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Abstract

We develop a new collection of tools aimed at studying stochastically perturbed dynamical systems. Specifically, in the
setting of bi-stability, that is a two-attractor system, it has previously been numerically observed that a small noise volume is
sufficient to destroy would be zero-noise case barriers in the phase space (pseudo-barriers), thus creating a pre-heteroclinic tan-
gency chaos-like behavior. The stochastic dynamical system has a corresponding Frobenius–Perron operator with a stochastic
kernel, which describes how densities of initial conditions move under the noisy map. Thus in studying the action of the
Frobenius–Perron operator, we learn about the transport of the map; we have employed a Galerkin–Ulam-like method to
project the Frobenius–Perron operator onto a discrete basis set of characteristic functions to highlight this action local-
ized in specified regions of the phase space. Graph theoretic methods allow us to re-order the resulting finite dimensional
Markov operator approximation so as to highlight the regions of the original phase space which are particularly active
pseudo-barriers of the stochastic dynamics. Our toolbox allows us to find: (1) regions of high activity of transport, (2) flux
across pseudo-barriers, and also (3) expected time of escape from pseudo-basins. Some of these quantities are also possible
via the manifold dependent stochastic Melnikov method, but Melnikov only applies to a very special class of models for
which the unperturbed homoclinic orbit is available. Our methods are unique in that they can essentially be considered as
a “black-box” of tools which can be applied to a wide range of stochastic dynamical systems in the absence of a priori
knowledge of manifold structures. We use here a model of childhood diseases to showcase our methods. Our tools will
allow us to make specific observations of: (1) loss of reducibility between basins with increasing noise, (2) identification
in the phase space of active regions of stochastic transport, (3) stochastic flux which essentially completes the heteroclinic
tangle.
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1. Introduction

Noise in deterministic dynamical systems plays a prominent role in many cases observed in Nature. For example,
noise may induce order in spatio–temporal systems[1], enhance signal to noise ratios in systems modeled by
multi-basins of attractions[2], and may even induce phase transitions in wave fronts[3]. These few examples
illustrate that noise may indeed be the cause of a global change in real dynamical systems. In the past, this has
not been the typical thinking. For example, noise does not have much of an effect on chaotic dynamics. Chaos
in deterministic systems has been found to be robust to noise as long as parameters are tuned away from any
bifurcation point. This raises the questions of when can noise induce global changes in a system and what are these
new emergent dynamics.

Recently, progress has been made in attempting to understand the global role of noise, whereby global we refer
to the sampling of phase space containing qualitatively different behavior. For example, in cases where two steady
states are separated in phase space and possess distinct basins of attractions, additive noise may cause basin hopping
between the two states. Such phenomena have been the focus of the new field of stochastic resonance[2], for
which sufficiently large noise causes a communication of sorts between previously isolated basins. The stochastic
dynamics is based upon a well-defined probability density function (PDF) describing how much time is spent in
each basin. This is primarily a local result. It leads to a statement about exit times from a region, which is important
for signal detection, but is not concerned with the dynamics outside the basins.

In contrast to basin hopping, the idea that the dynamics occurring outside the basins may form the basis for un-
derstanding many observed fluctuations in Nature. One theoretical approach is based upon the idea of a stochastic
Melnikov function, which adds noise to a system possessing deterministic global structure[4]. For many of these
systems, analytic details must be known a priori from the deterministic system; i.e., typically, a known homoclinic
orbit must exist in the unforced conservative case, so that a perturbation analysis may be completed[5,6]. The advan-
tage is that parameter regions may be computed to find necessary conditions for noise induced chaos and phase space
chaotic transport. Similar to other stochastic analysis methods, mean escape times from certain basins may be found,
but analysis does not reveal information regarding communication between different regions of phase space[7].

Another example of noise influencing global dynamics occurs in population models of large number of interacting
species, such as in population dynamics of epidemics[8] or in the semi-classical modeling of lasers[9]. In contrast
to the Melnikovian models, these models do not possess global structure to perturb in the conservative unforced
cases. Therefore, all the deterministic and stochastic Melnikov analysis cannot be applied. However, there do exist
regions of parameters in which several periodic orbits co-exist, and more importantly, several unstable periodic orbits
co-exist. In[10], it was shown that when noise is added to the populations in a simple epidemic model, a sufficient
condition for the dynamics to resemble a stochastic version of chaos was the existence of bi-instability. That is, it
was found that for parameters generating isolated period two and period three orbits along with two unstable orbits,
noise with a small standard deviation could be added to cause trajectories to move outside the basins of the stable
attractors. Moreover, it was found that noise caused a sampling of newly created unstable orbits, and when ensemble
averaged, gave a positive Lyapunov exponent. This was also seen in models of noise driven lasers[9].

In all the above cases mentioned, a well-defined PDF may be found which describes how phase space is weighted.
The disadvantage is that transport of the phase space is missing. Unlike the Melnikov approach, no lobe dynamics
are found explicitly viz. the transverse crossing of stable and unstable manifolds. This is especially true if one
is working in parameter regions in which there are no transverse manifold intersections; i.e., there may be a
pre-tangency condition in which noise will complete a stochastic version of the manifold crossings. Moreover,
general stochastic systems do not have well-defined basins of attraction, which is critical in determining transport
regions. The main goal of this paper is to develop a theory that will allow one to compute phase space transport
without a priori knowledge of the basin boundaries. The basin boundary deficiency in phase space can be overcome
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by bringing to bear the tools from dynamical systems coupled with graph theory. Specifically, we will show how to
construct a directed graph which details transport from one basin to another when noise is added to a deterministic
dynamical system.

Considering a random dynamical system as an independent identically distributed (i.i.d.) composition of determin-
istic dynamical systems, and thus appropriately weighing a random composition of the corresponding deterministic
Ulam transition matrices, has been shown to be a good method to model ergodic properties of stochastic dynamical
systems[11]. In particular, this approach has been adapted to model mean and variance of firing times of squid
neurons[12]. While some of the techniques via the i.i.d. collection of random dynamical systems method are similar
to our methods based on directly projecting the stochastic Frobenius–Perron operator, we would like to highlight
regions of high transport activity.

Our approach will be to develop the PDF analysis through the Frobenius–Perron operator, which will allow us
to consider any noise distribution, with compact support. We will then use the results to make a finite dimensional
projection of the operator onto a set of functions that characterize the mass transport from one phase space region to
another. Then, to see how each part of phase space communicates with other parts, we make use of a matrix represen-
tation from graph theory. Our approach has the advantage that it may be applied to any reasonably low-dimensional
stochastic dynamical system.

The layout of the paper is as follows. InSection 2, we briefly describe a motivating model from population
dynamics, which describes the spread of disease in a large population. Since noise induced chaos has been the focus
of a large number of papers for this class of models, it is a good one to detail our results.Section 3describes the
details of the Frobenius–Perron operator formalism for computing invariant densities, and its stochastic analogue.
In Section 4, a finite dimensional projection of the FP operator is defined, and transport in phase space is defined
in terms a Galerkin matrix.Section 5forms the crux of our paper, which details how transport across boundaries
may be automatically computed based on the use of directed graphs. An illustrative one-dimensional example is
presented inSection 6, andSection 7considers the two-dimensional example of the population model. As a natural
consequence of the theory, flux across boundaries is immediate, and is presented inSection 8. Expected escape time
is derived inSection 9and conclusions are presented inSection 10. Finally, some remarks about the accuracy of
Markov partitions are included inAppendix A.

