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Abstract

Transport times for a chaotic system are highly sensitive to initial conditions and parameter values. We present a
technique to find rough orbits (epsilon chains) that achieve a desired transport rapidly and which can be stabilized
with small parameter perturbations. The strategy is to build the epsilon chain from segments of a long orbit – the
point is that long orbits have recurrences in neighborhoods where faster orbits must also pass. The recurrences are
used as the switching points between segments. The resulting epsilon chain can be refined by gluing orbit segments
over the switching points, providing that a local hyperbolicity condition is satisfied. As an example, we show that
transport times for the standard map can be reduced by factors of 104. The techniques presented here can be easily
generalized to higher dimensions and to systems where the dynamics is known only as a time-series.

1. Introduction

In recent years, much attention has been given

to the realization that the extreme sensitivity

which characterizes chaotic dynamical systems is

actually advantageous in their control since small

perturbations produce large effects [7,13,14,16].

On the other hand small errors can quickly get

out of control, and may overwhelm any attempt-

ed corrections. Thus the major difficulty is to

find a scheme to decide when and where judi-

ciously chosen perturbations should be applied.

This paper addresses the problem of time-

optimal control, or targeting. This is the tech-

nique to steer a dynamical system from near an

initial condition a to near a target point b in the

shortest possible time. There have been several

recent, successful approaches to this problem. A

first approach, to use a single small perturbation

in a parameter [16], has been demonstrated both

numerically for one- and two-dimensional maps,

and in the laboratory on dynamics which were

approximately modeled by a one-dimensional

map constructed from experimental time-series

[15]. This method can drastically reduce the

transport time providing that a fast orbit be-

tween a and b actually exists at the nominal

parameters. Another interesting approach, due

to Starobinets and Pikovsky [17], uses well-

known time-optimal techniques to target again

with a single parameter perturbation. If, how-

ever, the fastest transporting orbit (within al-

lowed control constraints) is long or difficult to

find, the algorithm becomes impractical. The

standard map studied in

case [9].

Kostelich et al. [7]

higher dimensions, and

Section 4 is just such a

extended targeting to

studied the dissipative
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kicked double rotor map as an example. Here

numerically determined short (typically about 3(I

iterates) orbit segments were arranged in a tree

hierarchy defined so that there is a set of paths,

that lead to a set of paths, etc., that lead to a

pre-determined target point b. This tree is stored

as a library of known paths. The tree branches

actually provide a set of epsilon chains leading to

b, pseudo-orbits that miss being exact orbits by a

small phase space error at the junctions. The

idea is that if there are enough branches, any

arbitrary initial condition a will rapidly iterate

close enough to the tree, and once there can be

stabilized to reach b with small parameter per-

turbations. Nonetheless, the above technique

may still be ineffective when natural transport is

too slow to create a tree with a reasonable

amount of computation.

In order to best choose the orbit segments of

the epsilon chain, one would like to know where

to most efficiently switch between the segments.

We present here an alternative approach for

building and managing a library of numerically

known orbit behaviors so that this information

can be quickly accessed to build fast transporting

epsilon chains. Our main result is that the

switching points reveal themselves by studying

the path of a nonoptimal orbit that, however,

eventually achieves the desired target objective.

In Section 2 we argue that recurrences are

common in slow orbits and that these should be

tested as switching point candidates. The re-

sulting epsilon chain can be refined, as we show

in Section 3, by gluing patches across the switch-

ing points. This requires finding the stable and

unstable directions along the original orbit, and

provides a patch orbit segment that:

(1) Skips the recurrent loop, often representing

the bulk of the orbit’s length.

(2) Converges to the original orbit backwards in

time.

(3) Converges to the original orbit forward in

time from the point of recurrence.

The patch size can be chosen to meet the control

saturation bound. Hence, we can effectively pick

and choose desired segments of a slow orbit,

using hyperbolicity to our advantage to leverage

away the error upon gluing in an orbit patch.

Gluing has been used for example in proving the

shadowing theorem for Axiom A systems [2] as

well as in other contexts [18].

The obvious advantage here is the possibility

of constructing fast orbits between any two

points in accessible phase space. By following an

arbitrary orbit for a long time and recording its

local stability properties, any two points near the

observed dynamics can now be reached by an

epsilon chain constructed from segments of the

observed dynamics. A chaotic orbit will cover all

of the accessible phase space and so will have

most starting and target points, close to the

accessible set, somewhere within its length. We

propose that this technique is also applicable in

the case where we only have an approximate

model of the dynamics formed by a time series of

data from a real world system, and from which

we can make local predictions according to the

work of Farmer and Sidorowich [4]. This is

possible since no inverse image of the map is

necessary to our method.

We use a local linear controller at each step of

the predicted orbit to diminish the effects of

modeling error and system noise. Local linear

controllers have been demonstrated using access-

ible dynamic parameters for a number of chaotic

systems, and have also been shown to be effec-

tive even for dynamics specified only by time-

series. An effective method is to use accessible

parameters to cause the image of an initial

condition to have no component on the unstable

manifold of the target point [9,13], hence knowl-

edge pertaining to the map’s parameter deriva-

tives and the unstable directions are required.

More traditional “pole placement” techniques

yield much the same result [14].

