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This paper is meant to serve as a tutorial describing the link between symbolic dynamics
as a description of a chaotic attractor, and how to use control of chaos to manipulate the
corresponding symbolic dynamics to transmit an information bearing signal. We use the Lorenz
attractor, in the form of the discrete successive maxima map of the z-variable time-series, as
our main example. For the first time, here, we use this oscillator as a chaotic signal carrier. We
review the many previously developed issues necessary to create a working control of symbol
dynamics system. These include a brief review of the theory of symbol dynamics, and how they
arise from the flow of a differential equation. We also discuss the role of the (symbol dynamics)
generating partition, the difficulty of finding such partitions, which is an open problem for
most dynamical systems, and a newly developed algorithm to find the generating partition
which relies just on knowing a large set of periodic orbits. We also discuss the importance of
using a generating partition in terms of considering the possibility of using some other arbitrary
partition, with discussion of consequences both generally to characterizing the system, and also
specifically to communicating on chaotic signal carriers. Also, of practical importance, we
review the necessary feedback-control issues to force the flow of a chaotic differential equation
to carry a desired message.

Keywords: Control of chaos; communication; communication with chaos; symbolic dynamics;
hyperbolicity; synchronization; feedback control.

of which extends the original OGY techniques, and
some of which only has in common with OGY the
simple realization that a chaotic oscillator is es-

1. Introduction

The field of controlling chaos was first popularized

by the simple “OGY” algorithm published in 1990
by Ott, Grebogi and Yorke [Ott et al., 1990]. The
idea is that an unstable periodic orbit can be stabi-
lized by parametric feedback control once ergodic-
ity has caused a randomly chosen initial condition
to wander close enough to the periodicity that lin-
ear control theory can be applied [Ott et al., 1990].
A tremendous flood of theoretical and experimen-
tal research has followed this seminal work, some

pecially flexible and therefore allows for very sen-
sitive selection between a wide range of possible
behaviors.

Two major methods of communication with
chaotic signal carriers are (1) Synchronization, and
(2) Feedback control of symbolic dynamics. The
subject of this paper concerns the feedback con-
trol symbolic dynamics approach, but we mention
synchronization for contrast to the other school of

*More information can be found on the web: http://mathweb.mathsci.usna.edu/faculty /bolltem/
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methods which are expected to appear here. The
synchronization of chaotic oscillators phenomenon
was first discovered in the early and mid-1980’s
by [Yamada & Fujisaka, 1983, 1984] and then
[Afraimovich et al., 1986], then in 1990 by [Pecora &
Carroll, 1990] the last of which started an avalanche
of research. Synchronization is now known to have
fundamental implications in nature well beyond the
practical engineering application of communication.
To our interest here, it was shown very early on
[Pecora & Carroll, 1990; Cuomo & Oppenheim,
1993] that using synchronization allows a chaotic
signal carrier to transmit a message. See [Pecora
et al., 1997] for an excellent review. We also di-
rect the reader to the very important practical en-
gineering advances made by the European follow-
ers, as typified by the works [Kennedy & Kolumbén,
2000; Kolumbén & Kennedy, 2000; Kolumban et al.,
1998] in noncoherent methods, including differential
chaos shift keying (DCSK) modulation schemes.
On the other hand, control of symbolic dynam-
ics relies on a fundamental description of a chaotic
oscillator by change of coordinates that brings a
discrete time map (which may arise by a flow map-
ping between Poincaré surfaces) on its phase space
to an abstract Bernoulli shift map on some subshift
space. The fundamental link between chaotic oscil-
lators and symbolic dynamics was first introduced
by Smale [1967]. In 1993, Hayes et al. [1993, 1994]
showed that feedback control of chaotic trajectories
together with sensitive dependence and the sym-
bolic dynamical description of chaotic trajectories
can be used to force a chaotic oscillator to carry in-
formation. Small parametric feedback control sen-
sitively alters a chaotic trajectory and hence said
change of coordinates serves as a coding function
to transform the symbolic sequence corresponding
to the original chaotic trajectory, into some other
symbolic sequence corresponding to a desired mes-
sage. We would also like to point out to the reader
that at time of press, a closely related article on
communication in chaos using symbol dynamics has
appeared [Schweizer & Schimming, 2001a, 2001b].
While this paper is meant to serve as a tuto-
rial, as our main example, we will show for the first
time how Lorenz’s successive maxima map serves
as a good information carrying device. In our pre-
vious work the author and Dolnik [Bollt & Dolnik,
1997; Dolnik & Bollt, 1998] considered a chemical
system. Since it has been shown that the Lorenz
equations can be easily realized in circuitry [Cuomo
& Oppenheim, 1993, it follows that such a system