2. An example of noise-induced chaos

A standard system used to study and predict the stochastic dynamics of disease epidemics is based on the
well-known SEIR model[13,14], where the acronym will be clear from the definitions below. We start with a
description of the deterministic model and use notation similar to Schwartz and Smith[8]. Assume that the population
is sufficiently large so that the various subgroups may be assumed to be continuous. Therefore, the population can be
described by four subgroups which evolve in time: SusceptibleS(t), those individuals that may contract the disease;
ExposedE(t), those individuals that have come in contact with an infectious individual but not yet infectious;
Infective I (t), those individuals capable of transmitting the diseases; RecoveredR(t), those who are recovered.
These groups are disjoint because the recovered enjoy permanent immunity. A child becomes susceptible after
losing infant immunity, and then will always fall in one of the four stages. The population can be normalized to
S + E + I + R = 1, so all dependent variables represent fractions of the population.

A susceptible individual becomes exposed after contact with another infective. This contact rate fluctuates with
the seasons and can be approximated in several ways. For ease of exposition, we choose sinusoidal forcing,β(t) =
β0(1+ δ cos 2πt), where 0≤ δ < 1. Another more realistic option is term-time forcing, which sets transmission
rates high during school terms and low otherwise[15]. However, the form of the seasonal forcing is not critical for our
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argument. After a period of latency, the exposed child becomes infective and eventually recovered. Other parameters
used to quantify the dynamics are birth rate,µ, the mean latent period,α−1, and the infectious period,γ−1.

Theoretical and numerical analysis show that for almost all cases, the infective and exposed population follow
each other in time to first-order[8]. Since the dynamics from the exposed to the infective classes are governed
by linear kinetics, it is easy to show that although the SEIR model is three-dimensional, the dynamics collapses
onto a two-dimensional surface and the infectives are roughly proportional to the exposed class. The reduction then
describes a modified SI model (MSI), given by

S′(t) = µ− µS(t)− β(t)I (t)S(t), I ′(t) =
(

α

µ+ γ
)
β(t)I (t)S(t)− (µ+ α)I (t). (1)

The standard parameter values for measles are fixed atµ = 0.02,α = 1/0.0279,γ = 1/0.01,β0 = 1575.0, and
we varyδ, the fluctuating contact rate amplitude[8].

The solutions of the MSI model as well as the bifurcation diagrams for the above set of parameters agree quite
well with those of the full SEIR model. For a full description of the deterministic solutions, see[10]. Since the MSI
model is periodically driven with period one and bothS andI are fractions of the population, it may be a viewed as
a two-dimensional map of the unit box into itself. The stochastic model is considered to be discrete as well for the
purposes of this paper. That is, noise is added to the population rate equations periodically (period= 1) at the same
phase having mean zero and standard deviationσ . The dynamics may then be represented as a map,F : R2 → R2,

Fig. 1. A bifurcation diagram of the stable periodic and chaotic outbreaks as a function of the contact rate,δ. There are two co-existing attractors.
One has a period doubling cascade which leads to naturally occurring chaos for sufficiently large values ofδ, and the other branch is created by
a period three saddle-node bifurcation. The insert is a bifurcation diagram of the norms, or size, of the stable and unstable periodic outbreaks
shown as a function ofδ. A stable period one branch undergoes a period doubling bifurcation atδ = 0.027, giving rise to an unstable flip saddle,
the dashed line, and a stable period two orbit. The period three cycles appear as a stable–unstable pair atδ = 0.076. The saddle-node bifurcation
facilitates bi-instability with the co-existence of two unstable orbits.
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Fig. 2. Stochastic dynamics realizations of MSI model. The computations were done for parameters in the bi-instability region,δ = 0.095. The
dense inner trajectory (noisy periodic behavior) has a standard deviation of 0.02, while the sparse outer trajectory (chaotic-like behavior) has a
standard deviation of 0.05.

where

(S, I )(t + 1) = F [(S, I )(t)] + η(t).
Here η(t) is a discrete noise term. To understand the mechanisms for the onset of chaos-like behavior in the
presence of noise, we plot two separate bifurcation pictures in the parameter space. InFig. 1, only attractors are
shown as a function of contact rate fluctuations,δ, leading to natural chaos. The insert shows both stable and
unstable periodic cycles in the norm, highlighting the unstable branches of the bifurcations. Atδ = 0.027, a
period doubling bifurcation causes the stable period one to become an unstable annual cycle, or a flip saddle, and
creates a stable, period two orbit corresponding to a biennial outbreak. Atδ = 0.076, a saddle-node bifurcation
creates stable and unstable period three orbits. Without noise, trajectories starting in the neighborhood of the
stable period two or period three orbits simply converge to one of these two attractors. The unstable periodic
points only play a small part in lying on the basin boundaries, which are not fractal. Notice when the period three
attractor appears, there exists a period two attractor, as well as unstable period one and period three orbits (saddles).
Since the mechanism for inducing chaos with noise is determined by the interaction of the two unstable cycles,
we define this region in parameter space as aregion of bi-instability. In [10] it was shown that the existence of
bi-instability is a sufficient condition for noise to excite chaos. That is, there exists a sufficiently large standard
deviation in which new unstable orbits are created and sampled. It was also demonstrated that in the deterministic
case, only periodic orbits exist, and no underlying topological horseshoe is formed. When sufficient noise is added,
it completes a partially formed heteroclinic tangle, thus forming an unstable stochastic version of a topological
horseshoe. An example of how noise changes the dynamics globally in the region of bi-instability is presented
in Fig. 2.

3. Density evolution and the Frobenius–Perron operator

First, we define the Frobenius–Perron operator for a deterministic function. Associated with a discrete dynamical
system acting on initial conditions,z ∈ M (say,M ⊂ Rn)

F : M → M, x 
→ F(x) (2)
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is another dynamical system overL1(M), the space of densities of ensembles of initial conditions

PF : L1(M)→ L1(M), ρ(x) 
→ PF[ρ(x)]. (3)

This Frobenius–Perron operator(PF) is defined by the continuity equation[16]∫
F−1(B)

ρ(x)dx =
∫
B

PF[ρ(x)] dx (4)

for measurable setsB ⊂ M. Differentiation changes this operator equation to the commonly used form1

PF[ρ(x)] =
∫
M

δ(x − F(y))ρ(y)dy (5)

acting on probability density functionsρ ∈ L1(M).
Next, we lay out the basic idea for computing a PDF when the dynamics are known. Both deterministic and

stochastic cases are considered for dynamics that are discrete. Now we consider the stochastically perturbed dy-
namical system

Fν : M → M, x 
→ F(x)+ η, (6)

whereη is a random variable with PDFν(x), which is applied once each iteration. The random partν is assumed
to be independent of statex which we tacitly assume to be relatively small, so that the deterministic partF has
primary influence.