In Section 4 we demonstrate our method for

the standard map, which has notoriously slow

transport, investigating transport distributions

before and after control. We also investigate the

hyperbolicity of our trajectories before and after

control, by computing the distribution of angles

between the stable and unstable manifolds [8].
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2. Chaos and recurrence near the starting point a, and a control strategy

consisting of a set of parameter values {k,}, that

In this section we will discuss the difference will cause z. to iterate near the target point b as

between an optimal trajectory and a nonoptimal quickly as possible. Fig. 1 displays the orbit of

trajectory of dynamics arising from a given map. such a control solution. Thus we wish to mini-

We write a map in the form mize a cost function,

z’=T~(z), ZERd and k=Rr, (2.1) I({k, },za)=n, (2.2)

which could have been derived from the continu- where n is the first time such that zb =

ous time flow of a differential equation by (rI~=, o Tk,)(za ) e 13E(b), subject to the constraints

Poincar6 section. We demonstrate rather general
Ilkl -ko]l R,<zl , za=l?,(a) (2.3)

conditions under which a nonoptimal path has a

nearby path that reduces the time-optimal cost Here BE(a) is the ball of radius E around the

function. point a. Hence n applications of the map T with

Our problem is to find an initial condition Z. the control parameters {ki } ~. ~ near the nominal

k
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Fig. 1, A phase space portrait of the standard map for the range (1s x <1 and 0< y <1, The o’s are centered on the 131-step

path between a and b constructed by cutting the recurrences from a 80307-step orbit, The 1/y and 1/y 2 golden mean cantori are

represented by the gray squares in the middle region of the picture, The point a is located at (O.5 ,0.0) on the (O, 1) hyperbolic

point, and b is located at (0.5,1 .0) on the ( 1,1) hyperbolic point.
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value kO give a path between the two s balls of

thestarting andtarget points respectively. This is

known as the “minimum-time control problem”

[6,19].

In general, the minimum occurs not at a fixed

value of k, but at a program of parameter values

{k,} ~.,. Knowing when and where to vary k
leads us to consider whether there might be

regions of phase space through which transport

must occur. These regions are analogous to hub

airports used in deciding which trajectory an

airplane takes between Los Angeles and Boston.

Finding the actual route seems hopeless at firit,

until we realize that there are just a few possible

switching points: Denver, Chicago and Houston.

With this sort of model, we reduce the infinite

dimensional search in all of “phase space” for

places to program k to a few small switching

regions. Targeting can then successfully be per-

formed between a finite, hopefully complete set

of such regions. The problem then becomes just

one of permutations amongst the fastest orbits

between switching regions, but one which still

may be intractable if the number of switching

regions is high and there is no obvious order in

their importance. To find these switching regions

seems at first to require detailed knowledge of

the transport properties of the chaotic system;

unfortunately, these are only understood for the

case of two-dimensional mappings (see e.g.

[11,20]).

The answer for this latter case is that transport

between two regions separated by a homoclinic

orbit occurs by landing in the exit lobe de-

lineated by intersections of stable and unstable

manifold segments of the homoclinic orbit. Thus

a transiting orbit must always have a point in the

lobe between the two regions, regardless of its

complexity. The lobes are examples of switching

regions. The most efficient transporting orbit

lands on a subset of the exit lobe that does not

intersect the lobe again before intersecting the

target b. The inefficient orbit will in fact recur in

the exit lobe. A complete description of the

transport may even be reducible to a shift on a

set of symbols such as the Smale horseshoe

example [20]. Unfortunately, using such a de-

scription to quantitatively define transport be-

tween a and b requires knowing the stable and

unstable manifolds that delineate the important

switching lobes. In addition, the geometry for

higher dimensional phase space is not yet well

understood.

Even though the lobe structure is special to

the case of two dimensions, there is an important

aspect of it that has much wider application:

recurrence.

Recurrence Lemma. Let (2. 1) represent a con-

tinuous map. on a compact, finite dimensional

phase space T: 0 -+ L?, with metric p(”). Given

an initial condition z,, ~ L! and a 8>0, then

there exists an m 20 such that there are infinite-

ly many times q, p where q >p, q ? m and such

that the orbit of z,, will recur with itself at these

times to within 6. Hence, p(Tq(zo) – T’(zO)) <

6.

The proof of this lemma is quite simple, using

the pigeon hole principle. Assume that the

lemma is false. Recall that if we cover a compact

set with ti balls {B6(z) }, then we may take a

finite subcover U:., Ba,j 2 Q. By assumption,

the T’(z,)) must each lie in a distinct ball of the

subcover. However, if i = q – 1 and q = m, then

there are no balls left to accommodate another

iterate; all the pigeon holes are filled. Hence the

qth iterate must fall in an already occupied pth

ball indicating a recurrence. We see that there

must be infinitely many such instances if we shift

C=otot=q.

