problem, assuming existence and

uniqueness of the solution, we determine the minima by solving the Euler-Lagrange

equations for each argument variable. The issues of existence and uniqueness of so-

lutions of the PDEs in Eq.(2.19) follow the theory of convex optimization including

22

discussion of convexity, coercivity and lower semi-continuity of the specific functional

J(u, v).

Let H be a Hilbert space and C be a closed, convex subset of H and J : H → R.

Note that, we assume that H is a Hilbert space only for our convenience. The en-

ergy functionals which we are going to minimize should satisfy several conditions to

guarantee that they have minimizers. Therefore, we now present the conditions that

required for the existence and uniqueness of the solution as explained in [49].

Definition 2. A sequence fn in a Hilbert space H converges weakly to f∗, denoted by

fn ⇀ f∗, if 〈fn, g〉 → 〈f∗, g〉 for all g ∈ H .

Definition 3. A functional J : H → R is weakly lower semicontinuous if

J(f∗) ≤ lim inf J(fn)

whenever fn ⇀ f∗.

Definition 4. A functional J : H → R is convex on C ⊂ H if

J(τf1 + (1− τ)f2) ≤ τJ(f1) + (1− τ)J(f2),

whenever f1, f2 ∈ C and τ ∈ (0, 1). Moreover, J is strictly convex provided the

inequality is strict whenever f1 6= f2.

Definition 5. A functional J : H → R is coercive if

J(fn)→∞ whenever ‖ fn ‖H→∞.

Now the following theorem from [49] explains sufficient conditions for the func-

tional J(u, v) to have a minimum.

23

Theorem 2.1.1. [49] Assume that J : H → R is weakly lower semi-continuous and

coercive and that C is a closed, convex subset of H. Then J has a minimizer over C.

If furthermore, J is also strictly convex, then the minimizer is unique.

When we reconstruct the velocity components by minimizing the functionals, we

assume that there exists a solution for our functional and hence we only solve the

Euler-Lagrange equations to determine velocity components.

2.2 Solution to the Optical Flow Problem

Recall that the energy functional in Eq.(2.7)

E(u, v) =
∫

Ω
(It + Ixu+ Iyv)2 dΩ + α

∫
Ω

(
u2
x + u2

y + v2
x + v2

y

)
dΩ (2.21)

which we minimize to reconstruct velocity components u and v. In the minimization

process of this functional, we first apply the equations in Eq.(2.19) to the functional

in Eq.(2.21) and then obtain the Euler-Lagrange equations as

Ix(It + Ixu+ Iyv) + α∇2u = 0

Iy(It + Ixu+ Iyv) + α∇2v = 0.
(2.22)

First we minimize the functional in Eq.(2.21) using the gradient descent approach

which we often apply to optimize functionals. The gradient components of the energy

functional with respect to u and v are given as

δu = Ix(It + Ixu+ Iyv) + α∇2u

δv = Iy(It + Ixu+ Iyv) + α∇2v.
(2.23)

24

The gradient decent algorithm is an iterative method which updates u and v for given

initial conditions u0 and v0 as

u(k+1) = u(k) − δτ [Ix(It + Ixu
(k) + Iyv

(k)) + α∇2u(k)]

v(k+1) = v(k) − δτ [Iy(It + Ixu
(k) + Iyv

(k)) + α∇2v(k)].
(2.24)

Here k represents the iteration number and δτ is the step size for each iteration where

δτ should be sufficiently small to ensure the numerical stability. Recall u(k) and v(k)

must be discretely represented on the grid {xi, yj}p,qi,j=1 and derivatives must be nu-

merically approximated by finite differences.

On the other hand, we can solve the system in Eq.(2.22) for u and v using the

Gauss-Seidel method by linearizing the system. Therefore, when we use the Gauss-

Seidel method, first we approximate the Laplacian terms in Eq.(2.22). The approxi-

mations are given as
∇2ui,j,l ≈ κ(ūi,j,l − ui,j,l)

∇2vi,j,l ≈ κ(v̄i,j,l − vi,j,l),
(2.25)

where

ūi,j,l = 1
6(ui−1,j,l + ui,j+1,l + ui+1,j,k + ui,j−1,l)

+ 1
12(ui−1,j−1,l + ui−1,j+1,l + ui+1,j+1,l + ui+1,j−1,l),

v̄i,j,l = 1
6(vi−1,j,l + vi,j+1,l + vi+1,j,l + vi,j−1,l)

+ 1
12(vi−1,j−1,l + vi−1,j+1,l + vi+1,j+1,l + vi+1,j−1,l)

and κ = 3 for the Horn and Schunck method [9] when the average is taken according

to the above approximations. Now substituting Eq.(2.25) in Eq.(2.22) and setting

25

them equal to zero, we have

(α2 + I2
x)u+ IxIyv = (α2ū− IxIt)

IxIyu+ (α2 + I2
y)v = (α2v̄ − IyIt)

(2.26)

Solving the system for u and v, we have,

(α2 + I2
x + I2

y)(u− ū) = −Ix(Ixū+ Iyv̄ + It)

(α2 + I2
x + I2

y)(v − v̄) = −Iy(Ixū+ Iyv̄ + It).
(2.27)

To solve the problem using the Gauss-Seidel method, we rewrite the problem as

uk+1 = ūk − Ix(Ixūk + Iyv̄
k + It)/(α2 + I2

x + I2
y)

vk+1 = v̄k − Ix(Ixūk + Iyv̄
k + It)/(α2 + I2

x + I2
y).

(2.28)

For the given two time-adjacent images of a scene, we select the first image as I and

then compute Ix and Iy using finite difference approximation. Also It is computed

taking the difference between image 2 and image 1. Now for an initial conditions u0

and v0, each iteration updates uk+1 and vk+1 until they reach the solution.

2.3 Synthetic Data

In this section we present three synthetic data sets which represent three different

kinds of dynamical structures that are important in fluid dynamics. For all three

synthetic flows, the data (a sequence of images) was obtained by choosing an initial

density I(x, y) and evolving it forward in time according to the continuity equation

dI

dt
= −(Ixu+ Iyv + Iux + Ivy) (2.29)

26

using the vector fields governing each flow. The first example flow structure to be

reconstructed is about a hyperbolic fixed point. The stream function corresponding

to this data set is

ψ(x, y) = x2 − y2 (2.30)

on the domain [−0.5, 0.5]× [−0.5, 0.5]. Note that this velocity is not the gradient of

a potential function, but it is the symplectic gradient of a stream function, i.e.

〈u, v〉 = 〈−ψy, ψx〉. (2.31)

Then the velocity components which represent the hyperbolic fixed point are obtained

as

〈u, v〉 = 〈2y, 2x〉 (2.32)

on the domain [−0.5, 0.5] × [−0.5, 0.5]. Two time instances after a few iterations of

the density evolution can be seen in images (a) and (b) of Fig. 2.3. The true flow

that represents the Eq.(2.32) is shown in image (c).

(a) (b) (c)

Figure 2.3: Saddle data and true flow – Images (a) and (b) show two later time
instances of an initial density that has evolved according to Eq.(2.29) with velocity
components given by Eq.(2.32). The vector field in Eq.(2.32) is shown in (c).

27

The second data set is a gyre flow (a vortex) represented by the stream function

φ(x, y) = sin (πx) sin (πy) (2.33)

on R2, where we visualize just the subset [0, 1]× [0, 1]. This represents the flow about

an elliptic fixed point. We integrate an initial density forward according to Eq.(2.29)

with the velocity field given by

〈u, v〉 = 〈−π sin(πx) cos(πy), π cos(πx) sin(πy)〉. (2.34)

After a few iterations, two time instances of the density evolution were selected to

check the accuracy of the optical flow algorithms. The two-selected images and the

true velocity field that represents in Eq.(2.34) are shown in the images (a), (b) and

(c) of Fig. 2.4 respectively.

(a) (b) (c)

Figure 2.4: Gyre data and true flow – Images (a) and (b) show two later time instances
of an initial density that has evolved according to Eq.(2.29) with velocity components
given by Eq.(2.34) . The true flow field is shown in (c).

The third example is a flow about a source and unlike the first two examples, this

data set is represented by the potential function

ψ(x, y) = sin(x) cos(y). (2.35)

28

The velocity components are obtained by taking the gradient of the Eq.(2.35) and

given by

〈u, v〉 = 〈cosx cos y,− sin x sin y〉. (2.36)

Two time instances of the flow about a source are shown in images (a) and (b) of

Fig. 2.5, an evolution given by the velocity field on [1
4π,

3
4π]× [3

4π,
5
4π]. The true flow

fields that represent in Eq.(2.35) is shown in image (c).

(a) (b) (c)

Figure 2.5: Source data and true flow – Images (a) and (b) show two later time
instances of an initial density that has evolved according to Eq.(2.29) with velocity
components given by Eq.(2.36). The true flow field which is given in Eq.(2.36) is
shown in image (c).

2.4 Results of Optical Flow Calculations

The computed flows from the Gradient Descent formulation are shown in Fig. 2.6.

Flows of the saddle, gyre and the source are shown in images (a), (b) and (c) respec-

tively. The gradient descent approach is able to capture the source flow accurately

when we compare the reconstructed flow with the true flow. However, the same ap-

proach is unable to capture the saddle flow and the gyre flow accurately. This may

be due to the fixed step size for each iteration. The determination of step size in each

iteration with large number of variables is not an easy task.

29

(a) (b) (c)

Figure 2.6: Computed flow from gradient descent method – Images (a), (b) and (c)
show the computed velocity fields from the Gradient Descent formulation for the
saddle, gyre and source images shown in Fig. 2.3, Fig. 2.4 and Fig. 2.5 respectively.

The computed flows from the Gauss-Seidel are shown in Fig. 2.7. Corresponding

flows for the saddle, gyre and the source are shown in images (a), (b) and (c) respec-

tively. When we compare the results from the Gauss-Seidel approach with true flow

fields, the approach captures the saddle flow and the gyre flow accurately but it does

not capture the source flow accurately. If the operator of the system in Eq.(2.26) is

diagonally dominant, then the convergence of the Gauss-Seidel method is guaranteed.

In these three examples, none of the matrices are diagonally dominant and hence the

solution may not converge.

(a) (b) (c)

Figure 2.7: Computed flow from Gauss-Seidel method – Images (a), (b) and (c) show
the computed velocity fields from the Gauss-Seidel formulation for the saddle, gyre
and source images shown in Fig. 2.3, Fig. 2.4 and Fig. 2.5 respectively.

30

Since both methods are not capable of capturing all three types of data sets, we

have to invent a better way or improve the current method to capture the vector

fields of any kind of motion.

31

Chapter 3

A Stream/Potential Function

Method

With every "tick" of the clock in the scientific world, new challenges arise in different

domains. Researchers take this opportunity to apply their brand new ideas to the new

problems. One such challenge of great interest in the last few decades is analyzing

fluid systems using the observed images or a movie of the system. Data is available

range from tomography images in medicine through oceanography images to satellite

images of the planets. Various applications of analysis of fluid systems range from

validating medical image registration in [50], X-ray imaging [51], weather prediction

[52], tracking the motion of Arctic sea ice [53] and identifying accurate navigation for

planetary landing vehicles [54] demonstrating the importance of our challenge in the

literature.

In this Chapter, we introduce a new method to compute optical flow fields, with

special emphasis placed on fluid systems. According to The Helmholtz decomposition,

a smooth vector field can be decompose into divergence free and curl free components.

In this work, we reformulate the optical flow method in terms of a stream function

when the flow is divergence free or a potential function when the flow is curl-free

32

and then derive the velocity components from the computed stream or the potential

function.

As we explained in Chapter 2, Horn and Schunck in [9] introduced a formulation

for computing optical flow of an object from an observed image sequence. The basic

assumption of that formulation is the conservation of the image brightness over time.

The brightness constraint, It + Ixu + Iyv = 0 in Eq.(2.3) can be expressed as an

evolution model of

It(x, y, t) = −∇I(x, y, t) · 〈u(x, y, t), v(x, y, t)〉, (3.1)

which simplifies as

It = − (Ixu+ Iyv) .

Our main interest is to compute the velocity field for fluid systems rather than

systems with rigid body motion. We do so using measures of image intensity which

is the only available source of information. Unlike in rigid body motion, in fluid

motion image intensity undergoes distortions in both spatial and temporal directions

and hence this is a more challenging problem than problems involving rigid body

motion. Most of the work in the optical flow literature assumes that the fluid motion

is quasi-rigid and then applies the conservation of image brightness to compute the

optical flow, but authors in [29–33] proposed that a fluid system evolves according to

the continuity equation and the evolution model can be written as

It(x, y, t) = −div (I(x, y, t) 〈u(x, y, t), v(x, y, t)〉) . (3.2)

Simplifying Eq.(3.2), we can express the evolution model for the continuity equation

as

It = − (Ixu+ Iyv + Iux + Ivy) .

33

The authors introduced the evolution model using continuity equation because the

conservation of energy evolution model has some drawbacks in some occasions in

fluid motion. One reason is that the image brightness is not conserved when a pixel

appears or disappears (occludes) in one image but not in the adjacent image in a

time series. Another disadvantage of brightness conservation occurs when the fluid

is compressible. In this case, the volume of the fluid changes in the time direction

which causes the changes in brightness constancy of the trajectories over the motion.

In this chapter, we consider both evolution models for the computation of the optical

flow in fluid systems. Recall that the data fidelity corresponding to the conservation

of energy is from the Chapter 2 is

E(u, v) =
∫

Ω
(It + Ixu+ Iyv)2 dΩ. (3.3)

The data fidelity that represents the continuity equation can be expressed as

E(u, v) =
∫

Ω
(It + Ixu+ Iyv + Iux + Ivy)2 dΩ. (3.4)

Now, we add a suitable regularization term to the data fidelities to make the solutions

stable according to the perturbations in the input data. So far we only used the

smoothness regularization term

R(u, v) =
∫

Ω

(
u2
x + u2

y + v2
x + v2

y

)
dΩ, (3.5)

which was introduced by Horn and Schunck. In fluid motions, common features such

as gyres, hyperbolic fixed points and sources are not both divergence free and curl free.

In most of the places in the fluid either the divergence is high or the curl is high. For

this kind of situation, Suter in [34] introduced a ‘‘first-order div-curl” regularization

term to measure the divergence and curl (vorticity) of the motion separately. This is

34

done by giving weighting factors a1 and a2 on ‘div’ and ‘curl’ components separately

as

R(u, v) =
∫

Ω
a1div2 (〈u, v〉) + a2curl2 (〈u, v〉) dΩ, (3.6)

where div (〈u, v〉) = ux+vy and curl (〈u, v〉) = vx−uy. The Euler-Lagrange equations

corresponding to the “first-order div-curl” regularization term in Eq.(3.6) can be

obtained as

−2a1uxx − 2(a1 − a2)vxy − 2a2uyy = 0

−2a2vxx − 2(a1 − a2)uxy − 2a2vyy = 0.

When a1 = a2, the Euler-Lagrange equations become −2uxx− 2uyy = 0 and −2vxx−

2vyy = 0 which are the Euler-Lagrange equations for the smoothness regularization

introduced by Horn and Schunck in Eq.(3.5). That is, even though the regularization

terms in Eq.(3.5) and Eq.(3.6) are different, the minimization problem yields the same

solution as the Euler-Lagrange equations are the same. Due to this phenomenon, the

authors in [34] proposed a “second-order div-curl” regularization term to incorporate

in energy functional to capture the fluid motion from optical flow algorithms. The

new regularization term is given as

R(u, v) =
∫

Ω
‖∇div (〈u, v〉)‖2 + ‖∇curl (〈u, v〉)‖2 dΩ. (3.7)

According to the Helmholtz decomposition, a smooth vector field can be decom-

posed into divergence free (solenoidal) and curl free (irrotational) components. Fur-

ther, the two components, divergence free and the curl free, are derived from a stream

function ψ and a potential function φ respectively. Note that we have to include a

laminar flow into the decomposition when non-zero boundary conditions occur. Con-

sidering the Helmholtz decomposition and the regularization term in Eq.(3.7), the

35

authors in [35] developed a new optical flow algorithm to capture the divergence free

and curl free components of the flow. In this algorithm, both the stream and poten-

tial functions are reconstructed by solving the coupled Euler-Lagrange equations and

the flow components are reconstructed along the horizontal and vertical axes. The

reconstructed results from this method are promising, but it is hard to implement the

algorithm.

This difficulty in implementation and the fact that the algorithm consists of cou-

pled equations motivated us to develop an algorithm [28, 37] that is convenient to

implement and easy to solve. In our approach, we concentrate on flows that can be

represented by a potential function or a stream function so that the vector field is

computed by taking the gradient of the potential function or the symplectic gradient

(∇H) of the stream function. In either case,

〈u, v〉 = ∇φ = 〈φx, φy〉 or

〈u, v〉 = ∇Hψ = 〈−ψy, ψx〉.

The main advantage of this algorithm is that we only need to solve one Euler-

Lagrange equation for φ or ψ to reconstruct the velocity components u and v. In

addition to the simpler computation, the other most important advantage of our al-

gorithm is to impose prior knowledge of the flow on the potential or stream function

rather than on the components of the flow. Since it is not always possible to re-

construct a global potential function or a stream function for large scale data sets

such as oceanic flows and atmospheric motions, we focus on the local structures such

as hyperbolic fixed points, vortices and sources which are readily available in fluid

systems.

36

3.1 A Stream/Potential Function Formulation

First we can rewrite the data fidelities corresponding to both conservation of energy

and the continuity equation evolution models in terms of the potential function φ

and the stream function ψ. The data fidelity in Eq.(3.3) of the potential function

formulation is

E(φ) =
∫

Ω
(It + Ixφx + Iyφy)2 dΩ, (3.8)

and the data fidelity in Eq.(3.4) can be rewritten in terms of the potential function

as

E(φ) =
∫

Ω
(It + Ixφx + Iyφy + Iφxx + Iφyy)2 dΩ. (3.9)

Similar to the potential function formulation, we can obtain the stream function

formulation for the data fidelity in Eq.(3.3) as

E(ψ) =
∫

Ω
(It − Ixψy + Iyψx)2 dΩ, (3.10)

and the data fidelity in Eq.(3.4) as

E(ψ) =
∫

Ω
(It − Ixψy + Iyψx − Iψyx + Iψxy)2 dΩ. (3.11)

When we minimize the optical flow energy functional, the algorithms for the potential

function and the stream function are similar to each other. Therefore, for simplicity,

we present only the stream function formulation in the rest of the chapter. Also,

for the sake simplification, we write both data fidelities in Eq.(3.10) and Eq.(3.11) in

terms of two operator matrices ACI and ACE, where ACI is the operator corresponding

to the Conservation of Intensity (CI) model and ACE corresponds to the Continuity

37

Equation (CE) model. The two data fidelities in the new form are

ECI(ψ) =
∫

Ω
(It + ACIψ)2 dΩ, where ACI = −IxDy + IyDx and (3.12)

ECE(ψ) =
∫

Ω
(It + ACEψ)2 dΩ,

where ACE = −IxDy + IyDx − IDyx + IDxy. (3.13)

Here the operators D•• are arrays of size m×m to compute the partial derivatives of

a given vector of size m× 1 with respect to indices ••. Here we stack the given array

of size p× q into k× 1 vector and k = pq. To develop the operators D••, we use finite

difference approximations with suitable boundary conditions. Next, we will illustrate

a construction of such a derivative operator matrix.

3.1.1 Construction of a Derivative Operator

Suppose we have a function M(x, y) ∈ Rp×q which is a 2D array of real numbers

with p rows and q columns. Now we have to compute the partial derivative of M

with respect to x. First we construct a derivative operator Dx of size k × k, where

k = pq such that we can compute the partial derivative of M with respect to x.

To illustrate the constructions of the derivative operator, we consider a fourth-order

finite difference approximation to compute the pointwise partial derivative of the

array M with respect to x. For a point mij = M (x (i, j) , y (i, j)) of the array, the

finite difference approximation is

∂mij

∂x
= 1

12h [mi,j−2 − 8mi,j−1 + 0mi,j + 8mi,j+1 −mi,j+2] , (3.14)

where h is the width of the uniform grid in both the x and y directions, and i and j

are the row and column numbers respectively.

38

We now consider an example of an array M (x, y) of size 3× 5 where we want to

computeMx (x, y). We index the elements in the array in the form of a column vector

as shown in Table 3.1 and the elements inM (x, y) are defined as mi = M (x (i) , y (i))

for i = 1, 2, ..., 15.

Table 3.1: The table shows the elements of a given 2D array of size 3 × 5 and they
are labeled by considering the given array as a column vector.

m1 m4 m7 m10 m13
m2 m5 m8 m11 m14
m3 m6 m9 m12 m15

When we compute the partial derivatives, we must define suitable boundary con-

ditions. Without loss of generality we choose reflexive boundary conditions for this

example. After including the boundary points for the array M , the resulting array is

shown in Table 3.2. In Table 3.2, we add two new boundary columns to both the left

and the right sides of the array. These new columns are shown in bold letters and

mi = mi for i = 1, 2, ..., 15. The number of boundary points that are added depends

on the size of the finite difference stencil.

Table 3.2: The table shows the elements of a given array of size 3 × 5 with added
boundary points. We assume that the reflexive boundary conditions are appropriate
and added two columns to the both left and right of the table. The boundary points
are highlighted in bold letters.

m4 m1 m1 m4 m7 m10 m13 m13 m10
m5 m2 m2 m5 m8 m11 m14 m14 m12
m6 m3 m3 m6 m9 m12 m15 m15 m13

Next we compute the partial derivative of each element of M with respect to

39

x using the approximation in Eq.(3.14) as explained. If we compute the partial

derivative of m1 with respect to x, the resulting approximation is obtained as

∂m1

∂x
= 1

12h [m4 − 8m1 + 0m1 + 8m4 −m7]

= 1
12h [−8m1 + 9m4 −m7] .

The approximations for the partial derivatives of m2 and m3 with respect to x also

follow the same pattern. Further, we can estimate the partial derivative of m5 with

respect to x using the approximation in Eq.(3.14) as

∂m5

∂x
= 1

12h [m2 − 8m2 + 0m5 + 8m8 −m11]

= 1
12h [−7m2 + 8m8 −m11] .

Continuing in a similar manner for all 15 elements, we can construct the the deriva-

tive operator matrix Dx for any real matrix of size p× q as the product of 1
12h and

the Table 3.3. The operator 12hDx is given in the following table.

Table 3.3 shows the elements of a derivative operator to compute the partial

derivative of a given real valued 3× 5 array. In this case, we compute the derivatives

using finite difference approximations as explained in Eq.(3.14) with reflexive bound-

ary conditions, and there is a multiplicative factor of 12h on each element on the

operator matrix. The resulting matrix is sparse as it has only five non-zero diagonals.

We can extend the construction for any number of rows and columns as well as partial

derivatives with respect to other variable or combination of variables.

40

Table 3.3: The table shows the operator matrix needed to compute partial derivative
of any real valued array of size 3 × 5 with respect to x. All the entries have a
multiplication factor of 1

12h and we must include this when we compute the derivatives.
For the computation we use the fourth order finite difference approximation, as shown
in Eq.(3.14) with reflexive boundary conditions. The resulting matrix has five non-
zero diagonals.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15
m1 -8 0 0 9 0 0 -1 0 0 0 0 0 0 0 0
m2 0 -8 0 0 9 0 0 -1 0 0 0 0 0 0 0
m3 0 0 -8 0 0 9 0 0 -1 0 0 0 0 0 0
m4 -7 0 0 0 0 0 8 0 0 -1 0 0 0 0 0
m5 0 -7 0 0 0 0 0 8 0 0 -1 0 0 0 0
m6 0 0 -7 0 0 0 0 0 8 0 0 -1 0 0 0
m7 1 0 0 -8 0 0 0 0 0 8 0 0 -1 0 0
m8 0 1 0 0 -8 0 0 0 0 0 8 0 0 -1 0
m9 0 0 1 0 0 -8 0 0 0 0 0 8 0 0 -1
m10 0 0 0 1 0 0 -8 0 0 0 0 0 7 0 0
m11 0 0 0 0 1 0 0 -8 0 0 0 0 0 7 0
m12 0 0 0 0 0 1 0 0 -8 0 0 0 0 0 7
m13 0 0 0 0 0 0 1 0 0 -9 0 0 8 0 0
m14 0 0 0 0 0 0 0 1 0 0 -9 0 0 8 0
m15 0 0 0 0 0 0 0 0 1 0 0 -9 0 0 8

Next we will present visualization of a derivative operator under two different

boundary conditions. Fig. 3.1 shows the partial derivative operator Dy under two

different boundary conditions. The operator is designed to compute the partial

derivative of a given 6 × 5 array with respect to y. The operator in image (a) is

constructed using reflexive boundary conditions, and the operator in image (b) is

constructed using zero boundary conditions. These matrices are sparse, and in the

reflexive boundary case, the number of non-zero elements are 100 among 900 while

that of zero boundary conditions is 90. In terms of these operators, we can rewrite

the functionals in a simple way.

In the optical flow algorithm, the total energy functional is a combination of the

data fidelity and the regularization term with a weighting factor α. In the mini-

mization of the total energy functional, we use a variational approach to reach the

minimum solution. For this purpose, we need the gradient (first variation) of the

41

(a) (b)

Figure 3.1: Dy with two different boundary conditions – Image (a) and (b) show two
views of operator matrices to compute the partial derivative of a given 6× 5 matrix
with respect to y. The operator Dy in image (a) uses reflexive boundary condition
and in that case the number of non-zero elements is 100 out of 900. However, the Dy

operator in image (b) uses zero boundary condition and then the number of non-zero
elements is 90 out of 900.

energy functionals. We can determine the gradient of the data fidelities in Eq.(3.12)

and Eq.(3.13) as

∇ECI = 2A∗CI(It + ACIψ) and ∇ECE = 2A∗CE(It + ACEψ),

respectively. Here A∗CI is the adjoint operator of ACI and vice versa. Note that the

Hessian (second variation) operators for the data fidelities in Eq.(3.12) and Eq.(3.13)

are

∇2ECI = 2A∗CIACI and ∇2ECE = 2A∗CEACE.

The Hessian matrices are positive-semi definite; hence both data fidelities are convex

functionals. The optical flow energy functional consists of the data fidelity and the

regularization term. Therefore, with an appropriate regularization term R(ψ) and a

42

regularization parameter α, the total energy functionals for the conservation of energy

model and the continuity equation can be written as

E(ψ) =
∫

Ω
(It + ACIψ)2 dΩ +R(ψ) and (3.15)

E(ψ) =
∫

Ω
(It + ACEψ)2 dΩ +R(ψ). (3.16)

One of the simple regularizations which provides the convexity to the energy func-

tional is

R1(ψ) =
∫

Ω
ψ2 + ψ2

x + ψ2
y + ψ2

xx + ψ2
yy dΩ. (3.17)

Since there does not exist a u-v formulation for this regularization term, we are not

interested in using this regularization in this chapter, but we will demonstrate it in

Chapter 4. Two other important regularization terms are the smoothness regulariza-

tion term of which the u-v formulation is in Eq.(3.5), denoted by R2(ψ)

R2 (ψ) =
∫

Ω

(
ψ2
xx + ψ2

yy + ψ2
xy + ψ2

yx

)
dΩ, (3.18)

with the gradient

GR2(ψ) = (B2 +B∗2)ψ, where B2 = D∗xxDxx +D∗yyDyy +D∗xyDxy +D∗yxDyx

and the regularization term R3(ψ), which regularizes u and v components is

R3 (ψ) =
∫

Ω

(
ψ2
x + ψ2

y

)
dΩ, (3.19)

with the gradient of GR3(ψ) = (B3 + B∗3)ψ, where B3 = D∗xDx +D∗yDy. Note that

the u-v formulation of the regularization term can be written as

R3 (u, v) =
∫

Ω

(
u2 + v2

)
dΩ. (3.20)

43

The stream function formulation is valid for divergence free flows only. On the other

hand, if the flow is curl free, the potential function formulation can be applied to

determine velocity fields. The two data terms of conservation of intensity and the

continuity equation are

ECI(φ) =
∫

Ω
(It + ACIφ)2 dΩ, where ACI = IxDx + IyDy and (3.21)

ECE(φ) =
∫

Ω
(It + ACEφ)2 dΩ,

where ACE = IxDx + IyDy + IDxx + IDyy. (3.22)

Now the regularization terms R2 (ψ) and R3 (ψ) can be written in the form of potential

function as

R2 (φ) =
∫

Ω

(
φ2
xx + φ2

yy + φ2
xy + φ2

yx

)
dΩ and (3.23)

R3 (φ) =
∫

Ω

(
φ2
x + φ2

y

)
dΩ. (3.24)

The gradients are similar to the stream function formulation for both regular-

ization terms and as we mentioned earlier, the numerical approach for solving the

potential function problem is similar to the stream function problem. According to

the way we developed the data fidelities and the regularization terms, we have two

different approaches, the u-v method and the stream function method. We develop

different algorithms by combining two data fidelities and two regularization terms.