The “stochastic Frobenius–Perron operator” has a similar form to the deterministic case[16]

PFν [ρ(x)] =
∫
M

ν(x − F(y))ρ(y)dy, (7)

where the deterministic kernel, the delta function inEq. (5), now becomes a stochastic kernel describing the PDF
of the noise perturbation.

In this paper, we will assume for specificity that the external noise is normal

ν(x) = 1√
2πσ 2

exp

(
−‖x‖2

2σ 2

)
(8)

with meanx = 0 and standard deviationσ as the adjustable parameter. Therefore,Eq. (7)becomes

PFσ [ρ(x)] = 1√
2πσ 2

∫
M

e−‖(x−F(y))‖
2/2σ2

ρ(y)dy. (9)

We write “PFσ ” to emphasize the normal distribution involved. This form of the noise is justified for the particular
application system we study, roughly by invoking the usual central limit theorem argument due to many added
outside noise influences. Most of our analysis does not rely on this specific form of the noise, and carries through
similarly if some other noise term is justified.

4. Approximation of the infinite dimensional operator

We use the Galerkin method to approximate the Frobenius–Perron operator by a Markov operator of finite rank.
This method is most commonly found in nonlinear pde’s to resolve differential operators[17]. We use a projection

1 The other common form of the Frobenius–Perron operator being,PF[ρ(x)] = ∑
y:y=F−1(x) ρ(y)/|F ′(y)|, where the sum is taken over all

pre-images ofF .
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of the infinite dimensional linear spaceL1(M), with discretely indexed basis functions{φi(x)}∞i=1 ⊂ L1(M) onto a
finite dimensional linear subspace generated by a subset of the basis functions[18],∆N = span({φi(x)}Ni=1), such
thatφi ∈ L1(M) ∀i. This projection,p : L1(M)→ ∆N is realized optimally by the Galerkin method in terms of
the inner product, which we choose to be integration,(f, g) ≡ ∫

M
f (x)g(x)dx,∀f, g ∈ L2(M). Specifically, the

infinite-dimensional “matrix” becomes theN ×N matrix

Ai,j = (PFσ [φi ], φj ) =
∫
M

PFσ [φi(x)]φj (x)dx, 1 ≤ i, j ≤ N. (10)

One approximateρ(x), by the finite sum of basis functions is

ρ(x) �
N∑
i=1

diφi(x). (11)

We discuss the quality of this approximation inAppendix A.
The historically famous Ulam’s method[19], devised for a one-dimensional map setting, formulates matrix

entries as

Ai,j = m(Bi ∩ f−1(Bj ))

m(Bi)
(12)

with the interpretation of the fraction ofBi which maps toBj . (Here,m(·) denotes the Lebesgue measure onM.)
This Ulam matrix, which approximates the deterministic Frobenius–Perron operatorequation (5)is easily shown
to be equivalent to the Galerkin matrix by usingEq. (10)and choosing the basis functions to be the family of
characteristic functions

φi(x) = χBi (x) =
{

1 x ∈ Bi,
0 else.

(13)

Specifically, we choose the ordered set of basis functions to be in terms of a nested refinement of boxes{Bi} covering
M. ThoughEqs. (10) and (12)are formally equivalent in the deterministic case, we find that the Galerkin form is
more natural in the stochastic setting pursued in this paper. More will be said about how to efficiently compute the
large number of matrix elements ofAi,j , each of which requires a double integral. We develop several numerical
analytic techniques to do this efficiently.

In principle there is wide latitude in choice of basis functions, such as the Fourier basis of sines and cosines.
The techniques we develop in this paper aim to highlight locations of phase space particularly responsible for mass
transport. Hence, the choice of characteristic functions make the phase space locations corresponding to relative
density transport, as inEq. (12), particularly natural, as opposed to some other basis such as the Fourier modes,
which would be appropriate instead to highlight evolution of other harmonics.

5. Mass transport and stochastic matrices

The matrix approximation of the Frobenius–Perron operator,Ai,j is a Markov operator of finite rank, and as such,
it can be interpreted as a transition matrix:Ai,j > 0 implies that there is a mass of initial conditions, amongst an
ensemble of initial conditions, that moves from boxBi to boxBj upon one application of the stochastic dynamical
system,Eq. (6). For a typical noise distribution, such as normal

ν(x) = 1√
2πσ 2

exp

(
−‖x‖2

2σ 2

)
,
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which has nonzero support everywhere, there is everywhere a positive probability of mass transport. However,
we are concerned with significant probability, above some tail threshold. SeeSection 5.2for more discussion of
numerically computingAi,j , which includes masking negligible values. InSection 5.3, we describe how the matrix
can be re-indexed to conveniently lay plain the transport regions of the original stochastic dynamical system.

5.1. Review of some graph theory—irreducible matrices

First we review some language from graph theory[20,21] to describe the action of the transition matrixA. Let,
GA be the directed graph generated by a matrixA.GA consist of edgesE and verticesV

GA = (E, V ), (14)

where the set of vertices,V = {vi}Ni=1 label the original boxes{Bi}Ni=1, and the edges are defined to be the set of
ordered pairs of integersE = {(i, j) : i, j ∈ 1, . . . , N,Ai,j > 0} which label the vertices as their starting and
ending points. Given any two verticesvi andvj , there exists aminimal path distancedenoted dist(vi, vj ), which
is the number of vertices in a shortest path through the unweighted graph, allowing that dist(vi, vj ) ≡ ∞ if vi is
not path connected tovj .2 A graph is defined to bereducibleif there exists a vertexvi and a vertexvj such that
there exists no path through the graph between them. Otherwise, it isirreducible. Said in terms of the transition
matrixA,GA is irreducible iff there exists anm > 0 such thatAmi,j > 0 ∀(i, j). The diameter of a graph is defined

as the longest minimal path in the graph, diam(GA) = maxi,j dist(vi, vj ). Let us form the matrixC =∑N
n=1A

n.
Since the diameter of a finite graph, which is not infinite, is bounded by the number of vertices, diam(GA) ≤ N , it
follows thatGA is irreducible iffCi,j > 0 ∀(i, j), andCi,j = 0 ⇒ there exists no path fromvi to vj . Note that the
discrete term “irreducible” corresponds roughly to the term “ergodic” in dynamical systems, and the equivalence
can be made exact for a Markov map.