could in principle be built. In Sec. 2, we review the
Lorenz system and attractor, which will serve as our
main concrete example, and we discuss how the suc-
cessive maxima map yields a one-humped map, for
which the symbol dynamics are defined. We review
in Sec. 3 the necessary symbolic dynamics, both
for general diffeomorphisms of the plane, and for
the simpler chaos of one-dimensional many-to-one
maps, of which the successive maxima map of the
Lorenz flow is an example. Then in Sec. 4, we dis-
cuss both the role and importance of using a gener-
ating partition. We also discuss the consequences of
using a nongenerating (arbitrary) partition, both in
describing the system, and also specifying the con-
sequences to communicating with chaos. We briefly
review a new algorithm to use collections of unsta-
ble periodic orbits to reveal the generating parti-
tion. In Sec. 5, we recall a technique, codeveloped
by the author [Bollt et al., 1997; Bollt & Lai, 1998;
Lai & Bollt, 1999], whereby a great deal of chan-
nel noise resistance can be added to the system,
and costs only a minor loss of transmitter capacity,
simply by restricting trajectories to always avoid
a neighborhood of the generating partition. Our
feedback control techniques discussed in Sec. 6 will
follow the methods codeveloped by the author in
[Dolnik & Bollt, 1998], in which we allow for all
necessary information to be learned purely by ob-
servation and measurement, in the setting of a lab-
oratory experiment, and in the absence of a closed
form differential equation model of the dynamical
system.

2. Lorenz Differential Equations
and Successive Maxima Map

We consider the Lorenz system [Lorentz, 1963],

i =10(y — ),
y=z(28—-2)—y, (1)
2::Uy—§z,

both because it is a benchmark example of chaotic
oscillations, and because it can be physically real-
ized by an electronic circuit [Cuomo & Oppenheim,
1993]. Likewise those interested in optical trans-
mission carriers may recall the Lorenz-like infrared
NH3 laser data [Huebner et al., 1989]. E. Lorenz
showed that his equations have the property that
the successive local maxima can be described by a
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Fig. 1. Successive maxima map of the measure z(t) variable,
of the Lorenz flow (z(t), y(¢), 2(¢)) from Egs. (1).

one-dimensional, one-hump map,

Zn+1 = f(zn) ) (2)

where we let z, be the nth local maximum of the
state variable z(t). The chaotic attractor in the
phase space (z(t), y(t), z(t)) shown in Fig. 1 corre-
sponds to a one-dimensional chaotic attractor in the
phase space of the discrete map f(z), and hence the
symbol dynamics are particularly simple to analyze.
See Fig. 2. The generating partition for defining a

Ed says: follow this path to "Beat Army!"

PR
-0 -

Fig. 2. Lorenz’s butterfly attractor. This particular
“typical” trajectory of Egs. (1) gives the message “Beat
Army!” when interpreted relative to the generating parti-
tion Eq. (3) of the one-dimensional successive maxima map
Eq. (2) shown in Fig. 2.
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good symbolic dynamics is the critical point z. of
the f(z) function. A trajectory point with

2z < z.(z > z.) bears the symbol 0 (1). (3)

The partition of this one-dimensional map, of suc-
cessive z(t) maxima corresponds to a traditional
Poincaré surface mapping, as the two leaves of
the surface of section can be seen in Fig. 1.
Each bit roughly corresponds to a rotation of
the (x(t), y(t), 2(t)) flow around the left or the
right lobes of the Lorenz butterfly-shaped attrac-
tor. However, the Lorenz attractor does not allow
arbitrary permutations of rotations around one and
then the other lobe; the corresponding symbolic dy-
namics has a somewhat restricted grammar which
must be learned. The grammar of the correspond-
ing symbolic dynamics completely characterizes the
allowed trajectories. Since the purpose of this pa-
per is to show how a chaotic oscillator can be forced
to carry a message in its symbolic dynamics, we de-
velop further these notions in the next section.

3. Symbolic Dynamics

In this section, we review the mathematical
change of coordinates which allows trajectories of
a discrete dynamical system to be equivalently
described as infinite bit streams.  Such sym-
bolic dynamical descriptions of chaos were first in-
vented as a simplifying change of coordinates, in
which the proofs of many theorems become simple
[Robinson, 1995]. Indeed, most of the dynamical
systems for which mathematically rigorous proof
exists concerning their chaotic properties are pre-
cisely those for which a conjugacy to some sym-
bolic shift exists (see examples in [Robinson, 1995;
Devaney, 1989]. For our purposes in communica-
tions describing controlled trajectories as messages
involve conversion to a bit stream as a crucial step.

3.1. One-dimensional maps with

a single critical point
First we consider a one-humped interval map, such
as the situation of Lorenz’s successive maxima map.

fla, b = a, b]. (4)

Such a map “has” symbolic dynamics [Milnor &
Thurston, 1977; de Melo & van Strein, 1992] rela-
tive to a partition at the critical point x.. Choose
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a two symbol partition, labeled Z = {0, 1}, naming
iterates of an initial condition xy according to,

(0 if fi(wo) < zc
Ui(xO) - (1 if fz(xo) > «'Ec) : (5)

The function h which labels each initial condition
xo and corresponding orbit {zg, x1, x2,...} by an
infinite symbol sequence is,

h(zo) = o(xg) = oo(x0) - 01(x0)o2(20) ... . (6)