When we minimize all these algorithms, we use a variational approach. In the stream

function approach, we set up the problem by setting the Euler-Lagrange equation to

be zero. Both the data terms and the regularization terms give a linear gradient in

all formulations. Hence the Euler-Lagrange equations for all the above methods are

linear. For a simpler presentation, we will discuss the algorithm for the stream func-

44

tion formulation with the conservation of intensity data fidelity and the smoothness

regularization term. The corresponding Euler-Lagrange equation is given by

[2A∗CIACI + α (B2 +B∗2)]ψ = −2A∗CIIt. (3.25)

Either an iterative method or direct solution method for solving sparse linear

systems can be applied to the system in Eq.(3.25) to determine the optimal solution

ψ∗. As a direct way of reaching the solution, we use LU factorization on 2A∗CIACI +

α (B2 +B∗2) and then use Gaussian elimination to determine the solution. Most of

the time, the Euler-Lagrange equations corresponding to the regularization terms are

linear and symmetric. In the symmetric case B∗ = B, as B is real-valued matrix

leading to the system (A∗CIACI + αB∗2)ψ = −A∗It. To solve systems of this form,

we can apply the Cholesky factorization. In [55] however, we see some instances

where the regularization terms such as the total variation provides non-linearity in

the Euler-Lagrange equation. In that case, we cannot apply the direct linear methods

to solve the system and instead apply a suitable iterative method.

3.2 Results from the Synthetic Flows

We have two data fidelities corresponding to the conservation of intensity and the

continuity equation. Combining these two with the two regularization terms R2 and

R3, in each stream function and u-v formulations, eight different algorithms are ob-

tained. We can now apply these algorithms on synthetic data sets which represent

often visible local structures in fluids such as a hyperbolic fixed point, a vortex and a

source. We constructed these data sets by evolving an initial density according to the

known velocity fields and then selected two time instances of the density evolution

as explained in Sec. 2.3. Note that in this Chapter we discuss only the qualitative

difference of the stream function formulation and the u-v formulations using the two

45

data fidelities and the two regularization terms on the synthetic data sets. Further in

Chapter 4 we present a quantitative analysis of the stream function formulation and

the u-v on the same data sets using the two data fidelities and six different regular-

ization terms including R2 and R3 in terms of the Mean Angular Errors.

The first example is the source flow as shown in Fig. 2.5. Recall that the true

velocity components are given by 〈u, v〉 = 〈cosx cos y,− sin x sin y)〉 and hence the

div (〈u, v〉) = − sin x cos y, which is not equal to zero in the complete domain. There-

fore, the flow is curl free and it can be represented by a potential function. Hence,

the potential function formulation is appropriate for this data set.

(a) ECE (φ) with R2 (φ) (b) ECE (u, v) with R2 (u, v)

(c) ECI (φ) with R2 (φ) (d) ECI (u, v) with R2 (u, v)

Figure 3.2: Source with R2 – Reconstructed flow fields for source data from the
potential function formulation shown in first column and u-v formulation in second
column using the regularization term R2. Flow fields in the first row are computed
using continuity equation data fidelity whereas the second row using the conservation
of intensity data fidelity. Results from both formulations with R2 capture the source
flow field accurately.

46

Images in Fig. 3.2 represent the reconstructed vector fields for the source data

from the potential function formulation and the u-v formulation with the regulariza-

tion term R2. Images in the first row are reconstructed using the continuity equation

data fidelity, whereas the images in the second row are computed using the conser-

vation of intensity data fidelity. Also the first column represents the reconstructions

from the stream function formulation while the second column shows the reconstruc-

tions from the u-v formulation. All four reconstructions are reasonable, but near the

corners, the formulations with the continuity equation data fidelity have some diffi-

culties capturing the correct magnitudes.

(a) ECE (φ) with R3 (φ) (b) ECE (u, v) with R3 (u, v)

(c) ECI (φ) with R3 (φ) (d) ECI (u, v) with R3 (u, v)

Figure 3.3: Source with R3 – Computed flow fields for the source data from the
potential function formulation (first column) and u-v formulation (second column)
using the regularization term R3. Flow fields in the first row are computed using
continuity equation data fidelity whereas the second row using the conservation of
intensity data fidelity. Results from both frameworks are reasonable other than near
the boundaries of the flow fields from continuity equation data fidelity.

47

Fig. 3.3 shows the reconstructed flow fields for the potential function formulation

and the u-v formulation with R3 regularization term on the source data. The recon-

structions from the continuity equation data fidelity are shown in the first row and

the conservation of intensity data fidelity in the second row. Flows from the the po-

tential function approach and the u-v approach are displayed in the first and second

columns respectively. Reconstructions from the conservation of image intensity data

fidelity captures the source flow accurately; however, the continuity equation data

fidelity with both frameworks show larger errors near the boundaries. Since the two

data fidelities have unequal gradients, we may expect these kind of differences.

(a) ECE (ψ) with R2 (ψ) (b) ECE (u, v) with R2 (u, v)

(c) ECI (ψ) with R2 (ψ) (d) ECI (u, v) with R2 (u, v)

Figure 3.4: Hyperbolic Flow with R2 – Reconstructed flow fields for the Hyperbolic
data from the stream function formulation (first column) and u-v formulation (second
column) using the regularization term R2. Flow fields in the first row are computed
using continuity equation data fidelity whereas the second row flow fields are from
conservation of intensity data fidelity. Both stream function and the u-v formulations
with R2 reconstruct the hyperbolic fixed point accurately.

48

The second instance where we apply the eight different algorithms is on a hyper-

bolic fixed point. The true flow field corresponding to this data set is 〈u, v〉 = 〈2y, 2x〉.

The divergence of the flow is div (〈u, v〉) = 0; hence we apply the stream function

formulation on the hyperbolic data set. First, we apply both the stream function

approach and the u-v approach with the regularization term R2. In this case, all

the reconstructions capture the hyperbolic fixed point accurately. In Fig. 3.4, the

first row presents the result from the continuity equation data fidelity and the image

represents the flow from the stream function formulation whereas the second image

presents the result from the u-v formulation. Similarly, the second row represents

the reconstructions from the the conservation of intensity data fidelity where the left

image is from the stream function formulation while the right image is from the u-v

formulation.

Now we apply both the stream function approach and the u-v approach with the

regularization term R3 on the hyperbolic fixed point. In this case, all the recon-

structions from the stream function formulation capture the hyperbolic fixed point

successfully whereas the u-v formulation does not reconstruct the flow accurately.

The results are shown in Fig. 3.5 where the flow field representation in the figure

is similar to the R2 case in Fig. 3.4. These results outperform the stream function

formulation over the u-v formulation. Further, the results indicate that the optimal

flow fields from regularization term R3 under both data fidelities does not produce

a hyperbolic fixed point in u-v formulation. In other words, the u-v approach with

regularization term R3 is unable to capture some stream flows under either of the

data fidelities.

49

(a) ECE (ψ) with R3 (ψ) (b) ECE (u, v) with R3 (u, v)

(c) ECI (ψ) with R3 (ψ) (d) ECI (u, v) with R3 (u, v)

Figure 3.5: Hyperbolic Flow with R3 – Reconstructed flow fields for the hyperbolic
data from the stream function formulation (first column) and u-v formulation (second
column) using the regularization term R2. Flow fields in the first row are computed
using continuity equation data fidelity whereas the second row flow fields are from
conservation of intensity data fidelity. Reconstructed flow fields from the stream
function method with both data fidelities are successful, but the u-v approach with
both data fidelities is unable to capture the hyperbolic fixed point.

The last synthetic local structure that we apply the eight different algorithms to is

a data set which represents a vortex (gyre) as we showed in Fig. 2.4. The true velocity

field that represents the data set is 〈u, v〉 = 〈−π sin(πx) cos(πy), π cos(πx) sin(πy)〉.

The divergence of the flow, div (〈u, v〉) = 0, and hence flow is incompressible, so we

apply the stream function formulation on the gyre data set to compare with the u-v

formulation.

Fig. 3.6 shows the reconstructed flow fields for the gyre data set using the regular-

ization term R2. The stream function method reconstructs the gyre flow successfully

with both data fidelities whereas the u-v formulation captures the gyre flow only with

50

(a) ECE (ψ) with R2 (φ) (b) ECE (u, v) with R2 (u, v)

(c) ECI (ψ) with R2 (φ) (d) ECI (u, v) with R2 (u, v)

Figure 3.6: Gyre Flow with R2 – Reconstructed flow fields for the gyre data from the
stream function formulation (first column) and u-v formulation (second column) using
the regularization term R2. Flow fields in the first row are computed using continuity
equation data fidelity whereas the second row flow fields are from conservation of
intensity data fidelity. Both flow fields from the stream function formulation with
both data fidelities are successfully reconstructed. In the u-v formulation, only the
data fidelity from the conservation of intensity captures the flow successfully, whereas
continuity equation data fidelity does not capture the gyre flow.

the conservation of intensity data fidelity which is shown in the lower right image.

51

(a) ECE (ψ) with R3 (ψ) (b) ECE (u, v) with R3 (u, v)

(c) ECI (ψ) with R3 (ψ) (d) ECI (u, v) with R3 (u, v)

Figure 3.7: Gyre Flow with R3 – Reconstructed flow fields for the gyre data from
the stream function formulation (first column) and u-v formulation (second column)
using the regularization term R3. Flow fields in the first row are computed using
continuity equation data fidelity whereas the second row flow fields are from conser-
vation of intensity data fidelity. Only stream function formulation with both data
fidelities successfully reconstructed gyre flow, whereas none of the data fidelity with
u-v approach captured the gyre flow.

As shown in Fig. 3.7, these reconstructions lead to a positive conclusion regarding

the stream function method. In Fig. 3.7, the u-v formulation with both continuity

equation data fidelity (upper-right) and the conservation of intensity data fidelity

(lower-right) are not capable of reconstructing the gyre flow. The stream function

reconstruction methods, however, reconstruct the gyre flow quite accurately. This is

another example where the stream function formulation outperforms the u-v formu-

lation.

52

3.3 Application and Examples

Since we have developed the algorithm for capturing fluid motions for real world ap-

plications, we need to check the accuracy of our method with real data. Therefore, we

applied the stream function optical flow formulation to capture flows in two oceano-

graphic data sets. These oceanic flows are three-dimensional and the affected by the

coriolis force balanced by pressure gradients. A two-dimensional assumption is often

used in scenarios where the flow is primarily on the surface observed or if there is

an inherent 2D symmetry. For example, in plankton dynamics, the evolution often

tends to be in the first few centimeters.

3.3.1 An Example Using Sea Surface Temperature Data

In this illustration, we consider an image sequence generated from a Regional Ocean

Model System (ROMS) which represents the Sea Surface Temperature (SST) off the

coast of Oregon, U.S.A [56]. This data was provided by Nicholas B. Tufillaro, John

Osborne and Alex Kurapov from their Regional Ocean Modeling System (ROMS)

in August 2002. We thank Nicholas B. Tufillaro, John Osborne and Alex Kurapov

for providing data. This complete sequence of images was taken in the first week

of August in 2002. The first image of this sequence is shown in Fig. 3.8. Orange

represents high temperature, red represents low temperature and green represents

land.

53

Figure 3.8: SST full image – Image shows the variations of the sea surface temperature
off the coast of Oregon, USA. Since the local structures are not clearly visible, a
selected area from the white rectangle is used for the calculations.

The image in Fig. 3.8 represents the complete area we are interested in which is

540 by 300 km with 1 km horizontal resolution. The approximate location can be

expressed as North latitude from 41 to 46 degrees and West longitude from -125 to

-124. Withing this image the highlighted rectangular area features a local structure

which represents three individual gyres. The images (a) and (b) in the Fig. 3.9 show

two time instances of an image sequence taken one hour apart. The data set is gen-

54

erated from an 3D ocean model along the Oregon shelf that consists of wind-driven

and tidal flows evolving some initial satellite data [57]. The model is verified against

the sea surface temperature data from the Geostationary Operational Environmental

Satellite (GOES).

For the oceanic data, when the flow is divergence free, the stream function for-

mulation is appropriate and the flow is curl-free, the potential function method is

appropriate. To highlight the performance of the stream function method in nearly

divergence free flows, we compute the solution from stream function method, the u-v

formulation as well as the potential function formulation on the SST data. This leads

to a comparison of stream function vs potential function vs u-v formulation. In our

results for the SST data, the continuity equation data fidelity was unable capture the

flow field with each of these algorithms with R2 and R3. Therefore, we present the

results only from the conservation of intensity data fidelity with the regularization

term R2 and R3. In Fig. 3.9, images (c) and (d) show the reconstructed flow fields

from the stream function formulation R2 and R3 respectively. The images (e) and

(f) represents the results from the potential function formulation with R2 and R3 re-

spectively. Reconstructed flow fields from the u-v formulation with the regularization

terms R2 and R3 are shown in images (g) and (h) respectively. The stream function

formulation with regularization term R2 captures the gyres (vortices) accurately, but

R3 does not fully capture the gyres. None of the potential functions or u-v formula-

tions, however, were able to capture any of the structure from the flow. According to

these results, it can be concluded that in order to analyze the dynamics of the flow,

it is best to assume the incompressibility of the flow and to compute the vector field

using the stream function formulation. This vector field can then be used to deter-

mine things like mass transport and coherent sets. Beginning directly from the image

data allows us to determine the flow dynamics without the use of the model [58].

55

3.3.2 Example from GOCI satellite

Our second example is also an oceanic fluid system. In this example, first we com-

pute the velocity field between two given images and then to verify the accuracy of

the stream function method, we reconstruct the second image by integrating the first

image using the computed velocity field. The data set represents product movements

in the seas of South Korea which was obtained from the on-board optical sensor

Geostationary Ocean Color Imager (GOCI) [59] of the Communication, Ocean, and

Meteorological Satellite (COMS) from South Korea. The temporal resolution between

images (a) and (b) in Fig. 3.10 is 10 minutes. We applied both the stream function

and the potential function formulations with regularization R2 and the stream func-

tion formulation gave a reasonable solution which is shown in image (c) in Fig. 3.10.

In the absence of a known vector field, a study of image evolution can serve to validate

the method. Next we reconstruct the second image (b) in Fig. 3.10 by integrating

the first image (a) in Fig. 3.10 forward in time under the evolution model (3.2) with

the computed flow field shown in image (c) in Fig. 3.10. The reconstructed second

image is shown in image (d) in Fig. 3.10.

To verify the accuracy of the reconstructed image, we compare the relative error

between the actual image and the reconstructed image. The relative error was com-

puted over the image domain and then a single number was obtained to compare the

errors. We compute the average of the magnitude of the error over the domain, called

the mean relative error. We apply both the stream function formulation and the u-v

formulation on images (a) and (b) in Fig. 3.10 for the comparison. The mean relative

error for the stream function approach is 2.21% and for the u-v approach is 5.32%

validating the accuracy of the stream function formulation over the u-v approach.

56

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: Sea Surface Temperature Flow – Images (a) and (b) represent two different
time instances (one hour apart from each other) of an image sequence of sea surface
temperature along the coast of Oregon (USA) on August, 1, 2002. Six different optical
flow algorithms which include conservation of intensity data fidelity are employed on
images (a) and (b). The images (c) and (d) show the reconstructed flow fields using the
stream function method with the regularization terms R2 and R3 respectively. Also
images (e) and (f) show the computed flow field from the potential function method
with the regularizations R2 and R3, and images (g) and (h) show the computed optical
flow field using the u-v approach with R2 and R3. As can be seen here, only the stream
function formulation captures the gyres very well, but none of the potential or u-v
methods captures any of these gyres presented on data.

57

(a) (b)

(c) (d)

Figure 3.10: GOCI Flow – Images (a) and (b) show two time instances, with the
temporal resolution of 10 minutes, of products movements in the seas of South Korea.
Image (c) displays the computed flow field from the stream function method with R2
regularization and the image (d) shows the reconstructed second image by evolving the
first image in (a) forward in time under the evolution model (3.2) with the computed
flow field as shown in image (c). The mean relative error is 2.21% for the stream
function formulation and 5.32% for the u− v formulation.

58

3.4 Another Advantage of Stream Function Method

over the u-v Method

According to the results from the synthetic data sets as well as the real oceanic data

sets, the stream function method outperforms the u-v method in fluid systems. The

stream function method provides another advantage when we regularize the optical

flow problems by imposing the prior knowledge of the solution (scientific priors),

which we explain in detail in Chapter 4. When we impose the prior knowledge,

it is important to identify the correct formulation of the problem. We may have

problems in terms of the u-v formulation or the stream function formulation. In the

u-v method the prior knowledge is imposed on the components of the flow, but in the

stream function formulation the prior knowledge can be directly imposed on the flow.

For instance, as in [37] if the expected flow is sparse, we use L1 norm regularization to

reconstruct the flow. In the u-v method, the commonly used regularization term [60]

to reconstruct sparse flow is

R(u, v) =
∫

Ω
|u|+ |v| dΩ. (3.26)

The Euler-Lagrange equations for the regularization term in Eq.(3.26) are obtained

as

u√
u2 + ε

= 0 and
v√
v2 + ε

= 0,

where ε is a small real number to be chosen. The first equation involves only u and

the second equation involves only v, so they are not coupled. Since the two equations

are independent of each other, the optimal solution under this regularization tends to

reconstruct the component wise sparse flow fields irrespective of the data term. That

59

is, the resulting flow field may have zeros in some places of the u component and

zeros in some places of the v component. Even though both the u and v components

have zeros, there is no guarantee that the zeros in both components are at the same

place and hence the flow field may not be sparse. On the other hand, if we use the

stream function formulation, the sparsity of the flow would be measured by the total

variations of the stream function ψ. The appropriate total variation regularization

term is

R(ψ) =
∫

Ω
|∇Hψ| dΩ. (3.27)

The Euler-Lagrange equation for the Total variation regularization term is obtained

as

∇ ·
(
∇Hψ

|∇Hψ|

)
= 0 (3.28)

and it consists of both components −ψy and ψx. This formulation allows us to impose

regularity on the flow to reconstruct sparse flow. The Euler-Lagrange equation corre-

sponding to the sparsity regularization term in Eq.(3.28) is the same as the potential

function formulation since |∇Hψ| and |∇ψ| are the same.

The above explanation demonstrates an additional advantage of the stream func-

tion formulation over the u-v method when imposing prior knowledge in optical flow

problems. In the Chapter 4, a detailed explanation of imposing prior knowledge via

the regularization term will be included.

60

Chapter 4

Regularization of Optical Flow

Problem

The computation of optical flow involves minimizing functionals which leads to solv-

ing an inverse problem. Generally, the optical flow problem is an ill-posed problem

because the data comes with noise and discretization errors. Recall that, according

to Hadamard [49], a problem Au = z is called well-posed, if there is a solution to the

problem and the solution is unique and continuous with respect to the perturbations

of z. If at least one of these conditions is not satisfied, then the problem is ill-posed.

In optical flow problems, especially the perturbations in input data may cause the

instability of the solution. One of the common approaches to over come these kind of

difficulties is to regularize the ill-posed problem. The main reason to regularize the

ill-posed problem is to enforce the well-posedness. That is, we want to make sure that

there exists a unique solution which is stable with respect to the perturbations in the

input data. The one important thing on which we concentrate when solving the regu-

larized problem is whether the regularized solution satisfies the original problem. We

can achieve this by seeking a solution to the regularized problem that approximately

minimizes the data fidelity for small quantities of the regularization parameter. When

61

seeking the solution of the optical flow problem, both the left hand side and the right

hand side depend on the input data and this may cause the well-posedness of the

problem even after the regularization. This incident can often be seen in the optical

flow problems.

The other hidden advantage of regularization is to incorporate prior knowledge

of the solution to the Mathematical problem via the regularization term. This is a

great advantage in optical flow problems as it is hard to achieve the well-posedness

after the regularization. For instance, both data fidelities in Eq.(2.7) and Eq.(3.4) do

not contribute any prior knowledge on the estimated flow but do impose the prior

knowledge on the data. If we think of adding the regularization term introduced in

Horn and Schunck to the above data fidelities, the minimization problem will take

into account that the expected flow would be smooth.

4.1 A Simple Explanation about Regularization

As we mentioned earlier, the first goal of regularizing an optimization problem is to

ensure the well-posedness so that the solution of the problem satisfies the properties

of existence, uniqueness and stability. When we have to solve an ill-posed inverse

problem, we reformulate the problem as an optimization problem and then regularize

it. In this section we will illustrate how to achieve well-posedness using linear inverse

problems.

Example 4.1.1. Consider the problem [12]

2

1

x =

 4

2.1

 (4.1)

and sove for x.

62

This is an overdetermined linear system which has no solution because there does

not exist a solution x such that x = 2 and x = 2.1. Since the solution does not satisfy

the property of existence, the problem is ill-posed. However, we can reformulate the

problem as an optimization problem in the form of least squares as

arg min
x

∥∥∥∥∥∥∥∥
2

1

x−
 4

2.1


∥∥∥∥∥∥∥∥

2

2

. (4.2)

The solution for the new problem is x = 2.02 and it is unique. The reformulation of

the problem leads to a unique solution even though the original problem does not have

a solution. However, the uniqueness property of the solution is not often achievable.

The following example in [61] will explain the difficulty of achieving a unique solution.

Example 4.1.1. Consider a system of two equations [61]

1 2

0 0


x1

x2

 =

3

3

 . (4.3)

to be solved for x1 and x2.

This problem does not have any solution as one equation of the system implies

that 0 = 3. Therefore, the problem does not satisfy the existence property and hence

is ill-posed. Now we reformulate the problem as a minimization problem just like we

did in the previous example. Then the new problem becomes

arg min
x1,x2

∥∥∥∥∥∥∥∥
1 2

0 0


x1

x2

−
3

3


∥∥∥∥∥∥∥∥

2

2

. (4.4)

The problem in Eq.(4.4) is minimized when x1 + 2x2 = 3. Since there are infinitely

many solutions which satisfy this constraint, the reformulated problem has infinitely

many solutions as well. Now in this example, the original problem does not have any

63

solutions whereas the reformulated problem has infinitely many solutions. Note that

these solutions are obtained when the distance between

1 2

0 0


x1

x2

 and

3

3

 is 3,

which should be zero. The next step is to select an appropriate solution among the

infinitely many choices. To obtain the unique solution, we must modify the problem

again which we accomplish by including an additional constraint to the problem. In

other words we must define a new characteristic of the solution in order to identify

the desired solution. This new characteristic is defined using the prior knowledge of

the expected solution; this notion is often called the scientific prior.

Now we are going to add another term to the problem in Eq.(4.4). For instance,

if we wish to have a solution on x1 + 2x2 = 3 which is closest to the origin, then the

regularized problem of Eq.(4.4) becomes

arg min
x1,x2

∥∥∥∥∥∥∥∥
1 2

0 0


x1

x2

−
3

3


∥∥∥∥∥∥∥∥

2

2

+

∥∥∥∥∥∥∥∥
x1

x2


∥∥∥∥∥∥∥∥

2

2

. (4.5)

The solution that gives the smallest euclidean distance from the origin to the line

x1 + 2x2 = 3 is

0.6

1.2

. Therefore, the introduction of the regularization term in l2

norm ensures the well-posedness of the solution and hence the new problem has a

unique solution. Fig. 4.1 is a graphical representation of approaching the solution in

the sense of l2 norm. The closest distance from the origin to the line is shown by the

intersection point of the line and the ε ball l2 norm. The closest distance between

line and the origin is given by the radius of the circle.

64

Figure 4.1: l2 solution – Image shows the graphical representation of the solution
after introducing the l2 regularization.

Another way to regularize the problem is to find the closest point on the line to

the origin under the l1 norm.

Figure 4.2: l1 solution – Image shows the graphical representation of the solution
under the l1 regularization.

65

With the l1 norm distance, the problem can be rewritten as

arg min
x1,x2

∥∥∥∥∥∥∥∥
1 2

0 0


x1

x2

−
3

3


∥∥∥∥∥∥∥∥

2

2

+

∥∥∥∥∥∥∥∥
x1

x2


∥∥∥∥∥∥∥∥

1

. (4.6)

The l1 norm solution will be on the intersection of the line x1 + 2x2 = 3 and one of

the axes. Thus the solution is

 0

1.5

 because it minimizes | x1 | + | x2 |. Fig. 4.2

shows the graphical representation of the solution which we obtained from the l1

regularization. Moreover, we can use ∞-norm and then the problem becomes

arg min
x1,x2

∥∥∥∥∥∥∥∥
1 2

0 0


x1

x2

−
3

3


∥∥∥∥∥∥∥∥

2

2

+

∥∥∥∥∥∥∥∥
x1

x2


∥∥∥∥∥∥∥∥
∞

. (4.7)

Figure 4.3: l1 solution – Image shows the graphical representation of the solution
under the l1 regularization.

The solution is

1

1

 which minimizes the distance to the line from the origin

under the l∞ norm. Fig. 4.3 shows the l∞ regularize solution for the problem. The

66

closest distance to the origin is the intersection point of ε-ball of the l∞ norm and the

line (1, 1)T is shown in a green marker point. In all three cases, i.e. under l1, l2 and

l∞ regularization, we have a unique solution, but they are not the same. The reason

for the different solutions is each of these solutions depends on the new characteristic

that we introduced. That is, the scientific prior causes the desired solution.

4.2 Scientific Priors

Toward our discussion of designing scientific prior information into our functional,

we first review some well known theories of inverse problems [11, 12, 49]. Consider a

simple linear system which we often solve in linear algebra

Au = z, (4.8)

where A ∈ Rm×n, u ∈ Rn and z ∈ Rm. When A and u are given, it is called a forward

problem. When A and z are available and the system is solved for u, it is called an

inverse problem. For an inverse problem, a unique solution can be obtained by

u = A−1z, if A−1 exists.

If A is not invertible, then the system may have infinitely many solutions or no

solution. In either case, as we explained in Sec. 4.1, it is standard to reformulate the

problem as a minimization problem in such a way that from infinitely many solutions

we can select or emphasize a desired solution. After reformulating the problem in the

least square sense, it can be written as

uLS = arg min
u
‖Au− z‖2

2. (4.9)

67

In the modified problem, we find uLS in such a way that we minimize the distance

between Au and z in the Euclidean perspective. As we have seen in Sec. 4.1, the

above reformulation makes a unique solution or infinitely many solutions even when

there are no solutions to the original problem. Therefore, the above formulation in

Eq.(4.9) is the first step to achieving a unique solution when the original problem is

ill-posed. This alternative approach of solving the original inverse problem ensures

at least one solution to the original problem. The second step is to reach a unique

solution when there exits more than one solution. We achieve the uniqueness by

including an additional constraint to the reformulated problem in Eq.(4.9) to select

the appropriate solution.