Now we assume thatGA has a reducible subcomponent. Suppose there is a decompositionV = V1 ∪ V2, such
thatV1 communicates withV1 andV2, butV2 communicates only withV2. That is, a re-indexing of the vertices
transformsA into a block matrix of the form

R =
(
R1,1 R1,2

0 R2,2

)
, (15)

whereR1,1 andR2,2 have the same number of rows and columns as vertices inV1 andV2, respectively.Eq. (15)
is the canonical form of a reducible matrix. However, for our specific application in whichR is a re-ordered
Galerkin matrix derived from a bi-stable dynamical system, it is common to find the special block dynamical
matrix form in whichR1,2 = 0; such is called “completely reducible”, or “decomposable”[22]. By definition,
exchanging/relabeling the index naming verticesvi andvj , i ↔ j , of a graph corresponds to exchanging rows and
columnsi andj of A, for which there exists an appropriate permutation matrix. Since a permutation is a similarity
transformation,R = P−1AP, or linear conjugacy, all dynamically relevant invariants are preserved. Therefore,
completely re-indexing a graph can be achieved by pair exchanges, by a sequence of such permutations. Roughly in
terms of dynamical systems language, the verticesV1 are the stable invariant set, and whileV2 may have an unstable
invariant set (cycling-paths in the graph), it includes the basin ofV1. Note that it is often the case that the transition
matrixR1,1, of the reduced subcomponentV1, may itself have a further subdecomposition into the same form as
Eq. (15).

If it is known thatA is similar to a matrixR written in the canonical form ofEq. (15), the problem is to decide
which vertices to re-indexV1 = {vk1, vk2, . . . , vkm} as those which are path connected to all. Then, the rest shall

2 The “Breadth First Search” algorithm may be used to compute dist(vi , vj ), [20,21].
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beV2 = {vkm+1, vkm+2, . . . , vkN }. One may identify these two sets of vertices by application of the Breadth First
Search algorithm, which signals those verticesvi such that somevj have dist(vi, vj ) = ∞. In the next section,
we discuss a direct method to identify appropriate re-indexing, by consideration of the underlying dynamical
system.

In the native boxes{Bi} coveringM, there is a natural spatial indexing, say for example a “raster” scanning
of the grid coveringM. However, the graph representation of the resulting graphGA has no special dimensional
information fromM, or spatial orientation. This is an advantage in that the techniques we develop below intelligently
re-index the box covering set{Bi}, and therefore the corresponding vertex setV , to achieve the formequation (15),
will work equally well for a wide range of dynamical systems of various dimension and attractor characteristics
essentially as a black-box tool.

5.2. Near sparse Galerkin matrices and link-lists

Consider storage size and access time to the Galerkin matrixA. If there is an attractor in a compact region of
the phase space, then we cover with a grid ofN ≡ mn rectangles{Bi}Ni=0, resulting in anN × N matrixAN×N .
For example, even our modest MSI model hasn = 2, and choosingm = 100 results inN = 104 which requires a
N ×N = 104 × 104 matrix. This brute-force approach of storage scales rapidly asm2n. Furthermore, each matrix
elementAi,j requires an accurate numerical evaluation of then2-dimensional integral inEq. (10), which requires
its own fine grid to control that error. The key short cut is to notice the near sparse nature ofA.

5.2.1. Negligible matrix entries and negligible integration
Here we discuss numerical issues which greatly reduce the computation time necessary to compute the ma-

trix A, approximating the stochastic kernel. Inspection of the Frobenius–Perron operator,Eq. (9), reveals that
most matrix entries are negligible in computer machine precision. Likewise those matrix entries, which are not
negligible, may theoretically communicate with all other matrix entries due to normal noise, but such communi-
cation quickly drops below the machine precision threshold. Substituting the definition of the Frobenius–Perron
operatorPFσ , Eq. (9), into the definition of a matrix element,Ai,j = (PFσ [φi ], φj ) in Eq. (10), and using the
choice of characteristic basis functions fromEq. (13), reduces the range of the doublen-dimensional integrals
considerably

Ai,j = 1√
2πσ 2

∫
M

∫
M

e−‖x−F(y)‖
2/2σ2

χBi (y)χBj (x)dy dx = 1√
2πσ 2

∫
Bj

∫
Bi

e−‖x−F(y)‖
2/2σ2

dy dx. (16)

This integrand is usually small and easily bounded. Chooseε to be some negligible threshold (sayε = 10−15 in
double precision arithmetic). Then

1√
2πσ 2

∫
Bj

∫
Bi

e−‖x−F(y)‖
2/2σ2

dy dx <
1√

2πσ 2

∫
Bj

∫
Bi

δ dy dx = δ√
2πσ 2

m(Bi)m(Bj ), (17)

if

‖x − F(y)‖ > σ√−2 ln δ (18)

and we choose

δ = ε
√

2πσ 2

m(Bi)m(Bj )
, (19)
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wherem(·) denotes Lebesgue measure of a rectangle. That is, if all the points in theith rectangle,y ∈ Bi ,
map far away underF from all the points in thej th rectangle,x ∈ Bj , then the matrix entryAi,j should be
neglected.

To guarantee inequality(19), we set

Ai,j 
→ 0, if inf x∈Bj ,y∈Bi‖x − F(y)‖ > −σ
√

2 ln
δ

2
. (20)

In practice, we consider it safe to replace the infimum with a minimum over several sample points from each
rectangle when the boxes are relatively small and assuming thatF is continuous. Notice that such considerations
can be made a priori entering any multiple algorithmic loops. Without assignment(20), A will always be full, but
most entries are exceedingly small, which is what we refer to as “almost sparse”.

For example, invoking assignment(20) for the MSI model whenm = 100 reduces what would be 100× 100
grid, and thus the necessary job of computing the 104 × 104 matrix entries ofA, for justQ = 62528 nontrivial
entries when choosingε = 10−20, andσ = 0.001. For those matrix entries which are not neglected by assignment
(20), the integrand is smooth, thus facilitating straightforward application of a wide variety of standard techniques
[23] such as Simpson’s method to evaluate eachAi,j to comparableε accuracy.

5.2.2. Link lists
We now address what would be a formidable storage issue of the matrixA. If A is full, then it is necessary to

save allN × N = m2n entries of the matrix. This tends to be such a large number, even for our relatively modest
m×m = 100× 100 grid of rectangles covering the MSI attractor, that storage becomes an issue, as does the time
necessary to manipulate the full array for the operation of re-indexing. Following the previous section, we showed
howA can be well approximated by a highly sparse matrix. In fact, we never form the transition matrix since that
would require storing mostly zeros. Instead, we use a link-list representation of the directed graph. A link listL

consists of aQ × 3 array including the matrix entry, and two pointers, whereQ denotes the number of nonzero
entries. Specifically, for eachAi,j > 0, index a valuek ∈ 1, ... ,Q, and recordLk = [Ai,j , i, j ]. Notice that such
a record of the transition matrixA is closely related to the definition of the underlying directed graph inEq. (14),
where an edge is defined as an ordered pair of vertex names. This link list definition is sufficient for all steps of our
process, from creating the matrixA in link list format, to re-indexing, to interpretation of the transport back in the
native coordinates of the phase space. The storage savings are substantial. IfA is full, thenQ = N2, and henceL
is a larger array with 3N2 entries, but ifQ < N2/3, then memory is saved, and our matrices are considerably more
sparse, as in the MSI example at the end of the last subsection whereQ = 62528 forε = 10−20, σ = 0.001, and
N2 = 108. Roughly, the expectation is thatQ will scale as the box counting dimension of the attractor, whileN

scales as the dimension of the embedding manifold.