Defining the “fullshift” Y9 = {0 = o¢ - 0109...
where op = 0 or 1} to be the set of all possible infi-
nite symbolic strings of 0’s and 1’s, then any given
infinite symbolic sequence is a singleton (a point) in
the fullshift space, o(xg) € 39. The usual topology
of open sets in the shift space 5 follows the metric,

doy(o,7) = 3 177l (7)

)
=0 2

which defines two symbol sequences to be close if
they agree in the first several bits. Equation (5) is
a good “change of coordinates,” or more precisely a
homeomorphism,*

hifa, 0 = f ' (ze) — 5, (8)
=0

under conditions on f, such as piecewise |f’| > 1.2
The Bernoulli shift map moves the decimal point in
Eq. (6) to the right, and “eliminates” the leading
symbol,

S(UZ') = 0441 - (9)

All of those itineraries from the map f, Eq. (4) by
Eq. (5), correspond to the Bernoulli shift map re-
stricted to a subshift,® s : ¥} — 4. Furthermore,
the change of coordinates h respects the action of
the map, it commutes, and it is a conjugacy.*

In summary, the previous paragraph simply
says that corresponding to the orbit of each ini-
tial condition of the map Eq. (4), there is an in-
finite itinerary of 0’s and 1’s, describing each iter-
ate’s position relative to the partition in a natural
way which acts like a change of coordinates such
that the dynamical description is equivalent. For
our purposes, controlling orbits of the map f in
phase space which is an interval corresponds also
to controlling itineraries in symbol space. The con-
trol over = composed with the change of coordi-
nates h can essentially be considered to be a coding
algorithm.

3.2. Learning the grammar in
practice

In a physical experiment, corresponding to the one-
dimensional map such as Eq. (4), it is possible to ap-
proximately deduce the grammar of the correspond-
ing symbolic dynamics by systematic recording of
the measured variables. First note that any real
measurement of an experiment consists of a neces-
sarily finite data set. Therefore, in practice, it can
be argued that there is no such thing as a gram-
mar of infinite type in the laboratory.® So without
loss of generality, we may consider only grammars
of finite type for our purposes. Such a subshift is a
special case of a sophic shift [Kitchens, 1998; Lind &
Marcus, 1995]. In other words, there exists a finite
digraph which completely describes the grammar.
All allowed words of the subshift, ¥’ correspond-
ing to itineraries of orbits of the map correspond to
some walk through the graph.

For example, the full 2-shift shift is generated
by the graph in Fig. 3(a) (but this is not the
minimal graph generating ¥5). Likewise, the “No
two zero’s in a row” subshift Xf is generated by
all possible infinite walks through the digraph in

LA homeomorphism between two topological spaces A and B is a one-one and onto continuous function h : A — B, which may
be described loosely as topological equivalence.

2Note that preimages of the critical point are removed from [a, b] for the homeomorphism. This leaves a Cantor subset of
the interval [a, b]. This is necessary since a shift space is also closed and perfect, whereas the real line is a continuum. This
is an often overlooked technicality, which is actually similar to the well known problem when constructing the real line in
the decimal system (the ten-shift 31¢) which requires identifying repeating decimal expansions of repeating 9’s such as for
example 1/5 = 0.199 = 0.2. The corresponding operation to the shift maps [Devaney, 1989] is to identify the repeating binary
expressions og - 01 - - - o, 0ll=00-01--- anlﬁ, thus “closing the holes” of the shift space Cantor set.

3A subshift ¥4 is a closed and Bernoulli shift map invariant subset of the fullshift, 5 C .

4A conjugacy is a homeomorphism h between topological spaces A and B, which commutes maps on those two spaces,
a:A— A, B:B— B,then hoa= 3oh.

5Tt could be furthermore argued that there is no such thing as measuring chaos in the laboratory, since the most popular
definitions of chaos [Devaney, 1989] are asymptotic requiring sensitive dependance and topological transitivity, both of which
would require time going to infinity to confirm.
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The full 2-shift X5 is generated by all possible infinite walks through (a) above digraph. (b) The “No two zero’s in a

row” subshift grammar X} is generated by all possible infinite walks through the above digraph, in which the only two vertices
corresponding to “00” words have been eliminated, together with their input and output edges. Blue denotes transitions which

shift a “1” into the bit-register, and red denotes a “0” shift.

Fig. 3(b), in which the only two vertices correspond-
ing to “00” words have been eliminated, together
with their input and output edges. Given a finite
measured data set {x;} , simply by recording all
observed words of length n corresponding to ob-
served orbits, and recording this list amongst all
possible 2" such words, the appropriate digraph can
be constructed as in Fig. 3. One should choose n
to be the length of the observed minimal forbid-
den word. Sometimes, n is easy to deduce by in-
spection as would be the case if it were “00” as in
Fig. 3(b), but difficult to deduce for larger n. There
exist more systematic algorithms to deduce the min-
imal forbidden word length, such as the subgroup
construction developed in [Bollt et al., 2000; Bollt
et al., 2001] related to the “follower-set” construc-
tion [Kitchens, 1998; Lind & Marcus, 1995].