In addition to the existence and uniqueness of a solution, the regularization en-

forces the stability of the solution. If the matrix A in Eq.(4.8) is ill-conditioned, then

the small perturbations of z may give large perturbations in the solution u. When

we applied it to the real world cases, the data may contain errors from measurements

and then from the discretization. Let b be the true data and e be the errors accom-

panying the measured data, where b, e ∈ Rm. Then taking the measurement errors

into account the right hand side z, which is the measured data of the Eq.(4.8), can

be considered as z = b+ e. Now the original problem becomes

Au = b+ e. (4.10)

68

4.2.1 An Illustrative Example

The following example in [12] illustrates the stability of an ill-posed problem subject

to the small perturbations of the measured data z. Consider the linear system

A =


0.16 0.10

0.17 0.11

2.02 1.29

 and u =

1

1

 , then b =


0.26

0.28

3.31

 .

When we introduce a small perturbation e = (0.01,−0.03, 0.02)T to the true solution

b, the right hand side becomes z = (0.27, 0.25, 3.33)T . The corresponding least square

solution is

u1 =

 7.04

−8.40

 and the residual norm, ‖Au1 − z‖2 = 0.022.

Considering the small residuals close to 0.022, we can obtain two other alternative

solution:

u2 =

1.65

0

 and the residual norm, ‖Au1 − z‖2 = 0.031 and

u3 =

 0

2.58

 with the residual norm, ‖Au1 − z‖2 = 0.036.

All three solutions lead to small residuals, but the estimated solutions have deviated

from the true solution (1, 1)T . This phenomenon occurs because the matrix A is

ill-conditioned. Thus, the example illustrates that even a small error in the input

data of an ill-posed problem causes the solution we seek to be near the true solution.

Therefore, we can see that in general, an invertible A and an error free right hand

side will provide a unique solution. However, if A is not invertible and right hand side

69

is contaminated with errors, we have to put in greater effort to solve the problem. In

reality, most of the Science and Engineering applications are the latter case.

One possible way of finding a solution of ill-posed systems is to apply the Singu-

lar Value Decomposition (SVD) on the operator A and then solve the system with

further modifications. As the first step of this approach, we explain the derivation of

the SVD of the matrix A using the following theorem.

Theorem 4.2.1. [62] If A is a real m-by-n matrix, then there exist orthogonal ma-

trices U = (u1, u2, · · · , um) ∈ Rm×mand V = (v1, v2, · · · , vn) ∈ Rn×n such that

A = UΣV T ,

where Σ = diag (σ1, σ2, · · · , σp) ∈ Rm×n with p = min{m,n}. Here σi ≥ 0 for

i = 1, 2, ..., p, are called the singular values of A.

In this theorem, it is assumed that the singular values σ1, σ2, · · · , σp are in de-

scending order. That is σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. Now the matrix A can be represented

by an alternative form using the singular value decomposition as

A =
[
u1 u2 . . . um

]


σ1

σ2

. . .

σp





vT1

vT2
...

vTn


=

p∑
k=1

σkukv
T
k .

Since the matrices U and V are orthogonal, the inverse of A can be obtained as

70

A−1 = V Σ−1UT . In terms of singular values, we can obtain A−1 as

A−1 =
p∑

k=1

1
σk
vku

T
k .

Then the solution for the system in Eq.(4.10) can be obtained as

u =
p∑

k=1

vku
T
k

σk
(b+ e)

=
p∑

k=1

uTk b

σk
vk +

p∑
k=1

uTk e

σk
vk.

According to this solution, when the the singular values are zero or close to zero,

the errors in the right hand side will be amplified. This amplification diverts the

solution from the actual solution; hence the direct SVD method is not appropriate.

To overcome this kind of amplification of the right hand side of the system, we can

introduce a threshold for the singular values so that we can eliminate the singular

values corresponding to the amplifications. This Method is called the Truncated

Singular Value Decomposition (TSVD). If the threshold is at rrh singular value, the

solution for the system in Eq.(4.10) is obtained as

u =
r∑

k=1

uTk (b+ e)
σk

vk.

The solution from the TSVD method with z = b+ e can be obtained by introducing

a filter factor to the SVD solution as

u =
p∑

k=1
ϕk
uTk z

σk
vk, (4.11)

71

where the kth filter factor ϕk is given as

ϕk =


1, if 1 ≤ k ≤ r

0, if r < k ≤ p.

However, in real applications we have to deal with the large-scale matrices. Since

the computation of Singular Value Decomposition of A is numerically costly, this is

less than ideal. For instance, if we have to compute the optical flow field from images

of size 300×400, then the size of the resulting matrix A would be 120, 000×120, 000.

Since TSVDmethod is inefficient for large-scale problems, we must have an alternative

approach to solve this problem. The most commonly used method to solve ill-posed

problems in the literature is the Tikhonov regularization method [63] which was

introduced by Andrey Tikhonov in 1963.

Definition 6. [12] Consider the ill-posed problem Au = z in Eq.(4.8). Then the

Tikhonov solution uα to the problem is

uα = arg min
u
‖Au− z‖2

2 + α‖u‖2
2, (4.12)

where α is the regularization parameter.

This is done by adding a new term to the reformulate problem in Eq.(4.9) such as

a new constraint which is equivalently defining a new characteristic of the solution.

The new formulation helps to achieve the existence, uniqueness and stability of the

solution. The Tikhonov regularization method can be generalized by adding different

terms instead of ‖u‖2
2. In real world applications, if we introduce the new term using

the prior knowledge of the solution, we call this notion the scientific prior of this

simple linear problem.

When we determine the solution from the formulation in Eq.(4.12), first we have

to obtain the corresponding Euler-Lagrange equation and then solve it for u. After

72

solving the Euler-Lagrange equation, the solution for u may be obtained as

u =
(
ATA+ αI

)−1
AT z. (4.13)

Taking the SVD of A and choosing a suitable regularization parameter α, we can

re-write the solution for u as

u =
p∑

k=1

σk
σ2
k + α

(uTk z)vk.

Rearranging the terms, the solution can be expressed in terms of a filter factor as

u =
p∑

k=1
ϕk
uTk z

σk
vk, (4.14)

where the kth filter factor ϕk is given as

ϕk = σ2
k

σ2
k + α

, for k = 1, 2, ..., p.

According to Eq.(4.11) and Eq.(4.14), the solution from both TSVD and the

Tikhonov regularization schemes are both a specific case of a general regularization

framework with different filter factors. In the TSVD method, we eliminate singular

values which are zero or close to zero to avoid the amplification of errors in the so-

lution. Whereas in the Tikhonov regularization method, we approach the same goal

by adding a small positive real number to the singular values which are zero or close

to zero. This tells us that even though the basic approaches are completely differ-

ent, there is still a connection between these two schemes. However, the Tikhonov

regularization method out performs the TSVD method in large-scale problems. In

addition to this, in the Tikhonov regularization method we can introduce different fil-

ter factors for different characteristics. The ability to make such modifications makes

73

the method stronger.

There are two main reasons to introduce a regularization term to an ill-posed

problem. The first reason is to enforce the well-posedness to the problem and the

second reason is to emphasize the prior knowledge of the desired solution. The solu-

tion from the Tikhonov regularization would gives us the minimizer of the residual

norm under the weighted minimum of the solution norm. The selection of the best

regularization parameter plays an important role in the regularized solution and we

will include a detailed discussion in Sec. 4.6. In general, the Tikhonov regularization

can be extended for any regularization term by writing Eq.(4.12) as

arg min
u
‖Au− z‖2

2 + α‖Lu‖2
2, (4.15)

where L is a preferred regularization operator. For instance, L may be the gradient

operator.

In addition to enforcing the prior knowledge of the flow via the regularization

term, the prior knowledge of the data can be applied to the problem at the beginning

of the construction of the model by choosing different operators for A in the data

fidelity. Analogously, building scientific prior information into functionals allows our

inverse problem solutions for vector fields to emphasize expected physics.

Now we will discuss various operators and regularization terms to emphasize ex-

pected scientific prior information. In this discussion without loss of generality, we

list the data terms and the regularization terms in terms of stream function rather

than u and v for our convenience.

In the nominal optical flow algorithm, Horn and Schunck assumed conservation

of image brightness locally for rigid body motion. For the entire domain Ω with time

step t, the conservation of image brightness I is emphasized by

E(ψ) =
∫

Ω
(It − Ixψy + Iyψx)2 dΩ, (4.16)

74

where ψ is the corresponding stream function for the motion. However, later re-

searchers interested in fluid motion assumed that the image brightness I behaves

according to the continuity equation over time in order to allow for divergent flow

fields. Therefore authors in [29] proposed the data fidelity term

E(ψ) =
∫

Ω
(It − Ixψy + Iyψx − Iψyx + Iψxy)2 dΩ. (4.17)

Also the authors in [41] improved the data fidelity by imposing the constancy of

spatial brightness gradient, instead of brightness constancy, with the following,

E(ψ) =
∫

Ω
(Ixt − Ixxψy + Ixyψx)2 + (Iyt − Iyxψy + Iyyψx)2 dΩ. (4.18)

Further, researchers in [64] have combined the data fidelities Eq.(4.16) and Eq.(4.18)

together with a non-negative parameter λ. The resulting data fidelity is obtained as

E(ψ) =
∫

Ω
(It − Ixψy + Iyψx)2 dΩ + λ

∫
Ω

(Ixt − Ixxψy + Ixyψx)2 dΩ

+λ
∫

Ω
(Iyt − Iyxψy + Iyyψx)2 dΩ. (4.19)

In this data fidelity, either image brightness is constant or the gradient of the image

brightness is constant, by adjusting λ to emphasize either the expected outcome or

the underlying physics. Through this kind of approach, the notion of modeling the

physics that is creating the scenes evolution in the movie-data is designed into the

functional.

In addition to the data fidelities, it is important to regularize the energy func-

tional as understood by Andrey Tikhonov as shown in [65]. We do so to extract

important information from ill-posed problems, both for functional analysis and for

optimization theoretic reasons of well-posedness, and to further emphasize expected

physics. For instance, if the resulting flow is expected to be sparse, then the regu-

75

larization term that emphasizes sparsity is the total variation of the stream function.

The regularization term can be written as

R(ψ) =
∫

Ω
| 5ψ | dΩ. (4.20)

If, however, the flow field is expected to be smooth, then the appropriate regulariza-

tion is the Horn and Schunck type regularization,

R(ψ) =
∫

Ω
(ψ2

xx + ψ2
yy + ψ2

xy + ψ2
yx)dΩ. (4.21)

On the other hand, if we impose the regularity on flow components, we would use

R(ψ) =
∫

Ω
(ψ2

x + ψ2
y)dΩ. (4.22)

According to the above explanation, we can develop different data terms and regu-

larization terms using the known physics of the data and the expected flow. We can

construct various algorithms according to the prior knowledge of systems being im-

aged. Hence, applying a suitable algorithm, the motion field of the observed system

can be determined.

4.3 Comparison of Different Data Terms and Reg-

ularization Terms

Even after the regularization of optical flow problems, they are rarely well-posed as the

the data fidelity depends on the input data. For this reason, regularizing the optical

flow mainly focuses on imposing the scientific priors. Our next goal is to compare two

data fidelities in Eq.(4.16) and Eq.(4.17) with six different regularization terms on

our synthetic data sets. Various ways of selecting data terms and regularizing optical

76

flows for rigid body motion are explained in [41,66] and for the fluid motions in [23,24].

Except for the Horn-Schunck regularization (R2), the other five regularization terms

do not appear regularly in the optical flow literature. The reason for this is that in the

classical optical flow approach the flow components u and v are directly regularized.

But in our approach, we impose the the regularity directly on the stream function. In

the next step, we explain about the six regularization terms with the corresponding

Euler- Lagrange equations as we use them to minimize the energy functional.

The first regularization term is defined as

R1(ψ) =
∫

Ω
ψ2 + ψ2

x + ψ2
y + ψ2

xx + ψ2
yy dΩ. (4.23)

We name this as the convexity regularization term and the gradient of R1(ψ) can

be obtained using the theory in Sec. 2.0.1 as

GR1(ψ) = (B1 +B∗1)ψ, where B1 = I +D∗xDx +D∗yDy +D∗xxDxx +D∗yyDyy.

The regularization term R1 introduces the coercivity and strictly convexity which we

defined in Sec. 2.1, to the problem. These properties lead the problem to a unique

solution in H2(Ω). Even though the uniqueness is expected, it is rarely achieved in

optical flow problems and imposing the scientific prior is the main advantage of this

regularization term. Next, we consider the Horn-Schunck regularization term which

emphasizes the smoothness of the flow:

R2(ψ) =
∫

Ω
ψ2
xx + ψ2

xy + ψ2
yx + ψ2

yy dΩ. (4.24)

77

We name R2 as the smoothness regularization term. As we already know, the

gradient of the R2(ψ) is

GR2(ψ) = (B2 +B∗2)ψ, where B2 = D∗xxDxx +D∗yyDyy +D∗xyDxy +D∗yxDyx.

In the third regularization term, we minimize the velocity components u and v in the

sense of u-v formulation under L2(Ω). We can express the term

R3(ψ) =
∫

Ω
ψ2
x + ψ2

y dΩ, (4.25)

and name it as velocity component regularization term and the gradient of R3(ψ)

as

GR3(ψ) = (B3 +B∗3)ψ, where B3 = D∗xDx +D∗yDy.

The next regularization term was introduced in [34] for the optical flow computation

in the engineering strain tensor formulation. It can be written as

R4(ψ) =
∫

Ω
(ψxx − ψyy)2 + (ψxy + ψyx)2 dΩ +

∫
Ω
ψ2
yxx + ψ2

xyy dΩ. (4.26)

The gradient of R4(ψ) may be obtained as

GR4(ψ) = (B4 +B∗4)ψ, where

B4 = (Dxx −Dyy)∗(Dxx −Dyy) + (Dxy +Dyx)∗(Dxy +Dyx)

+D∗yxxDyxx +D∗xyyDxyy.

78

The regularization term R5 also comes from the literature in [34], which represents

the second-order div-curl regularization. This term is suitable for a non-hyperbolic

flow field. However, this term imposes the smoothness on the flow and can be written

as

R5(ψ) =
∫

Ω
(ψxx + ψyy)2 + (ψxy − ψyx)2 dΩ (4.27)

The gradient of R5(ψ) is derived as

GR5(ψ) = (B5 +B∗5)ψ, where

B5 = (Dxx +Dyy)∗(Dxx +Dyy) + (Dxy −Dyx)∗(Dxy −Dyx)

The last regularization term we introduce for the purpose of comparison is given as

R6(ψ) =
∫

Ω
(ψxx − ψyy)2 + (ψyx − ψxy)2 dΩ. (4.28)

This regularization term provides the smoothness to the flow and appropriate for

non-rotational flow. The gradient of R6(ψ)

GR6(ψ) = (B6 +B∗6)ψ, where

B6 = (Dxx −Dyy)∗(Dxx −Dyy) + (Dyx −Dxy)∗(Dyx −Dxy).

The above six regularization terms in Eqs.(4.23) - (4.28) can be expressed in terms of

u and v. The revised regularization terms are shown in first column of the Table 4.1.

In u-v formulation, there are two Euler-Lagrange equations for each regularization

term and they are shown in the second column of the Table 4.1.

79

Table 4.1: Stream function formulation regularization terms are represented in u-
v formulation. Six different regularization terms in Eqs.(4.23) - (4.28) are written
in u-v formulation and listed in the first column. The second column shows two
Euler-Lagrange equations for for each regularization term.

Regularization term First variations w.r.t. u and v

R2(u, v) =
∫

Ω

(
u2
x + u2

y + v2
x + v2

y

)
dΩ

δR2
δu

= 2 (uxx + uyy)
δR2
δv

= 2 (vxx + vyy)

R3(u, v) =
∫

Ω (u2 + v2) dΩ
δR3
δu

= 2u
δR3
δv

= 2v

R4(u, v) =
∫

Ω (uy + vx)2 + (ux + vy)2 dΩ δR4
δu

= 2 (uxx + uyy + vxy − vyx)

+
∫
Ω

(
u2
xx + v2

yy

)
dΩ δR4

δv
= 2 (−uxy + uyx + vxx + vyy)

R5(u, v) =
∫

Ω (ux + vy)2 + (uy − vx)2 dΩ
δR5
δu

= 2 (uxx + uyy − vxy + vyx)
δR5
δv

= 2 (uxy − uyx + vxx + vyy)

R6(u, v) =
∫

Ω (ux + vy)2 + (uy + vx)2 dΩ
δR6
δu

= 2 (uxx + uyy + vxy + vyx)
δR6
δv

= 2 (uxy + uyx + vxx + vyy)

4.4 Mean Angular Error (MAE)

In Chapter 3, we compare the results from the stream function approach and the

u-v approach with conservation of image brightness and the continuity equation data

fidelities and with R2 and R3 regularization terms by considering the qualitative

differences of reconstructed flow fields. The comparison of the quality of thousands of

vectors, however, is not a rigorous approach without a proper measurement. Hence

we need a quantitative measurement to compare our methods. In [67], the authors

introduced an error measurement to compare reconstructed velocity fields using the

average angular error between the computed flow and the actual flow. If we denote

the computed flow and the true flow as zC = 〈uC , vC〉 and zT = 〈uT , vT 〉 respectively,

80

the angular error matrix for each pixel on the image is obtained as

θ = cos−1
(
zc · zT
|zc||zT |

)
. (4.29)

Then the average angular error is obtained by taking the average of θ over the num-

ber of pixels. According to this formulation, flow vectors with magnitudes close to

zero produce large errors while flow vectors with higher magnitudes produce small

errors. To overcome these drawbacks, the authors in [68] modified the computation

of average angular error and it was named Mean Angular Error (MAE). For MAE, a

third component δ is added to both the computed and the true velocity fields. Then

the computed and the true flow vectors become zC = 〈uC , vC , δ〉 and zT = 〈uT , vT , δ〉

respectively. In this case, δ = 1. It affects flow with small magnitudes to reduce

the error, but does not affect flows with large magnitudes. Therefore, δ provides a

threshold to the errors near small flows. Now we can use the formula in Eq.(4.29) to

compute the angular error θ. Then the Mean angular error is obtained by taking the

average over the number of pixels.

For instance, consider the computed flow field from the saddle images with the

regularization parameter α = 10−12. In this example, we use the stream function for-

mulation with conservation of energy data fidelity and the smoothness regularization

term. First we compute the angular error for each pixel and then average the error.

Fig. 4.4 shows a histogram of the angular errors. According to the histogram, when

the angular error is small, the frequency is high, whereas the angular error is large,

the frequency is low. The resulting mean angular error is 0.1843◦

81

Figure 4.4: Histogram of Angular Errors – The histogram shows the frequency of the
points with respect to the angular error for the computed flow field for the saddle
images. The flow field was computed using the stream function formulation with
conservation of intensity data fidelity and the smoothness regularization term.

4.5 Results and Error Analysis

In this section, we compare the six regularization terms which we introduced in

Eqs.(4.23)-(4.28) and the two data fidelities Eq.(4.16) and Eq.(4.17). Combinations

of two different data terms and six different regularization schemes lead to twelve dif-

ferent optical flow algorithms. Further we combine the regularization term R1 with

R2 and R3 for both data terms to enforce the uniqueness of the solution in stream

function formulation. In addition to the stream function formulation, we use two data

terms and five regularization terms except R1 in the u-v formulation and to ensure

the uniqueness in the u-v formulation, we combine R2 and R3 as there does not exist

a u-v formulation for R1. All these resulting algorithms are used to reconstruct flow

82

fields on the three synthetic data sets which we introduced in Sec. 2.3. For the quan-

titative comparison of results, we compute the modified MAE in Sec. 4.4 on each of

the reconstructed flows.

Table 4.2: Combining two data terms which represents the Continuity Equation (CE)
in Eq.(4.17) and the Conservation of Intensity (CI) in Eq.(4.16) with six different reg-
ularization terms will produce 12 different algorithms in potential formulation and 10
different algorithms in u-v formulation. Note that there is no regularization term R1
in u-v formulation. In addition, the combination of the regularization terms R1 +R2
and R1 +R3 which ensure the uniqueness of the solution in stream function formula-
tion and R2+R3 in u-v formulation with both data terms produce another six different
algorithms. The values in the table represent the mean angular error of reconstructed
vector fields for the Hyperbolic Fig. 2.3 data set from all 28 different combinations
of algorithms. MAE from the stream function formulation are represented in Second
and Third Columns whereas the MAE from u-v formulation are represented in fourth
and fifth columns. The regularization term R� in the last row of the table represents
R1 in stream function formulation and R2 in u-v formulation. When the formulation
does not exist, the MAE is replaced by an ∗.

Regularization Stream/Potential u-v Method
Terms CE CI CE CI
R1 0.096◦ 0.062◦ ∗ ∗
R2 0.091◦ 0.062◦ 1.706◦ 1.141◦
R3 0.082◦ 0.057◦ 47.094◦ 27.383◦
R4 0.093◦ 0.062◦ 2.084◦ 1.509◦
R5 0.100◦ 0.062◦ 1.400◦ 1.509◦
R6 0.093◦ 0.062◦ 2.292◦ 1.576◦

R1 +R2 0.091◦ 0.062◦ ∗ ∗
R� +R3 0.088◦ 0.057◦ 1.706◦ 0.602◦

Table 4.2 shows the mean angular error for the 16 different stream function for-

mulations and 12 different u-v formulation for the hyperbolic data set. The stream

function formulation with all regularization schemes produces better results than the

u-v formulation. When we compare the results with respect to the data terms, the

data term with conservation of energy performs well relative to the data term with

continuity equation in both the stream function and the u-v formulation. The best

83

results are obtained from the stream function formulation with conservation of the

intensity data term and the regularization term R3 with 0.057◦ mean angular error.

Table 4.3: The table provides the MAE of reconstructed vector fields for the Gyre
data set in Fig. 2.4 from all 28 different combinations of algorithms. MAE from the
stream function formulation is represented in Second and Third Columns whereas
the MAE from u-v formulation is represented in the fourth and fifth columns. The
regularization term R� in the last row of the table represents R1 in stream function
formulation and R2 in u-v formulation. When the formulation does not exist, the
MAE is replaced by an ∗.

Regularization Stream/Potential u-v Method
Terms CE CI CE CI
R1 20.749◦ 0.062◦ ∗ ∗
R2 3.195◦ 1.100◦ 42.680◦ 2.624◦
R3 9.813◦ 1.637◦ 40.991◦ 48.573◦
R4 10.206◦ 1.746◦ 43.133◦ 2.610◦
R5 9.843◦ 1.713◦ 41.975◦ 2.618◦
R6 10.751◦ 1.721◦ 36.376◦ 2.661◦

R1 +R2 3.897◦ 1.100◦ ∗ ∗
R� +R3 32.064◦ 21.863◦ 40.560◦ 2.489◦

Table 4.3 displays the computed MAE for the 16 different stream function for-

mulations and 12 different u-v formulations for the Gyre data set. Most of the time,

the stream function formulations with both data fidelities produce better results than

the u-v formulations. By comparing the results with respect to the data terms, the

data term with conservation of energy performs well relative to the data term with

the continuity equation in both stream function and the u-v formulations. The best

MAE is obtained as 0.057◦ from the stream function formulation with conservation

of intensity data term and the regularization term R1. The conservation of energy

data term performs well in both stream function and u-v formulations, but the results

show that there is a considerable difference in capturing the flow between R3 using

stream function formulation versus the u-v formulation.

84

Table 4.4: The mean angular error for the reconstructed vector fields for the source
data set in Fig. 2.5 from all 28 different combinations of algorithms. MAEs from
the stream function formulation represent in Second and Third Columns whereas the
MAEs from u-v formulation represent in fourth and fifth columns. The regularization
term R� in the last row of the table represents R1 in stream function formulation and
R2 in u-v formulation. When the formulation does not exist, the MAE is replaced by
an ∗.

Regularization Stream/Potential u-v Method
Terms CE CI CE CI
R1 8.622◦ 2.755◦ ∗ ∗
R2 1.616◦ 2.756◦ 2.710◦ 0.647◦
R3 11.560◦ 1.275◦ 8.678◦ 1.104◦
R4 4.110◦ 2.170◦ 2.782◦ 0.895◦
R5 4.028◦ 2.144◦ 2.666◦ 0.895◦
R6 6.002◦ 2.170◦ 0.957◦ 1.228◦

R1 +R2 1.616◦ 2.169◦ ∗ ∗
R� +R3 8.622◦ 0.782◦ 2.700◦ 0.647◦

Table 4.4 shows the MAE for the 16 different stream function formulations and

12 different u-v formulations for the source data set. Unlike the Hyperbolic data

and the Gyre data, u-v formulations with all regularization schemes produce better

results than the stream function formulation. When we compare the results with

respect to the data terms, the data term with conservation of energy performs well

relative to the data term with the continuity equation in both stream function and

the u-v formulations. However, in the stream function formulation with the regular-

ization terms R2 and R1 + R2 and u-v formulation with R6, the data term with the

continuity equation performs well. The best result is obtained from the u-v formu-

lation with conservation of intensity data term and the regularization term R2 + R3

with 0.647◦ mean angular error.

85

4.6 Regularization Parameter Selection

As we have seen throughout this chapter, regularization plays an important role in

solving inverse problems. The data fidelity in the optical flow problem mainly depends

on data which consists of errors from measurements and discretization. Including

a regularization term helps to dampen the errors and reach the desired solution.

However, the amount of the regularity we emphasize in the energy functional depends

on the data, the data term and the regularization term and hence it can affect to

the solution. If we add too much regularity to the functional, then the regularized

solution would divert from the solution we were looking for. On the other hand, if we

do not add enough regularity, the solution will minimize the residuals in the original

problem, but the accumulated errors will not be damped. This implies that the

regularization parameter controls the quality of the regularized solution. Therefore,

the best regularization parameter balances the regularization error and the errors

in the residuals of the regularized solution. The selection of the best regularization

parameter in optical flow problems is as important as all the other applications of

inverse problems. However, the techniques for the selection of the best regularization

parameter in the optical flow problems are not often available in the literature and is

still an open problem with great interest.

We employ general techniques of selection of appropriate regularization parameter

in the applications of inverse problems. In this area, the most common methods are

L-curve [13, 69, 70], U -curve [71, 72], or generalized cross-validation (GCV) and its

generalizations [73,74]. However, we have to be careful when we apply these methods

as they have their own limitations [75–77]. First we will discuss these three methods

briefly applying to the functional in Eq.(4.12) with the Tikhonov regularization term.

86

L-curve Method

In the L-curve method, the regularization parameter is selected based on a graph of

the norm of the regularized solution versus the norm of the corresponding residuals

[70] for a set of all possible regularization parameter values. If uα is the regularized

solution corresponding to the parameter α, then the norm of the residuals and the

norm of the solution may be written as

x (α) = ‖Auα − z‖2
2 and

y (α) = ‖uα‖2
2.

For a set of positive α values, L-curve is a log-log scale of the parametric curve

(x(α), y(α)). This curve is called the L curve as its shape is like the letter L. The

L curve consists of vertical and almost horizontal parts. The vertical part of the

curve represents the places where the regularization parameter is small whereas the

horizontal part of the curve represents large values of the regularization parameter.

According to the way that the regularization parameter varies, the vertical part of

the curve is dominated by the residuals and the horizontal part is dominated by the

regularization term. Therefore, in general the solutions corresponding to the vertical

part are not smooth enough while the horizontal part are too smooth. This tells

us a natural way to pick the best regularization parameter is by selecting the best

regularization parameter, which is to select the corner point of the L-curve.