5.3. How to re-index

Next, we introduce a method to conveniently re-index the vertices ofGA, the directed graph representation of the
action of Frobenius–Perron operator. By “convenient”, we wish the matrix representation to lay plain in the regions
of transport which leak measure between neighboring basins, across what were transport barriers in the absence of
noise. We have in mind the situation in which there is a form of “pre-tangency” stochastic chaos; neighboring basins
of stable attraction leak enough measure to overcome the deterministic action of those basins. The problem with a
grid approximation of the phase space is that a typical (say raster scanned) ordering of the phase space will tend to
have those regions that should be dynamically grouped (those in the same basin) scattered seemingly haphazardly
in the indexing. Thus, there is a need for re-indexing.



E.M. Bollt et al. / Physica D 173 (2002) 153–177 163

Our algorithm is designed for the case that we have a deterministic dynamical system, with several stable basins,
called a “multistable” system, in which there is a mixing of states as noise amplitude increases. Our algorithm in
brief is to:

• Identify vertices corresponding to each basin of attraction in the zero-noise case.
• Re-index the corresponding matrix representationk1, k2, . . . , kN by row/column exchange elementary permu-

tation operations. Further re-index each vertex according to the number of steps to center of the corresponding
basin.

• Gradually turn-up the noise amplitude while maintaining that zero-noise determined vertex order, which was
previously computed and dynamically coherent.

• Identify vertices from which measure leaks, and find their position in the original phase space.

It is straightforward to identify verticesvi whose paths all lead to some attracting vertexvj (roughly corresponding
approximately tovi ∈≈ basin(vj )). Furthermore, we can identify the number of steps in the path fromvi to vj . We
will sort basin(vj ) accordingly, to put the stable fixed points of the dynamical system at the heart of each matrix
block.

6. A one-dimensional example

We clarify the problem and our solution in terms of the following one-dimensional piecewise linear map,f :
[0,1] → [0,1]

f (x) =




−0.9x + 0.09 if x < 0.1,

2.5x − 0.25 if 0.1 ≤ x < 0.5,

−2.5x + 2.25 if 0.5 ≤ x < 0.9,

−0.9x + 1.81 if 0.9 ≤ x,

(21)

illustrated inFig. 3. There are two stable fixed points,x = 9/19 and 18.1/19, with trapping regions [0,0.1] and
[0.9,1], respectively. There are also two unstable fixed points,x = 1/6 and 9/14. In gray, we show the pre-images of
those trapping regions, which are not already in the trapping regions. With zero noise, the picture is simple. Almost
every initial condition eventually lands in one of the two trapping regions. This is a one-dimensional bi-stable
system. The structure of each basin is shown inFig. 4. Note that in this example, we know that each of the two
basins forms a Cantor set in [0,1], with a naturally finer and finer scale associated with each successive pre-image
of the trapping region.

Fig. 3. The one-dimensional map inEq. (21). The gray overlay indicates the first pre-images of the connected basins of the fixed points.
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Fig. 4. The basins of the one-dimensional map inEq. (21)with no noise. The shades of gray represent the number of iterates a bin is away from
the fixed point (see the side color bar). The top graph represents the basin of the left fixed point, and the bottom graph represents basin for the
right. White represents bins that are not part of that basin. 500 bins were used in this computation.

We choose to order the bins in each basin by their convergence rate to a fixed point. In other words, the ordering
depends on the number of iterates the midpoint of the bin is away from the fixed point bin, as shown inFig. 4. To
separate the basins, we put the first basin in ascending order, and the second basin in descending order. Therefore,
the fixed points are at the ends and closest to their immediate pre-images.Fig. 5first shows the natural ordering of
the bins, and in the lower graph, shows the re-ordering.

With a small amount of noise added to each iteration of the map inEq. (21), some initial conditions rarely leave the
noiseless trapping regions, due to random perturbations across the gray gaps adjacent to those trapping regions. Such
escape becomes more and more likely as the added noise amplitude is increased. This picture is reflected in the family
of PDFs depicted inFig. 6, which we calculated by repeated direct application of the stochastic FP operator, where
the integral is calculated numerically, and iteration of an initial uniform distribution is performed to satisfactory
convergence. The problem with direct inspection of the stable invariant PDF is that it contains no information about
what regions of phase space act as the transport barriers, which are increasingly crossed by the noisy version of
the dynamical system. In this simple example, we know that the gray regions inFig. 3serve that role, and we will
now show that this information can be recovered by an algorithmic black box, given purely an approximation of
the Frobenius–Perron operator which reveals the one-step action of the dynamical system on densities.

Fig. 5. The re-ordering of the bins in the Galerkin matrix according to basin and the number of iterates a bin is away from the fixed point.
The shades of gray in the top graph represents the original unsorted order of the 500 bins. The coloring of the bottom graph shows the sorted
re-ordering of the bins.
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Fig. 6. The one-dimensional map inEq. (21). Family of PDFs due to increasing normal noise,σ = 0.01 (curve with largest peaks at the ends of
the interval) toσ = 0.12 (smallest peaks).

In the left graph ofFig. 7, we see the unsorted Galerkin matrix. In the right graph ofFig. 7, we can see the blurring
effect of the noise on the Galerkin transfer matrix, which causes noise-induced diffusion of mass across boxes.

In Fig. 8, we see the re-indexed Galerkin matrices forσ = 0.001 andσ = 0.04. The thick black lines crossing
the middle of the matrix denote the basin boundaries of the graph, and approximate the basin boundaries of
the dynamical system. It is these boundaries that the noise-induced transport must overcome, and this feature
can now become obvious in this arrangement. At this point, we remark that no structures smaller than the box
covering scale can possibly be revealed. The boxes of a scale significantly smaller than the noise perturbations
which interest us are not particularly useful, since noise is well known to blur fine scale structures of invariant
measure[24]. As indicated by the Galerkin matrix forσ = 0.04,Fig. 9marks the intervals, which are five or less
iterations away from the interval containing the fixed point, that transport mass to the other basin (in the original
phase space).

Fig. 7. Galerkin matrix forσ = 0.001 (left), before re-indexing as inFig. 8. Note that in the original indexing, this matrix appears as the map
in Eq. (21), whose action on densities it represents. With larger noise,σ = 0.04 (right) we can see the blurring action of the Galerkin transfer
matrix. Note that the largest values in the Galerkin matrix are represented by the darkest shades, while white represents values below a threshold
considered equivalent to 0.
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Fig. 8. A representation of the Galerkin matrices forσ = 0.001 (left) andσ = 0.04 (right), re-indexed according to the number of iterations
away from a stable point. The bold lines separate the two basins. The black indicates where in the matrix values are above a threshold equivalent
to 0.

Fig. 9. The escape regions found forσ = 0.04 labeled by dashed black lines, overlaid on the basin maps for each basin. Only intervals that are
five or less iterations away from the interval containing the fixed point are considered.