Since, the data set {z;}Y, is finite, then if the
true minimal forbidden word corresponding to the
dynamical system is longer than data sample size,
n > N, only an approximation of the grammar
is possible. Therefore the corresponding observed
subshift is expected to be a subset of whatever
might be the true subshift of the model map Eq. (4)
or experiment. This is generally not a serious prob-
lem for our purposes since some course-graining al-
ways results in an experiment, and this sort of error
will be small as long as the word length is chosen
to be reasonably large without any observed incon-
sistencies. Typically, we assume that N > n. As
a technical note of practical importance, we have
found link-lists to be the most efficient method to
record a directed graph together with its allowed
transitions.

In Sec. 5, we discuss how the grammar can
be deliberately restricted to offer improved channel
noise resistance.

3.3. One-dimensional maps with
several critical points

In general, an interval map Eq. (4) may have n criti-
cal points @, j, j = 1,2,..., n, and hence there may
be points z € [a, b] with up to n + 1-preimages.
Therefore, the symbol dynamics is naturally gener-
alized [Lind & Marcus, 1995] by expanding the sym-
bol set Z = {0, 1,..., n} to define the shift space
Ynt1. The subshift ¥, C X,4; of itineraries
corresponding to orbits of the map Eq. (4) follows
the obvious generalization of Eq. (5), o;(xg) = j
if Tej < fl(ﬂj‘o) < e+, 73 =01....,n4+1,
and taking z.o = a and x.,4+1 = b. The charac-
terization of the grammar of the resulting subshift
¥, 1 corresponding to a map with n-turning points
is well developed following the kneading theory of
Milnor and Thurston [1977]. See also [de Melo &
van Strein, 1992].

3.4. More than one dimension
and symbolic dynamics of
diffeomorphisms

Diffeomorphisms arise naturally by Poincaré map-
ping of a flow. In general, a diffeomorphism f: M —
M is expected for an N — 1 manifold M which is
transverse to a flow in RY.

Symbolic dynamics of higher dimensional sys-
tems is still a highly active research area and details
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here are necessarily slight. In particular, we refer
the reader to see [Cvitanovic, 1988, 1991, 1995].
The fundamental difference of dimensionality is
that invertible maps and hence diffeomorphisms are
necessarily simple in the interval, whereas in more
than one dimension, there may be chaos. In the
interval, only a many-to-one map allows for the
folding property which is an ingredient of chaos.
However, Smale [1967] showed that the folding
mechanism of a horseshoe allows for chaos in a pla-
nar diffeomorphism.

In the development in the previous subsections,
the one-sided shifts reflect the noninvertible nature
of the corresponding interval maps Eq. (4). The
generalization of symbolic dynamics for invertible
maps requires bi-infinite symbol sequences,

Yo={o=-0_90_100-0102...

where g =0 or 1}. (10)

The main technical difficulty of symbolic dy-
namics for a map with a more than one-dimensional
domain is to well define a partition. A notion of
Markov partitions is well defined® for Axiom A dif-
feomorphisms [Bowen, 1975a], but such maps are
not expected to be generic. The more general no-
tion of a generating partition [Rudolph, 1990] is
also well defined,” but particularly in the case of
a nonuniformly hyperbolic dynamical system con-
struction of the generating partition is an open
problem for most maps. A well regarded conjec-
ture for planar diffeomorphisms, such as the Hénon
map [Cvitanovic et al., 1988; Cvitanovic, 1991], is
that the generating partition should be a curve that
connects all “primary” homoclinic tangencies. See
also [Grassberger et al., 1989; Christiansen & Politi,
1996, 1997; Hansen, 1992, 1993].

A main feature in the definition of a generating
partition is that symbolic itineraries uniquely define
trajectories of the map.

4. The Role of the Partition

At the end of the previous section, we mentioned
the difficulty in finding a generating partition of the
symbolic dynamics for dynamical systems in more
than one dimension in practice, and in particular,
in the sorts of dynamical systems which might arise
from a physical application. In this section, we men-
tion two ways to address this fundamental obstacle
to controlling symbolic dynamics.

4.1. Is a generating partition really
necessary?

In [Bollt et al., 2000, 2001] we studied in rigorous
mathematical detail the consequences of using an
arbitrarily chosen partition, which is generally not
generating. Our previous work cited was motivated
by the many recent experimentalists’ studies, who
with measured time-series data in hand, but in the
absence of a theory leading to a known generating
partition, simply choose a threshold crossing value
of the time-series to serve as a partition of the phase
space.

On the experimental side, there appears an
increasing interest in chaotic symbolic dynamics
[Kurths et al., 1995; Lehrman & Rechester, 1997;
Daw et al., 1998; Engbert et al., 1998; Mischaikow
et al., 1999]. A common practice is to apply the
threshold-crossing method, i.e. to define a rather
arbitrary partition, so that distinct symbols can
be defined from measured time series. There are
two reasons for the popularity of the threshold-
crossing method: (1) it is extremely difficult to
locate the generating partition from chaotic data,
and (2) threshold-crossing is a physically intuitive
and natural idea. Consider, for instance, a time
series of temperature 7T'(t) recorded from a turbu-
lent flow. By replacing the real-valued data with
symbolic data relative to some threshold T, say a
0if T'(t) < T, and a 1 if T'(t) > T, the problem

5Bowen [1970, 1975b], defined conditions for a partition of “rectangles” to be Markov. A topological partition {Q;} of open
rectangles is Markov if, {Q;} have nonoverlapping interiors, such that when f(Q;)NQ; # 0, then f(Q;) stretches across Q;, in
that stretching directions are mapped to stretching directions and contracting directions are mapped to contracting directions.
Said more carefully, we require that W*(fn(2), Qi) C fn(W"(z, Qi) and fn(W?(z, Qi) C W(fn(2), Qi).