The next step is to find the corner point of the L-curve. The corner point of the

L-curve is defined in two ways [15,78]. Either as the closest point to the origin or as

the maximum curvature on the curve. When it is computed numerically, the latter

definition is more often used. We can consider the L-curve is a parametric curve of

(ρ̂/2, η̂/2) = (log ‖Auα − z‖2, log ‖uα‖2) ,

87

where ρ̂ and η̂ are functions of α. The curvature κ of the L-curve is obtained from

the following relationship as in [78]

κ = 2 ρ̂
′
η̂
′′ − ρ̂′′ η̂′

((ρ̂′)2 + (η̂′)2)3/2 , (4.30)

where ρ̂′ , η̂′ , ρ̂′′ and η̂
′′ are the first and second derivatives of ρ̂ and η̂ with respect

to α respectively. The best regularization parameter is the α where the curvature

κ is maximized. Even though the L-curve criteria is discussed for the problem in

Eq.(4.12) which involves the Tikhonov regularization term, we can extend the criteria

as in [78,79] to a general regularization term

arg min
u
‖Au− z‖2

2 + α‖Lu‖2
2,

where L is the regularization operator. In the general case, we can define x (α) and

y (α) as
x (α) = ‖Auα − z‖2

2

y (α) = ‖Luα‖2
2

(4.31)

and the rest is the same as the procedure of the problem with Tikhonov regularization.

U-curve Method

In the U -curve method, we consider the sum of the reciprocals of the solution norm

and the residual norm against the regularization parameter α. This can be represented

as [15]

U (α) = 1
x (α) + 1

y (α) , (4.32)

where x (α) and y (α) are defined as in Eq.(4.31). Similar to the L curve, since the

shape of this curve is close to the letter ’U ’, the method is called the U -curve method.

88

In the U -curve there are two almost vertical parts in both the left and right sides and

an almost horizontal part between those two vertical parts.The two vertical parts

represent the regularization parameter values which either the solution norm or the

residual norm dominates over each other and the horizontal part represents the α

values where the solution norm and the residual norm are close to each other. The

best regularization solution from the U -curve method is obtained at the minimum of

U(α). In [15], it is proven that the function U(α) has a local minimum in the interval

α ∈
(
σ

2/3
1 , σ2/3

r

)
, where σ1 is the largest singular value of the operator A, and σr is

the smallest non-zero singular value of the operator A.

Genaralized Cross Validation Method

The third method we use to compute the best regularization parameter is the Gen-

eralized Cross Validation method. In this method, we consider what happens if we

remove one data point in the image. We then search for the best parameter that

predicts the deleted data point. We obtain this optimal α by minimizing the function

G (α) =
1
n
‖Auα − z‖2

2[
1
n
trace

(
I − A (ATA+ αL)−1AT

)]2 , (4.33)

where n is the length of the vector z.

To demonstrate the L-curve and U -curve methods, we apply stream function for-

mulation with conservation of energy data fidelity and the Tikhonov regularization

term on each of the gyre data and the hyperbolic data.

Fig. 4.5 shows L-curve and the U -curve plots for the gyre data using conser-

vation of intensity data term and the Tikhonov regularization term. The suggested

regularization values from L-curve method is 1.169 × 10−8 and U -curve solution is

8.555 × 10−5. The Mean angular values corresponding to the α values suggested

89

(a) (b)

Figure 4.5: L-curve and U -curve on gyre data – The images (a) and (b) show the L-
curve and U -curve plot plots for the stream function approach with the conservation
of energy data fidelity and the Tikhonov regularization term on the gyre data set.

from L-curve and the U -curve methods are 48.930◦ and 47.077◦ respectively. The

minimum mean angular error that can be obtain is 44.974◦ and the corresponding

α = 6.261 × 10−11. In this case, both L-curve and the U -curve solutions are not

in a neighborhood of best α However, the Tikhonov regularization is not capable of

capturing the gyre flow as the minimum MAE is approximately 45◦.

(a) (b)

Figure 4.6: L-curve and U -curve on hyperbolic data – The image (a) shows the L-
curve plot for the stream function approach with the conservation of energy data
fidelity and the Tikhonov regularization term on the hyperbolic data set. The image
(b) shows the U -curve plot from the same formulation on the hyperbolic data set.

90

Images (a) and (b) in Fig. 4.6 shows the L-curve and the U -curve plots for the

hyperbolic data set using conservation of intensity and the Tikhonov regularization

term. In this case, the L-curve method is unable to produce the L shape rather

than compute the best regularization parameter α. The U -curve method suggests

α = 1.314×10−5 and the associate MAE is 10.741◦. However, when α = 1.536×10−13,

the same algorithm reconstructs the hyperbolic flow with the MAE is 0.658◦ which

is the minimum.

The L-curve and the U -curve methods do not provide reasonable solutions to

the above two examples. Therefore, to further test the determination of the best

regularization parameter α, we applied L-curve method, U -curve method and the

GCV method on the gyre data set shown in Fig. 2.4. In this demonstration, the

stream function formulation with conservation of intensity data fidelity is employed

by with the regularization terms R2 and R4 one at a time. Each method provides

the best regularization parameters according their own abilities. The image (a) in

Fig. 4.7 shows a graph of mean angular error versus regularization parameter for

each formulation. In stream function formulations with R4, the U -curve method

determines a suitable regularization parameter value which is close to the minimum

mean angular error. The outcomes from the L-curve and GCV methods leads to

higher mean angular errors. However, in the second approach with the regularization

term R2, none of the three methods provides a suitable parameters which close to

the minimum mean angular error. Hence the generalization of these methods are not

appropriate and selection of the regularization parameter remains as an important

future work.

When we presented the results in this Chapter for the synthetic flows, we selected

the best regularization parameter by considering the minimum mean angular error.

For this purpose, we consider 100 equally spaced parameter values from 10−14 to 100

and compute mean angular error for each parameter value. Then the best alpha will

91

(a) (b)

Figure 4.7: The best regularization parameter – The image (a) represents the graphs
of mean angular error versus regularization parameter from the stream function
method with conservation of Intensity data fidelity and the regularization term R4
on the gyre data set. The image(b) is also a graph mean angular error versus regu-
larization parameter with the same data set and the same formulation replacing R4
by R2. In each case, the best regularization parameters determined by the L-curve,
U -curve, and GCV methods are highlighted.

provide the minimum mean angular error.

In real world applications, there is no way to compute the MAE. Therefore, selec-

tion of the best solution plays an important role in reconstructing vector fields. In this

case, we use a basic approach to select the regularization parameter by considering

the relative changes in velocity components corresponding to different regularization

parameter values. Also in this approach is also, we consider 100 equally spaced param-

eter values from 10−14 to 100 and compute the velocity fields for the each parameter

value. Then the norm of the error for each consecutive parameter is computed, and

the best regularization parameter is selected from the minimum error.

92

Chapter 5

Lagged Diffusivity Fixed Point

Iteration Method

In earlier chapters, we presented various algorithms for computing optical flow for

both rigid body as well as fluid motion. First we introduced the original optical flow

computation approach developed by Horn and Schunck in [9] which assumes image

brightness is conserved locally and that the expected flow field is smooth. Recall that

the corresponding energy functional is

E(u, v) =
∫

Ω
(It + Ixu+ Iyv)2 dΩ + α

∫
Ω

(
u2
x + u2

y + v2
x + v2

y

)
dΩ. (5.1)

The later researchers extended this energy functional for special cases by introduc-

ing new data fidelities [29, 40] and regularization terms [41, 80]. Further some re-

searchers [42] developed numerical methods to enhance both the accuracy and the

convergence of the optical flow algorithms. In addition to these natural extensions,

some researchers [37,38,81] introduced new optical flow algorithms for fluid motion by

computing governing stream function between two time instances rather than com-

puting velocity components. In this case, the velocity components are determined

from the estimated stream/potential function.

93

In this chapter, we consider another regularization term, the Total Variation

(TV) regularization term and then we adopt for the first time the Lagged Diffu-

sivity Fixed Point Method [49] to solve the optical flow algorithm [55]. The TV

regularization term was originally introduced in [82] with the purpose of removing

noise from images. Thereafter this regularization term has been activated for image

reconstructions [83–85] from noise and blurred images as it preserves the edges of

the images. Later, the TV regularization term started to appear in optical flow al-

gorithms [27,86,87] to compute flow fields with discontinuities. For instance, we can

expect discontinuities in the turbulent structures found in fluid motion.

The total variation for a one-dimensional real-valued function f on the interval

[a, b] can be defined as

TV (f) = sup
P

n∑
i=1
|f (xi)− f (xi−1)|, (5.2)

where P is a partition of [a, b] so that a = x0 < x1 < x2 . . . < xn = b. This term

is able to measure the jump discontinuities of the function f . For example, if f is a

piecewise constant function, then the total variation of the function f on [a, b] is equal

to the sum over the magnitudes of jumps for finite jumps. For a smooth function f ,

the Eq.(5.2) can be written as

TV (f) = sup
P

n∑
i=1

∣∣∣∣∣f (xi)− f (xi−1)
∆x

∣∣∣∣∣ ∆x, (5.3)

where ∆x = xi − xi−1. When the ∆x→ 0, the continuous formulation is given as

TV (f) =
b∫
a

|f ′(x)| dx. (5.4)

94

We can extend the definition for a function f of two variables x and y on the domain

Ω as

TV (f) =
∫

Ω
|∇f | dΩ. (5.5)

When we use the TV regularization term, it measures the jump discontinuities allow-

ing us to penalize the piecewise fluctuations of the regularized solution. The inclusion

of TV regularization in optical flow algorithms in u-v formulation may result in a

piecewise constant velocity field. However, the optical flow algorithm with TV regu-

larization in the stream function formulation may lead to a piecewise constant stream

function and hence to a sparse flow. First, we discuss the flow computation with TV

regularization in u-v formulation and then in the stream function formulation.

5.1 Optical flow with Total Variation Regulariza-

tion

For the flows with some discontinuities, we can use the total variation of the flow

components u and v as the regularization term. The energy functional with the

conservation of intensity (CI) data term can be written as

E(u, v) =
∫

Ω
(It + Ixu+ Iyv)2 dΩ + α

∫
Ω

(|∇u|+ |∇v|) dΩ. (5.6)

Now applying Eq.(2.19) on the functional in Eq.(5.6), we have the Euler-Lagrange

equations for Eq.(5.6) as

Ix(It + Ixu+ Iyv) + α∇ ·
(
∇u
|∇u|

)
= 0

Iy(It + Ixu+ Iyv) + α∇ ·
(
∇v
|∇v|

)
= 0.

(5.7)

95

Note that here we replaced α by 2α for a convenient simplification. Now neither

of the Euler-Lagrange equations are linear as the diffusion coefficients 1/|∇u| and

1/|∇v| are present in the equations. Due to the difficulty of linearization, linear

numerical solution methods such as the LU-factorization method are not appropriate

for solving the system. We can, however, use gradient-based methods to solve the

system. First we apply the gradient descent method for solving the Euler-Lagrange

equations in Eq.(5.7) by updating the solution via an iterative procedure. Before

we apply the gradient descent method, we rewrite |∇u| and |∇v| as
√
|∇u|2 + ε and√

|∇v|2 + ε respectively [27,49], where ε is a small real number. This step is required

to determine the divergence of ∇u
|∇u| in Euler-Lagrange equations as it enforces the

differentiability at the origin. This also helps to avoid the zeros in the denominator,

when we numerically solve it. Then the gradient descent approach will be

un+1 = un + ∆τ
Ix(It + Ixu+ Iyv) + α∇ ·

 ∇u√
|∇u|2 + ε


vn+1 = vn + ∆τ

Iy(It + Ixu+ Iyv) + α∇ ·

 ∇v√
|∇v|2 + ε

 , (5.8)

where n and τ are the iteration number and the step size for each iteration respectively.

The partial derivatives of u, v and I are approximated using the finite difference

approximations.

In addition to the conservation of intensity data term, we can use the continuity

equation (CE) data term with the TV regularization term to compute the optical

flow. The corresponding energy functional is written as

E(u, v) =
∫

Ω
(It + Ixu+ Iyv + Iux + Ivy)2 dΩ + α

∫
Ω

(|∇u|+ |∇v|) dΩ. (5.9)

96

The Euler-Lagrange equations for Eq.(5.6) are obtained by applying Eq.(2.19) on the

functional in Eq.(5.6) and written as

I(Itx + Ixxu+ 2Ixux + Iyxv + Iyvx + Iuxx + Ixvy + Ivyx) + α∇ ·
(∇u
|∇u|

)
= 0

I(Ity + Ixyu+ Ixuy + Iyyv + 2Iyvy + Iuxy + Iyuy + Ivyy) + α∇ ·
(∇v
|∇v|

)
= 0.

(5.10)

To solve the Euler-Lagrange equations in Eq.(5.10), we use the gradient descent

approach as explained in Eq.(5.8) for the equations in Eq.(5.7). Now we apply both

algorithms to compute the optical flow on the three data sets, hyperbolic fixed point,

gyre and source data which we introduced in Fig. 2.3, Fig. 2.4 and Fig. 2.5 respec-

tively.

Fig. 5.1 shows the computed flow from the conservation of intensity (CI) data term

and the TV regularization term in u-v formulation on the three synthetic data sets.

The flow fields are computed using a gradient descent approach. The resulting flow

fields for the hyperbolic fixed point, gyre and the source data are shown in images

(a), (b), and (c) respectively. The algorithm is capable of reconstructing the source

flow accurately whereas it is unable to capture even the structure of the gyre. In the

hyperbolic flow, the diagonal flows are accurate, but the center is not. The computed

mean angular errors (MAE) for the hyperbolic, gyre and source flows are presented

accordingly in the second column of the Table 5.1. It can be observed that only the

reconstructed source flow has a reasonable MAE.

The reconstructed flow fields from the continuity equation data term with the

TV regularizer in u-v formulation are shown in Fig. 5.2. Images (a), (b), and (c)

represent the reconstructed hyperbolic, gyre and source flows respectively. We used

the gradient descent method as the numerical scheme to solve the Euler-Lagrange

equations. The reconstructed hyperbolic flow is reasonable as the MAE is 2.759◦ as

shown in the third column of the Table 5.1. The gyre flow has a high MAE and also

97

(a) (b) (c)

Figure 5.1: Flow from CI+TV with gradient descent method – Reconstructed flow
fields for the hyperbolic, gyre and source data from the u-v formulation with the
conservation of intensity data term and the TV regularization term. The source flow
is very close to the true flow as the MAE is 1.650◦, but the others are not reasonable.

it is observed that the reconstruction is not even close to the true flow field. The

computed source flow captured the center very accurately, but the points near the

boundaries accompanied errors.

Mean angular errors for both the conservation of intensity and the continuity

equation data fidelities with TV regularization term are shown in Table 5.1. Here

we use the u-v approach with gradient descent method as the numerical scheme to

solve the Euler-Lagrange equations. The second column shows the MAEs for the al-

gorithm with conservation of intensity data fidelity, and the third column represents

the errors for the algorithm with continuity equation data term. Mean angular errors

for the hyperbolic, gyre and source flows are shown in second, third and fourth rows

respectively. When we consider the results in Chapter 4, the best reconstructions for

the hyperbolic, gyre and source flows are obtained from CI+R3 in stream function

formulation, CI+R1 in stream function formulation and CI+R2 in u-v formulation

with the MAEs 0.057◦, 0.062◦, and 0.647◦ respectively. According to these results,

all three flows structures should be able to reconstruct the desired solutions. When

we consider both TV approaches, at least one algorithm reconstructs hyperbolic and

98

(a) (b) (c)

Figure 5.2: Flow from CE+TV with gradient descent method – Images (a), (b), and
(c) show the reconstructed flow fields for the hyperbolic, gyre and source data from
the TV regularization and continuity equation data fidelity in u-v formulation. The
MAE for the hyperbolic flow is 2.759◦, whereas other two flows have high MAEs. As
we can see, the hyperbolic flow is reasonable and the source flow is accurate at the
center but not near the boundaries. Also the algorithm is unable to reconstruct the
gyre flow.

source flow accurately, but none of them are capable of reconstructing the gyre flow.

For the stopping criteria of the gradient descent method, we set nmax = 100, 000

and the threshold value δ = 10−10. When either the number of iterations reaches

nmax or the error of the flow differencing between successive iterates is smaller than

δ. Images (a) and (b) in Fig. 5.3 show the mean angular error verses the number

of iterations plotted and the errors of successive flows verses number of iterations

Table 5.1: Mean Angular Errors for the hyperbolic fixed point, gyre, and source flows
using TV regularizer with conservation of intensity (CI) and continuity equation (CE)
data fidelities are shown in the second and third columns respectively. In this case,
the u-v formulation is used with the gradient descent method.

Flow/Method CI+TV in u-v CE+TV in u-v

Hyperbolic 21.232◦ 2.759◦

Gyre 47.174◦ 58.871◦

Source 1.650◦ 26.058◦

99

respectively. Due to the time constraint, we stopped the algorithms after 100,000

iterations even though both errors were improving. Note that the flow errors of suc-

cessive iterates is smaller than 10−7 in many iterations, but the mean angular error

of 21.232◦ is relatively high even after 100,000 iterations. This tells us that the algo-

rithm converges slowly.

For each of these computations, the regularization parameters α and ε must be

selected. In these computations, we have performed an exhaustive search to select α

so that it minimizes the mean angular error. The regularization parameters chosen for

the hyperbolic, gyre and source data sets with the conservation of intensity data term

are α = 0.122, 0.93 and 8.92×10−2, respectively. The parameter values corresponding

to the continuity equation data fidelity are α = 10−4, 1.21 × 10−3 and 3.16 × 10−4,

respectively. In each case, the minimum mean angular error corresponded to ε = 10−2.

(a) Mean angular error (b) Successive iterates error

Figure 5.3: Computed mean angular error and the flow errors of successive iterates for
100,000 iterations on hyperbolic flow are shown in images (a) and (b) respectively.
We applied the gradient descent approach with the conservation of intensity data
term and the TV regularizer in u-v formulation to compute the errors. Both of the
errors are improving even after 100,000 iterations.

The main disadvantage of the gradient descent approach is that the convergence

is slow. All the above results in Fig. 5.1 and Fig. 5.2 are obtained after 100,000

100

iterations. Also, the results from both the conservation of intensity and the conti-

nuity equation data fidelities are not quantitatively comparable with the results we

obtained in Chapter 4 with respect to the mean angular errors. Due to these facts,

we modified the algorithm by introducing an existing numerical method to solve the

system of Euler-Lagrange equations in Eq.(5.7). The new numerical approach is the

Lagged Diffusivity Fixed Point Method [49] which was used in [88] to solve a total

variation based image denoising problem.

5.2 Lagged Diffusivity Fixed Point Iteration (LDFPI)

Method

The slow convergence of gradient descent method on the TV regularized optical flow

algorithms motivated us to adopt the Lagged Diffusivity Fixed Point Iteration Method

in optical flow algorithms. First we present the Lagged Diffusivity Fixed Point algo-

rithm as explained in [49] to determine the solution of the operator equation kf = g

from the total variation regularized functional

E(f) = ‖Kf − g‖2
2 + αTV (f), (5.11)

where f is the function to be determined, K is a matrix and g is the measured data.

As the preliminary step, we use the standard approximation to the total variation of

f as

TV (f) =
∫

Ω
|∇f | dΩ ≈

∫
Ω

√
f 2
x + f 2

y + ε dΩ,

where ε is a small positive real number which is fixed. We do this step to make sure

the differentiability of the TV term at the origin as the Euler-Lagrange equation of

the TV term involves computing partial derivatives. For a given initial condition f0

101

and letting Pn = 1√
f2

nx
+f2

ny
+ε
, the rest of the algorithm can be expressed in five steps

as listed below.

1. Discretize the regularizer as an operator: Ln = DT
xPnDx +DT

y PnDy, where Dx

and Dy are partial derivative operator matrices with respect to x and y

2. Determine the gradient of E: Gn = KT (Kfn − g) + αLnfn

3. Approximate the Hessian matrix: H = KTK + αLn

4. Quasi-Newton step: sn = −H−1Gn

5. Update the approximate solution: fn+1 = fn + sn

We can apply the above LDFPI method to solve the TV regularized optical flow

problem.

5.2.1 Optical Flow with LDFPI method

We now apply the Lagged Diffusivity Fixed Point Iteration method to our optical flow

computation. First, we consider the optical flow functional in Eq.(5.6) and solve the

corresponding Euler-Lagrange equations in Eq.(5.7). In this application, f = 〈u, v〉,

K = [−Ix,−Iy], and g = It. Considering the flow components u and v as column

vectors, as stated above, we define

Pu = 1√
u2
x + u2

y + ε
and Pv = 1√

v2
x + v2

y + ε
.

Using this definition, we can discretize the gradients of the TV (u) and TV (v) as

∇.
(
∇u
|∇u|

)
= (DT

xPuDx +DT
y PuDy)u

∇.
(
∇v
|∇v|

)
= (DT

xPvDx +DT
y PvDy)v.

(5.12)

102

The discretized operator for the Euler-Lagrange equations of TV (u) + TV (v) can be

written as

Ln =


DT
xPunDx +DT

y PunDy 0

0 DT
xPvnDx +DT

y PvnDy

 ,

where n is the iteration number. Since we have already discretized the operator Ln,

we need to follow only the last four steps of the LDFPI algorithm. The four steps are

given as

1. Compute gradient direction: gn = KT (K[un, vn]T − g) + αLn[un, vn]T

2. Approximate Hessian: Hn = KTK + αLn

3. Quasi-Newton Step: Hn[wn, yn]T = −gn

4. Solution update: [un+1, vn+1] = [un, vn] + [wn, yn]

We can follow the same procedure for the optical flow energy functional with the

continuity equation data fidelity and the TV regularization in Eq.(5.9) replacing

K(u, v) = −Ixu− Iyv by K(u, v) = −Ixu− Iyv − Iux − Ivy.

For both algorithms, we need to find a suitable initial condition [uT0 , vT0] and an op-

timal iteration number n∗. We chose zero vectors for the initial vector fields in these

algorithms. To select a reasonable n, as we did for the gradient descent method, we

first measure the errors between the flow of the preceding step and the current step.

We then run the algorithm until we meet the condition that the error is smaller than

a given threshold or the n reaches nmax. When the algorithm reaches one of these

stopping criteria, we stop the iterative procedure. For LDFPI method, the maximum

103

number of iterations is nmax = 100 and the threshold value is 10−10. The other im-

portant step of this algorithm is the Quasi-Newton step in the LDFPI method which

involves numerical calculations determining the inverse of a large matrix. In this case,

we use an LU factorization on Hn at each iteration and then Gaussian elimination to

determine the improvements [wn, yn]T .

We applied the conservation of intensity data term with the TV regularization

algorithm on the three synthetic data sets: hyperbolic fixed point, gyre and source

flow. Images (a), (b) and (c) in Fig. 5.4 show the computed flow fields on hyper-

bolic fixed point, gyre and the source flow respectively. All three reconstructions are

qualitatively very close to the true solutions. Also the mean angular errors as shown

in Table 5.2 corresponding to all three constructions are below 2.6◦ and shows the

quantitative accuracy of this method.

(a) (b) (c)

Figure 5.4: Computed flow from CI data fidelity– Images (a), (b) and (c) show the
computed velocity fields from the conservation of intensity data fidelity with TV
regularization term for the saddle, gyre and source flow images shown in Fig. 2.3,
Fig. 2.4 and Fig. 2.5 respectively. All the reconstructions are very accurate as they
have smaller mean angular errors as shown in Table 5.2.

Images (a), (b) and (c) in Fig. 5.5 shows the computed flow fields from the con-

tinuity equation data fidelity and the TV regularization term on the three data sets,

hyperbolic fixed point in Fig. 2.3, gyre in Fig. 2.4 and the source flow in Fig. 2.5

104

respectively. The algorithm captures the source flow accurately and the hyperbolic

flow accurately except for a few boundary points. The algorithm is not only unable to

reconstruct the gyre flow but as we have seen in our previous chapters, the algorithms

with continuity equation data fidelity barely captured the gyre flow at all.

(a) (b) (c)

Figure 5.5: Computed flow from CE data fidelity– Images (a), (b) and (c) show the
computed velocity fields from the continuity equation data fidelity with TV regular-
ization term for the saddle, gyre and source images shown in Fig. 2.3, Fig. 2.4 and
Fig. 2.5 respectively. Both hyperbolic and source flows are reasonable, where as the
gyre flow is not even close to the true flow field.

Table 5.2 shows the mean angular errors for the hyperbolic, gyre and source

flows from the LDFPI algorithm. The second column represents the MAEs from

the conservation of energy data fidelity with TV regularizer and the third represents

the continuity equation data fidelity with TV. The conservation of intensity based

algorithm has very small mean angular errors for all three reconstructions. The

algorithm with the continuity equation data term is capable of capturing the source

flow very accurately as the MAE is 1.689◦ and of capturing the hyperbolic flow is

reasonably well. However, MAE for the gyre flow is very high. This may be due

to the incapability of the data fidelity as we have seen in our previous chapters.

The regularization parameters chosen for the hyperbolic, gyre and Source data sets

with the conservation of intensity data term are α = 10−14, 10−14 and 3.16 × 10−8

respectively. The parameter values corresponding to the continuity equation data

105

Table 5.2: Mean Angular Errors from the LDFPI method for the hyperbolic fixed
point, gyre, and source flows using TV regularizer with conservation of intensity
(CI) and continuity equation (CE) data fidelities are shown in the second and third
columns respectively. In this case, the u-v formulation and the algorithm with the
conservation of intensity data fidelity produces small MAEs.

Flow/Method CI+TV in u-v CE+TV in u-v

Hyperbolic 2.236◦ 4.772◦

Gyre 2.576◦ 57.555◦

Source 1.672◦ 1.689◦

fidelity are α = 4× 10−5, 0.32 and 0.96 respectively. In this case also, the minimum

mean angular error corresponded to ε = 10−2.

In general, the LDFPI algorithm with conservation of intensity data term with

TV regularization term produces reasonable solutions in the u-v formulation. Our

next step is to apply the LDFPI algorithm with the stream function formulation.

5.3 Lagged Diffusivity Fixed Point Method in Stream

Function Formulation

We now include the TV regularization term in the stream function formulation and

hence we apply the LDFPI method to solve the problem. The TV regularization term

in u-v formulation tends to produce piecewise constant velocity components u and v.

In stream function formulation, the TV regularization term may produce piecewise

constant stream function. This yields the TV regularized solution will be favored to

reconstruct sparse flow fields. Hence the u and v with TV regularization and the

stream with TV regularization are not comparable. The purpose of the inclusion

of the TV regularization term in the stream function formulation is that as another

application of lagged diffusivity fixed point iteration method. The energy functional

106

of the TV regularizer with the conservation of intensity data term in the stream

function formulation can be written as

E(ψ) =
∫

Ω
(It − Ixψy + Iyψx)2 dΩ + α

∫
Ω
|∇ψ| dΩ. (5.13)

Let K = − (−IxDy + IyDx) and h = It, then the energy functional in Eq.(5.13)

becomes

E(ψ) =
∫

Ω
(h−Kψ)2 dΩ + α

∫
Ω
|∇ψ| dΩ, (5.14)

and hence the Euler-Lagrange equation is

K∗ (It −Kψ) + α∇ ·
(
∇ψ
|∇ψ|

)
= 0, (5.15)

where K∗ is the operator adjoint of K and we replace α by 2α. Next we discritize

the gradient of the TV (ψ) as

L = DT
xPDx +DT

y PDy, where P = 1√
ψ2
x + ψ2

y + ε
.

Note the LDFPI algorithm for the stream function formulation for a given initial ψ0

is given by

1. Compute gradient direction: gn = KT (Kψn − h) + αLnψn

2. Approximate Hessian: Hn = KTK + αLn

3. Quasi-Newton Step: Hnϕn = −gn

4. Solution update: ψn+1 = ψn + ϕn,

Note that, by the definition, the gradient of the TV (ψ) is equal to the gradient of the

TV (φ). Therefore, the potential function formulation also follows a similar procedure

107

with

K = −IxDx − IyDy.

The computed flow fields from the stream formulation on the hyperbolic fixed point,

gyre and source data are shown in the images (a), (b) and (c) in Fig. 5.6 respectively.