7. A two-dimensional example

Now we are in the position to study the mechanism behind the noise-induced transport of the MSI model,Eq. (1).
In this section, first we apply our newly developed tool to the MSI model, essentially as a black box, to reveal
the transport mechanism. Then we interpret the results in terms of what is already known about this dynamical
system.

Following the algorithm outlined inSection 5.3requires little special consideration for our specific system. Once
we raster-scan an index to cover the attractor by a coarse grid, the resulting Galerkin matrix approximation of the
Frobenius–Perron operator is essentially dimension independent, with no memory of the phase space from which it
was formed. A few special considerations are computationally necessary to manage the large-scale of the problem
in an > 1-dimensional phase space, such as then = 2 MSI example. These were outlined inSection 5.2.
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Fig. 10. A graph of the manifolds for the MSI model withδ = 0.095. Stable periodic orbits are in black. The basin of the period two orbit is
white and the basin of the period three orbit is gray. The manifolds of the unstable period one orbit are solid black and the manifolds of the
unstable period three orbit are dashed. Note the forward-heteroclinic crossings where the solid and dashed manifolds intersect.

We now formulate noise-parameterized discrete models of the Frobenius–Perron operators, corresponding in-
variant densities, and the main result of our new method, the location of regions and degrees of transport from the
re-ordered matrices transformed back to the native phase space. We start by showing the main features of the phase
space inFig. 10. The basins and manifolds of the periodic orbits are shown here. Note the position of the stable
period two and period three orbits in phase space. After we split up this part of phase space into 1002 bins, the
bins need to be ordered into two sets, first by basin, and then by number of iterates it is away from the attracting
orbit.

In Fig. 11, we see the invariant density of the MSI model, as a function ofσ -noise amplitude. These pictures are
calculated as the dominant eigenvector of the corresponding Galerkin matrix, which we have remarked is (almost)
a stochastic matrix. The essential feature is that whenσ = 0, the two main density spikes are at the dynamic centers
of each respective basin. The striking features of interest to us of increasingσ are:

• Initially, the density becomes less diffusely distributed around the stable fixed points, due to predominantly
stochastic diffusion on top of the primary dynamic effect, which is the existence of two stable fixed points and
two distinct basins.

• A crossover effect occurs, forσ > 0.2, after which the density mass becomes mixed throughout a larger region,
and predominantly mixed between the originally separate basins. This mixing is a larger effect than can be
explained by stochastic diffusion. In[10], it was noted that there is initially,σ = 0, a backward heteroclinic
connection, but no forward connection, but the forward connection becomes effectively realized for large enough
σ . Thus the argument is that for large enoughσ , there is “stochastic chaos”.

In this paper, we have formulated a new tool to complement the explanation given in[10]. We directly study the
approximated density transport and transport regions.
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Fig. 11. The PDF as a function of the standard deviation of the noise for the MSI model:σ = 0.001,0.01,0.02,0.03. The PDF was calculated
as the dominant eigenvector of the Galerkin matrix. In the top left graph, the period two orbit is located in the two largest peaks, while the period
three is in the three smaller peaks.

Figs. 12 and 13, respectively, bring out two important points of this paper: (1) loss of reducibility between the
basins with increasing noise and (2) identification in the phase space of active regions of stochastic transport. In
Fig. 12, we see the sorted matrix in the canonical form ofEq. (15). We note that the two off-diagonal submatrices
are completely empty whenσ = 0. Maintaining this re-indexing, we see clearly the cause of the density which leaks
between the formerly separate basins, which is the loss of reducibility of the corresponding (here approximated)
operator; in this sense, understandingFig. 12can be considered as one of the main points of this paper. A second
main point is that we can recover the location of the most active regions and barriers to stochastic transport, which
are now obvious in the re-indexed matrix form shown inFig. 12. In Fig. 13, we color the two basins by the number
of iterates a bin is away from the stable periodic orbit. We overlaid in black stars the bins that send mass to the other
basin, facilitating stochastic transport. We only consider bins within five iterates of the stable attractors. Therefore,
it is possible for a trajectory that has converged to an orbit to escape to the other basin.
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Fig. 12. The sorted Galerkin matrix for the standard deviationσ = 0.03. The black lines separate the bins of the period two basin from the
period three basin.

8. Flux across barriers

When investigating transport, flux across barriers is the natural quantity to calculate. In the above, we have used
re-indexing to delineate the zero-noise barriers between basins, which become partial barriers asσ ↑. Given a
region, say an open setS, it is possible to definemass flux(or simply flux) in and out of the region, across the
boundary∂S [25]. In our MSI model, we takeSi , i = 1,2 to be the two basins forσ = 0. Let,

F ±
S [ρ] ≡ mass entering/exitingS from outside/insideS upon one application of the map, due to

initial density profileρ, (22)

whereF ±
S [ρ] can be read, “mass flux into/out-ofS due to an initial density profileρ”. To calculateF +

S [ρ], we
appropriately restrict the region of integration of the stochastic Frobenius–Perron operator,Eq. (9),

F +
S [ρ] = 1√

2πσ 2

∫
S

∫
S̃

e−‖(x−F(y))‖
2/2σ2

ρ(y)dy dx. (23)

Here,S̃ denotes the complement of the setS. Observe that the inner integral,

1√
2πσ 2

∫
S̃

e−‖(x−F(y))‖
2/2σ2

ρ(y)dy

gives the density atx which comes from a pointy ∈ S̃, meaning not inS. The outer integral accounts for the total
mass of all such contributions inx. To calculate the flux intoS, F −

S [ρ], we must simply reverse the regions of
integration inEq. (23). We state the obvious identities

F +
S [ρ] = F −

S̃
[ρ] and F −

S [ρ] = F +
S̃

[ρ] (24)

due to conservation of mass. Note that unlike the deterministic case, stochastic transport is drawn from a broad
region, due to the diffusive stochastic kernel; this property is indicated clearly by the out-of-decomposed bands seen
in Fig. 12.
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One has the option to calculateF ±
S [ρ] by direct (numerical) application ofEq. (23). We choose to continue to

follow the approximation method on a fine grid, by substitution ofEq. (11), which we justify inAppendix A. The
inner integral becomes

1√
2πσ 2

∫
S̃

e−‖(x−F(y))‖
2/2σ2

ρ(y)dy � 1√
2πσ 2

∫
S̃

e−‖(x−F(y))‖
2/2σ2

N∑
i=1

ciχBi (y)dy

=
∑

i:Bi∩S̃ �=∅
ci

1√
2πσ 2

∫
Bi

e−‖(x−F(y))‖
2/2σ2

dy. (25)

Substitution intoEq. (23)gives the approximation

F +
S [ρ] �

∑
i:Bi∩S̃ �=∅

ci
1√

2πσ 2

∫
S

∫
Bi

e−‖(x−F(y))‖
2/2σ2

dy dx

�
∑

i:Bi∩S̃ �=∅
ci

∫
∩j :Bj⊂SBj

∫
Bi

1√
2πσ 2

e−‖(x−F(y))‖
2/2σ2

dy dx. (26)

We recognize this last double integral, fromEq. (16), to consists of a sum over those entries of matrixAi,j such
thatBi ∈ S̃, andBj ∈ S. Hence, we define the flux matrix

A+
S ≡

{
Ai,j if Bi ∈ S andBj ∈ S̃,
0 otherwise,

(27)

which allows us to rewriteEq. (26)

F +
S [ρ] � ‖A+

S · c‖1, (28)

where‖ · ‖1 denotes the absolute sum. In this form, we have flux in terms ofA+
S , which is a masked transfer matrix,

times the coefficient weights vectorc = (c1, c2, . . . , cN)
t . One can similarly form and interpret masked transfer

matricesA−
S ,A+

S̃
andA−

S̃
.