Now we consider what this implies in terms of

minimum-time control. If z. is in a hyperbolic set

and if the recurrence distance 8 between z, and

z 1+s is small enough, hyperbolicity implies that

there exists a real orbit that converges to that of

z, backwards in time and converges to that of

Zi+, forwards in time. Thus our original orbit

could not have been time optimal since the loop

{2[+, >. . ~>21+,,-, >2,+,, } only serves to increase
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I(k). We can only determine it if a given recur-

rence is in fact close enough on a case-by-case

basis by successfully constructing a patch of the

shadow orbit. A technique to cut the loop and

reglue it using an orbit segment is described in

Section 3 below. Such a construction. when

successful, monotonically decreases the value of

1. Since the patched segment asymptotically

converges to the original orbit, we can satisfy the

constraint (2.3) as well.

The important point here is that it is very

difficult to find fast orbits, or to know a priori

when and how to apply a control sequence

{ki} ~=,. On the other hand, it is relatively easy
to find slow orbits. However, slow orbits tend to

waste time on long, sometimes very long, re-

current loops. These loops serve little more than

to bide time until an appropriately aligned pass

through the ball of recurrence has been

achieved.

Slow orbits, while not useful in themselves.

tell the story of how to find the switching points.

Furthermore the orbit segments between recur-

rences which do not themselves recur are as-

sumed to be locally optimal. This assumption

relies on having correctly chosen the pre-as-

signed recurrence threshold 8 so that all possible

patches are glued. Choosing the threshold too

large, however, wastes time checking “recur-

rences” that have no chance of being patched.

There are similar ideas to this in classical

control literature. Dynamic programming, based

on Bellman’s principle of optimality, asserts that

a globally optimal orbit (and it’s associated

control function) must also necessarily be locally

optimal for segments of the orbit [6,19]. While

local optimization does not in general imply

global optimization, a huge improvement may
nonetheless be achieved with a small amount of

computer work, in the process of satisfying

Bellman’s necessary condition. For the two-di-

mensional case, if we correctly choose 8 as the

radius of a lobe, and each region only has one

family of lobes, we believe that the restricted

orbit found must be close to optimal.

In order to efficiently find the recurrences, we

use the following algorithm. Given an orbit

{z,, . . . . Zj, . . . . z,,,} where z,= Z. is close :0 ~

and ZA, = Zh is close to b, perform the followlng:

fori=Oto N

forj=N’ toi+l. step–l

then ‘<

if p(z, —Z, —6 1’1,thm a rccurrmt loop’]”!

attempt to remove the ]oop /“Can a pmh be found ~“!

if recurrent loop {z, .,, , z, } can be removed,

then

cut it and glue in patch

leti=j

end if

end if

loop

loop

This algorithm automatically considers the
largest recurrences for removal first by working
forward from z,] and backwards from Z,v. Shorter
intermediate recurrences that occur inside of a
bigger recurrence are automatically removed

without ever being considered. This represents
an improvement over a purely forward search

which might require an ordering according to
lengths of loops.

It may not always be necessary to have a single
orbit from a to b to use this algorithm. Two
regions of phase space can be explored separ-
ately by starting separate initial conditions and
concatenating their resulting orbits. This can be
a useful way to explore the phase space near a
and b separately when a single ort .t between
them is particularly difficult to find. If the two
orbits approach each other closely, then it might
be possible to patch from one to the other. The

above algorithm will automatically test all such

possibilities. If, however, such a patch is not

possible, then the end of the first orbit will be
reached with no connection to the second orbit.
In contrast, when a single orbit between the two
regions can be found, the algorithm is robust,
because the original, albeit slow orbit, is always
available as the path.

The prerecorded orbit represents known in-
formation about transport in the visited phase
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space. How we manage this information depends
on our assigned task. If we are likely to be
presented with a variety of initial conditions a
and targets b, then the following model may be
used. Ergodicity causes a long orbit to cover
accessible phase space; the longer the orbit, the
better the cover. Any target point close to the
known orbit is feasible, and initial conditions
close to the orbit allow for immediately starting
stabilization. Alternatively, if no points of the
known orbit are close enough to the initial

condition, then uncontrolled iteration will quick-
ly cause it to come close. This model requires
directly stabilizing the initial condition to the
known orbit, and restricting its length at points
of recurrence, on the fZy.

Stabilization can be performed by shooting the
initial condition at the stable manifold of the
known path using Newton’s method to find the
correct perturbations to the internal parameters.
Details are discussed in [7] and represent only a
slight modification to the gluing algorithm pre-

sented in the next section. Recurrences are
detected and cut according to the above algo-
rithm, where stabilization can immediately be
used to skip a loop by shooting at the path after
the loop. A successful cut is one in which the
recurrence is close enough so that stabilization

works, with a sufficiently small parameter per-
turbation.

Another possible control task is one where a
and b are fixed in advance. We may be presented
with such a model either when just a few
objectives are likely, or perhaps a decision tree is
to be built, and even the segments of the tree are
difficult to find. In this case, time can be spent to

find a more optimal solution achieving the trans-

port. The resulting epsilon chain can be stabil-
ized later, in real-time as above. This model

tends to build faster orbits since the patches are
built forwards and backwards from the switching

points, as compared to the on-the-fly model
described above where only the future points can

be modified.