The algorithm captures the hyperbolic and source flows more accurately with smaller

(a) (b) (c)

Figure 5.6: Computed flow from CI+TV stream function method – Images (a), (b)
and (c) show the computed velocity fields from the stream function formulation for
the hyperbolic fixed point, gyre and source images shown in Fig. 2.3, Fig. 2.4 and
Fig. 2.5 respectively. Here we use the conservation of intensity data fidelity.

mean angular errors 0.991◦ and 1.45◦ compared to the u-v formulation with the

algorithm having the same data fidelity. However, the stream formulation is not

able to capture the gyre flow accurately and the corresponding mean angular error is

25.584◦. In this case, the u-v formulation with the conservation of intensity data term

results is an MAE of 2.576◦. This is due to imposing different information on the

functional when we regularize u-v and the stream formulation with TV regularizer.

The regularization parameters chosen for the hyperbolic, gyre and source data

sets are α = 8.48 × 10−14, 5.99 × 10−9 and 2.68 × 10−7 respectively for the stream

formulation. Again the minimum mean angular error corresponded to ε = 10−2.

108

5.3.1 Flow for Oceanic Data

Next we apply an optical flow algorithm with the LDFPI method to compute the flow

between time instances of the virtual flow of sea surface temperature off the coast of

Oregon, U.S.A. Images (a) and (b) in Fig. 5.7 show two time-adjacent images taken

one hour apart in time on August 1, 2002, representing sea surface temperature. In

these images, yellow and orange regions represents warmer surface temperatures, and

the red regions represents cooler surface temperatures.

According to the mean angular errors we obtained for different approaches in this

(a) (b) (c)

Figure 5.7: Sea Surface Temperature Flow Computations – Images (a) and (b) repre-
sent sea surface temperature off the coast of Oregon in August 2002 one hour apart.
The lighter gray regions correspond to warmer surface temperatures and the darker
regions to cooler temperatures. The computed flow with α = 10−5 is shown in (c).

chapter, the lagged diffusivity fixed point method with conservation data fidelity and

the TV regularizer in u-v formulation outperforms the other approaches. Therefore,

we used that approach to determine the flow fields of the sea surface temperature

109

data. The image (c) in Fig. 5.7 shows the reconstructed flow field. We can clearly

see that the algorithm captures two vortices. The algorithm does not capture the

laminar flows in between the vortices well, but it is able to capture the important

structure in fluid dynamics that are of the most interest when studying the dynamics

of fluid systems.

5.4 Convergence Analysis of LDFPI for Optical

Flow

The main advantage of applying the LDFPI algorithm for solving TV regularized

optical flow problems is that the convergence of the method is very fast irrespective

of the initial condition. In general, convergence of some numerical methods depends

on the initial condition, but the LDFPI methods converges fast even with zero-initial

conditions.

Fig. 5.8 shows the mean angular error vs. iteration number for each of the three

synthetic data sets analyzed above. Initial MAE for the zero initial flow is greater than

60◦, however, in each case, MAE reduce in few iterations. Even though each iteration

of the fixed point method is computationally more expensive than an iteration for

an explicit-time scheme, the optical flow algorithm with the TV-regularization in u-v

formulation for each of the 3 data sets converges in fewer than 10 iterations. Also the

algorithm in stream function formulation for the source and hyperbolic data sets with

the lagged diffusivity fixed point method converges in same number of iterations.

110

Figure 5.8: MAE vs. Iteration Number – The computed mean angular error for the
first 50 iterations with a fixed α for the hyperbolic, single gyre, and source data sets.

Fig. 5.8 is a numerical demonstration of convergence of the convergence of the

algorithm. The proof of the convergence of the lagged diffusivity fixed point algorithm

is available in [89,90]

111

Chapter 6

Multi-Time Step Method

In dynamical systems, we may have autonomous systems or non-autonomous sys-

tems. The distinction is made based on whether the velocity components are time-

independent or dependent. However, autonomous systems are hardly seen in real

world dynamical systems, especially not in fluid systems. Performance of most of

the analytical tools in dynamical systems is based on time-dependent velocity fields.

Since our approach is to analyze fluid systems using the approximate velocity from

the optical flow algorithms, we have to compute the time-dependent velocity fields

using a sequence of images or a movie of the observed system. Some recent work has

been done in fluid flow estimation [91–94] using optical flow techniques developing

new approaches with promising results. In most of these new approaches, the authors

concentrate on the modification of the data fidelity, the regularization term and the

numerical scheme of the optical flow algorithm. When we compute the fluid flows,

the optical flow algorithms are applied to each consecutive pair of images in the ob-

served image sequence of the system. However, these algorithms do not impose any

characteristic between two time-adjacent flow fields which we considered to develop

a new algorithm to compute fluid flows using an image sequence.

To develop the new algorithm, we use the stream function formulation that we

112

developed in [36, 37] and presented in Chapter 3. Since both the stream function

formulation and the potential function formulation have a similar development, we

chose the stream function formulation to construct the new algorithm. In the devel-

opment of the algorithm, we focused on the lack of temporal relationships between

two time-adjacent flow fields and we include a new term to the energy functional by

defining a new characteristic between two time-adjacent vector fields via the stream

function [95]. In other words, defining the new characteristic can be considered as the

regularization of the energy functional in the time direction. Since we compute the

vector fields for multiple time steps imposing the time regularity, the new method is

named as the Multi-Time Step Method.

6.1 Multi-Time Step Method

Here we introduce the multi-time step method of computing optical flow for a se-

quence of time-dependent images through computing n time-dependent vector fields

simultaneously. Before we develop the multi-time step method, we need to select

an optical flow energy functional that performs well on fluid flows. According to

the qualitative analysis in Chapter 3 and the quantitative analysis in Chapter 4, the

stream function formulation with conservation of intensity data fidelity and smooth-

ness regularization term outperforms the other methods in incompressible fluids and

the potential function formulation with the same data fidelity and the regularization

provides comparable results on the compressible fluids. Therefore, we explain the

construction of the multi-time step method on incompressible fluids using the stream

function formulation with the energy functional

E(ψ) =
∫

Ω
(It − Ixψy + Iyψx)2 dΩ + α

∫
Ω

(
ψ2
xx + ψ2

yy + ψ2
xy + ψ2

yx

)
dΩ. (6.1)

113

Recall that the Euler-Lagrange equation for the functional in Eq.(6.1) is obtained in

Chapter 3 as

[2A∗(It + A) + α(B +B∗)]ψ = −2A∗It, (6.2)

where the operators A and B can be written as

A = −IxDy + IyDx and B = DxxD
∗
xx +DyyD

∗
yy +DxyD

∗
xy +DyxD

∗
yx

respectively and the derivative operators are defined as in Chapter 3. Note that, in

Chapter 3 we used A and B with different subscripts for the operators of different

data fidelities and the regularization terms, but here we denote the operators of data

fidelity and the regularization term by A and B for symbolic convenience. When we

compute one velocity field at a time, there is no difference between the multi-time

step method and the usual stream function method. Therefore, the energy functional

for the multi-time step method when the step size is represented as n = 1 in Eq.(6.1).

The solution for the functional in Eq.(6.1) is obtained by solving the Euler-Lagrange

equation in Eq.(6.2) for the stream function ψ. As explained in Chapter 3 we use

LU-factorization and Gaussian elimination to solve the system.

When we consider n = 2 or more, we include an additional term in the data

fidelity by introducing regularity in the time direction by assuming that two consec-

utive stream functions have similar behavior. Suppose we are given T time-adjacent

images as a movie of a dynamical system, then evolving the window slow enough that

considerations of continuously evolving frame views allow inference of the underlying

dynamical systems even though the flow is unsteady. In other words assume I(x, y, t)

is continuous with respect to t throughout the scene. In fact we cope with this as-

sumption by including a new term with a weighting factor. For instance, if there are

114

only two stream functions ψ1 and ψ2, the additional minimizing integral would be

∫
Ω

(ψ1 − ψ2)2 dΩ (6.3)

added to the chosen energy functional already designed for assumed prior information.

In this case we use three images at a time to compute the flow in two different time

instances and here ψ1 is the stream function governing between image 1 and image 2

and ψ2 is the stream function between image 2 and image 3. To obtain the complete

energy functional for the multi-time step method with n = 2, we first obtain two

individual energy functionals for ψ1 and ψ2 as

E1(ψ1) =
∫

Ω
(I1t − I1xψ1y + I1yψ1x)2 dΩ + α

∫
Ω

(
ψ2

1xx + ψ2
1yy + ψ2

1xy + ψ2
1yx

)
dΩ

E2(ψ2) =
∫

Ω
(I2t − I2xψ2y + I2yψ2x)2 dΩ + α

∫
Ω

(
ψ2

2xx + ψ2
2yy + ψ2

2xy + ψ2
2yx

)
dΩ

and then we combine the new term in Eq.(6.3) with E1(ψ1) and E2(ψ2) by a weighting

factor β > 0. Here I1 and I2 are the intensities corresponding to the first pair of images

and the pair of image 2 and image 3 respectively. The resulting energy functional is

given by

E(ψ1, ψ2) =
∫

Ω

(
I1t − I1xψ1y + I1yψ1x)2 + (I2t − I2xψ2y + I2yψ2x

)2
dΩ

+β
∫

Ω
(ψ1 − ψ2)2 dΩ

+α
∫

Ω
(ψ2

1xx + ψ2
1yy + ψ2

1xy + ψ2
1yx)dΩ

+α
∫

Ω
(ψ2

2xx + ψ2
2yy + ψ2

2xy + ψ2
2yx)dΩ. (6.4)

Thus we have the energy functional for two time instances at once to emphasize the

time regularity as well as the spatial regularity.

Now taking the Gateaux derivative as in Eq.(2.20) of the functional in Eq.(6.4),

the Euler-Lagrange equations corresponding to ψ1 and ψ2 are then the system of

115

PDEs as

[2A∗1A1 + 2β(ψ1 − ψ2) + α(B +B∗)]ψ1 = −2A∗1I1t

[2A∗2A2 − 2β(ψ1 − ψ2) + α(B +B∗)]ψ2 = −2A∗2I2t,

(6.5)

where

A1 = (−I1xDy + I1yDx) and A2 = (−I2xDy + I2yDx) .

We can generalize the energy functional for n stream functions at n successive time

instances as shown in the following:

E(ψ1, ψ2, ..., ψn) =
n∑
k=1

∫
Ω

(Ikt − Ikxψky + Ikyψkx)2 dΩ

+β
n−1∑
k=1

∫
Ω

(ψk − ψk+1)2 dΩ

+α
n∑
k=1

∫
Ω

(ψ2
kxx + ψ2

kyy + ψ2
kxy + ψ2

kyx)dΩ. (6.6)

Similar to n = 2, the Euler-Lagrange equations can be obtained for any number n,

using the Gateaux derivative as in Eq. (2.20) of the functional in Eq. (6.6) with

respect to ψ1, ψ2, ..., and ψn. Further, we set the regularization parameter α as 2α

for convenient simplification. The Euler-Lagrange equations for any integer n which

is a system of n partial differential equations is obtained as

A∗1(I1t + A1ψ1) + β(ψ1 − ψ2) + α(B +B∗)ψ1 = 0

A∗k(Ikt + Akψk) + β(−ψk−1 + 2ψk − ψk+1) + α(B +B∗)ψk = 0, for k = 2, 3, ...n− 1

A∗n(Int + Anψn)− β(ψn−1 − ψn) + α(B +B∗)ψn = 0,

where

Ak = (−IkxDy + IkyDx) ∀k.

116

The above set of Euler-Lagrange equations can be reformulated as a linear system as

[K + αL] z = b (6.7)

where

K =



A∗1A1 + β −β

−β A∗2A2 + β −β

.

−β A∗n−1An−1 + β −β

−β A∗nAn + β



,

L =



B +B∗

B +B∗

. . .

B +B∗

B +B∗



, z =



ψ1

ψ2

...

ψn−1

ψn



and b =



A∗1I1t

A∗2I2t

...

A∗n−1I(n−1)t

A∗nInt



.

All the entries of the matrices K and L are block matrices of the size m×m, where

m = pq and p and q are the dimensions of the image domain. The entries of the

vectors z and b are vectors of the size m× 1.

To solve the above system, first we take the LU decomposition of the matrix

K + αL and then use Gaussian elimination. The solution of the above system yields

ψ1(x, y) ≡ ψ1(x, y, t1), ψ2(x, y) ≡ ψ2(x, y, t2), ..., ψn(x, y) ≡ ψn(x, y, tn). Taking the

117

Hamiltonian gradient on each of them separately, the vector fields for each time in-

stance, t1, t2, ..., tn can be obtained. That is, the velocity components u1, u2, ..., un

and v1, v2, ..., vn are computed from ψ1, ψ2, ..., ψn using 〈uk, vk〉 = 〈−ψky, ψkx〉 for

k = 1, 2, ...n.

Another advantage of the multi-time step method is that we can use higher-order

finite difference approximations to compute the time derivative of image intensity, It

instead of the forward difference approximation necessary when just two images are

available. This can be done as we have a sequence of images rather than two images.

For instance, if we use third-order finite difference approximation to compute It, then

five time adjacent images are considered to compute It. This will help to further

improve the continuity of the flow in the time direction. In addition to the above ad-

vantages, another positive consequence is that the multi-time step method computes

n vector fields at a time, but the negative consequence of this is computationally

expensive.

The multi-time step method can be expressed in terms of any data fidelity in

Chapter 3 and any regularization term in Chapter 4. For instance, if we use the con-

tinuity equation data fidelity Eq.(3.11) and the second-order div-curl regularization,

we have to substitute

A = −IxDy + IyDx and B = DxxD
∗
xx +DyyD

∗
yy +DxyD

∗
xy +DyxD

∗
yx

in the multi-time step method algorithm.

For compressible fluids, we have to apply the potential function formulation and

energy functional corresponding to the conservation of image intensity data fidelity

and the smoothness regularization term is obtained as

E(φ) =
∫

Ω
(It + Ixφx + Iyφy)2 dΩ + α

∫
Ω

(
φ2
xx + φ2

yy + φ2
xy + φ2

yx

)
dΩ. (6.8)

118

The multi-time step method in terms of the potential function formulation for n

potential functions can be obtained as

E(φ1, φ2, ..., φn) =
n∑
k=1

∫
Ω

(Ikt + Ikxφkx + Ikyψky)2 dΩ

+β
n−1∑
k=1

∫
Ω

(φk − φk+1)2 dΩ

+α
n∑
k=1

∫
Ω

(φ2
kxx + φ2

kyy + φ2
kxy + φ2

kyx)dΩ. (6.9)

The Euler-Lagrange equations for the functional in Eq.(6.9) with respect to φ1, φ2, ...,

and φn. are obtained as

A∗1(I1t + A1φ1) + β(φ1 − φ2) + α(B +B∗)φ1 = 0

A∗k(Ikt + Akφk) + β(−φk−1 + 2φk − φk+1) + α(B +B∗)ψk = 0, for k = 2, 3, ...n− 1

A∗n(Int + Anφn)− β(φn−1 − φn) + α(B +B∗)φn = 0,

where

Ak = (IkxDx + IkyDy) ∀k.

Solving these Euler-Lagrange equations for φ1, φ2, ..., and φn is similar to the stream

function method. The vector fields are obtained by taking the gradients of the com-

puted potential functions as 〈uk, vk〉 = 〈φkx, φky〉 for k = 1, 2, ...n. Similar to the

stream function formulations, the potential function method is also extended for any

data fidelity or any regularization term.

119

6.2 Results from Multi-Time Step Method

In this section, we will demonstrate the performance of the multi-time step methods

which are developed using the energy functionals in Eq.(6.1) and Eq.(6.8). Also we

present the improvement of the accuracy of our algorithm with larger n. For the

above purposes, we use two benchmark data sets, the gyre and the source data sets.

In addition to these two data sets, we use an oceanic data set introduced in Chapter

3. When we compare the reconstructed vector fields with the true vector field, we

need a figure of merit for comparison. Therefore, we compute angular error between

the computed flow and the true flow and then the mean over the domain to obtain

mean angular error [68] as explained in Chapter 4.

Fig. 6.1 shows 6 consecutive images produced from the vector field in Eq.(2.34)

by evolving according to the continuity equation in Eq.(2.29). The true flow field and

two other images are shown in images (c), (a) and (b) respectively, in Fig. 2.4. When

we apply the multi-time step method with step size n = 4, with fourth-order finite

difference approximation for It, we need eight images to compute the vector fields.

We have shown the first six images of the considered sequence in the Fig. 6.1.

Note that the synthetic images we use in this chapter are different from the images

shown in Chapter (2), even though the true velocity field is the same. Due to these

changes in the images, the MAE values may differ from the MAE values in Chapter

3.

Since the data set is divergence free, the multi-time step method in stream function

formulation is applied to compute the velocity fields on the gyre data set. Our first

step is to compare the results by varying the step size n, the number of stream func-

tions ψ computed at a given time using multiple images. We applied our multi-time

step method on an image sequence of the gyre data set as shown in Fig. 6.1, for differ-

ent n values. For instance, if we apply a first-order finite difference approximation to

120

(a) image 1 (b) image 2 (c) image 3

(d) image 4 (e) image 5 (f) image 6

Figure 6.1: Gyre image sequence – Images (a) - (f) show 6 time-adjacent images of
the gyre image sequence. These images are generated as we explained in Chapter (2).
Two other images and the true vector field are shown in Fig. 2.4

estimate It with the step size n = 1, then we compute one stream function ψ1 using

two images, image 1 and image 2. The velocity components (u1, v1) = (−ψ1y, ψ1x)

represent the motion field between image 1 and image 2. If however we choose the

step size n = 2, then we compute two stream functions ψ1 and ψ2 using three images.

Then (u1, v1) = (−ψ1y, ψ1x) is the motion field between image 1 and image 2 while

(u2, v2) = (−ψ2y, ψ2x) is the motion field between image 2 and image 3 respectively.

Continuing in this manner, we can increase the step size n. Note that if there is

a sequence of nine images, we can compute eight vector fields for each consecutive

image pair. When the step size n = 1, eight separate computations are necessary but

when n = 2, only four computations are necessary and so on. Again we emphasize

that the advantage of choosing a larger n is that the time regularity is emphasized

121

as seen clearly in the computations. Including more terms of the form in Eq.(6.3)

penalizes large changes of ψ between successive frames.

(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

Figure 6.2: Gyre flow from Multi-Time Step Method – Images (a), (b), (c), and
(d) show vector fields computed on the image (c) in Fig. 6.1 by the multi-time step
method with n = 1, 2, 3, and 4 respectively. While all estimated vector fields are
visually similar, the mean angular error improve up to n = 3.

After applying the multi-time step method on the gyre data set, the results for

n = 1, 2, 3 and 4 on the image (c) in Fig. 6.1 are shown in images (a), (b), (c), and (d)

in Fig. 6.2, respectively. The mean angular errors for n = 1, 2, 3, and 4 are 0.9837◦,

0.9826◦, 0.9807◦ and 0.9883◦ respectively. In this example, the accuracy of the al-

gorithm improves until n = 3. In all the above reconstructions, the regularization

parameter α was selected so that it minimizes the MAE and the parameter β was

fixed at β = 0.01.

122

Our next example is the source data set where we demonstrate that the multi-

time step method performs well even with the larger step size with the potential

function formulation. A sequence of six images is shown in the Fig. 6.3 which we con-

structed evolving the velocity field in Eq.(2.36) according to the continuity equation

in Eq.(2.29) as we explained in Chapter 2.

(a) image 1 (b) image 2 (c) image 3

(d) image 4 (e) image 5 (f) image 6

Figure 6.3: Source image sequence – Images (a) - (f) show 6 time-adjacent images
of the source data image sequence. These images are generated as we explained in
Chapter 2. Two other images and the true vector field are shown in Fig. 2.5.

Since the source flow is not divergence free, the appropriate algorithm is the multi-

time step method in potential function formulation for the optical flow computation.

We applied the algorithm on a sequence of source images and computed the flow on

images 1 - 6 as shown in Fig. 6.3. We compute the mean angular error of the computed

flow corresponding to each of the images with the step size n = 1, 2, 3 and 4 as shown

in Table 6.1. Each column represents the mean angular errors from the step sizes

123

n = 1, 2, 3 and 4 for the six images. It can be observed that the mean angular errors

are improving with the step size until n = 3 and then breaks. However, the mean

angular error of the computed flow on image 4 improves even with the step size n = 4.

Table 6.1: The MAE values for the six source images shown in Fig. 6.3 are computed.
In the computation, the multi-time step method in potential function formulation
was applied and flow fields were computed for step sizes n = 1, 2, 3 and 4. The first
row represents the MAE values for six images for n = 1 and the second row is for
n = 2 etc. In general, MAE improves until n = 3 and then becomes unpredictable.
However, the MAE corresponding to the flows on image 4 improves even after step
size n = 3.

Step size Images in which the flow is computed

image1 image 2 image 3 image 4 image 5 image 6

n = 1 2.664◦ 2.693◦ 2.685◦ 2.752◦ 2.671◦ 2.723◦

n = 2 2.601◦ 2.642◦ 2.623◦ 2.691◦ 2.630◦ 2.692◦

n = 3 2.572◦ 2.565◦ 2.570◦ 2.592◦ 2.567◦ 2.594◦

n = 4 2.590◦ 2.565◦ 2.589◦ 2.590◦ 2.595◦ 2.604◦

The graphical representation of the mean angular errors verses step sizes for six

different images are shown in Fig. 6.4. It is clearly visible that the mean angular

errors improve up to n = 3 and then become unstable. On the other hand, even

though the images are different and the MAEs are not the same for each step size,

when n = 3 and n = 4, we can see that the MAEs are close to each other. The mean

angular errors corresponding to n = 3 and n = 4 are shown in red and magenta colors

respectively in Fig. 6.4 and the two curves are almost flat. This may be due to the

regularity in the time direction.

124

Figure 6.4: MAE on six images for different n – The graph shows the mean angular
error for the computed flow by changing the step size n on the six images shown in
Fig. 6.3. The blue and green curves represent the step size n = 1 and n = 2 and
the mean angular errors are relatively high. The red and magenta color curves are
for n = 3 and n = 4 and their mean angular errors are lower as well as close to each
other along the image sequence because of the more regularity in time direction.

According to the results, the step size n = 3 produces relatively better solutions

on the six images shown in Fig. 6.3. We include the corresponding flow fields for each

image in Fig. 6.5. It is hard to find any qualitative differences on these images, but

they have quantitative differences as shown in Table 6.1. The best MAE is obtained

from the flow on the image (b) and it is equal to 2.565◦.

125

(a) flow on image 1 (b) flow on image 2 (c) flow on image 3

(d) flow on image 4 (e) flow on image 5 (f) flow on image 6

Figure 6.5: Source flow fields with n = 3 – Images (a) - (f) show 6 time-adjacent
velocity fields computed on the six images in Fig. 6.3. In the computation, we used
multi-time step method in potential function formulation with n = 3. Flow field in
image (b) produces the minimum mean angular error of 2.565◦. However, qualitative
differences of the flow fields are hardly visible.

6.2.1 An Oceanographic Data Set

Now we apply the algorithm to a natural scenario which shows the sea surface tem-

perature off the coast of Oregon, USA. This data set was generated from a 3-D ocean

model, using data obtained from Geostationary Operational Environmental Satellite

(GOES) referred to in [96] as we explained in Chapter 3. In Fig. 6.6, images (a),

(b) and (c) show sea surface temperature data of three consecutive hours on August

1, 2002. The image (d) represents the true vector field of the mixing temperature

corresponding to image (b).

126

(a) (b) (c) (d)

Figure 6.6: SST data and true flow – Three consecutive images of the SST data set
are shown in (a), (b) and (c) respectively. The flow on image (b) is shown in the
image (d)

Since we have a time-dependent sequence of images of the SST data, we can apply

the multi-time step method to compute the vector fields. When the step size is n,

we compute n consecutive vector fields at a time and we require n + 4 images, if

we apply fourth-order finite difference approximations to compute It. The Fig. 6.7

represents the computed flow fields on the image (b) shown in Fig. 6.6 with the step

size n = 1, 2, 3 and 4 in images (a), (b), (c), and (d) respectively. In each case, the

algorithm captures the gyres accurately and it is clearly visible that when n = 3,

the algorithm captures the laminar flow as seen just above the bottom gyre. Except

for the above laminar flow, all the other vectors represent similar behavior and the

differences between flow fields comes from different step sizes are not visible. Now we

can compare the two vector fields consisting of large numbers of vectors by compar-

ing single numbers. In the comparison of the step sizes; we use the percentage mean

127

angular error.

(a) (b) (c) (d)

Figure 6.7: SST Flow – The computed flow fields for the data showed in 6.6 with n
equals to 1, 2 and 3 are shown in (a), (b), (c) and (d) respectively. While all these
are roughly similar and so not immediately different to visual inspection, there are
visible differences appear upon closer inspection.

Fig. 6.8 shows the graph of percentage mean angular error of the computed flow

relative to the true flow versus the step size used to compute the flow fields. Accord-

ing to the graph, the percentage mean angular error fluctuates and the minimum is

achieved when n = 3 as we can see in the flow fields. Note that for all the reconstruc-

tions in Fig. 6.6, the regularization parameter α was selected so that it minimizes the

mean angular error and the parameter β was fixed at β = 0.01.

128

Figure 6.8: Percentage MAE vs Step size – The graph shows the percentage of the
mean angular error for the computed flow by changing the step size n on the image
(b) shown in Fig. 6.6. For the specified parameters at n = 3, multi-time step method
is best overall.

129

6.2.2 A Planetary Data Set

Our final application of the multi-time step method is on Jupiter’s atmospheric data.

The data set was taken by the spacecraft Voyager 2 with the time step of one Jovian

day. That is, the images were taken every 9.94 hours.

(a)

(b)

Figure 6.9: GRS images [97] – Two consecutive images captured by the spacecraft
Voyager 2 are shown in images (a) and (b) respectively. The two images are one
Jovian day apart.

We apply the multi-time step method on the images which we displayed in Fig. 6.9

for n = 1, 2 and 3. In Fig. 6.10, the computed flow fields from multi-time step with

n = 1, 2 and 3 are shown in images (a), (b) and (c) respectively. In all three cases,

the algorithms capture the boundaries of the vortex reasonably, especially the top of

the vortex. When n = 3, the algorithm is able to capture the bottom of the vortex.

130

(a) flow with n = 1

(b) flow with n = 2

(c) flow with n = 3

Figure 6.10: Multi-time step flow for the GRS – images (a) - (c) show the computed
flow from the multi-time step method on the image (a) in Fig. 6.9 with step sizes
n = 1, 2 and 3, respectively. Resulting flow fields from each step size are reasonable,
especially around the GRS. When the step size increases, the flow on the lower part
of the GRS captures the structure.

131

Chapter 7

Quasi-Static Equations with

Coriolis Force in Optical Flow

Method

As we know, the planets in our solar system rotate about their respective axis while

revolving about the sun. Due to the rotation of planets, the coriolis force may affect

to the motion of fluid systems on the planets, if the system is observed from a rotating

frame of reference. Most of the satellites observing planets also revolve and rotate

according to the corresponding planet. When a system is observed from a rotating

satellite and the observed images are used to compute velocity fields, we must take

into account the coriolis effect. We make this correction before completing the com-

putation of vector fields by modifying the energy functional.

For instance, in the atmosphere, air flows in a straight line from areas of high pres-

sure to areas of low pressure. However, due to the coriolis force, this straight path

becomes curved. When we deal with systems having geostrophic1 flows of this type,

the system can be represented by the quasi-static equations [47] which are valid in the
1A flow is called geostrophic, if the the pressure gradient force and the Coriolis force are balance

with negligible friction force

132

absence of friction and diffusion. However, diffusion is not easy to ignore as we can

not expect divergence free fluid motion. For this reason, when we develop the energy

functional using quasi-static equations we add a diffusion term as the regularization

term. The quasi-static equations are represented in Eq.(7.2). However, their present

formulation is not ready to directly include in an optical flow energy functional to be

solved for determining velocity fields. Some terms such as pressure, density and verti-

cal velocity components in quasi-static equations are unable to incorporate in optical

flow energy functional as the images do not provide such information. Therefore, we

narrow the equations by eliminating the terms which are not related to optical flow

computation. In this way, we are able to solve the problem in a convenient way while

we expect the simplified problem leads to a useful solution estimating that leads to

solution of the actual problem. First we give an introduction of the coriolis force in

Sec. 7.1 and then explain the quasi-static equations and their adaptation of an optical

flow algorithm in the rest of this chapter.