Choosing an initially uniform densityc = (1/N)1, we can find stochastic “area flux”. In this case,Eq. (28)
reduces to the absolute sum of matrix entries

F +
S [1] =

∑
i,j

[A+
S ]i,j . (29)

In Fig. 14, we see how both the area flux (left) and PDF flux (right) change as noise volume is increased. We use
the term “PDF flux” for the choiceρ is the invariant density substituted intoEq. (28). It is no surprise that area
flux increases monotonically asσ ↑. We explain the less intuitive nonmonotonicity of the PDF flux as follows:
apparently fromσ � 0.01 to σ � 0.02, there is a crossover in that while area flux continues to increase, the
concentration of density in the regionS decreases, and so weighting according to the PDF results in a decreasing
PDF flux.

Our flux computations now bring us to another main point of this paper. Stochastic flux essentially completes
the heteroclinic connection. Our hypothesis in[10] was that noise completes a partially formed heteroclinic tangle
for the MSI model. SeeFig. 10for a graph with the location of the periodic orbits and corresponding manifolds.
In Fig. 15, we show the flux with PDF weighting. Again, the PDF flux reveals the combination of the density with
the transport, showing where a trajectory is most likely to escape to another basin. Observe in the left graph that
the greatest flux occurs where the unstable manifold of the period-one saddle is closest to the stable manifold of the
period-three saddle, thus completing the heteroclinic tangle.
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Fig. 14. The flux as a function of the standard deviation (σ ). The left diagram is the “area flux”,Eq. (29), in terms of a uniform initial density,
and the right diagram is “PDF flux” weighted according to the PDF.

9. Expected escape time

Another natural quantity to consider when investigating transport is expected escape time across a barrier of a
point in a region. Again, suppose a regionS. Given a pointx ∈ Bi ⊂ S, let T (x)i be the actual time of escape for
a particular sample path of the stochastic dynamical system of a randomly chosen initial condition in theith box.
The expected time of escape fromS, for a pointx ∈ Bi ⊂ S is

〈T (x)i〉 =
∞∑
n=1

nP(T (x) = n) =
∞∑
i=1

nP(F n(x) /∈ S and Fm(x) ∈ S, ∀m < n). (30)

The key issue to acknowledge is that we are interested in the mean time offirst escape. While,

Ani,j = P(Fn(x) ∈ Bj |x ∈ Bi), (31)

this probability does not forbid multiple passages or recurrences. In particular, it accounts for orbits which might
leaveS and return toS multiple times before finally landing inBj ⊂ S̃ on thenth iterate.

We define an operator which measures the probability of first escape fromS, again by restricting (masking) the
Galerkin matrixA. Let this “escape matrix” be defined as,3

[E−S ]i,j ≡
{
Ai,j if Bi ∈ S,
0 otherwise.

(32)

SinceE−S has zero probability of a transition of the type,S̃ → S, we now have

[E−S ]ni,j = P(Fn(x) ∈ Bj ⊂ S and Fm(x) ∈ S, ∀m < n|x ∈ Bi ⊂ S) (33)

which is exactly the probability of first exit transition that we require to calculate the mean inEq. (30).

3 This is an approximation similar to that inEq. (9), except we have less severely restricted the region of integration of the Frobenius–Perron

operator:(1/
√

2πσ 2)
∫
S

∫
M

e−‖(x−F(y))‖2/2σ2
ρ(y)dy dx.
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Since the events described in the probability inEq. (33)are disjoint events for two different target boxes

P(Fn(x) ∈ ∪
j :Bj⊂S̃Bj and Fm(x) ∈ S, ∀m < n|x ∈ Bi ⊂ S) =

∑
j :Bj⊂S̃

[E−S ]ni,j . (34)

We now have the notation necessary to state the following theorem:

Theorem. If the escape matrix defined inEq. (32)is bounded,4 ‖[E−S ]‖ < 1, then the expected mean time of escape
fromS for an orbit starting in boxBi ⊂ S to any boxBj ⊂ S̃ is

〈T (Bi)〉 = 1

#{j : Bj ⊂ S̃}
∑
j :Bj⊂S̃

[[E−S ] · (I − [E−S ])−1 · (I − [E−S ])−1]i,j , (35)

where#{j : Bj ⊂ S̃} is the number of boxesBj ⊂ S̃, andT (Bi) is the time of first escape of a single randomly
sampled path starting atBi , based on paths defined by the graphGA model of the Frobenius–Perron operator,
usingEqs. (10) and (13).

Proof. By Eq. (33)

〈Time of first escape fromBi ⊂ S toBj ⊂ S̃〉 =
∞∑
n=1

n[E−S ]ni,j . (36)

By the assumed bound,‖[E−S ]‖ < 1, we have the matrix geometric series[27]

(I − [E−S ])−1 =
∞∑
n=0

[E−S ]n (37)

from which it is straightforward to derive

∞∑
n=1

n[E−S ]n = [E−S ] · (I − [E−S ])−1 · (I − [E−S ])−1. (38)

Hence, selecting theith, j th entry of this matrix on the right side ofEq. (38)gives the mean escape time fromS,
starting at boxBi , and arriving aftern-iterates at boxBj . By independence of the events of arriving at two different
boxesBj andBj ′ , both inS̃, the total mean escape time from boxBi to any boxBj ⊂ S̃ is the arithmetic mean of
the mean escapes times to each individual box, which gives the formulaequation (35).

The restriction that‖[E−S ]‖ < 1 is not severe, since in all but a trivial choices ofS (when‖[E−S ]‖ = 1, because
the matrixA is stochastic), the inequality should hold. �

Now we critique our result. Note thatj : Bj ⊂ S̃ is generally a proper set inclusion due to the imperfect course
grid, butEq. (34)will be approximately the correct probability needed inEq. (30)for a fine grid. The only part missed
is including probability of transitions near the boundary ofS̃. By this critique, one expects that〈T (Bi)〉 ≤ 〈T (x)i〉,
but 〈T (Bi)〉 � 〈T (x)i〉 for a fine grid. However, notice that formulaequation (35)gives expectation in terms of
the combinatorial model of the Frobenius–Perron operator, formed using a fine grid, and not the full operator. We
expect the calculation to be good for a fine grid.

