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Abstract

Transport times for a chaotic system are highly sensitive to initial conditions and parameter values. In a previous paper,
we presented a technique to find rough orbits (epsilon chains) that achieve a desired transport rapidly. The strategy is to
build the epsilon chain from segments of a long orbit - the point is that long orbits have recurrences in neighborhoods where
faster orbits must also pass. If a local hyperbolicity condition is satisfied. then a nearby shadow orbit may be constructed
with significantly smaller errors. In this paper. we modify the technique to find real orbits, in configuration space, of the
restricted three body problem. We find a chaotic Earth-Moon transfer orbit that achieves ballistic capture and that requires
38% less total velocity boost than a comparable Hohmann transfer orbit.

Chaos in a physical system can be exploited to make
accessible a wide range of system behaviors with-
out requiring large perturbations. Transport times for
a chaotic system are highly sensitive to initial condi-
tions and parameter values. 'Targeting" is the process
of finding a nearby short path using only available
dynamics. In our recent paper [ I we demonstrated
an algorithm to reduce transport time for the standard
map by a typical factor of 104. It was previously con-
sidered particularly difficult to navigate the Hamilto-
nian dynamics of the standard map [2], due to diffi-
culty in finding short paths between the barriers be-
tween resonances in the phase space. In this paper. we
apply the algorithm to find short orbits of the restricted
three body problem, for parameter values pertaining
to the Earth-Moon system.

The algorithm relies on searching for recurrences
along the orbit of a dynamical system. We describe
the technique for a two-dimensional map,

zi+j =T(zi). (I)

which we will derive from the flow of the restricted
three body problem by Poincar6 section.

Previous targeting algorithms have attempted to find
short paths through chaos by looking for them using a
straightforward search. The search for example in Ref.

1 3 ] is analogous to casting out a web of paths leading
to the target. Difficulty can arise in searching for paths
when the transport from near a starting point a to near
the target point b is so slow that the fraction of points
which get substantially far from a in a short amount
of time is so small as to make it virtually invisible to a
computer search. In such a case, the web will not leave
the region near a. This is exactly the situation typified
by the layered resonance and barrier structures found
in Hamiltonian maps of the plane [2,4].

By contrast our algorithm [ I ] lets a shorter path
reveal itself as the "shadow" of an easily found slow
orbit which nonetheless makes the desired transport.
In brief, suppose that a point on the orbit zi recurs with
zj, s steps later, i.e. I zi-z 1+,Il < 3; in this case we
can attempt to exploit instability to find a patch that
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Fig. I. Construction of a patch. When the point .i recurs with _j,
the point of principal intersection p between W'" (z) the unstable
manifold of is and 1V ( ) the stable manifold of zit, converges
to the orbit of 'its under applications of the map T, and converges
to the preorbit of zi under applications of the inverse map T 1

skips the, often very long, recurrent loop. We construct
this patch z' so that it converges to the preorbit of
z, and to the orbit of z,<,. In practice, we choose a
moderate value mn, and require that I Z'- ,,,r- ,,, I < e
and I Zi+11?-Zi+S+M I e for a small preset control
constraint e. Thus we attempt to build an e-chain orbit
which shadows the 3-chain orbit (consisting of simply
skipping the 6 recurrences).

If the original orbit is hyperbolic, then any point p
on an intersection between the unstable manifold of
zi and the stable manifold of z;+,+, 1 has the desired
convergence properties, and so may be used as z>. One
technique to obtain such a point is to shoot from the
unstable manifold of Z,,, well before the recurrence
to zi t +111 well after the recurrence. For large enough in,
and small 6, the curved manifolds are well represented
by straight line segments, and the patch orbit will be
close to the original orbit (see Fig. I ).

Thus we require that a point on the unstable direc-
tion, fu. at zi-,,, lands on the stable direction, f 5, at
Zi4.,+,,,. That is, we search for an s which solves

[T 2
1(zi-,,, + s fu)- Zi +tA M] X fs = 0. (2)

This can be found by the Newton-secant method.
To define the stable and unstable directions for an

orbit which is not necessarily periodic, we recall that

the Jacobian matrix of the map rotates a vector in the
tangent space towards the unstable direction, and the
Jacobian matrix of the inverse map T-1 rotates the
vector towards the stable direction. Thus upon itera-
tion, almost any initial unit vector v approaches the
unstable direction: DT'z_ , v-DTIz, - DTIz2

DTIK v -- f, (z) as it - ox. Likewise,
upon inverse iteration we obtain the stable direction,
DT-' z, v -' fj(z) as n - oc and is well approxi-
mated for finite n [5,6]. To accurately calculate these
vectors, we renormalize the length to one after each
matrix multiplication to prevent the norms from grow-
ing (shrinking) beyond machine precision, and we
choose a finite value of n.