7.1 Coriolis Force

Objects such as wind storms and ocean currents are deflected from a straight path

relative to a rotating reference frame by the coriolis effect due to the so called coriolis

force. As an example on a global scale, the surface of the Earth is a rotating reference

frame and in the northern hemisphere the deflection is to the right while in the

southern hemisphere the deflection is to the left. However, there is no deflection at

the equator.

Fig. 7.1 shows three different time instances of motion of an object in the upper

disk of the each image. The object is the black dot and an observer is the red dot. Even

though the object is moving in a straight path with respect to an inertial reference

frame, the observer thinks that the object moves on a curved path. This phenomenon

133

(a) (b) (c)

Figure 7.1: Coriolis effect – The upper disks of all three images represent the inertial
frame of reference and the lower disks represent the rotating frame of reference. The
black ball is an object and the red dot is the observer. Even though the object moves
in a straight line with respect to the inertial frame of reference, the observer thinks
the object moves in a curved path. The initial position of object is shown in image
(a), a midway position is shown in image (b) and the final position is shown in image
(c). A complete explanation with a movie is available in [98]

occurs due to the coriolis force. On a rotating planet, for a given latitude ϕ with the

angular velocity ω, the coriolis parameter is

f = 2ω sinϕ. (7.1)

This implies that the value of the coriolis parameter is positive in the northern hemi-

sphere and negative in the southern hemisphere. The coriolis parameter is zero at the

equator as the latitude ϕ is zero. The Coriolis force is always perpendicular to the

flow and hence the direction is π
2 radians to the right in the northern hemisphere and

left in the southern hemisphere. In Sec. 7.2, we are going to adopt the quasi-static

equations to suit the optical flow environment so that we can incorporate the coriolis

force in an optical flow algorithm.

134

7.2 Quasi-Static Equations

In the absence of friction and diffusion, the quasi-static equations as in [47] are given

in the form

du

dt
− fv = − 1

ρ0

∂p′

∂x
(7.2a)

dv

dt
+ fu = − 1

ρ0

∂p′

∂y
(7.2b)

0 = −∂p
′

∂z
− ρ′g (7.2c)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (7.2d)

∂ρ′

∂t
+ u

∂ρ′

∂x
+ v

∂ρ′

∂y
+ w

∂p̄

∂z
= 0, (7.2e)

where u, v and w are the velocity components along the x, y and z directions, p is

pressure and ρ is density. These set of equations are usually called the “primitive

equations” in the field of atmospheric dynamics and they are basically the Euler-

equations for gas dynamics, expressed in Cartesian geometry on a rotating reference

frame. Eq.(7.2a) and Eq.(7.2b) show the momentum in the x and y directions, where

traditionally x represents east and y represents north. These two equations are de-

rived by applying Newton’s second law, which states that the sum of all forces acting

on a unit mass is equal to the acceleration of the unit mass. Eq.(7.2c) is the vertical

momentum (hydrostatic approximation) which represents the balance between pres-

sure gradient and gravity. Eq.(7.2d) represents the continuity of the fluid mass. The

last equation, Eq.(7.2e), represents the Thermodynamic energy equation. Note that,

ρ = ρ̄(z) + ρ′(x, y, z, t),

p = p̄(z) + p′(x, y, z, t) and
d

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
,

135

where ρ′(x, y, z, t) and p′(x, y, z, t) are the deviations of the density and the pressure

from the mean density ρ̄(z) and the mean pressure p̄(z), respectively.

Since satellite images do not carry any information about variations of pressure

and density, there is no value in incorporating the pressure term or the density term

in the optical flow model. On the other hand, brightness changes between two images

may arise due to the changes in pressure and density of the fluid. Therefore, there is

no effect from the changes in pressure and density to the observed images and hence

we assume that p and ρ are constants. Moreover the vertical velocity component w

is relatively small compared to the horizontal velocity components u and v, and this

leads us to assume w = 0. After making these assumptions, the system of equations

in Eq.(7.2) becomes

du

dt
− fv = 0

dv

dt
+ fu = 0

∂u

∂x
+ ∂v

∂y
= 0. (7.3)

Using the advective operator, the system of equations in Eq.(7.3) can be rewritten as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = 0

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = 0

∂u

∂x
+ ∂v

∂y
= 0. (7.4)

This system is often called the “Barotrophic” model for incompressible fluids. The

computation of the time derivatives of velocity components are not possible when we

compute the velocity field between two images. On the other hand, we can assume

136

that there is no acceleration between each pair of images. Therefore, setting

∂u

∂t
= ∂v

∂t
= 0, (7.5)

the system of equations in Eq.(7.9) becomes

u
∂u

∂x
+ v

∂u

∂y
− fv = 0

u
∂v

∂x
+ v

∂v

∂y
+ fu = 0

∂u

∂x
+ ∂v

∂y
= 0. (7.6)

Since these equations are valid in incompressible fluids, there exists a stream function

ψ (x, y) that represents the governing vector fields of the fluid motion at each time

instance. Therefore, replacing the velocity components

〈u, v〉 = 〈−ψy, ψx〉

in the system of equations in Eq.(7.6), a new set of equations can be obtained as

ψyψyx − ψxψyy − fψx = 0

−ψyψxx + ψxψxy − fψy = 0

−ψyx + ψxy = 0, (7.7)

where −ψyx + ψxy = 0 is redundant. The next step is to include the terms from the

quasi-static equations in an optical flow energy functional.

137

7.3 Quasi-Static Optical Flow Model

Now we develop a functional to emphasize the coriolis force in the vector field com-

putation. According to the results in Chapter 3 and Chapter 6, the optical flow

energy functional with conservation of intensity and the smoothness regularization

term in stream function formulation performs well in capturing the local structures

in the fluid motions. Therefore, we use the corresponding energy functional as the

preliminary stage of the construction of the quasi-static optical flow algorithm. Recall

that the stream function formulation of the optical flow energy functional with the

conservation of intensity data term and the smoothness regularization term is

E(ψ) =
∫

Ω
(It − Ixψy + Iyψx)2 dΩ + α

∫
Ω

(ψ2
xx + ψ2

yy + ψ2
xy + ψ2

yx)dΩ. (7.8)

We now obtain an expression which is a functional to represent the errors in both

terms in Eq.(7.7) over the domain Ω. For the sake of calculations, we use the L2 norm

to establish the error functional. Then the resulting functional is obtained as

QG(ψ) =
∫

Ω
(ψyψyx − ψxψyy − fψx)2 dΩ +

∫
Ω

(−ψyψxx + ψxψxy − fψy)2 dΩ. (7.9)

In the next step, we include the resulting functional in the energy functional in

Eq.(7.8) to develop a new energy functional which emphasizes the coriolis force in

the computation of vector fields. The combined functional is obtained by adding the

functional in Eq.(7.9) to the functional in Eq.(7.8) with a weighting factor γ.

E(ψ) =
∫

Ω
(It − Ixψy + Iyψx)2 dΩ + α

∫
Ω

(ψ2
xx + ψ2

yy + ψ2
xy + ψ2

yx)dΩ

+ γ
∫

Ω
(ψyψyx − ψxψyy − fψx)2 dΩ

+ γ
∫

Ω
(−ψyψxx + ψxψxy − fψy)2 dΩ (7.10)

138

The next step is to compute the Euler-Lagrange equation for the functional in Eq.(7.10).

We obtain the complete Euler-Lagrange equation by taking the sum of the gradients

of each part of the functional. As we already know, the gradients of the functionals

∫
Ω

(It − Ixψy + Iyψx)2 dΩ and
∫

Ω

(
ψ2
xx + ψ2

yy + ψ2
xy + ψ2

yx

)
dΩ are

2A∗(It + A)ψ and (B +B∗)ψ

respectively, where A and B are obtained as

A = −IxDy + IyDx and B = DxxD
∗
xx +DyyD

∗
yy +DxyD

∗
xy +DyxD

∗
yx.

Here D•• are the operators as we introduced in Sec. 3.1.1 to compute the partial

derivatives of a given array with respect to ••. To complete the Euler-Lagrange

equation to the functional in Eq.(7.10), we only have to find the gradient of the quasi-

static terms. We compute the gradient components of those two pieces separately.

7.3.1 Quasi-Static Euler-Lagrange Equations

In the computation of Euler-Lagrange equations for the functional in Eq.(7.10) which

comes from the quasi-static equations, first we consider the functional

QG1(ψ) =
∫

Ω
(ψyψyx − ψxψyy − fψx)2 dΩ (7.11)

to determine the gradient. Now to compute the gradient of the functional in Eq.(7.11),

we add an increment Φ to the stream function ψ with a parameter τ . Then the

139

resulting functional is obtained as

QG1(ψ + τΦ) =
∫

Ω
[(ψy + τΦy)(ψyx + τΦyx)

−(ψx + τΦx)(ψyy + τΦyy)− f(ψx + τΦx)]2 dΩ (7.12)

Taking the derivative of the functional in Eq.(7.12) with respect to τ and evaluating

the resulting derivative at τ = 0, we have

d

dτ
QG1(ψ + τΦ)

∣∣∣
τ=0

= 2
∫

Ω
(ψyψyx − ψxψyy − fψx)

(ψyΦyx + Φyψyx − ψxΦyy − Φxψyy − fΦx) dΩ. (7.13)

Let QG1′ = d
dτ
QG1(ψ + τΦ)

∣∣∣
τ=0

. Then further simplification of the Eq.(7.13) yields

QG1′ = 2
∫

Ω

[
ψyψyxψyΦyx + ψyψyxψyxΦy − ψyψyxψxΦyy

− ψyψyxψyyΦx − fψyψyxΦx − ψxψyyψyΦyx

− ψxψyyψyxΦy + ψxψyyψxΦyy + ψxψyyψyyΦx

− f(−ψxψyyΦx + ψxψyΦyx + ψxψyxΦy

− ψxψxΦyy − ψxψyyΦx − fψxΦx)
]
dΩ. (7.14)

140

Now the gradient GQG1(ψ) of the functional which we obtained in Eq.(7.14) can be

simplified as

GQG1(ψ) = 2[D∗yxψyψyxψy +D∗yψyψyxψyx −D∗yyψyψyxψx

−D∗xψyψyxψyy − fD∗xψyψyx −D∗xyψxψyyψy

−D∗yψxψyyψyx +D∗yyψxψyyψx +D∗xψxψyyψyy

− f(−D∗xψxψyy +D∗yxψxψy +D∗yψxψyx

−D∗yyψxψx −D∗xψxψyy − fD∗xψx)], (7.15)

using the derivative operators. Furthermore, we can consider the second part of the

quasi-static functional in Eq (7.10) and we can write that as

QG2(ψ) =
∫

Ω
(−ψyψxx + ψxψxy − fψy)2 dΩ. (7.16)

As we did in Eq.(7.12) for the first part of the functional in Eq.(7.11) to determine

the gradient, we can add an increment Φ with a parameter τ to the functional and

then take the derivative of the functional with respect to τ . Then, as in Eq.(7.14),

we evaluated the resulting functional at τ = 0 and the following functional

d

dτ
QG2(ψ + τΦ)

∣∣∣
τ=0

= 2
∫

Ω
(−ψyψxx + ψxψxy − fψy)

(−ψyΦxx − Φyψxx + ψxΦxy + Φxψxy − fΦy) dΩ (7.17)

141

was obtained. After simplifying the integral in Eq.(7.17), we have

GQG2(ψ) = 2
∫

Ω
[ψyψxxψyΦxx + ψyψxxψxxΦy − ψyψxyψxΦxy

− ψyψxxψxyΦx + fψyψxxΦy − ψxψxyψyΦxx

− ψxψxyψxxΦy + ψxψxyψxΦxy + ψxψxyψxyΦx

+ f(−ψxψxyΦy + ψyψyΦxx + ψyψxxΦy

− ψyψxΦxy − ψyψxyΦ+
x fψyΦy)] dΩ. (7.18)

Simplifying and then substituting the derivative operators, the gradient GQG2(ψ) of

the functional in Eq.(7.16) becomes

GQG2(ψ) = 2[D∗xxψyψxxψy +D∗yψyψxxψxx −D∗xyψyψxyψx

−D∗xψyψxxψxy + fD∗yψyψxx −D∗xxψxψxyψy

−D∗yψxψxyψxx +D∗xyψxψxyψx +D∗xψxψxyψxy

+ f(−D∗yψxψxy +D∗xxψyψy +D∗yψyψxx

−D∗xyψyψx −D∗xψyψxy + fD∗yψy)]. (7.19)

We now have the gradients or the Euler-Lagrange equations for both separate func-

tional terms of the quasi-static energy functional in Eq.(7.9). Therefore, the complete

Euler-Lagrange equation for the quasi-static energy functional in Eq.(7.9) can be writ-

ten as

GQG(ψ) = [GQG1(ψ) +GQG2(ψ)] /2, (7.20)

142

where we divide the right hand side by 2 for the sake of simplicity. Hence the Euler-

Lagrange equation for the energy functional in Eq.(7.10) is written as

2A∗(It + Aψ) + α(B∗ +B)ψ + 2γ GQG(ψ) = 0. (7.21)

Replacing α by 2α, the Euler-Lagrange equation can be written as

A∗(It + Aψ) + α(B∗ +B)ψ + γ GQG(ψ) = 0. (7.22)

Now we assume that a minimizer for the energy functional in Eq.(7.10) exists; hence

we develop a gradient descent iterative scheme to determine the optimal stream func-

tion ψ. For a given initial stream function ψ0, the gradient descent approach is

ψk+1 = ψk −∆τ
[
A∗(It + Aψk) + α(B∗ +B)ψk + γ GQG(ψk)

]
, (7.23)

where ∆τ is the step size corresponding to each iteration and k is the iteration number.

The stopping criteria for the gradient descent method depends on both the maximum

number of iterations kmax and the threshold (∆) value for the errors of the stream

function in successive iterates. We stop the algorithm when k reaches kmax or the

error of stream function in successive iterates is smaller than ∆.

For the initial ψ0, usually we use the null stream function

ψ0 (x, y) = 0.

However, there are some instances where the gradient descent method does not con-

verge for some initial conditions including the null stream function. In this case, first

we have to identify a suitable initial condition for the gradient descent method. We

achieve this by introducing a fixed point method by rearranging the terms in the

143

Euler-Lagrange equation in Eq.(7.22) as

[A∗A+ α(B∗ +B)]ψ = −A∗It − γ GQG(ψ). (7.24)

Now for a given initial stream function ψ0, the solution is obtained by the following

iterative procedure with appropriate parameter values for α and γ

ψm+1 = − [A∗A+ α(B∗ +B)]−1 [A∗It + γ GQG(ψm)] , (7.25)

where m is the iteration number. We use few iterations and let ψ• be a solution after

the required number of iterations. Then we apply the gradient descent method with

the initial stream function ψ• to reach the optimal solution for the quasi-static optical

flow algorithm. This combined method is called a homotopy scheme. Note that, in

fixed point method, we only use few iterations as the magnitude of the points in the

stream function increases with the number of iterations.

Now that the numerical scheme is established by combining fixed point initial

solution with gradient descent method, we want to check the accuracy. Therefore,

we introduce a benchmark data set in Sec. 7.4 to which we employ the quasi-static

optical flow method, before we address the real data.

7.4 Benchmark Data Set

In this section, we construct a benchmark data set to apply the algorithm we devel-

oped in Sec. 7.3. In the construction, we use the gyre flow as shown in image (c) in

Fig. 2.4, on a rotating coordinate system. Recall that the gyre flow is given by

〈u, v〉 = 〈−π sin(πx) cos(πy), π cos(πx) sin(πy)〉, (7.26)

144

where (x, y) ∈ [0, 1] × [0, 1]. Letting θ be the angle after time t, then the new

coordinates (x′, y′) become

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ,

where θ = ωt. For this data set, the rotation rate ω is chosen as ω = π/10 rad/s .

Now the resulting gyre flow on the rotating coordinate system is obtained as

〈u′, v′〉 = 〈−π sin(πx′) cos(πy′), π cos(πx′) sin(πy′)〉. (7.27)

Next we evolve an initial density using the velocity components found in Eq.(7.27)

according to the continuity equation in Eq.(2.29) with dt = 0.1. We select two images

after 5 seconds to apply the quasi-static optical flow algorithm. Image (a) in Fig. 7.2

shows the initial velocity field of the gyre that is represented in Eq.(7.26). Image (b)

shows the flow field after 5 seconds in rotating the coordinates. Images (c) and (d)

in Fig. 7.2 are the preceding and the proceeding images of the vector field on image

(c).

We now apply the quasi-static method on images (c) and (d) in Fig. 7.2. The

quasi-gestrophic algorithm produces the gyre as we expect with the MAE 2.962◦ for

the parameters α = 1e−2 and γ = 0.09. The resulting flow field is shown in image (a)

in Fig. 7.3. We can also apply the other optical flow algorithms assuming that there

is no coriolis effect on images (c) and (d) in Fig. 7.2. The conservation of intensity

data term and the smoothness regularization term in u-v formulation produced the

best result with the minimum MAE 3.704◦. The resulting flow field is shown in the

image (b) in Fig. 7.3.

145

(a) (b)

(c) (d)

Figure 7.2: Gyre on Rotating coordinates – The images (a) and (b) show the initial
flow field and a selected flow field after 5 seconds on the rotating coordinates respec-
tively. An initial density on the flow in Eq.(7.27) evolved according to Eq.(2.29).
Images (d) represents the evolution of image (c) under the flow field in image (b).

The results from the quasi-static method and the conservation of intensity data

term with the smoothness regularization term in the u-v formulation show the effect

of the coriolis force on images. The quasi-static method provides an appropriate cor-

rection on the effect of the coriolis force. As a real application for the quasi-static

optical flow method, we now introduce a data set which represents Jupiter’s atmo-

sphere.

146

(a) (b)

Figure 7.3: Computed flow on Rotating gyre – The first image shows the computed
flow field from the quasi-static algorithm on images (c) and (d) in Fig. 7.2. The true
flow is shown in image (a) of Fig. 7.2. The second image shows the computed flow
field from the conservation of intensity data term and the smoothness regularization
term in u-v formulation. The true flow field is shown in image (b) of Fig. 7.2.

7.5 Jupiter

In this section, we test our algorithms on a real sequence of satellite images that rep-

resents the motion of Jupiter’s atmosphere. Unlike the regular optical flow methods,

the quasi-static method requires more information about the system other the image

data. Therefore, we first discuss the planet Jupiter and its interesting features before

getting into the flow computations from satellite images. Jupiter is the largest planet

in our solar system and it is the fifth from the Sun. Furthermore, Jupiter has the

fastest rotation rate in our solar system; it completes one day in 9.92 earth hours

which is called a Jovian day. Another interesting fact is that Jupiter does not have a

solid surface and its atmosphere mostly consists of hydrogen and helium [99]. Other

than the reasons mentioned above, compared to the other planets, Jupiter is special

because it has a giant [100] red vortex called the Great Red Spot (GRS) whose di-

ameter is three times the diameter of the earth. The GRS is located just below the

equator. It is an oval shape violent storm that rotates counterclockwise about its

center. The apparent color of the GRS may be due to small amounts of sulfur and

147

phosphorus in the ammonia crystals in Jupiter’s clouds [100]. It has remained almost

the same more for than 300 years.

Some recent work related to Jupiter’s atmospheric motions [3, 5, 19, 101] moti-

vates us to compute vector field in an analysis of atmospheric motion near the GRS.

When reviewing the relevant work in [101], we uncovered that the author developed

governing equations for Jupiter’s atmospheric motion and then solved the equations

numerically to obtain the velocity fields. However, the resulting velocity fields are

compared with the existing mean velocities. The authors in [3,5] discussed the trans-

port barriers in the planetary atmosphere including Jupiter and in this work, they

used a potential vorticity gradient to obtain the results. In [19], the authors address

the change of size in GRS and Oval BA, which is another oval shaped spot located

just below the GRS, from the year 1996 to 2006. In this case the authors obtained

the vector fields from Advected Correction Correlation Image Velocimetry (ACCIV)

method.

In this section we introduce a data set on Jupiter’s atmospheric motion available

at [102]. Our motivation is to use the time dependent velocity fields to analyze the

transport barriers in Jupiter’s atmosphere near the GRS. We use the quasi-static

optical flow method to compute the velocity fields as the data was affected by the

coriolis force. This complete data set was taken by NASA’s Cassini spacecraft during

the period of 7 Jovian days from October, 1, 2000 to October, 5, 2000. In this data

set, the counter-clockwise atmospheric motion around the GRS is clearly visible. The

first two images of the data set are shown in Fig. 7.4.

The images ranged from 50 degrees south to 50 degrees north with respect to the

equator and 100 degrees from east to west. The exact longitudes are not available.

However, to apply the quasi-static method, the exact latitude values are sufficient.

Two images in the Fig. 7.4 are gray scale and when we can represent the images

148

(a) image 1 (b) image 2

Figure 7.4: Jupiter Images –Images (a) and (b) show two consecutive observations of
Jupiter’s atmospheric motion that are one Jovian day apart. The complete data set
consists of 7 images and was obtained by NASA’s Cassini spacecraft from October, 1,
2000 to October, 5, 2000 [102]. The latitudes of these images ranged from 50 degrees
south to 50 degrees north and longitude expands 100 degrees from east to west.

in Matlab with default color scale. Fig. 7.5 shows the Matlab representation of two

images in Fig. 7.4, where each pixel represents the corresponding intensity value which

varies from 0 to 255..

When we developed the optical flow algorithm, we assumed that the motion be-

tween two images is small. However, the motion between two images in the Fig. 7.5

is large (more than one pixel) and hence we use cubic spline to make the motion be

small by including 4 artificial frames in between two actual frames. Also to avoid hav-

ing the same index in nearby points, we smooth the images spatially using Gaussian

smoothing with the standard deviation of 0.04. The images (a) and (b) in Fig. 7.6

show the first two images after smoothing in both the time and the spatial directions.

149

(a) color image 1 (b) color image 2

Figure 7.5: Jupiter Images in Matlab – Images (a) and (b) show the appearance of
two consecutive gray images shown in Fig. 7.4 in Matlab according to the default
color scale. The color of each pixel represents the image intensity and it varies from
0 to 255. The same color scale is used for the rest of this work for the sake of clear
visualization

As we explained earlier, our motivation is to provide velocity fields to analyze the

atmospheric motion around the GRS. Therefore, we first compute the vector fields

near the GRS. Fig. 7.7 shows a rectangular selected area around the GRS on the

image (a) in Fig. 7.6. The selected region was coarse and therefore, we increased the

resolution of the area by a factor two to get spatially smoothed images.

Images (a) and (b) in Fig. 7.8 show a selected area of images (a) and (b) in

Fig. 7.6. However these two cropped images represent the selected area after increas-

ing the spatial resolution by two. In forthcoming calculations of vector fields, this

selected area around the GRS will be used.

150

(a)Smoothed image 1 (b) Smoothed image 2

Figure 7.6: Jupiter smooth images – Images (a) and (b) show the first two consecutive
images after smoothing seven images in the data set in both time and spatial direction.
When we smooth in time direction, we include four artificial images in between two
actual images. Therefore, image (a) represents the same image in Fig. 7.5 despite
the spatial smoothing. However the image (b) represents an artificial image just after
small motion of image (a).

Figure 7.7: The GRS – The image shows the rectangular area selected on image (a)
in Fig. 7.6. This rectangular area contains the GRS whose dynamics of atmospheric
motion we are interested in analyzing.

151

(a) Cropped image 1 (b) Cropped image 2

Figure 7.8: GRS Images –Images (a) and (b) show the selected area around the GRS
on the images (a) and (b) in the Fig. 7.8. The spatial resolution of these cropped
images has been increased by two.

In the next step, we apply the stream function optical flow method and the quasi-

geostropic optical flow algorithm to the images shown in Fig. 7.8. The vector field

from the stream function method captures a reasonable solution to the boundary of

the GRS, but the flow inside is not accurate. On the other hand, the quasi-static

method reconstructs a reasonable solution to the GRS for both the boundaries and

the interior. The solutions from the stream function method and the quasi-static

method are shown in images (a) and (b) of Fig. 7.9, respectively.

the computed flow field from both methods capture upper part of the GRS flow

accurately. Also, the interior flow in the upper half of the GRS are reconstructed

well. However, the quasi-static method captures the lower part of the GRS flow over

the stream function method.

One way of extending the quasi-static method is to introduce different data fideli-

ties and different regularization terms to combine with quasi-static energy functional.

Our interest, however, is to extend this method towards the multi-time step method

as we expect to apply this algorithm on images of time dependent systems. Therefore,

in Sec. 7.6, we discuss the quasi-static Multi-Time Step Method.

152

(a) stream function flow (b) quasi-static flow

Figure 7.9: Computed flow on GRS – Image (a) shows the computed velocity field
for the images shown in Fig. 7.8 using stream function method. Image (b) shows the
computed vector field from the quasi-static method. Both solutions are reasonable
for the boundaries of the GRS. The quasi-static method tries to produce a vortex
flow inside the GRS as the expected flow field shown in [19].

7.6 Quasi-Static Multi-Time Step Method

We now apply the a multi-times Step method as introduced in Chapter 6 for the quasi-

static optical flow approach using the energy functional we developed in Eq.(7.10).

Multi-time step method allows us to impose regularity in time direction and it pro-

vides a continuity of the flow in time direction. We explained the construction of

multi-time step method in Chapter 6, and we are going to follow the same steps to

derive the multi-time step method for quasi-static formulation. Before writing the

general version of the multi-time step method, we consider the step size n = 2 and

develop the energy functional. Since we are going to compute two stream functions

ψ1 and ψ2 simultaneously, we first obtain two energy functionals corresponding to ψ1

and ψ2 using the Eq.(7.10) and then add them together. Next we add the functional

in Eq.(6.3) to the functional we obtained in the previous step with a weighting pa-

153

rameter β to emphasize the close relationship between two the stream functions. The

resulting energy functional to be minimized becomes

E(ψ1, ψ2) =
∫

Ω
(I1t − I1xψ1y + I1yψ1x)2 dΩ + α

∫
Ω

(ψ2
1xx + ψ2

1yy + ψ2
1xy + ψ2

1yx)dΩ

+ γ
∫

Ω
(ψ1yψ1yx − ψ1xψ1yy − fψ1x)2 dΩ

+ γ
∫

Ω
(−ψ1yψ1xx + ψ1xψ1xy − fψ1y)2 dΩ

+ β
∫

Ω
(ψ1 − ψ2)2 dΩ +

∫
Ω

(I2t − I2xψ2y + I2yψ2x)2 dΩ

+ α
∫

Ω
(ψ2

2xx + ψ2
2yy + ψ2

2xy + ψ2
2yx)dΩ

+ γ
∫

Ω
(ψ2yψ2yx − ψ2xψ2yy − fψ2x)2 dΩ

+ γ
∫

Ω
(−ψ2yψ2xx + ψ2xψ2xy − fψ2y)2 dΩ. (7.28)

To determine the optimal ψ1 and ψ2, we need at least three images which represent

three consecutive time instances of the observed system. Here the subscript ’1’ denotes

all the terms between images 1 and 2 and the subscription ’2’ denotes all the terms

between images 2 and 3. Since there are two functions, ψ1 and ψ2 in the functional,

there will be two Euler-Lagrange equations to be solved for ψ1 and ψ2. Apart from the

term
∫
Ω (ψ1 − ψ2)2 dΩ, contributions from the other integrals to the Euler-Lagrange

equations can be directly obtained from the Eq.(7.22) by substituting ψ1 and ψ2.