"Given a dynamical system f : M — M, a finite collection of disjoint open sets, {Bx}i_,, By N B; = 0 (k # 7), is defined
to be a topological partition if the union of their closures exactly covers M : M = UX_ By, [Lind & Marcus, 1995]. The set
of intersection of the images and preimages of these elements N;—_, f (’i)(Bxi) is in general open. For a faithful symbolic
representation of the dynamics, the limit N5Zo N7__,, =" (By,) should be a single point if nonempty. Given a dynamical
system f : M — M on a measure space (M, F, u), a finite partition P = {By}+_; is generating if the union of all images and
preimages of P gives the set of all u-measurable sets F. In other words, the “natural” tree of partitions: V2 _ . f(P), always
generates some sub-o-algebra, but if it gives the full o-algebra of all measurable sets F, then P is called generating [Rudolph,
1990].



of data analysis can be simplified. A well chosen
partition is clearly important: for instance, T, can-
not be outside the range of T'(t) because, otherwise,
the symbolic sequence will be trivial and carry no
information about the underlying dynamics. It is
thus of paramount interest, from both the theoreti-
cal and experimental points of view, to understand
how misplaced partitions affect the goodness of the
symbolic dynamics such as the amount of informa-
tion that can be extracted from the data.

As a model problem, we chose to analyze the
tent map

fi[O,l]H[O,l],$H1—2‘JI—1/2|, (11)
for which most of our proofs can be applied. Our
numerical experiments indicated that the results
were indicative of a much wider class of dynamical
systems, including the Hénon map, and experimen-
tal data from a chemical reaction.

The tent map is a one-humped map, and it is
known that the symbolic dynamics indicated by the
generating partition at z. = 1/2, by Eq. (5) gives
the full 2-shift 39, on symbols {0, 1}. The topo-
logical entropy of E;O’l} is In 2. Now misplace the
partition at

11
p=2x.+d, wherede{— ], (12)

2’2
is the misplacement parameter. In this case, the

symbolic sequence corresponding to a point = €
[0, 1] becomes:

=00 192 ..,
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Fig. 4. Tent map and a misplaced partition at x = p.

as shown in Fig. 4. The shift so obtained: Eéa’b},
will no longer be a full shift because not every bi-
nary symbolic sequence is possible. Thus, Eéab}
will be a subshift on two symbols a and b when
d # 0 (p # x.). The topological entropy of the
subshift Eéa’b}, denoted by hr(d), will typically be
less than h7(0) = In 2. Numerically, hr(d) can be
computed by using the formula [Robinson, 1995]:

In N,
hr(d) = lim sup nn ,

n—~o0

(14)

where N,, < 2" is the number of (a, b) binary se-
quences (words) of length n. In our computation,
we choose 1024 values of d uniformly in the inter-

| (13)
where  ¢i(z) = a(b) if f*(z) <p(>p), val [-1/2, 1/2]. For each value of d, we count N,
01k -
0 | | | | | | | | |
05 04 03 02 01 0 01 02 03 04 05
d
Fig. 5. For the tent map: Numerically computed hr(d) function by following sequences of a chaotic orbit.
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in the range 4 < n < 18 from a trajectory of 220
points generated by the tent map. The slopes of
the plots of In N,, versus n approximates to hp. Fig-
ure 5 shows hr(d) versus d for the tent map, where
we observe a complicated, devil’s staircase-like, but
clearly nonmonotone behavior. For d = 0, we have
hr(0) ~ In 2, as expected. For d = —1/2 (1/2),
from Fig. 4, we see that the grammar forbids the
letter a (b) and, hence, S} (—1/2)[2{*"} (1/2)]
has only one sequence: ¢ = b-bb (¢ = a - aa).
Hence, hp(£1/2) = 0.

Many of our techniques were somewhat combi-
natorial, relying on a simple idea that a dense set of
misplacement values (in particular if d is “dyadic”,
of the form d = p/2™), allows us to study the re-
lated problem of counting distinctly colored paths
through an appropriate graphic presentation of the
shift, in which vertices have been relabeled accord-
ing to where the misplacement occurs. See Fig. 6.