An important modification to our original targeting
algorithm arises from the fact that almost all vectors
in the tangent space rotate towards the unstable (sta-
ble) direction upon repeated forwards (inverse) ap-
plications of the tangent maps associated with forward
(inverse) orbit. This, of course, is how we find the
stable and unstable directions. The implication here is
that we do not need to use the true stable and unsta-
ble direction vectors in equation Eq. (2). Almost all
variations near z_,, will expand along the unstable
manifold after m iterates if the patch size m is chosen
large enough. A similar statement can be made regard-
ing variations near Zi+.+,l under m inverse iterations.
Thus, we will have reduction of the 6 recurrence to
within an e tolerance for almost any choice of direc-
tions in the place of fu and f., in Eq. (2). Specifically,
an unstable cone centered around fu at zi-M~1 , depend-
ing on e and m, can be defined, within which any
vector can be substituted in the place of fu. Similarly,
there exists a stable cone around f, at zis,,t.

To find a short pseudo-orbit from near a to near b
we begin with any orbit, that achieves the transport
(within computer memory limits). Then we search for
3 recurrences, attempting to first remove the longest
possible recurrent loops, and thus automatically re-
move intermediate loops for free. The idea is, starting
at a point zj, to find the last point in the orbit with
which it is 3 recurrent. Whenever a 3 recurrence is
Iound, a patch is attempted. If one is found, and it
achieves a pre-assigned tolerance 6, then the entire
(often long) recurrent loop is discarded in favor of
the patch, and the next recurrence search begins at the
end of the patch. If the recurrence cannot be success-
fully patched, we continue to search from the end for
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the next longest recurrence with z1, only incrementing
j when no successful patch is found.

In practice, the choice of 8 determines how easily
a patch can be found. However the size of 8 also has
bearing on the probability of 8 recurrences, and there-
fore how short the final pseudo-orbit will be. One nat-
ural dynamical choice for 8 is related to the size of
the turnstiles of the barriers through which the orbit
must pass [4]. The true time-optimal orbit will cross
each turnstile exactly once, in turn. Nonoptimal orbits
waste time passing through a given turnstile perhaps
many times. However, in practice turnstile sizes are
difficult to compute, so we choose 8 large enough so
that no opportunities to cut a loop are missed; the only
cost of trying to cut a loop for which there exists no
patch is wasted computer time.

We will now modify the technique to find real orbits
in configuration space (rather than pseudo-orbits in
the full phase space) for the planar, circular, restricted
three body problem. This problem is the special case of
the full three body problem in which one of the masses
is taken to be infinitesimal, and so has no influence
on the two primaries which are on circular orbits. We
normalize the sum of the masses to one, ml = I - /t
and m2 = jt, and Newton's gravity constant to one,
and use a frame rotating with the primaries, so they are
fixed at x = -,k and I - , respectively. The equations
of motion, 9 = F(w) for w = (x. v, u, t), are Hill's
equation [7],

x=u, u=t',

X + M X- ml
=x + 2t, - ml 3 -- m2 

t = - 2u - 3M + M)' (3)

where r2 = (x + m2)2 +!-' 2 and r2 = (x -in, )2 +2

The Jacobi integral,

J = u" + u _x + V 2 ) 2 ( -J + (4)
rl r? 

is a conserved quantity, thus the flow is restricted to a
three dimensional submanifold of the four dimensional
phase space. On the Poincar6 section y = 0, (xu)
are equal in value to the canonical variables, and so
the map from section to section with v > 0 is area
preserving.

Our goal here is to look for low energy transfer or-
bits to the Moon. To this end, we set ml /m2 = 0.0123.
In our coordinates the unit of length is the Earth-Moon
distance, L = 3.844 x 105 km, the unit of time is T =
104 h and therefore the unit of speed is V = 1024 m/s.

The Earth-Moon system has eccentricity 0.055 and
so is well approximated by the circular problem. An
orbit which becomes a real mission is typically ob-
tained first in such an approximate system and then
later refined through more precise models which in-
clude effects such as eccentricity, the Sun and other
planets, the solar wind, etc. In any case, there is a
limited precision to which a rocket can be placed
and thrusted so occasional corrective maneuvers are
needed. With this in mind, (3) is considered a good
starting model [8].