The new contributions for the Euler-Lagrange equations for ψ1 and ψ2 from the∫
Ω (ψ1 − ψ2)2 dΩ are 2 (ψ1 − ψ2) and −2(ψ1 − ψ2), respectively. The resulting Euler-

Lagrange equations are given by

A∗1(I1t + A1ψ1) + α(B∗ +B)ψ1 + β(ψ1 − ψ2) + γGQG(ψ1) = 0

A∗2(I2t + A2ψ2) + α(B∗ +B)ψ2 − β(ψ1 − ψ2) + γGQG(ψ2) = 0 (7.29)

154

As we derived for n = 1, we are going to build an iterative method to solve the

system. The solution z = [ψ1, ψ2]T is obtained from the gradient descent method by

solving the iterative scheme as

zk+1 = zk −∆τw
(
zk
)
, (7.30)

where

w
(
zk
)

=


A∗1(I1t + A1ψ

k
1) + α(B∗ +B)ψk1 + β(ψk1 − ψk2) + γGQG(ψk1)

A∗2(I2t + A2ψ
k
2) + α(B∗ +B)ψk2 − β(ψk1 − ψk2) + γGQG(ψk2)

 .

Stopping criteria is similar to the step size n = 1 and the initial condition z0 is

determined as we explained in the case of n = 1 . To determine a suitable initial

condition, we use the fixed point iteration method which we introduced in Eq.(7.25)

for n = 1. Extending the procedure to n = 2, the system to be solved for zm+1 is

zm+1 = K−1b(zm), (7.31)

where

zm+1 =


ψm+1

1

ψm+1
2

 , K =


A∗1A1 + α(B∗ +B) 0

0 A∗2A2 + α(B∗ +B)



and b(zm) =


−A∗1I1t − β(ψm1 − ψm2)− γGQG(ψm1)

−A∗2I2t + β(ψm1 − ψm2)− γGQG(ψm2)

 .

155

As noted in the case of n = 1, the number of iterations for the fixed point method is

smaller than 10.

Continuing in this manner for any finite number of stream functions, we can

generalize the multi-time step method for the quasi-static approach. We now consider

computing n stream functions at a time. Then the energy functional corresponding

to all the stream functions can be written as

E(ψ1, ψ2, ..., ψn) =
n∑
i=1

∫
Ω

(Iit − Iixψiy + Iiyψix)2 dΩ

+ α
n∑
i=1

∫
Ω

(ψ2
ixx + ψ2

iyy + ψ2
ixy + ψ2

iyx)dΩ

+ β
n−1∑
i=1

∫
Ω

(ψk − ψk+1)2 dΩ

+ γ
n∑
k=i

∫
Ω

(ψiyψiyx − ψixψiyy − fψix)2 dΩ

+ γ
n∑
k=i

∫
Ω

(−ψiyψixx + ψixψixy − fψiy)2 dΩ (7.32)

Since there are n stream functions in the functional in Eq.(7.32), we take the first

variation, or the gradient, of the functional with respect to each argument variable

ψs for s = 1, 2, ...n. This leads to n Euler-Lagrange equations for the functional in

Eq.(7.32) and can be written as

A∗1(I1t + A1ψ1) + β(ψ1 − ψ2) + α(B +B∗)ψ1 + γGQG(ψ1) = 0, for s = 1

A∗s(Ist + Asψs) + β(−ψs−1 + 2ψs − ψs+1) + α(B +B∗)ψs + γGQG(ψs) = 0,

for s = 2, 3, ...n− 1,

A∗n(Int + Anψn) + β(ψn−1 − ψn) + α(B +B∗)ψn + γGQG(ψn) = 0, for s = n,

156

where As = (−IsxDy + IsyDx)∀k, B = DxxD
∗
xx + DyyD

∗
yy + DxyD

∗
xy + DyxD

∗
yx and

GQG(ψs) is defined as in the Eq.(7.20). Then we determine the optimal ψ1, ψ2, ..., ψn

from the following gradient descent iterative procedure,

zk+1 = zk −∆τw
(
zk
)
, (7.33)

where w
(
zk
)
is obtained as



A∗
1(I1t +A1ψ

k
1) + β(ψk

1 − ψk
2) + α(B +B∗)ψk

1 + γGQG(ψk
1)

A∗
2(I2t +A2ψ

k
2) + β(−ψk

1 + 2ψk
2 − ψk

3) + α(B +B∗)ψk
2 + γGQG(ψk

2)

...

A∗
n−1(I(n−1)t +An−1ψ

k
n−1) + β(−ψk

n−2 + 2ψk
n−1 − ψk

n) + α(B +B∗)ψk
n−1 + γGQG(ψk

n−1)

A∗
n(Int +Anψ

k
n) + β(ψk

n−1 − ψk
n) + α(B +B∗)ψk

n + γGQG(ψk
n)



and zk =

ψk1 ψk2 . . . ψkn

T .
Again to determine a suitable initial condition for zk, we extend the fixed point

method in Eq.(7.25) to n stream functions as

zm+1 = K−1b(zm), (7.34)

where

K =



A∗1A1 + α(B∗ +B)

A∗2A2 + α(B∗ +B)

. . .

A∗n−1An−1 + α(B∗ +B)

A∗nAn + α(B∗ +B)


,

157

zm+1 =



ψm+1
1

ψm+1
2

...

ψm+1
n−1

ψm+1
n


and b(zm) =



−A∗1I1t − β(ψm
1 − ψ

m
2)− γGQG(ψm

1)

−A∗2I2t − β(−ψm
1 + 2ψm

2 − ψ
m
3)− γGQG(ψm

2)

...

−A∗n−1I(n−1)t − β(−ψm
n−2 + 2ψm

n−1 − ψ
m
n)− γGQG(ψm

n−1)

−A∗nInt + β(ψm
n−1 − ψ

m
n)− γGQG(ψm

n)


.

For the fixed point method, we can use any initial condition which produces a rea-

sonable input for the gradient descent method.

Now the quasi-static multi-time step algorithm can be applied to Jupiter’s atmo-

sphere which we introduced in Sec. 7.5 and which is available at [102]. Fig. 7.10 shows

three consecutive images of the same sequence we presented in Sec. 7.5 and images

(a) - (c) show 10th, 11th and 12th images of the sequence.

158

Images (a) - (c) in Fig. 7.11 show the computed flow fields from the quasi-static

method with the step size n = 1, 2 and 3, respectively on the image (a) in Fig. 7.11. In

these computations, we selected the weighting factor γ for the quasi-static term to be

0.092 and the regularization parameters for n = 1, 2 and 3 are α = 10−6, 3×10−6 and

8×10−6, respectively. In each case, the algorithm was able to capture the vortex flow

very accurately. However, when the step size increases, the flows near the boundary

of the vortex (GRS) improve.

159

(a) image 10

(b) image 11

(c) image 12

Figure 7.10: GRS image sequence – Images (a) - (c) show 10 - 12 cropped images from
the initial images are shown in Fig. 7.8. The complete data set is available at [102].

160

To check accuracy of the computed velocity fields near the GRS from the quasi-

static algorithm, we can apply the computed flow fields to check one of the interesting

features of the GRS. This interesting feature is that the points inside the GRS rarely

leave the GRS. First we created a handmade boundary for the GRS. Image (a) in

Fig. 7.12 shows the GRS boundary in black and the points inside the GRS are red

whereas the points outside the GRS are green. Image (a) represents the initial po-

sition. Image (b) shows the positions after 25 time units when we integrate the

positions in image (a) using the computed velocity from the quasi-static multi-time

step method n = 2. Apart from a few points, it can be observed that the points on

the inside and on the outside do not cross the boundary. This result validates the

accuracy of the quasi-static method.

161

(a) flow with n = 1

(b) flow with n = 2

(c) flow with n = 3

Figure 7.11: Quasi-Static multi-time step flow - images (a) - (c) shows the computed
flow from the quasi-static multi-time step method on the image (a) in Fig. 7.10 with
step sizes n = 1, 2 and 3, respectively. Resulting flow fields from each step size are
reasonable, especially around the GRS. It is clearly visible that the vortex structure
improves with the step size.

162

(a) initial density

(b) density after 25 images

Figure 7.12: GRS particle advection – Images (a) shows points inside GRS and points
outside the GRS using a handmade boundary. We integrated the points in image (a)
using the computed flow from the quasi-static multi-time step method with n = 2.
Positions after 25 images are shown in image (b). Other than a few points, inside
and outside points do not cross the boundary.

163

Chapter 8

Lagrangian Coherent Structures

In the first seven chapters, we discussed the computation of vector fields using an

optical flow approach. Then we extended the method for various directions to adopt

the Horn and Schunck optical flow algorithm for real world applications. After all

these implementations, we employ the computed flow fields of an observed system to

analyze the dynamics of the observed system. We now present the important role the

velocity field plays in analysis of dynamics in fluid systems.

Scientists are interested in analyzing systems not only on the earth, but also on

the other planets. In such scientific analysis, scientists employ various techniques

to analyze systems. Since we are interested in fluid systems, we can narrow our

discussion to the analysis of fluid systems. Some popular approaches used in analyzing

fluid systems are developed by applying the transfer operator method [1,103–106] and

determining Lagrangian coherent structures [1], and coherent sets [8].

Determining the transport and mixing barriers is an important part of the study

of fluid systems such as ocean currents, heat waves, and cloud movements. These

transport and mixing barriers help us to analyze the system as well as to predict

the system behavior. In many cases, Lagrangian Coherent Structures (LCSs) are

employed to determine the transport and mixing of fluid systems.

164

Definition 7. [7] Lagrangian Coherent Structures are the ridges in the FTLE field.

Ridges are special gradient lines of the FTLE field that are transverse to the direction

of minimum curvature.

In some recent work, LCSs are used to identify mesoscale oceanic eddies from

surface ocean currents [2] and to predict how to affect the changes in flow to the

transport and mixing [107]. Common approaches use to determine Lagrangian co-

herent structures of fluid systems are to compute Finite Time Lyaponov Exponents

(FTLE) [6, 108, 109] or Finite Size Lyaponov Exponents (FSLE) [110] and then ex-

tract the LCSs from the computed FTLE or FSLE field.

In this chapter we determine LCSs to analyze transport and mixing of fluid sys-

tems based on Finite Time Lyapunov Exponents. The extracted LCSs provide the

skeleton of pseudo-barriers to transport and mixing in dynamical systems and they

are of co-dimension one relative to the dimension of the considered system. In other

words, LCSs separate the dynamically distinct regions in a dynamical system. These

structures are not visible and are hard to see directly from the vector fields or by

evolving the trajectories [7, 111]. The flux of particles through the LCSs are zero or

close to zero [7, 112] with sufficiently large integration time for the computation of

FTLE. Since the computation of FTLE requires velocity fields governing the system

which we are interested in, as an application of the computed vector fields, we will

discuss a transport analysis inferred directly from observed spatio-temporal movie

data of a particular system. Next we introduce the numerical computation of finite

time Lyapunov exponents for given velocity data in Sec. 8.1.

8.1 Mixing and Transport Barriers

Toward the identification of mixing and transport barriers [1, 113–115], we compute

finite time Lyapunov exponents which are scalar values for each point in the domain

165

D of the system as explained in [6, 108]. Then we extract LCSs from the computed

FTLE field on D and the flux across these structures are almost zero [7, 112].

A practical approach of computing FTLE of a time-dependent velocity field is to

Figure 8.1: Separation of two points – Two points with initial distance δ evolves for
time period T . The distance between two points after time T is ε.

measure the local stretching rate over a finite time interval [6,109]. Fig. 8.1 shows the

evolution of two nearby points with the initial distance δ, after time period T . The

final distance between the two considered points is ε. The stretching rate between

two points over the time interval T is computed as

FTLE(x, t, T) = 1
|T |

ln
(
ε

δ

)
. (8.1)

166

When we compute the FTLEs numerically, however, we use a simpler approach which

we explain next. In this case, for a given point x = 〈x(t), y(t)〉, a flow map φT of

x is obtained by evolving x over a time period [t, t + T], according to the velocity

components v = 〈u(x, y, t), v(x, y, t)〉. Then the Jacobian matrix J = dφT (x)
dx of the

flow map φT is obtained and the finite time strain tensor of v = 〈u(x, y, t), v(x, y, t)〉

along the trajectory x = 〈x(t), y(t)〉 is obtained as

M = dφT (x)∗
dx

dφT (x)
dx

, (8.2)

where A∗ is the adjoint of A. Then the FTLE value at a point x over time T is given

by

σT = 1
|T |

ln
√
λmax(M). (8.3)

When the FTLEs are computed for the entire domain of the system, the ridges of

the FTLE fields are extracted as the LCSs. The LCSs in the FTLE field are spatial

gradient lines that are transverse to the direction of minimum curvature. These LCSs

are suggested to act as pseudo barriers to mixing and transport of the system.

In another aspect, LCSs can be viewed as a stable or an unstable manifold of a

hyperbolic fixed point. We will consider two points on either side of a stable manifold

(red) of a hyperbolic fixed point as shown in Fig. 8.2 to explain this alternative

view. Now, when we integrate the two points forward in time, the points move away

from each other and they do not cross the stable manifold. The same scenario can

be observed when we integrate two points on either side of an unstable manifold

backward in time. In this case also, the points separate after a sufficient time, and

they do not cross the unstable manifold. Now we will illustrate LCSs using numerical

examples and the following two examples show the FTLE field for a closed form of

system.

167

Figure 8.2: LCS as a stable manifold – Two points on either side of a stable manifold
(red) in a hyperbolic fixed point are advected forward in time. After a sufficient time,
they move away from each other and they do not cross the stable manifold.

8.1.1 Example: Double Gyre

For instance, if we consider the non-autonomous double gyre with the stream function

ψ(x, y, t) = C sin(πf(x, t)) sin(πy), (8.4)

where f(x, t) = ε sin(ωt)x2 + (1 − 2ε sin(ωt))x over the domain D = [0, 2] × [0, 1].

Then the corresponding vector field can be obtained as

〈u, v〉 = 〈−πC sin(πf(x, t)) cos(πy), πC cos(πf(x, t)) sin(πy)∂f
∂x
〉, (8.5)

where C, ω and ε are parameters to be selected. If we choose C = 1 and ε = 0, then the

flow fields are time independent and the resulting system is known as an autonomous

double gyre. We first compute the FTLE values over the domain D = [0, 2] × [0, 1]

168

using the autonomous vector field as shown in image (a) in Fig. 8.3 with T = 10.

That is, we use the same vector field for 10 time instances. Image (b) in Fig. 8.3

shows the FTLE field for the autonomous double gyre. Red represents high FTLE

values whereas blue represents low FTLE values. The red ridges are the transport

barriers which we often called LCSs.

(a)

(b)

Figure 8.3: Autonomous double gyre – Image (a) shows the vector field of the au-
tonomous double gyre and image (b) shows the computed FTLE field with T = 10.
Red ridges are the transport barriers.

In [7], the authors have proven that flux across the LCS is close to zero and hence

it is difficult for fluids in the system to cross the LCS. Therefore these LCSs act as

169

barriers to the mixing and transport. According to the above definition, the LCSs

for the autonomous double gyre explain that the fluids in the domains [0, 1] × [0, 1]

and [1, 2]× [0, 1] can not cross the barriers and hence they do not mix with each other.

(a)

(b)

Figure 8.4: Non-autonomous double gyre – The flow field for the non-autonomous
double gyre at time t = 13 and the computed FTLE field for T = 15 are shown in
images (a) and (b) respectively. Red ridges are the transport barriers.

We now change the parameters so that we have time dependent velocity fields. We

choose the parameters C = 0.1, ω = 2π
10 and ε = 0.1. The vector field that represents

〈u, v〉 at t = 13 is shown in image (a) of Fig. 8.4 and the computed FTLE field using

170

〈u, v〉 with T = 15 is shown in the image (b) of Fig. 8.4. The red represents relatively

high FTLE values while the blue represents relatively small FTLE values.

The autonomous and non-autonomous double gyres are examples of closed form

of systems. However, in real applications, we may not have equations to determine

velocity components and may have to use approximate velocity fields to compute

FTLE values. Next we explain an application of FTLE on oceanic data which is not

expressed in closed form of equations.

8.1.2 Example: Gulf of Mexico Oil Spill

In this example, we analyze the dynamics of the oil spill in the Gulf of Mexico which

arose due to a failure of an oil well cap below the Deepwater Horizon rig on April 20,

2010. This was a man-made disaster. By July 15th, 2010 over 200 million gallons of

crude oil spilled causing the deaths of thousands of animals. Some of the oil reached

the Gulf Stream in just a few days was then carried around Florida and into the

Atlantic Ocean.

171

Figure 8.5: Satellite view – The satellite view of the Gulf of Mexico near Louisiana
during the oil spill. The image was taken by NASA’s Terra satellite on May 24, 2010.
The spreading oil slick is visible and it can see in white.

In Fig. 8.5, a satellite image shows a view of the Gulf of Mexico off the coast of

Louisiana. This image was taken by NASA’s Terra satellite on May 24, 2010. Thirty-

four days after the explosion, the oil had spread over a large area is clearly visible in

white. Because the Gulf Stream carried oil into the Atlantic, it was predicted that a

large portion of the oil would thus be spread into the Atlantic. However, the amount

of oil spread in Atlantic was substantially reduced as there was a natural barrier to

the oil flow due to a development of a natural eddy in the month of July 2010.

We now determine the Lagrangian coherent structures via computing FTLE to

analyze the dynamics of the oil spill in the region of the Gulf of Mexico. To compute

172

Figure 8.6: Gulf Velocity Field – Vector field from the HYCOM model is available
in [116] on May 24, 2010. The image covers the velocity field in the area of the Gulf
of Mexico where the longitudes and the latitudes are displaced. The Gulf Stream is
clearly visible in the flow field and is close to the south of Louisiana near the source
of the oil spill.

FTLE, the time dependent velocity fields of the considered region are required. Since

the Gulf of Mexico is an interesting place for many researchers, a model to compute

velocity fields was readily available. We obtained the velocity data of the Gulf of Mex-

ico during the oil spill from the HYbrid Coordinate Ocean Model (HYCOM) which is

freely available in [116]. The data set was generated, as explained in detail [117,118],

by developing a PDE model that describes the oceanic flow. The required data was

collected from several institutes.

Fig. 8.6 shows the velocity field generated from the HYCOM model on May 24,

2010. The interested domain of the image covers the Gulf of Mexico region. In the

velocity field, the Gulf Stream can be observed with relatively high velocity magni-

tudes very close to the south of Louisiana near the source of the oil spill.

173

Figure 8.7: FTLE on May 24, 2010 – Computed FTLE field for the Gulf of Mexico
on May 24, 2010 using the HYCOM data. The integration time is T = 72 hours and
red ridges are the strong transport barriers for the fluid.

We now compute the FTLE values on the domain which is shown in Fig. 8.6.

Unlike with double gyre, we do not have closed form of expressions for the velocity

components u and v. Therefore, we use HYCOM data which comes as two arrays

for the velocity components u and v sampled on a grid of the domain in each day.

In other words, the velocity field is an array of V(x, t), where x and t are the grid

on the domain and the discrete time respectively. The time represents days; hence

we interpolate data using cubic splines to get flow fields for every hour. Fig. 8.7

represents the FTLE for a late hour on May 24, 2010, using HYCOM velocity fields

with T = 72 hours. The red represents relatively high FTLE values and the blue

represents relatively low FTLE values. The land is represented by green. The oil on

the same day is shown in Fig. 8.5 and the initial velocity field is shown in Fig. 8.6.

The transport barriers appear in red. Flux through the barriers is zero or small. A

detailed analysis of the FTLE field by evolving tracer particles can be found at [1].

174

Figure 8.8: Vector field on July 27, 2010 – Image shows the HYCOM velocity field
for July 27, 2010. There is a circulation in the center that is not connected to the
Gulf Stream. Hence the central eddy does not transport oil to the Gulf Stream and
that reduced the spread of oil.

As we mentioned, there were many initial predictions that the oil would move

to Gulf Stream and then spread quickly. In [119], it was predicted the Gulf Stream

would carry oil as far north as Cape Hatteras, North Carolina and the loop current

that occurred in the center of Gulf would speed up this process. However, this phe-

nomenon did not happen. Fig. 8.8 shows the HYCOM velocity field for July 27,

2010. It can be observed that there is a circulation loop in the center of the Gulf not

connected to the Gulf stream. This circulation loop, known as the “Eddy Franklin,”

occurs predictably once a year. Because of the circulation of this eddy, oil did not

move to the Gulf stream as expected earlier. However, in the flow field of May 24,

2010 in Fig. 8.6, the Gulf stream was connected to the flow in the center of Gulf and

hence oil spread out quickly.

175

Figure 8.9: FTLE field on July 27, 2010 – As seen in the vector field in Fig. 8.8, the
central eddy and the Gulf Stream are not connected thus reduce oil transport into
the Gulf Stream. This can be observed in the FTLE field from the two orange ridges,
in west of Florida which act as barriers to oil transport.

Again, we compute the FTLE field on the Gulf of Mexico domain using the ve-

locity field in Fig. 8.8 for July 27, 2010 as the initial flow. Similar to the previous

calculation, we set the evolution time at T = 72 hours. Fig. 8.9 shows the computed

FTLE for the day of July 27, 2010. From the FTLE field, it is clearly visible that

there is an orange ridge that acts as the transport barrier to the oil. This barrier

reduced the amount of oil transported by the Gulf Stream to the Atlantic Ocean.

The above explanation and results reported in Sec. 8.1.1 give a strong validation

for the FTLE approach of extracting LCSs of both a closed form system and a non-

closed system. So far, in the computations of FTLEs we used readily available vector

fields; however, in the rest of the work here, we are going to use computed vector

fields from optical flow methods.

176

8.2 FTLE field for the SST data

For the SST data set which we introduced in Sec. 3.3.1, we do not have any closed

form equations to compute the velocity fields. Therefore, we apply the optical flow

methods to compute the velocity fields before we compute the FTLE values.

(a) image 1 (b) image 2

Figure 8.10: SST images – Images (a) and (b) show two consecutive images of the
SST data set on August 1st, 2002. Red represents low temperature whereas orange
represents high temperature. Green is the land.

Fig. 8.10 shows two time adjacent images of the SST time series on August 1st,

177

2002. First, we compute the FTLE field for the whole domain of the Sea Surface

Temperature data from the computed velocity field using the conservation of im-

age intensity data fidelity and the smoothness regularization term with the stream

function formulation.

(a) (b)

Figure 8.11: SST flow and FTLE field – The computed flow field for the SST data on
the image (a) in Fig. 8.10 from CI data fidelity and smoothness regularization term
in stream function formulation is shown in image (a). The FTLE field with T = 15
on image (a) in Fig. 8.10 is shown in image(b).

When we compute the FTLE field, we use T = 15 hours and hence we have to

reconstruct the velocity fields for the next 14 images. Therefore we apply the optical

flow algorithm to reconstruct 15 velocity fields starting on the image (a) in Fig. 8.10.

The computed FTLE field from the reconstructed velocity fields is shown in image

178

(a). Red represents the high FTLE value and blue represents the low FTLE values.

(a) (b)

Figure 8.12: SST flow and FTLE field – The computed flow field for the SST data
and the FTLE field are shown in images (a) and (b) respectively

Next, we compute the FTLE field for the selected region in Fig. 3.8 to focus on the

local structures in the SST data set. We use the computed flow from the multi-time

step method with n = 3. In Fig. 8.12, the flow field obtained for the SST data on

August 2nd, 2002 is shown in image (a) and the FTLE field obtained from those com-

179

puted vector fields is shown in (b). The blue represents relatively low FTLE values

and the red represents relatively high FTLE values. The red ridges, LCSs, act as the

mixing barriers to the heat.

8.3 FTLE field for the Jupiter

Finally, we compute the FTLE field for the Jupiter data set which we introduced

in Sec. 7.5. Three consecutive images are shown in Fig. 7.10. We use the quasi-

geostrophic multi-time step method with step size 2. The computed flow on the first

image is shown in image (a) of Fig. 8.13 and the computed FTLE field is shown in

image (b) using the quasi-gestrophic flow fields. Here the integration time T = 10,

which is equal to 2 Jovian days.

The LCSs appear in red which correspond to relatively high FTLE values. It can

be observed that there is a ridge around the GRS and this verifies the barrier to the

points inside the GRS.

180

(a)

(b)

Figure 8.13: GRS flow and FTLE field – The computed flow field for the GRS data and
the FTLE field are shown in images (a) and (b) respectively. Flow field is computed
from quasi-geostrophi multi-time step method with n = 2. The integration time for
the FTLE is 2 Jovian days.

181

Chapter 9

Conclusion and Future work

In this thesis, we have adopted optical flow algorithms used for capturing rigid body

motion to capture fluid motion in terms of stream functions providing many advan-

tages. In the method of rigid body motion, the u-v method, the velocity components

u and v are reconstructed by minimizing a functional that consists of a data fidelity

and a regularization term. In our method, however, we have reconstructed a stream

function and then computed the velocity components u and v from the simpletic gra-

dient of the computed stream function. The stream function formulation has several

advantages over the u-v formulation. The primary advantage of the stream function

method is that numerically inexpensive as we need to solve the system for only one

unknown function rather than two functions in u-v formulation. Also, the stream

function formulation can be constructed for any existing energy functional in the u-v

formulation. Furthermore, simple numerical schemes such as LU factorization and

Gaussian elimination can be used to solve the Euler-Lagrange equation except for few

regularization terms. The simple implementation is another advantage of the stream

function method.

The stream function formulation plays an important role in regularization as well.

In regularizing stream function formulation, we can impose regularity on the flow,

182

whereas in the u-v formulation we impose regularity in the flow components. As we

have explained in [37], when the expected flow is sparse, we use L1 regularization of

flow components in the u-v formulation which enhances sparsity of u and v but not

the sparsity of flow. In the stream function formulation, we use total variation of the

stream function as the regularization term which leads to a sparse flow. Thus, in the

stream function formulation, we can impose regularity on the governing flow while in

the u-v formulation regularity is on the flow components.

Irrespective of the stream function formulation or the u-v formulation, when we

include the total variation regularization term in the energy functional, the resulting

Euler-Lagrange equations can not be solved as a linear system. Due to the existence

of nonlinear terms in the Euler-Lagrange equations, we often use the gradient descent

method to solve systems. As we have shown in Chapter 5, the convergence of the gra-

dient descent approach is very slow. Therefore, we introduced the Lagged Diffusivity

fixed point method to solve the nonlinear Euler-Lagrange equations. The introduc-

tion of the lagged diffusivity fixed point method to the optical flow computations has

not only made the convergence faster but also enabled us to capture different flow

patterns, which were not obtainable with the gradient descent method.

As we have seen in Chapters 3, 4 and 5, the development of the stream func-

tion formulation and the introduction of lagged diffusivity fixed point algorithm for

the total variation regularized optical flow computations produced desired solutions.

Our next goal was to apply these efficient algorithms to compute velocity fields in

observed fluid systems. Although the results were promising, we noticed some dis-

continuities in the flow fields in the temporal direction. To overcome these temporal

discontinuities, we developed the multi-time step method to compute n optical flow

fields at a time from a sequence of images of an observed system. In this case we

imposed the regularity in the time direction assuming that the characteristics of two

consecutive stream functions are close to each other. Therefore, from this algorithm

183

we can emphasize the regularity not only spatially, but also in time. The creation

of the multi-time step method served to avoid the discontinuities of the flow in time

direction.

The satellite images obtained for large fluid systems such as in the ocean and

the atmosphere are usually affected by the Coriolis force as the planet rotates. If

the flow fields are reconstructed for images of this type, the resulting vector fields

mush be corrected. Therein we have introduced quasi-static optical flow algorithm

by incorporating quasi-static equations in the optical flow energy functional. In this

way, we were able to eliminate the Coriolis effect from flow fields. This was shown in

the results obtained from the synthetic data as well as real data discussed in Chapter

7.

Finally, we have computed the FTLE fields for the sea surface temperature data

and Jupiter’s atmospheric data to uncover the Lagrangian coherent structures from

the reconstructed vector fields. The Lagrangian coherent structures for the Jupiter

data set in Chapter 8 show promising transport barriers around the Great Red Spot,

which validates the accuracy of the reconstructed velocity fields.