3. Cutting recurrent loops

Suppose that we find a recurrence between Zi

and Z,+,, s steps later, i.e. Ilz, +, – ZCII<8. Al-
ready, it is possible to skip s – 1 iterates of the

orbit by making the appropriate 8 perturbation

from Zi to Zl+.. Even better, it may be possible

to find a patch consisting of a nearby orbit z ~.

with the property that llzf_m – zf_,nl[ and

Ilz,+.,+tn - z~_w,IIare both small enough to satisfy

the control constraint. If the orbit is hyperbolic,

then we can remove the (s – 1)-step loop using

an exponentially smaller total perturbation. We

find a patch {z~_,., . . . . z~+~} consisting of a

nearby orbit segment, which is close to the pre-

orbit of Zi before the recurrence, and close to the

orbit of z,+,, after the recurrence, and which

completely avoids the unwanted loop

{z,+,, ,Z,+,-,>Z, +$ }. We choose m so that

the perturbation onto the patch from the natural

orbit is as small as we require. The existence of

such an orbit patch is guaranteed if the recurrent

points are hyperbolic and the recurrence distance

8 is small enough. but may be possible more

generally. For the hyperbolic case, the size of 8

depends on the geometry and angle of intersec-

tion between IV’’(Z, ) and W’(Z, .,). We will start

by describing a point p on the patch which is

between Zi and z,.,. Then the rest of the patch is

formed by forward and backward iteration. The

point p lies on the intersection of the stable

manifold of Zj+,, denoted W’(z, +,,), and the

unstable manifold of z,, similarly denoted as

W “(z,), and therefore has the property that

llT’’(p) - Tn(z,+,)ll-+(l and

llT-”’(p)- T-”(z,)II+O asn+~. (3.1)

By the proximity of Zi to z,.,, p is within h8 of

both z, and Zi+,, where h is a constant that

depends on the geometry of the intersection

between Ws(zi+,) and W“(zi). To lowest order,

h depends on (3, the angle of intersection be-

tween the local linear approximations to the

manifolds. We expect that our technique will be

less effective when 13is small, since the resulting

triangle implies that p will be far from the point

of recurrence, invalidating the locality assump-

tions. By construction, we expect that
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l[Tm(z,+,) - Tm(p)ll<hA$8 , (3.2a)

llT-m(zi) - T-m(p)ll </ZA:ma , (3.2b)

where A, <1 is the local stable Lyapunov number

at z,+, and AU>1 is the local unstable Lyapunov

number at Zi. See Fig. 2.

In principle, it should be possible to choose m

so that the perturbations from the original orbit

onto the patch, and then back onto the original

orbit, are as small as we like. However, finding

points on the stable (unstable) directions numeri-

cally becomes increasingly ill conditioned if rn is

too large. In practice, finding the complete

manifolds W’(Z, +,) and W ‘(z, ) in order to find p

is not practical, efficient, or even important.
Instead we find p indirectly by making the

approximation that T ‘~(p) lies in the tangent

space of W“(z, _~), and likewise that T~(p) lies

in the tangent space of W’(zi.,. ~ ). Hence find-

ing T ‘m( p) can be reduced to a problem of

shooting.

In two dimensions we can parametrize the

unstable direction with the vector ~U(z, _~ ), a unit

vector in the tangent space of W“(zi. ~ ), by the

variable t, An initial condition is then chosen,

z{)(t) = zi_m + rfu(zc-m) . (3.3)

The success of an initial condition can be mea-

sured by how closely Tzm(z O(t)) lands on the line

z ,+. +m + ~fi(z, .$+~). We write components of the

vectors z(t) = (x(t), y(t)) and f, = (fi,x, f,, ~). The
roots of the expression

F(t) =~., (x(t) –Xj+, +m) –L.x(Y(~) –Yl+!+m)

=0 (3.4)

can be found quickly using a Newton-secant

method. We need only make an appropriate

initial guess so that the point we find will in fact

be a principal intersection point. As a rough

guess, we can use Eq. (3.2) to write

to=/l:ms , (3.5)

where we have assumed that h = 1. The exten-

sion to higher dimensions is straightforward. The

number of variables needed to parametrize the

initial condition must equal the dimension span-

ned by the unstable subspace of the tangent

space at zi_~. Likewise, examining the related

problem of shooting at the stable manifold using

the parameter k provides the controllability

“z&
“IS

+

T-n(p) ““

z .

Ws

+-

““
Tn(p)

z *S+.

Fig. 2. Construction of a patch. When the point z, recurs with z,,$, the point of principal intersection p between the unstable
manifold of z, and the stable manifold of z,+, converges to the orbit of z,+, under applications of the map, and converges to the
preorbit of z, under applications of the inverse map,
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condition that perturbations to k must span the

unstable subspace of the tangent space at Z,+, +.,.

Finding the stable direction ~, and the unstable
direction ~u at a point z from a chaotic set first

requires the complete orbit {. . . , z_,Z, . . . , z_,,

Z(,, z,, . . .. z.,,... }. Recall that the Jacobian

matrix rotates a vector in the tangent space

towards the unstable direction, and the Jacobian

matrix of the inverse map T-1 rotates a vector

towards the stable direction. Therefore, in prac-

tice, we choose an arbitrary unit vector u and

forward multiply, starting at z_., the Jacobian

matrices along the orbit to z, normalizing the

vector at each step:

DT’’[, _,,w= DTIZ_,. DTlz_,. . . -“DTI,.,,

Likewise, the stable direction is formed from the

inverse Jacobian starting at T“(z). Convergence

is exponential; in practice we find that n = 20

gives an error of 10”5. We use n = 40 which we

expect is more than adequate considering the

scale of the other errors, see [8]. At the same

time as the above calculation, we calculate the

corresponding Lyapunov multipliers, also by the

power method.