The goal is to beat the energy requirements of
the standard Hohmann transfer from a parking orbit
around the Earth to a parking orbit around the Moon.
This transfer typically takes only a few days, de-
pending on the altitude of the initial parking orbit. It
requires two large rocket thrusts (perturbations), one
parallel to the motion to leave the Earth, and one anti-
parallel to the motion to capture the rocket around
the Moon. The size of these perturbations, measured
by the velocity boost AV, depends again on the alti-
tudes of the Earth and Moon orbits. We will see that
the chaotic orbit will eliminate the need for the large
deceleration at the Moon and reduce required initial
boost.

Of course, there is a certain required energy Jc =

-3.1883, which is that of the Lagrange point L2. This
is the minimum energy for which an orbit could pos-
sibly move between the primaries. For our mission
we set J = Jo = -3.17948 slightly above JI, but be-
low the critical value at which orbits may escape, so
that we may have a long bounded test orbit. This we
imagine is attained by an impulsive boost, AV, of a
spacecraft in a parking orbit around the earth to the
energy Jo. Fig. 2 shows a phase space plot of a single
"chaotic" test orbit with 105 iterates. This test orbit
may be stored as a "library" of known behaviors, and
used for generating many missions in the accessible
portion of phase space. Certain islands in phase space
are inaccessible; these are bounded by invariant tori,
some of which are shown. At the center of each island
is a periodic orbit.

We choose the point a = (xo, u0) to achieve a fast
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Fig. 2. Phase space portrait of the Poincare mapping of a 105 iterate test orbit for the restricted three body problem with J = -3.17948.
The point (., i) is plotted every time the flow pierces the surface Y = 0 with positive v. The Earth and Moon are clearly labeled at their

fixed locations in the rotating frame. The phase space locations of the starting point a near the Earth, and the target point b near a Moon
orbit invariant torus are also labeled. Several invariant ton are also shown.

chaotic orbit. A trial and error search for various v(
near the Earth, but in the connected chaotic compo-
nent that leads to the Moon, along the line segment
un) = 0, gave the best results for an orbit at an altitude
of 59669 km above the Earth's center. As our target,
we choose the outermost invariant torus, marked "b"
in Fig. 2, corresponding to a quasi-periodically pre-
cessing "ellipse" around the moon. As the actual target
point, b, we use the point of closest approach of our
test orbit to b, at an altitude of 13970 km above the
Moon's center. From b a tiny perturbation will move
the orbit onto the torus, thus achieving a state bound to
the Moon without the large deceleration required by a
Hohmann transfer. We define a "true" ballistic capture
to the Moon (at constant energy) to be an orbit for-
ward asymptotic to a Moon-orbiting invariant torus.
This contrasts to a distinct definition by Belbruno 1 9].
We are searching for a Moon-ballistic capture in the
sense of our strong definition.

The implication of solving Eq. (2), using the exact
stable and unstable manifolds, is that near the pseudo-

orbit we construct, there exists a true orbit which
skips the recurrence. The orbit of p exactly yields
the shadow orbit, by construction. When we use other
curves to parameterize the variations, we lose this im-
plication, but we gain another advantage. In construct-
ing an Earth-Moon pseudo-orbit, even small varia-
tions along the stable and unstable manifolds in phase
space imply variations in velocity and position. We
wish to construct an orbit with only velocity errors,
since teleportation is not physical. but rocket impulses
are routine. According to the arguments of the previ-
ous paragraph, we may substitute the vector (0, 8u)
for both fu and f, in Eq. (2) to find a real config-
uration space orbit, i.e., no position errors. With this
choice, we find that m = 12, yielding a patch length
2in + I = 25 steps, yields adequate recurrence error
compression.

The 105 iterate test orbit has a 10710 iterate seg-
ment which goes from a to b. Fixing the recurrence
distance to 8 = 0.02, we achieved a 58 iterate pseudo-
orbit by cutting out 6 recurrence loops, and requiring
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Fig. 3. A configuration space plot (I . v ) of the 58 iterate chaotic
tianster to the Moon, The final state at h is a prcccssing cllipse

aroLind the Moon corresponding to the targeted invariant torus.

a maximum perturbation of e = 1.07 x I() 4. Note
that this implies perturbations to the real coordinates
of 8u <( 0.219 m/s. The actual time along this orbit
is T = 172.3 = 2.05 years.