During the process of developing the above mentioned algorithms, the determi-

nation of the best regularization parameter α was always a critical step. According

to the results discussed in Chapter 4, none of the common methods generally work

on this regard. Therefore, more importantly, our future goal is to develop a method

to determine best regularization parameter for a general optical flow algorithm. The

method anticipated may focus on not only a single parameter but also spatially de-

pendent parameters.

In addition to the selection of regularization parameter, we have experienced

another difficulty with determining the optimal step size n in the multi-time step

method. The lower n causes discontinuity in time and the larger n causes discontinu-

ities between the nth th flow field and (n+1)th flow field. Therefore, the determination

184

of optimal n would be a necessary task in future work.

Furthermore, we expect to expand our optical flow algorithms to compute optical

flow fields from images with large displacements. Sometimes in real applications, two

consecutive images are taken with a large time interval or the magnitudes of the ve-

locity fields are high, and hence the displacement is large. Currently, we interpolate

the images by adding artificial frames between two actual frames. It would be great

if we could perform both steps at once from minimizing the energy functional. Some

work about large displacement optical flow methods can be found in [120,121].

In the quasi-static optical flow method, we used the gradient descent algorithm as

the numerical scheme. There were some instances where the algorithm did not con-

verge even after 100,000 iterations as discussed in Chapter 7. Perhaps, incorporating

a faster numerical scheme in the quasi-static optical flow method would be a task of

importance in the future.

Further, we can consider the changes of level sets [122] of image brightness between

two consecutive images rather than considering the pixel wise brightness changes. One

advantage of this approach is to compute the flow field of a patch with same color

where the usual optical flow methods have difficulty computing such flows with only

two images. Fig. 9.1 is the contour plot of the image (a) in Fig. 6.9 which represents

Jupiter’s atmospheric motion.

185

Figure 9.1: Contour plot of GRS – Image shows a contour plot of the Jupiter’s
atmospheric motion which is shown in image (a) of Fig. 6.9.

186

Bibliography

[1] E.M. Bollt, A. Luttman, S. Kramer, and R. Basnayake. Measurable dynamics
analysis of transport in the Gulf of Mexico during the oil spill. International
Journal of Bifurcation and Chaos, 22(03), 2012.

[2] FJ Beron-Vera, MJ Olascoaga, and GJ Goni. Oceanic mesoscale eddies as re-
vealed by lagrangian coherent structures. Geophysical Research Letters, 35(12),
2008.

[3] FJ Beron-Vera, Michael G Brown, MJ Olascoaga, Irina I Rypina, H Koçak,
and Ilya A Udovydchenkov. Zonal jets as transport barriers in planetary atmo-
spheres. arXiv preprint arXiv:0803.2893, 2008.

[4] Sushil Shetty and Philip S Marcus. Changes in jupiter’s great red spot (1979–
2006) and oval ba (2000–2006). Icarus, 210(1):182–201, 2010.

[5] Francisco J Beron-Vera, María J Olascoaga, Michael G Brown, and Huseyin
Koçak. Zonal jets as meridional transport barriers in the subtropical and polar
lower stratosphere. Journal of the Atmospheric Sciences, 69(2):753–767, 2012.

[6] G. Haller. Lagrangian coherent structures from approximate velocity data.
Physics of fluids, 14:1851, 2002.

[7] Shawn C Shadden, Francois Lekien, and Jerrold E Marsden. Definition and
properties of lagrangian coherent structures from finite-time lyapunov expo-
nents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena,
212(3):271–304, 2005.

[8] Gary Froyland, Naratip Santitissadeekorn, and Adam Monahan. Transport in
time-dependent dynamical systems: Finite-time coherent sets. arXiv preprint
arXiv:1008.1613, 2010.

[9] B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelli-
gence, 17:185–203, 1981.

[10] University of otago, computer vision homepage, available at. http://www.cs.
otago.ac.nz/research/vision/. [Online; accessed 25-Oct-2013].

[11] Per Christian Hansen, James G Nagy, and Dianne P O’leary. Deblurring images:
matrices, spectra, and filtering, volume 3. Siam, 2006.

187

http://www.cs.otago.ac.nz/research/vision/
http://www.cs.otago.ac.nz/research/vision/

[12] Per Christian Hansen. Discrete inverse problems: insight and algorithms, vol-
ume 7. SIAM, 2010.

[13] P. C. Hansen. The L-curve and its use in the numerical treatment of inverse
problems. In P. Johnston, editor, Computational Inverse Problems in Elec-
trocardiology, Advances in Computational Bioengineering, pages 119–142. WIT
Press, 2000.

[14] D. Krawczyk-Stańdo and M. Rudnicki. The use of L-curve and U-curve in
inverse electromagnetic modelling. Intelligent Computer Techniques in Applied
Electromagnetics, pages 73–82, 2008.

[15] D. Krawczyk-StańDo and M. Rudnicki. Regularization parameter selection in
discrete ill-posed problems—the use of the U-curve. International Journal of
Applied Mathematics and Computer Science, 17(2):157–164, 2007.

[16] I.M. Gelfand and S.V. Fomin. Calculus of variations. Dover publications, 2000.

[17] Bernard Dacorogna, Bernard Dacorogna, Bernard Dacorogna, Bernard Da-
corogna, Egypt Mathematician, and Great Britain. Introduction to the Calculus
of Variations. World Scientific, 2004.

[18] Jim L Mitchell, Reta F Beebe, Andrew P Ingersoll, and Glenn W Garneau. Flow
fields within jupiter’s great red spot and white oval bc. Journal of Geophysical
Research: Space Physics (1978–2012), 86(A10):8751–8757, 1981.

[19] Xylar S Asay-Davis, Philip S Marcus, Michael H Wong, and Imke de Pater.
Jupiter’s shrinking great red spot and steady oval ba: Velocity measurements
with the ‘advection corrected correlation image velocimetry’automated cloud-
tracking method. Icarus, 203(1):164–188, 2009.

[20] G. M. Quénot, J. Pakleza, and T. A. Kowalewski. Particle image velocimetry
with optical flow. Experiments in Fluids, 25:177–189, 1998.

[21] Georges M Quénot, Jaroslaw Pakleza, and Tomasz A Kowalewski. Particle
image velocimetry using optical flow for image analysis. In 8th Int. Symposium
on Flow Visualization, pages 47–1, 1998.

[22] AM Fincham and GR Spedding. Low cost, high resolution dpiv for measurement
of turbulent fluid flow. Experiments in Fluids, 23(6):449–462, 1997.

[23] D. Auroux. Extraction of velocity fields for geophysical fluids from a sequence
of images. In Acoustics, Speech, and Signal Processing, IEEE Proceedings on
(ICASSP), pages 961–964, 2009.

[24] D. Auroux and J. Fehrenbach. Identification of velocity fields for geophysical
fluids from a sequence of images. Experiments in Fluids, 50(2):313–328, 2010.

188

[25] W. Bresky and J. Daniels. The feasibility of an optical flow algorithm for esti-
mating atmospheric motion. In Proceedings of the Eighth Int. Winds Workshop,
Beijing, China, pages 24–28, 2006.

[26] C. Cassisa, V. Prinet, L. Shao, S. Simoens, and C. L. Liu. Optical flow robust
estimation in a hybrid multi-resolution MRF framework. In Acoustics, Speech
and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on,
pages 793–796, 2008.

[27] Aaron Luttman, Erik Bollt, and Jason Holloway. An optical flow approach
to analyzing species density dynamics and transport. J. Comput. Math.,
30(3):249–261, 2012.

[28] Aaron Luttman, Erik Bollt, Ranil Basnayake, and Sean Kramer. A stream
function approach to optical flow with applications to fluid transport dynamics.
In Proc. Appl. Math. Mechanics, volume 11, pages 855–856, 2011.

[29] T. Corpetti, É. Mémin, and P. Pérez. Adaptation of standard optic flow methods
to fluid motion. In 9th Int. Symp. Flow Visualisation, pages 1–10, 2000.

[30] T. Corpetti, É. Mémin, and P. Pérez. Estimating fluid optical flow. In ICPR,
pages 7045–7048, 2000.

[31] T. Corpetti, É. Mémin, and P. Pérez. Dense estimation of fluid flows. IEEE
Trans. Pattern Anal. Machine Intelligence, 24(3):365–380, 2002.

[32] T. Corpetti, É. Mémin, and P. Pérez. Dense motion analysis in fluid imagery.
In A. Heyden, editor, Proc. 7th Eur. Conf. Computer Vision, pages 676–691,
2002.

[33] É. Mémin and T. Corpetti. Dense fluid flow estimation. Technical report,
INRIA, 2000.

[34] D. Suter. Motion estimation and vector splines. In Proc. Conf. Comp. Vision
Pattern Rec, pages 939–942. IEEE, 1994.

[35] T. Kohlberger, E. Mémin, and C. Schnorr. Variational dense motion estimation
using the helmholtz decomposition. In L. D. Griffin and M. Lillholm, editors,
Scale Space ‘03, volume 2695, pages 432–448, Isle of Skye, UK, 2003.

[36] Aaron Luttman, Erik Bollt, Ranil Basnayake, and Sean Kramer. A stream
function approach to optical flow with applications to fluid transport dynamics.
PAMM, 11(1):855–856, 2011.

[37] Aaron Luttman, Erik Bollt, Ranil Basnayake, and Sean Kramer. A framework
for estimating potential fluid flow from digital imagery. Chaos, 23(3), 2013.

[38] Timo Kohlberger, Étienne Mémin, and Christoph Schnörr. Variational dense
motion estimation using the helmholtz decomposition. In Scale Space Methods
in Computer Vision, pages 432–448. Springer, 2003.

189

[39] Curtis R Vogel. Computational methods for inverse problems, volume 10. Siam,
2002.

[40] Christoph Brune, Helmut Maurer, and Marcus Wagner. Detection of inten-
sity and motion edges within optical flow via multidimensional control. SIAM
Journal on Imaging Sciences, 2(4):1190–1210, 2009.

[41] J. Weickert, A. Bruhn, N. Papenberg, and T. Brox. Variational optic flow
computation: From continuous models to algorithms. In L. Alvarez, editor,
International Workshop on Computer Vision and Image Analysis, IWCVIAí03,
Las Palmas de Gran Canaria, 2003.

[42] Ashish Doshi and Adrian G Bors. Navier-stokes formulation for modelling tur-
bulent optical flow. In BMVC, pages 1–10, 2007.

[43] Hurricanes/tropical cyclones, nasa, available at. http://www.nasa.gov/
mission_pages/hurricanes/main/#.UnO-TOL-VEll. [Online; accessed 31-
Oct-2013].

[44] Solar system exploration, nasa, available at. http://solarsystem.nasa.
gov/multimedia/display.cfm?Category=Planets&IM_ID=13347l. [Online;
accessed 31-Oct-2013].

[45] National snow and ice data center, available at. https://nsidc.org/
cryosphere/arctic-meteorology/factors_affecting_climate_weather.
html. [Online; accessed 31-Oct-2013].

[46] Coriolis effect, available at. http://education.nationalgeographic.com/
education/encyclopedia/coriolis-effect/?ar_a=1. [Online; accessed 11-
01-2013].

[47] Benoit Cushman-Roisin and Jean-Marie Beckers. Introduction to geophysical
fluid dynamics: physical and numerical aspects, volume 101. Access Online via
Elsevier, 2011.

[48] Department of water resorces, available at. http://publicaffairs.water.
ca.gov/swp/swptoday.cfm. [Online; accessed 12-Sep-2012].

[49] C. R. Vogel. Computational Methods for Inverse Problems. Frontiers in Math-
ematics. SIAM, 2002.

[50] James R Cooper and Nicola Ritter. Optical flow for validating medical image
registration. In SIP, pages 502–506, 2003.

[51] Amir A Amini. A scalar function formulation for optical flow. In Computer
Vision—ECCV’94, pages 123–131. Springer, 1994.

[52] Caren Marzban and Scott Sandgathe. Optical flow for verification. Weather &
Forecasting, 25(5), 2010.

190

http://www.nasa.gov/mission_pages/hurricanes/main/#.UnO-TOL-VEll
http://www.nasa.gov/mission_pages/hurricanes/main/#.UnO-TOL-VEll
http://solarsystem.nasa.gov/multimedia/display.cfm?Category=Planets&IM_ID=13347l
http://solarsystem.nasa.gov/multimedia/display.cfm?Category=Planets&IM_ID=13347l
https://nsidc.org/cryosphere/arctic-meteorology/factors_affecting_climate_weather.html
https://nsidc.org/cryosphere/arctic-meteorology/factors_affecting_climate_weather.html
https://nsidc.org/cryosphere/arctic-meteorology/factors_affecting_climate_weather.html
http://education.nationalgeographic.com/education/encyclopedia/coriolis-effect/?ar_a=1
http://education.nationalgeographic.com/education/encyclopedia/coriolis-effect/?ar_a=1
http://publicaffairs.water.ca.gov/swp/swptoday.cfm
http://publicaffairs.water.ca.gov/swp/swptoday.cfm

[53] S Das Peddada and Robert McDevitt. Least average residual algorithm (lara)
for tracking the motion of arctic sea ice. Geoscience and Remote Sensing, IEEE
Transactions on, 34(4):915–926, 1996.

[54] Klaus Janschek, V Tchernykh, and M Beck. Performance analysis for visual
planetary landing navigation using optical flow and dem matching. In Proceed-
ings of the AIAA Guidance, Navigation and Control Conference, pages 21–24,
2006.

[55] Ranil Basnayake, Aaron Luttman, and Erik Bollt. A lagged diffusivity method
for computing total variation regularized fluid flow. Contemporary Mathematics,
586:59–66, 2013.

[56] J. J. Osborne, A. L. Kurapov, G. D. Egbert, and P. M. Kosro. Spatial and
temporal variability of the m2 internal tide generation and propagation on the
oregon shelf. Journal of Physical Oceanography, 41(11):2037–2062, 2013/05/29
2011.

[57] J. J. Osborne, A. L. Kurapov, G. D. Egbert, and P. M. Kosro. Spatial and
temporal variability of the M2 internal tide generation and propagation on the
Oregon shelf. Journal of Physical Oceanography, in press (DOI: 10.1175/JPO-
D-11-02.1), 2011.

[58] E. M. Bollt, A. Luttman, S. Kramer, and R. Basnayake. Measurable dynamics
analysis of transport in the gulf of mexico during the oil spill. Int. J. Bifurc.
Chaos, 22(3):1–12, 2012.

[59] Han-Dol Kim et al. Coms, the new eyes in the sky for geostationary remote sens-
ing. REMOTE SENSING–ADVANCED TECHNIQUES AND PLATFORMS,
page 235, 2012.

[60] M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for l1 regu-
larization: A comparative study and two new approaches. Machine Learning:
ECML 2007, pages 286–297, 2007.

[61] A Luttman. Introduction to Inverse Problems. Course Notes, Clarkson Univer-
sity, 2010.

[62] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU
Press, 2012.

[63] Andrĕı Tikhonov. Numerical methods for the solution of ill-posed problems.

[64] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow
estimation based on a theory for warping. In T. Pajdla and J. Matas, editors,
Proc. 8th Eur. Conf. on Computer Vision, volume 4, pages 25–36, 2004.

[65] Sergey I Kabanikhin. Inverse and Ill-Posed Problems: Theory and Applications,
volume 55. De Gruyter, 2011.

191

[66] D. Koppel, C.-M. Tsai, and Y.-F. Wang. Regularizing optical-flow computation
using tensor theory and complex analysis. In Computer Vision and Pattern
Recognition Workshops, 2008. CVPRW ’08. IEEE Computer Society Confer-
ence on, pages 1–6, 2008.

[67] John L Barron, David J Fleet, and Steven S Beauchemin. Performance of
optical flow techniques. International journal of computer vision, 12(1):43–77,
1994.

[68] Brendan McCane, Kevin Novins, D Crannitch, and Ben Galvin. On benchmark-
ing optical flow. Computer Vision and Image Understanding, 84(1):126–143,
2001.

[69] P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve.
SIAM Review, 34:561–580, 1992.

[70] Per Christian Hansen and Dianne Prost O’Leary. The use of the l-curve in
the regularization of discrete ill-posed problems. SIAM Journal on Scientific
Computing, 14(6):1487–1503, 1993.

[71] D. Krawczyk-Stado and M. Rudnicki. Regularization parameter selection in
discrete ill-posed problems – the use of the U-curve. Int. J. Appl. Math. Comput.
Sci., 17:157–164, 2007.

[72] D. Krawczyk-Stado and M. Rudnicki. The use of L-curve and U-curve in inverse
electromagnetic modelling. Intell. Comput. Tech. Appl. Electromagn., 119:73–
82, 2008.

[73] G. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21:215–223, 1979.

[74] M. A. Lukas. Strong robust generalized cross-validation for choosing the regu-
larization parameter. Inverse Problems, 24:034006, 2008.

[75] Daniela Calvetti, Per Christian Hansen, and Lothar Reichel. L-curve curvature
bounds via lanczos bidiagonalization. Electronic Transactions on Numerical
Analysis, 14:20–35, 2002.

[76] C. R. Vogel. Non-convergence of the L-curve regularization parameter selection
method. Inverse Problems, 12:535–548, 1996.

[77] M. Hanke. Limitations of the L-curve method in ill-posed problems. BIT,
36:287–301, 1996.

[78] Per Christian Hansen. The L-curve and its use in the numerical treatment
of inverse problems. IMM, Department of Mathematical Modelling, Technical
Universityof Denmark, 1999.

192

[79] Daniela Calvetti, Lothar Reichel, and A Shuibi. L-curve and curvature bounds
for tikhonov regularization. Numerical Algorithms, 35(2-4):301–314, 2004.

[80] David Suter. Motion estimation and vector splines. In Computer Vision and
Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Soci-
ety Conference on, pages 939–942. IEEE, 1994.

[81] Aaron Luttman, Erik Bollt, Ranil Basnayake, and Sean Kramer. A stream
function approach to optical flow with applications to fluid transport dynamics.
PAMM, 11(1):855–856, 2011.

[82] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total-variation based noise re-
moval algorithms. Physica D: Nonlinear Phenomena, 60:259–268, 1992.

[83] L. Rudin and S. Osher. Total variation based image restoration with free local
constraints. In Proc. 1st IEEE ICIP, volume 1, pages 31–35, 1994.

[84] Yunhai Xiao and Junfeng Yang. A fast algorithm for total variation image
reconstruction from random projections. arXiv preprint arXiv:1001.1774, 2010.

[85] Junzhou Huang, Shaoting Zhang, and Dimitris Metaxas. Efficient mr image
reconstruction for compressed mr imaging. Medical Image Analysis, 15(5):670–
679, 2011.

[86] Marius Drulea and Sergiu Nedevschi. Total variation regularization of local-
global optical flow. In Intelligent Transportation Systems (ITSC), 2011 14th
International IEEE Conference on, pages 318–323. IEEE, 2011.

[87] Andreas Wedel, Thomas Pock, Christopher Zach, Horst Bischof, and Daniel
Cremers. An improved algorithm for tv-l 1 optical flow. In Statistical and
Geometrical Approaches to Visual Motion Analysis, pages 23–45. Springer, 2009.

[88] Curtis R Vogel and Mary E Oman. Iterative methods for total variation de-
noising. SIAM Journal on Scientific Computing, 17(1):227–238, 1996.

[89] Donald Geman and Chengda Yang. Nonlinear image recovery with half-
quadratic regularization. Image Processing, IEEE Transactions on, 4(7):932–
946, 1995.

[90] Tony F Chan and Pep Mulet. On the convergence of the lagged diffusivity fixed
point method in total variation image restoration. SIAM journal on numerical
analysis, 36(2):354–367, 1999.

[91] Dominique Heitz, Etienne Mémin, and Christoph Schnörr. Variational fluid flow
measurements from image sequences: synopsis and perspectives. Experiments
in fluids, 48(3):369–393, 2010.

[92] Tianshu Liu and Lixin Shen. Fluid flow and optical flow. Journal of Fluid
Mechanics, 614:253–291, 2008.

193

[93] Ashish Doshi and Adrian G Bors. Robust processing of optical flow of fluids.
Image Processing, IEEE Transactions on, 19(9):2332–2344, 2010.

[94] T. Corpetti, D. Heitz, G. Arroyo, É. Mémin, and A. Santa-Cruz. Fluid experi-
mental flow estimation based on an optical-flow scheme. Experiments in Fluids,
40(1):80–97, 2006.

[95] Ranil Basnayake and Erik M Bollt. A multi-time step method to compute
optical flow with scientific priors for observations of a fluidic system. Ergodic
Theory, Open Dynamics, and Coherent Structures, 84(4):59–79, 2014.

[96] Office of sattellite operation, 2011.

[97] Jupiter’s cloud movements, available at. https://www.youtube.com/watch?
v=C_1hihXOAjw. [Online; accessed 09-01-2013].

[98] Coriolis effect , available at. http://en.wikipedia.org/wiki/Coriolis_
effect. [Online; accessed 09-01-2013].

[99] Solar system exploration, nasa , available at. http://solarsystem.nasa.gov/
planets/profile.cfm?Object=Jupiter. [Online; accessed 11-01-2013].

[100] Jupiter: Largest planet of the solar system , available at. http://www.space.
com/7-jupiter-largest-planet-solar-system.html. [Online; accessed 11-
01-2013].

[101] Philip S Marcus. Numerical simulation of jupiter’s great red spot. Nature,
331(6158):693–696, 1988.

[102] Photojournal , available at. http://photojournal.jpl.nasa.gov/catalog/
PIA02829. [Online; accessed 11-01-2013].

[103] Gary Froyland and Kathrin Padberg. Almost-invariant sets and invariant man-
ifolds—connecting probabilistic and geometric descriptions of coherent struc-
tures in flows. Physica D: Nonlinear Phenomena, 238(16):1507–1523, 2009.

[104] Erik M Bollt and Naratip Santitissadeekorn. Applied and Computational Mea-
surable Dynamics, volume 18. SIAM, 2013.

[105] Tian Ma and Erik Bollt. Differential geometry perspective of shape coherence
and curvature evolution by finite-time non-hyperbolic splitting. arXiv preprint
arXiv:1311.5457, 2013.

[106] Tian Ma and Erik M Bollt. Relatively coherent sets as a hierarchical partition
method. International Journal of Bifurcation and Chaos, 23(07), 2013.

[107] Hayder Salman, Jan S Hesthaven, Tim Warburton, and George Haller. Pre-
dicting transport by lagrangian coherent structures with a high-order method.
Theoretical and Computational Fluid Dynamics, 21(1):39–58, 2007.

194

https://www.youtube.com/watch?v=C_1hihXOAjw
https://www.youtube.com/watch?v=C_1hihXOAjw
http://en.wikipedia.org/wiki/Coriolis_effect
http://en.wikipedia.org/wiki/Coriolis_effect
http://solarsystem.nasa.gov/planets/profile.cfm?Object=Jupiter
http://solarsystem.nasa.gov/planets/profile.cfm?Object=Jupiter
http://www.space.com/7-jupiter-largest-planet-solar-system.html
http://www.space.com/7-jupiter-largest-planet-solar-system.html
http://photojournal.jpl.nasa.gov/catalog/PIA02829
http://photojournal.jpl.nasa.gov/catalog/PIA02829

[108] G. Haller and AC Poje. Finite time transport in aperiodic flows. Physica D:
Nonlinear Phenomena, 119(3-4):352–380, 1998.

[109] G. Haller. Finding finite-time invariant manifolds in two-dimensional velocity
fields. Chaos: An Interdisciplinary Journal of Nonlinear Science, 10:99, 2000.

[110] Francesco d’Ovidio, Vicente Fernández, Emilio Hernández-García, and
Cristóbal López. Mixing structures in the mediterranean sea from finite-size
lyapunov exponents. Geophysical Research Letters, 31(17), 2004.

[111] Illinois institute of technology , available at. http://mmae.iit.edu/shadden/
LCS-tutorial/overview.html. [Online; accessed 10-05-2010].

[112] S.C. Shadden, J.O. Dabiri, and J.E. Marsden. Lagrangian analysis of fluid
transport in empirical vortex ring flows. Physics of Fluids, 18:047105, 2006.

[113] Julio M Ottino. The kinematics of mixing: stretching, chaos, and transport,
volume 3. Cambridge University Press, 1989.

[114] Brock A Mosovsky and James D Meiss. Transport in transitory dynamical
systems. SIAM Journal on Applied Dynamical Systems, 10(1):35–65, 2011.

[115] Stephen Wiggins. Chaotic transport in dynamical systems, volume 2. Springer,
1992.

[116] Hybrid coordinate ocean model (hycom) , available at. http://www.hycom.
org/. [Online; accessed 06-01-2010].

[117] Rainer Bleck. An oceanic general circulation model framed in hybrid isopycnic-
cartesian coordinates. Ocean modelling, 4(1):55–88, 2002.

[118] George R Halliwell. Evaluation of vertical coordinate and vertical mixing al-
gorithms in the hybrid-coordinate ocean model (hycom). Ocean Modelling,
7(3):285–322, 2004.

[119] NCAR. National center for atmospheric research website dedicated to spill
deepwater horizon oil spill. http://www2.ucar.edu/news/ocean-currents-likely-
to-carry-oil-spill-along-atlantic-coast, 2010.

[120] Thomas Brox, Christoph Bregler, and Jitendra Malik. Large displacement op-
tical flow. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 41–48. IEEE, 2009.

[121] Thomas Brox and Jitendra Malik. Large displacement optical flow: descrip-
tor matching in variational motion estimation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 33(3):500–513, 2011.

[122] Stanley Osher Ronald Fedkiw. Level set methods and dynamic implicit surfaces.
2003.

195

http://mmae.iit.edu/shadden/LCS-tutorial/overview.html
http://mmae.iit.edu/shadden/LCS-tutorial/overview.html
http://www.hycom.org/
http://www.hycom.org/
http://www2.ucar.edu/news/ocean-currents-likely-to-carry-oil-spill-along-atlantic-coast
http://www2.ucar.edu/news/ocean-currents-likely-to-carry-oil-spill-along-atlantic-coast

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Classical Optical Flow Method
	Euler-Lagrange Equations
	Existence and Uniqueness of the Solution
	Solution to the Optical Flow Problem
	Synthetic Data
	Results of Optical Flow Calculations

	A Stream/Potential Function Method
	A Stream/Potential Function Formulation
	Construction of a Derivative Operator

	Results from the Synthetic Flows
	Application and Examples
	An Example Using Sea Surface Temperature Data
	Example from GOCI satellite

	Another Advantage of Stream Function Method over the u-v Method

	Regularization of Optical Flow Problem
	A Simple Explanation about Regularization
	Scientific Priors
	An Illustrative Example

	Comparison of Different Data Terms and Regularization Terms
	Mean Angular Error (MAE)
	Results and Error Analysis
	Regularization Parameter Selection

	Lagged Diffusivity Fixed Point Iteration Method
	Optical flow with Total Variation Regularization
	Lagged Diffusivity Fixed Point Iteration (LDFPI) Method
	Optical Flow with LDFPI method

	Lagged Diffusivity Fixed Point Method in Stream Function Formulation
	Flow for Oceanic Data

	Convergence Analysis of LDFPI for Optical Flow

	Multi-Time Step Method
	Multi-Time Step Method
	Results from Multi-Time Step Method
	An Oceanographic Data Set
	A Planetary Data Set

	Quasi-Static Equations with Coriolis Force in Optical Flow Method
	Coriolis Force
	Quasi-Static Equations
	Quasi-Static Optical Flow Model
	Quasi-Static Euler-Lagrange Equations

	Benchmark Data Set
	Jupiter
	Quasi-Static Multi-Time Step Method

	Lagrangian Coherent Structures
	Mixing and Transport Barriers
	Example: Double Gyre
	Example: Gulf of Mexico Oil Spill

	FTLE field for the SST data
	FTLE field for the Jupiter

	Conclusion and Future work