All of the required quantities for cutting and

gluing are in fact accessible to a model of a

dynamics formed by time-series embedding. The

primary piece of information, a recurrence,

requires no modeling to identify. To form the

patch, however, we need to tit a piecewise model

of the data in order that predictions may be

formulated between known data points [4]. In

such a case, a more accessible numerical tech-

nique to form the unstable and stable directions

at a point z is to consider the recorded histories

of nearby clusters of points in forward and

backward time. Likewise, from T ‘“(z), nearby

points orient along the unstable axis in forward

time at z. In addition, partial derivatives of the

map T in each of the parameter directions may

be approximated by interpolating between three

models of separate data sets which bracket the

range of each parameter.

Note that further refinement to the epsilon

chain can be achieved by running a second pass

of the gluing algorithm, by treating chain errors

as the 8 and finding a patch over it to further

reduce the error by a factor of Am. Hence a

smaller error epsilon chain can be achieved with

a modest m by redistributing the points of the

error to the ends of the new patch.

4. The standard map, an example

4.1. Area preserving transport

We now demonstrate our method for the case

of the much studied standard map. The standard

map, also known as the kicked rotor, is an area

preserving, twist map of the plane

()(Y’ = Y – + SM2TX)
z’ =

x’ ) (4.1)

Y – ~sin(2~x) + ~

The phase space structures and transport charac-

teristics are typical of two degree of freedom

Hamiltonian systems. There is periodicity in

both x and y with period 1, so the phase space is

the torus. Hence according to the recurrence

lemma of Section 2 every orbit must eventually

recur.

As a concrete example, we investigate the

transport from a neighborhood of the (0,1)

hyperbolic point of (4. 1), to a neighborhood of

the (1, 1) resonance. The notation (p, q) denotes

the frequency of an orbit, i.e. q iterations of the

map results in exactly p wraps around the

cylinder: T~(z) = z + p. The starting point (0,1)

a is located at (xfl, yU) = (0.5,0.0), and (1, 1),

our target point b, at (xl,, yh) = (0.5,1.0).
It is not possible to find such an orbit if

k <kC =0.971 63540631 . . . [11] which is the

parameter value at which the last invariant curve

dividing the phase space between (0,1) and (1,1 )

becomes a cantorus. The most robust curves

between (0,1) and (1,1 ) are the circles with
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rotation frequencies 1 /y and 1 /y 2, where y =

(1 + ~)/2, is the golden mean. Fork> k, these

become cantori and they have the smallest lobe

areas, and hence, represent the most difficult

barriers to transport. An arbitrary orbit will

typically pass through the lobes many times

before finally reaching the target point b.

This effect also occurs when an orbit is

trapped near an island, and near islands around

islands and so on. This phenomenon has been

successfully modeled using Markov trees [5,12].

It was found that a point initially “near” a KAM

surface has a survival probability y F(t), asymp-

totic to t-a,that the orbit will still be near the

surface at large time t, with small constant a

[12]. Therefore in the presence of KAM sur-

faces, we find long correlations and, hence,

roughly a power-law decay. However the im-

portant point is that, without knowing where the

lobes are located, recurrence is a way of locally

detecting globally inefficient orbits.

4.2. Transport time distributions

Before we demonstrate the improvements

made by cutting recurrences, we first investigate

the natural transport time distributions for a

range of parameter values. We performed a

Monte Carlo study within a box of size 0.1

centered around our starting point a at

(–0.5,0.0), from which we randomly chose an

ensemble of 104 initial conditions, and binned

them according to how long they took to arrive

in a similar box around the target b at

(–0.5,1 .0). Two of the resulting histograms are

displayed together in Fig. 3 for the parameter

value k = 1.01, just above kC, and the moderate-

ly high value k = 1.25.We find results similar to

the experiment performed by Chirikov [1] who

observed that the transport time from y = O to

Fig, 3. Histograms of transport time for the standard map

between the box of side of ().1 centered on the starting point

u at (0.5,0.0) to a similar box centered on the target point b
at (0.5,1 .0). 10J initial conditions are randomly chosen from

the a box and binned according to time to transport into the

b box. The number of bins alloted is 100.” The solid curve is

for k = 1.01, and the dashed curve is for k = 1,25. The

maximum iterations performed on an initial condition is

5 x 10’ before cutoff. Points requiring more iterations are

found in the last bin.

many of the initial conditions are chosen in the

subset of the box that is inaccessible to zb.

These, and other initial conditions have such

long transport times, that we choose a cutoff

time of 5 “10d iterates, which is increasingly a

problem for k approaching ICC.This causes the

value of q that we calculate to be somewhat less

than the value of 3.012 predicted [11]. The

variance of the distribution is large, as seen in

Fig. 3, but impossible to measure due to the

lo’~

105~“:[_—..————
$ -.—

103
_._— —

—

10’

0.01 0.1 1
[k-k<)

y = 0.5 obeyed a power law. Fig. 4 displays the Fig. 4. Transport times from the a box to the b box as a

average transport time on a log-log plot versus function of (k – k,). The top curves shows the average time,

(k - kC), demonstrating that the average crossing calculated amongst 104 randomly chosen initial conditions

time is indeed well approximated by the singular
from the a box iterated until first intersection with the b box.