One of our principal results was a rigorous proof
that the entropy can be a nonmonotone and devil’s
staircase-like function of the misplacement param-
eter. As such, the consequence of a misplaced
partition can be severe, including significantly re-
duced topological entropies and a high degree of
nonuniqueness. Of importance to the experimental-
ist who wishes to characterize a dynamical system
by observation of a bit stream generated from the
measured time-series, we showed that interpreting

Fig. 6. Graphic presentation for the Bernoulli fullshift and
some dyadic misplacements. Placing the partion at p =
(1/2) +d, —(1/2) < d < 1/2, and d as dyadic, such as d =0,
—-1/16, —1/8, —3/16, or, —1/4, as shown, corresponds to a
relabeling of the originally right resolving presentation of the
fullshift. The 16 4-bit words are arranged above monotoni-
cally with the kneading order of a one-hump map, and so the
relabeling occurs in a predictable fashion: shifts to a on the
left, and to b on the right, and the details of the relabeling
depends on the chosen values of d, some of which are shown.

any results obtained from threshold-crossing type
of analysis should be exercised with extreme cau-
tion. While apparently by computer experiment,
entropy is continuous with partition placement, an
arbitrarily chosen partition is expected not to be
close to the true partition, and also there can be
severe nonuniqueness problems.

Specifically, we proved that the splitting prop-
erties of a generating partition are lost in a severe
way. We defined a point z to be p-undistinguished
if there exists a point y # x such that the p-
named a — b word according to Eq. (13) does not
distinguish the points, ¢(z) = ¢(y). We defined
a point x to be uncountably p-undistinguished, if
there exists uncountable many such y. We proved
a theorem in [Bollt et al., 2001] that states that if
p = q/2"™ # 1/2, then the set of uncountably p-
undistinguished initial conditions is dense in [0, 1].
In other words, the inability of symbolic dynamics
from the “bad” nongenerating partition to distin-
guish the dynamics of points is severe. We described
the situation as being similar to that of trying to in-
terpret the dynamical system by watching a projec-
tion of the true dynamical system. In this scenario,
some “shadow”, or projection of the points corre-
spond to uncountably many suspension points. In
our studies [Bollt et al., 2000; Bollt et al., 2001]
we also gave many further results both describing
the mechanism behind the indistinguishability, and
further elucidating the problem.

Now we return to the problem of communicat-
ing with chaos. Is it possible to transmit a mes-
sage on a chaotic carrier despite using other than
the generating partition? In Egs. (5) and (6) we
describe the function, o : [0, 1] — 230,1} and in
Eq. (13), the function ¢ : [0, 1] — Eéa’b}. Hence,
we imply a function p : 2;0’1} — Eéa’b} which is
uncountably-many-to-one at some points. Nonethe-
less, each initial condition = € [0, 1] has an a — b
sequence, and if we know how to control arbitrar-
ily (the 0 — 1 corresponding sequence) the orbit of
x by feedback control, we are correspondingly con-
trolling its a — b sequence. While each = has one
corresponding code-image ¢(x), since ¢ is a well
defined function, it is not necessarily a problem
for the purpose of communication that ¢(z) can be
uncountably-many-to-one. So in the situation that
the transmitter plant knows the dynamical system
very well, meaning how to control trajectories arbi-
trarily (knowing how to control its true underlying

250,1} symbolic dynamics) to infinite precision then



the transmitter is also controlling the correspond-
ing E;a’b} symbol dynamics. The receiver need only
know the key, which requires knowing the partition
p in Eq. (13). If on the other hand, the transmit-
ter does not know the underlying generating parti-
tion, then the poor continuity properties of the ¢
function make the situation impractical, to say the
least. Of course, the assumption of infinite precision
is ridiculous for an experiment. It turns out that if
a small channel error occurs, then the received bit
will be misinterpreted — meaning a received error
can occur. The solution for the generating partition
discussed in Sec. 5 is also much more difficult when
not using the generating partition. A final conse-
quence of trying to use a nongenerating partition
would be reduced topological entropy, and hence
reduced transmitter capacity, which is an issue also
further discussed in Sec. 5.

In fact, a recent application in chaotic cryp-
tography makes use of “misplacing” the partition
deliberately as a cryptic key [Alvarez et al., 1999].

4.2. The skeleton of periodic orbits
and generating partitions

Davidchack et al. [Ruslan et al., 2000] have recently
shown that symbolic dynamics can be learned solely
by observation of a large collection of the unstable
periodic orbits of the dynamical system. It has been
said by Cvitanovic [1988, 1991, 1995] that periodic
orbits are the “skeleton” of chaos, meaning that the
complete collection of periodic orbits reveals the er-
godic properties of a dynamical system.