4 The notation‖ · ‖ used in this section denotes the matrix natural norm,‖A‖ = sup‖u‖=1‖A · u‖, in terms of a vector norm, which we could
choose here to be the sup-norm, in which case,‖A‖∞ = maxi

∑
j |Ai,j |, [26], which is the maximum column sum.
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10. Conclusion

Random dynamical systems, deterministic systems which are considered in the presence of noise, have been
growing ever more important in the description of dynamics far from equilibrium. In this paper, we have shown
how to compute the invariant density of random dynamical systems necessary to evaluate phase space transport.
The main advantage of the techniques we present inSections 5 and 8is that transport is computed in the absence of
any knowledge of the presence of intersecting manifolds. This is in contrast to the lobe dynamics presented in[5].

The tools used to develop a manifold independent model of transport revolved around computing a finite dimen-
sional analog of the Frobenius–Perron operator, which was defined as a Galerkin matrix. The payoff in using such a
representation is that one can map an arbitrary phase space dimension (finite) into a two-dimensional model. Since
each element is a measure of the probability of one component of phase space mapping into another, it is now
possible to see explicitly how transport between basins occurs as a function of noise strength. This is accomplished
with the aid of graph theory, which allows one to re-order the matrix entries in a way in which basin boundaries are
easily seen as well as which portions of phase space communicate with each other.

The models we consider, a one-dimensional map and a modified SEIR model (MSI) from epidemiology, form two
basic purposes. First, the one-dimensional map is shown in detail to form a tutorial in implementing the theory. It is
a bi-stable map, but the basin boundary separating the fixed points is fractal. This poses a problem when considering
a re-ordering of the Galerkin matrix, but is circumvented by only considering a finite number of pre-images of the
basins that contain the fixed points.

The MSI model is an example of a system that exhibits bi-instability, which has been conjectured to play a role in
noise induced chaos in population dynamics[10]. In [10], it was conjectured that the mechanism for stochastic chaos
arises from a sufficient amount of noise completing a heteroclinic connection between transverse crossings between
stable and unstable manifolds. However, no explicit metric of mixing could be constructed until the development of
the tools in this paper. Although the definition of stochastic chaos has not been well-defined, such a computation of
transport between different basins can be viewed as a measure of noise induced mixing. That is, in the absence of
noise, the dynamics may only possess stable isolated attractors, where portions of phase space are not sampled at
all. However, when noise is added, mixing between the basins occurs. Therefore, in addition to having an invariant
probability density from the noisy Frobenious–Perron formalism, we may also have a condition of noise-induced
ergodicity based on noised induced transport. We have shown that stochastic flux is high precisely where necessary
to complete the heteroclinic tangle. The tools we have used here may indeed be further pushed to possibly define a
version of noise-induced chaos on a rigorous footing.

It is an amazing result that such transport between basins in random dynamical systems can be achieved without the
manifold structure in hand. Our result not only reveals transport for a given model, it may be considered as a toolbox
in which transport in random dynamical systems theory may be further developed, as in the rigorous style of[28].
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Appendix A. Remarks on coarse-grids and Markov partitions

The goal of this section is to show that as the partition of rectangles{Bi} is refined, the calculations based on a
Galerkin’s method approximation of the Frobenius–Perron operator improves. Luckily, our problem does not suffer
many of the difficulties and questions of partitions inherent in the classic Ulam’s conjecture.
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The main difficulty in the Ulam’s method literature is the question of whether the long term distribution resulting
from repeated application of the matrix representation is adequate to weakly approximate the long-term distribution
of the original dynamical system. It took from 1960 when Ulam stated the problem[19] until 1976 when Li[18] pre-
sented a first mathematical proof to rigorously solve Ulam’s original problem for a special class of one-dimensional
transformations. Indeed, there are technical requirements on the transformation, and the proof is not simple; there
has been a great deal of work since Li to formulate similar statements for related problems in higher dimensions,
or with other constraints on the transformation[29–34]. The main source of concern in such approximations is that
the error in approximation may be propagated upon repeated application of the operators, as is necessary when
considering the long-term steady-state solution. Fortunately, we are not concerned here with most of these referred
to technical issues, since we investigate only the one-step action of the map on densities.

Now we justify the “�” symbol, often used in previous sections to denote that the grid representation is a “good”
approximation. First we show that one application of the stochastic Frobenius–Perron operator yields a continuous
density function. This is not a surprising result, since the Frobenius–Perron operator is somewhat similar to a
convolution of the initial density to the noise density. There is a similar result for normal noise, by Zeeman[35],
but we include our proof here since it is specialized to our problem.

Theorem. Suppose that the noise distributionν ∈ C0
0(M),

5 of the stochastic Frobenius–Perron operator, Eq. (7)
is uniformly continuous, and given a continuous initial density function of compact support, ρ0(x) ∈ C0

0(M), then
the output densityρ1(x) =

∫
M
ν(x − T (y))ρ0(y)dy is continuous on its domain,M.

Proof. Sinceν is continuous, by definition, there isδ(ε̄) so that|ν(x + δ(ε̄)) − ν(x)| < ε̄, for all ε̄ > 0, for all
x ∈ M by the assumption of uniformity. Therefore, we bound

|ρ1(x + δ(ε̄))− ρ1(x)| =
∫
M

|ν(x + δ(ε̄)− T (y))− ν(x − T (y))ρ0(y)dy|

≤
∫
M

|ν(x + δ(ε̄)− T (y))− ν(x − T (y))||ρ0(y)|dy

<

∫
M

ε̄|ρ0(y)|dy ≤ ε̄RT≤ ε. (A.1)

The second inequality follows the uniform continuity ofν. The third inequality follows the assumption thatρ0(x) ∈
C0

0(M), continuous functions of compact support, since the choiceR = maxMρ0(x) exists andT is the Lebesgue
measure of the compact region over whichρ0(x) is nontrivially supported. Finally, the fourth inequality follows
since we have control in choosingε̄ as small as needed to meet any initial choice ofε > 0. �

Remark. In particular, the “�” used throughout this paper relies first onEq. (11), which for the choice of character-
istic basis functions, refers to the statement that piecewise constant functions are dense in the continuous functions,
C0

0(M).

Remark. The Frobenius-Perron operator,Eq. (7) is a bounded linear operator, as are its restricted-domain sub-
operators,Eq. (23), which are also continuous operators[27]. Hence, any sequence of initial densities,ρ0,N (based
on a fine grid of boxes{Bi}Ni=1 of N -boxes) converging toρ0 ∈ C0

0(M) will yield output density functionsρ1,N ,
which are likewise sup-norm close toρ1. Hence, the measures of transport in this paper, based on a fine grid covering
of the phase space can be estimated and controlled.

5 And continuous functions of compact support are dense inLp(M) for p ≥ 1, [27].
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Remark. A detail skipped by the previous remark is the fact that the diffusion[22] due to noise will causeρ1(x)

to have nonzero support on all ofRn, and hence not be of compact support. However,ρ1(x) is well approximated
by continuous functions of compact support, and the above statement can be made rigorous form-finite iterations.
More work would be necessary in the limitm→∞, but the toolbox proposed here to study transport does not rely
on this limit. We have discussed the one-step action of the map on densities. The exception to this statement is the
expectation question studied inSection 9.
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