The bottom curve shows optimized transport times from a to

power law (k – kC)-’ [1,3]. It is possible that b resulting from cutting recurrent loops from slower orbits.
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large fraction of the box with transport times in

the last bin, for any reasonable finite cut-off.

Indeed, we observed that the transport rate is

extremely sensitive to the initial condition, so the

average transport rate is not an indicative mea-

sure of a “typical” rate. Fig. 5 displays the

percentage of initial conditions from the box that

never reach b. Here we find that as k approaches

kC, most of the transport times are actually larger

than our cutoff. Thus our computed statistics are

only lower bounds on the actual transport statis-

tics. Nonetheless, the point is that the transport

is slow as k + kc, indicating that our efforts to

find faster orbits are worthwhile.

4.3. Cutting and gluing slow orbits

From the same box around the initial point a
described above, we choose an initial condition

which iterates eventually to near the target b. We

restrict ourselves to the orbits of randomly

chosen initial conditions that perform the trans-

port required in less than 10(’ iterations so that

we do not strain the memory capacity of our

computing resources by storing uninteresting

information.

As a concrete example, consider a 80307-step

orbit for k = 1.25. Recurrences are sought fol-

lowing Section 2 searching for Zi from the start

of the orbit, and the last recurrence z,+, (largest

od-~
0.01 0.1 1

[k kc)

Fig. 5. The percentage of the 10’ initial conditions from the

a box which take longer than 5 x 10fi iterations to reach the b
box.

value of s) from the end of the orbit. A certain

amount of space must be reserved in order to fit

the patches. We used patches consisting of 2m +
1 = 31 steps, so m = 15 steps must be allowed for

on either side of the recurrence in order that the

error may have time to contract sufficiently such

that the constraint (2.3) is satisfied. The rate of

contraction is determined by the Lyapunov expo-

nents, according to eqs. (3.2a), (3 .2 b). Therefore

a strict lower bound on the cost function 1 for

our technique is (2m + 1)+ 1, the space required

for one patch. If patches are forced to not

overlap, then q recurrences implies that I is

bounded by q(2m + 1) + 1. In principle, arbit-

rarily small constraints (2.3) can be met, but in

practice, solutions become numerically ill con-

ditioned as m gets large. We chose a modest

value m = 15 for this example, although m = 25

and m = 30 were successfully tested.

The first recurrence that we can successfully

remove from our 80307-step orbit is between z ~c

and z,~,oq which recurs to a distance S = 0.08.

The cut and glue algorithm allows us to construct

an orbit patch {z;, . . , z~l } such that the error

to perturb on to the orbit patch is only Ilz { –

Z1II = 0.002, and the error to perturb back off of

the orbit patch is IIz~ I – ‘7872[) II= 0.002. Fig. 6,

showing the error between the patch orbit seg-

ment and the two ends of the recurrence on the

orbit, displays how hyperbolicity is used to

-20-15-10 -5 0 5 10 15 20

Fig. 6. The error between a patch orbit {zm}j,~_,5 and an

original orbit at each of the points z,,,,. for n = O. and z,_,,

for er <O.
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diminish the recurrence error. The slopes of the

decaying error on either side of the recurrence

represent the corresponding stable and unstable

Lyapunov exponents.

With this single patch, we have already dem-

onstrated a 1619-step epsilon chain orbit near

our original orbit. By finding every recurrence

within a threshold 8 = 0.1 and cutting those that

can be patched within the error E = 0.005 we

eventually construct a 131-step epsilon chain

orbit including 13 overlapping patches. The

largest error found in this example was

IIT,(,(z9,) – Z93 II = 0.003, but there were several

others of the same order. For this case, 13

important switching points in 13 important lobes

are inferred, and orbit segments between the

switching points are automatically found by

keeping those segments that do not recur close

enough to be further cut. To further demonstrate

manageability of the errors, we ran a second pass

of the patching algorithm over the error points of

the newly formed epsilon chain. Redistribution

of the errors yields a further reduction by a

factor of 50 to 1000.

A phase space portrait of the final path is

displayed in Fig. 1. The black regions in the plot

represent inaccessible regions of phase space,

corresponding to elliptic islands with rational

frequencies between O and 1. The 131-step

epsilon chain orbit, marked by black circles,

manages to transport through all the resonances

without getting caught in their periodicity, even

though orbits trapped in a given resonance layer

must move at the frequency. The efficiency of

transport can be observed by the lack of getting

bogged down in almost periodicities, as revealed

by the lack of corresponding recurrences.