There are several recent advancements both
in computer hardware, and general algorithms
[Davidchack et al., 1999; Schmelcher & Diakonos,
1998, 1997; Diakonos et al., 1998] that make it rea-
sonable to collect the hundreds of thousands of pe-
riodic orbits of periods up to say 25 to 30 for well
known maps such as Hénon or Ikeda, with a certain
amount of confidence that all have been collected.
Interval Newton’s method and bisection method
can be used to guarantee that no periodic orbits
are missed, say for Hénon map successfully for pe-
riods up to 30 [Galais, 1999, 2001, 2002]. Since the
definition of a generating partition requires that ev-
ery initial condition be named uniquely by the sym-
bol dynamics, in particular, a well defined partition
must label each of these numerically collected pe-
riodic orbits uniquely. This is the concept of split-
ting which is necessary to well define a generating
partition. In [Ruslan et al., 2000], we devised a
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so-called “proximity” function to create a simple
algorithm whereby the “complete” list of collected
orbits could be checked against a proposed trial par-
tition, which is then refined in a systematic and
decreasing way relative to the proximity function
which moves the partition as little as possible on
each trial. By creating partitions which are consis-
tent for all periodic orbits through period-m, say,
then on each refinement to the next order period,
m 4+ 1, we find that the corrections to the partition
position become increasingly small. In particular,
see [Ruslan et al., 2000] for a color picture of the
Ikeda map partition, first found by this method.
Perhaps the most interesting feature of this tech-
nique, is that once lists of periodic orbits have been
collected, the technique is essentially dimension in-
dependent, since one is simply “painting” and then
“repainting” lists of numbers in a specified order.
The interested reader should investigate an alter-
native algorithm by [Lefranc et al., 1994; Boulant
et al., 1997a, 1997b] to find the generating parti-
tion, also by using periodic orbits, but by methods
which are theoretically deeply rooted in the theory
of templates and the knotted structure of periodic
orbits of flows in three dimensions.

5. Dealing with Noise by Code
Restrictions

It is no surprise that channel noise can disrupt a
signal transmission, but unchecked, controlled sym-
bolic dynamics would be particularly suseptible to
bit errors even with small amplitude channel noise.
It turns out that there is a very simple way to
greatly reduce the vulnerability of a transmitted sig-
nal to misinterpretation due to channel noise, by a
technique developed by the author and colleagues
[Bollt et al., 1997; Bollt & Lai, 1998; Lai & Bollt,
1999].

If the measured variable x is targeted to a point
near the generating partition at x., then a small
noise amplitude in this measurement can frequently
cause the opposite bit than the intended transmis-
sion to be interpreted by the receiver. For example,
in Fig. 2, if z(¢) is controlled to just to the left of
the partition line, at approximately z. =~ 38.5754,
then even a small noise amplitude may cause that
measurement to be misinterpreted as being to the
right of the partition. In addition to the below
described scheme, one could use an error correct-
ing code, such as the Viterbi algorithm [Forney,
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1975; Heller & Jacobs, 1971; Lin & Costello, 1982;
Michelson & Levesque, 1985; Peterson & Weldon,
1998; Pless, 1998] in the case of Gaussian noise to
further improve noise resistance, rather than trans-
mitting plain ascii with the symbol masking as we
have described below for clarity.

5.1. Introducing a code restriction —
Communaicating on unstable
chaotic saddles

The solution to avoid channel noise is simple: avoid
targeting a neighborhood of the partition. Suppose
xq is targeted to x1 = x.+ € to input, say, a “1”7-bit
into the bit register, then a channel noise of am-
plitude ¢ can push z; below z., and the receiver
interprets a “0”-bit. Simply, never targeting a gap
(x. — €, ®. + €) prevents this problem. But then
in dynamical systems, it is not possible to simply
remove a region from the phase space; it is neces-
sary to dynamically remove the region by removing
it and all of its preimages. The remaining set,

M(E) = [07 1] - U?iof_i((xc —&, Tc+ E)) )

>0, (15)

leaves a Cantor set, which for many one-humped
maps, including that in Fig. 2, is nonempty for small
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Fig. 7. An unstable chaotic saddle M (s) remains after a gap
is removed around the generating partition, as per Eq. (15).
This Cantor set has favorable channel noise resistance proper-
ties as a message carrier, but costs to the transmitter capacity
is only slight, as shown in Fig. 8.
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Fig. 8. Topological entropy hr(e) as a function of noise gap
e. At each fixed value of €, the topological entropy of the
unstable chaotic saddles M(e) in Eq. (15) are shown, one
of which is depicted in Fig. 7. Notice that initially, even a
fairly large noise gap ¢ costs only a modest decrease in hr(e),
relative to maximal at € = 0.

enough €. See Fig. 7. Such invariant sets are called
unstable chaotic saddles embedded in the full in-
terval invariant set. We have found that they are
highly useful for communicating with chaos, since
they are noise resistant, easy to stabilize, and cost
only a relatively small amount of transmitter ca-
pacity, as we discuss below. Also important, is the
fact that these sets can be characterized as a sub-
shift embedded in the subshift of the full interval,
and hence they can be specified by a simple code
restriction.

A simple fact from the kneading theory
[Milnor & Thurston, 1977] provides that the codes
of the unit interval are ordered monotonically in the
unit interval when choosing the “Gray-Code” order
<. That is < y implies o(z) < o(y). In Fig. 3(a),
the 4-bit words are arranged left to right accord-
ing to “<”. Therefore, an e-neighborhood of x. can
be characterized by a range of codes, and approxi-
mated by some n-bit code restriction. For example,
the Lorenz map allows the 4-bit words 0.100 and
1.100, which can be seen in Fig. 3(a), and defines
an e-neighborhood of z., (z. — ¢, x. + ). To avoid
this neighborhood, it is necessary to never transmit
the phrase, “1” followed by “00”, as can be deduced
in Fig. 3(b). This particular code restriction stabi-
lizes the chaotic saddle whose subshift is generated
in Fig. 3(b).
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To give some illustrative examples of encoding message in the restricted chaotic signals, say we wish
to communicate the following message “BEAT ARMY!” in ASCII format by using the Lorenz attractor:

B E A T space

1000010 1100101 1100001 1110100 0100000 1000001 1110010 1101101 1111001 0100001 .