Arbitrary AV maneuvers would change the value
of the Jacobi constant, causing the rest of the pre-
calculated orbit, constructed from segments of the con-
stant energy orbit found in the stored library, to be-
come invalid. However, by the implicit function the-
orem. Eq. (4) allows freedom to choose a 5t so as
to conserve the value of J under small variations 6u
and 6.x = r3v = 0. Thus we change the direction of the
motion, by our maneuvers. and not the speed.

We show our chaotic orbit in the configuration space
plot (Fig. 3). We can "see' the accelerating boosts of
the Moon's gravitational pull as it swings by the earth
orbiting spacecraft. These boosts perturb the space-
craft into just the right orientation to pass through the
neck around L2 exactly once with the correct speed
and position so that it is captured by the Moon near
the chosen invariant torus.

The boosts required for our chaotic trajectory can be
compared to those of a corresponding Hohmann-like.
two impulse transfer (the classic mission). Both or-
bits start at the (almost circular) parking orbit around
the Earth at the starting altitude 59669 km with Ja-
cobi constant J = --7.1738. An initial impulsive thrust
is required for both transfers to increase the energy
such that the zero velocity curves permit the transfer.
J > J.. The chaotic transfer requires an initial boost
of AV = 744.4 m/s to attain ./( = -3.17948. Addi-

tionally, it requires four patches with e < 1.07 x 10-4,
and therefore the total change in velocity is bounded
by AV •< 6 x 0.107 m/s = 0.659 m/s. Finally, to
jump from b to the targeted invariant torus requires
IF = 4.363 x 10-3 and therefore AV = 4.468 m/s. Thus
the total perturbation required by the chaotic transfer
is 749.6 m/s.

In contrast, the Hohmann-like transfer requires an
initial parallel burn of AV = 817.4 m/s boosting the
energy to J = -2.761. This gives a motion which
is, roughly speaking (i.e. neglecting the effect of the
moon ), a Kepler ellipse with apogee at b. The space-
craft coasts until it arrives at b, where a deceleration of
AV = 402.5 m/s is applied. Therefore the total boost
required for this Hohmann transfer is 1219.8 m/s, but
the transfer requires only 6.61 days.

Therefore we find that the ratio between the im-
pulses is 0.615, or a 38% advantage over the Hohmann
orbit.

This is a significant improvement, but at the cost of
a much longer (and circuitous) transfer. In terms of
transferring passengers, the extra time is probably not
worth the savings. However, for transferring freight,
the AV savings of our orbit translates directly to a
considerably smaller fuel requirement and therefore
allows the transfer of a larger payload.

For example, suppose that a given booster is to be
used in both cases, then an alternative figure of merit
is given by the ratio of payload mass, mp1 to propellant
mass inprop. This can be derived from the elementary
rocket equation, which gives the ratio of final mass to
initial mass: mr/mo = exp(-AV/g1,p) where ',p is the
specific impulse of the booster. For a chemical rocket
/SP 300 s (450 s is about the maximum achievable
value with this technology). Using this value, and as-
suming that the structural mass of the booster is a fixed
fraction, a = 15%, of the propellant mass, gives

(5)
pl I a I.

Mlprop c xp ( 'A V/gls- Ip _) 1

Then for our orbit mpl/minp, = 3.30 while the
Hohmann transfer gives 1.80. Thus we are able to
transfer 83% more payload from the circular orbit at
a with the same booster.

Recently, another approach due to Belbruno was
used to find chaotic transfer orbits to the moon utiliz-
ing the so-called "fuzzy boundary" [9]. This method
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was successfully applied to send the spacecraft Hiten
to the Moon, thus saving an otherwise failed mission
when the original Moon probe was lost. The Hiten
orbit requires a restricted four body model, including
the Sun, plus three configuration space directions. The
technique is to send the spacecraft to the fuzzy bound-
ary between the Earth and Sun, where their gravita-
tional effects balance, so that only a small perturba-
tion is necessary to reach the Moon in a "ballistic cap-
ture orbit" analogous to our orbit in that it requires
almost no decelerating AV. This orbit is much less
circuitous than ours and requires approximately 4.6
months. However, a larger rocket burn is required to
escape the Earth in order to reach the fuzzy boundary,
well away from the Earth-Moon zero velocity curve
at J,. Our technique could also be applied to the re-
stricted four body problem (with the added complica-
lion that the dimension of the phase space is increased
since time cannot be eliminated by going to a rotat-
ing frame), and would give a systematic method for
finding optimal orbits in this case as well.
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