Several different runs with k = 1.25 for various

initial conditions ranging Up to a length of 10b,

and various recurrence thresholds from 8 = 0.02

to 0.07 yield epsilon chain orbits of length n =

131 to 251. There is a trade-off when choosing

the recurrence threshold value 8. Recall that the

rate at which a recurrence error 6 can be

reduced to the tolerance E is governed by the

inequalities (3.2) which we adapt here to require

that

(4.2)

where we choose m = 15. Close recurrences are

more likely to be cut. The resulting t and I-, the

perturbations along the vectors ~U(zi_~) and

~,(zl+, .~) both called E, are small according to

(4.2) for fixed m. In addition, it is often possible

for (3.4) to be solved even if t and ~ are large,

but the linearization of the stable (unstable)

manifolds is not valid, and so a contraction

according to (4.2) is not expected. A successful

cut is one where a given tolerance s can be

satisfied. Since zeroing (3.4) is relatively cheap,

it is practical to set 8, the recurrence testing

threshold, to a relatively high value where most

are not successfully cut, but no opportunities are

missed.

Table 1 shows that higher 8 can yield faster

orbits, but at a cost of many more trials. We

observe in fact that 8 s 0.1 and 8 = 0.2 yield the

same paths; considering 8 = 0.2 recurrences

yields no extra successful patches. This is re-

flected in the success rate column of Table 1. All

Table 1

Various recurrence thresholds

13 n Loops cut Success rate (%)

0.005 748 15 100.0

0.01 597 13 3.96

0.025 236 ii ~ ,(320

0.05 177 14 1.552

0.08 173 14 1.14

0,09 156 16 1.16

().1 156 16 ().920

().2 156 16 0.096

1.() 156 16 0.035

Values of 8 are tested on a single 109 594-step orbit between

the a box and b box for k = 1.25 and patch size m = 15 to

achieve an E = 0.005 tolerance. This shows how increasing

computer work, to a point, yields faster paths by considering

unlikely patchable recurrences. Tabulated quantities are: the

threshold tested 6, the resulting epsilon chain length n. the

number of loops successfully cut and the percentage ratio of

successfully cut loops to those attempted when a 8 recurrence

was detected.



E. M. 80[lt, J. D. Meiss I Physics D 81 (1995) 280-294 291

increases in 8 up to 0.09 did in Pact yield faster

paths. By contrast, if we allow ourselves to use

longer patches by increasing m, to allow more

space to contract, in principle, we expect that

higher values of 8 are likely to be successful, but

at the cost of ill conditioning the solution of

(3.4). We find a good balance at m = 15, but the

choice is arbitrary. We note that the solution of

the long time targeting problem would be trivial

if there were no ill-conditioning problem with

growing m, since we could simply choose 8 = 1.

There would be no need to consider inter-

mediate switching points, the location of which is

the source of the major difficulty to slow trans-

port problems. In that case u would be recurrent

with b and by choosing a very large value of m

(such as m =65 as indicated by our 131-step

orbit above) we could shoot directly from begin-

ning to end.

To find the optimum value it is best to choose

8 equal to the “diameter” of the important lobes

between a and b, in their most round iteration as

they become long and thin in both forward and

backward time. Define the most round iteration

of a lobe as the iteration with minimum diam-

eter, where the diameter is defined by the

supremum of the distance between any two

points in the set. Unfortunately, in general we

do not know this value a priori. An efficient

technique would involve several passes for in-

creasing values of S, first forming an epsilon

chain orbit that always stays below control satu-

ration (2.3) and then removing any possible

recurrences for the next value of d. This would

represent a multi-pass algorithm since the length

of the epsilon chain orbit decreases monotonical-

ly.

The lower curve of Fig. 4 displays “optimized”

transport times as a function of (k – /cC), for a

one-pass optimization. These values can be com-

pared to the uncontrolled transport time aver-

ages also displayed in the same figure. We see an

improvement by a factor of almost 10q on aver-

age for the lower values of k.

4.4. Hyperbolicity in the standard map

The construction of an orbit patch as ex-

plained in Section 3 is guaranteed to work when

the orbit is a hyperbolic saddle, A saddle is

defined as a compact, non-attracting, invariant

set with a dense orbit such that each point of the

set has a stable direction and an unstable direc-

tion. A hyperbolic saddle has all the angles

between stable and unstable manifolds bounded

away from zero, and a non-hyperbolic saddle

may have angles that approach zero. In order

that the intersection point p is close to the 8 ball

containing the recurrent points, the constant h,
depending on the angle between a stable mani-

fold at z,+, and an unstable manifold at z,, must

be small. In this section, we discuss the validity

of this assumption by numerically investigating

the angle distribution between stable and un-

stable manifolds calculated at each point along a

slow orbit between the objectives a and b. This is

in the spirit of the recent paper by Lai et al. [8]

who perform similar calculations for the Henon

map.

Figs. 7 show angle distributions for k = 1.01

and 1.25. The distributions found were similar in

shape, average and peak for each value k,
independent of the initial condition. In Figs. 7a

and 7C we can see a definite spike at the peak in

the angle distributions. From there the probabili-

ty falls off smoothly with increasing angle. it is

not clear whether the angles are bounded away

from zero or not, since the curve falls off

smoothly, seemingly towards zero. This situation

for the standard map is qualitatively quite differ-

ent from that of the Henon map, where the

distributions show a “complicated structure with-

out much regularity near O = (Y’”. The lowest

angle for the figures displayed is O = 0.0009 for

Fig. 7a and O = O.1~ for Fig. 7c. The results are

similar when other transporting initial conditions

from the a box are chosen.

The point that concerns us here is that the

probability of finding angles below any reason-
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Fig. 7. Histograms of angles between stable and unstable manifolds. In (a) the distribution shows angles for each of the 975760

points along an uncontrolled orbit between the a box and b box for k = 1.01. In (c) the angles along an uncontrolled orbit for

k = 1,25 are shown. In (b) the 97S 76(3.step orbit for k = 1,01 has been restricted to a 778-step epsilon chain. Similarly in (d) for

k = 1,25, a 80307-steps orbit has been restricted to a 131-step epsilon chain.

able value is quite low. According to our algo-

rithm, a recurrence is only cut when an orbit

patch within the control tolerance can be found

on a trial and error basis. So we are only
concerned here with the probability of small

angles: for example in Fig. 7C P(O < 8°) ~ x =

0.7%.

It is interesting to compare the angles between

fu(zi) and .fS(zi+.y) of recurrences that cannot be
successfully mended to those that can be

mended. For k = 1.25 and S = 0.01 we recorded

separately the angles of successes and failures.

The failure category includes the entire range of

angles. We expect a problem with small angles,

but even large angles can be a problem for

recurrences that are not close enough or when

the manifolds curve sharply away from the linear

approximations. In contrast, the smallest suc-
cessfully mended angle found was 11°, and the

angles tend to be much higher than that in

general.

Figs. 7b and 7d show the angle distributions

for the mended epsilon chain orbits. The angles

are now calculated using the epsilon chain rather

than following the natural orbit of the point z

which may quickly diverge from the predicted

pseudo-orbit. The main feature we observe in

the restricted orbits is that the average angle

increases invariably. For example, the average

for Fig. 7a, (0) = 29.9 was increased to (6) =

50,9° along the 778-step epsilon chain. Similarly,

Fig. 7d reveals a change from (@) = 40.5° to

(0) = 46.T along the 131-step path.

4.5. Stabilization

We next demonstrate that an initial condition

can indeed be stabilized onto the epsilon chain
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with smaller parameter perturbations as de-

scribed in Section 2. As an illustration consider

the same orbit as in Section 4.3 for which

we found a nearby 131-step pseudo-orbit

{z,,.. ., z ~~1} with 13 patches. The parameter

perturbation size required for stabilization de-

pends directly on the phase space error found.

We demonstrated that initial conditions close

to z ~ can be stabilized along the epsilon chain to

z, ~1. Parameter perturbations were used to shoot

at the stable manifold further down the path,

and were calculated whenever a point of error

was predicted on the epsilon chain, or the test

point drifted outside a pre-determined tolerance

of the known path. For this particular example, a

maximum value Ak = 0.016 was required, but

most perturbations were several orders smaller.

Stabilization was successful for all the epsilon

chains tested, for various values of k,].

For comparison, we also tested on-the-fly

stabilization directly to the long 80307-step orbit.

Again, we used a randomly chosen initial con-

dition near the known orbit, and the stabilization

was turned on whenever the test orbit drifted

outside a set tolerance, In addition, whenever a

recurrence in the prerecorded orbit was detected

along the way, stabilization was attempted by

shooting at the end of the loop. We expected that

the length of the test orbit would be longer,

because with this method, only future events can

be modified. In this example, the test orbit

achieved the final destination in 464 iterations.

In spite of being typically slower, on-the-fly

control can be more flexible since one can

rapidly retarget as needed, as the whole pre-

recorded orbit is available.

5, Conclusions

We have discussed the time-optimal control

problem for chaotic regions, giving a method to

find paths that quickly achieve transport goals

and which can be stabilized with small parameter

perturbations. A recurrent orbit necessarily vio-

lates Bellman’s condition for optimality; we

eliminated recurrences by using them as switch-

ing points between orbit segments. The resulting

epsilon chain was refined by smoothing with a

patch that shoots from the unstable manifold of

the orbit before the recurrence onto the stable

manifold of the orbit after the recurrence. The

method was demonstrated on the standard map

for which uncontrolled transport is extremely

slow and the statistics of the transit times are

anomalous. The technique, when applied to

orbits of up to 10f iterates, typically reduces

transport times by factors of up to lo~, even for

k close to kC where previous targeting schemes

are unsuccessful [9]. Finally, we demonstrated

that small parameter perturbations can be used

to stabilize a test orbit onto either a precalcu-

lated fast epsilon chain, or alternatively onto a

long known orbit, eliminating recurrences on the

fly.

The techniques in this paper can be straight-

forwardly extended in a number of directions.

Though we used a Hamiltonian mapping as an

example, the method makes no assumptions as

to the nature of the dynamics – indeed since the

inverse map is not needed, the dynamics can

even be noninvertible. The use of recurrences as

switching points requires no assumptions on the

dimensionality of phase space, though recur-

rences will be less common in higher dimensions.

As well as optimizing the transport between two

separated points, the method could also be used

to eliminate escape from a region, using the

recurrences to construct a rough periodic orbit.

This might require a smaller and less frequent

control than stabilizing a fixed point in a given

region. Finally, the techniques presented in this

paper are also applicable to a piecewise local
model of a time-series built through embedding.

Our current research is aimed precisely at realiz-

ing these assertions to control a nonanalytic

representation of chaotic dynamics in more than

two dimensions.
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