A R M Y !
(16)

To transmit the message subject to the “no four zero’s in a row” code, a simple way is for the transmitter
to insert a buffer bit “1” after three zeros in a row, regardless of the message bit that follows. Thus, the

encoded message becomes,

B E A T space

10001010 1100101 11000101 1110100 01000100 10001001 1110010 1101101 1111001 01000101 .

Furthermore, if the original message contains the
block 0001, with three zeros in a row, the modi-
fied block is 00011. Thus, the receiver can recover
the original message simply by stripping a one af-
ter every block of three zeros. Since for the Lorenz
attractor, its intrinsic grammar is already included
in the rule “no four zeros in a row,” the message

B E A T space

A R M Y !
(17)

|
“BEAT ARMY!” can now be transmitted using

the Lorenz circuit [Cuomo & Oppenheim, 1993] by
utilizing small control methods outlined in [Hayes
et al., 1993]. One may also consider a more severe
restriction such as “no three zeros in a row,” which
corresponds to a larger gap across the partition line.
In this case, the encoded binary sequence looks like,

A R M Y !

10010011011001101 110010011 11101001 010010010 100100101 111001101101101 11110011 010010011 .

Counting the number of bits in the above three
transmissions: the straight ASCII message in
Eq. (16) requires 70-bits, the “no 0000” buffered
message in Eq. (17) requires 75 bits, and the “no
000” buffered message in Eq. (18) requires 84 bits.
Since more buffer bits are needed for more restric-
tive codes, the transmission rate will be slower, but
the code is more immune to noise as the noise-
resisting gap is wider.

By over restricting the code, one does not take
full advantage of the natural chaotic dynamics pro-
duced by the oscillator, resulting in a communica-
tion system with reduced transmitter capacity. Dy-
namically, the transmitter capacity is quantified by
the topological entropy of the invariant set in which
the message-carrying trajectory lies. The informa-
tion theory point of view is that topological entropy
is the rate at which information is generated when
one observes the system. In communication, the
topological entropy is the transmitter capacity be-
cause this entropy defines the “amount” of informa-
tion rate that can be be produced [Blahut, 1998].
Thus, in order to optimize the transmitter capacity,
one must design a code that maximizes the topolog-
ical entropy. Since a chaotic saddle is an invariant
subset embedded in the original chaotic attractor,

(18)

the topological entropy of the saddle is generally
smaller than that of the attractor. While a larger
size of the noise-gap about the partition renders the
symbolic dynamics more robust against noise, the
resulting chaotic saddle possesses smaller topologi-
cal entropy. This is due to the fact that widening
the noise-gap corresponds to increasing the gram-
matical restrictions on the permissible codes in the
symbol dynamics representation.

The topological entropy of a Markov subshift
¥ is equivalent to,

hr(3) = In(p(A)),

where A is the transition matrix of its right-
resolving presentation (when it exists), and p(A) is
its spectral radius [Lind & Marcus, 1995; Kitchens,
1998]. Therefore, choosing a large word length,
n = 14 allows 2'* possible permutations of n-bit

(19)

words, and requires a 2'4 x 2! transition matrix
A. Successively canceling out the corresponding
vertices as in Fig. 3(b) is equivalent to zeroing the
similarly indexed rows and columns of A. Comput-
ing In(p(A)) allows us to produce Fig. 8 showing
hr(35) as a function of gap width e.
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5.2. The dewvil’s staircase
topological entropy versus

noise-gap function

We expect topological entropy to be a monotoni-
cally nonincreasing function of k. Increased restric-
tions on the grammar lead to decreased transmitter
capacity. Increasing n, the word size considered,
better approximates the effect of continuously in-
creasing the gap size s from s = 0; a small increase
in s requires n large enough to account for a whole
(small) bin which is eliminated. Figure 8 reveals
a devil’s staircase-like function hr(s) for n = 14.
As n is increased, more constant intervals, or “flat
spots,” are revealed. These flat spots might seem
surprising given their origin by the above sequence
of spectral-radius calculations; the explanation lies
in the fact that invariance of the subshift has re-
quired us to eliminate all transitions away from an
eliminated node, and often this may effectively elim-
inate other nearby nodes by cutting-off access to
these nodes. In such a case, further widening of the
gap, and hence elimination of the next node in the
Gray ordering, causes no change because that node
may have already been dynamically eliminated in a
previous step. The devil’s staircase structure arises
from the fact that this mechanism occurs on all
scales, to 2" node directed graph representations of
the symbol dynamics of the chaotic saddles M(s),
for all n, and the larger the n-bit word size first
eliminated, the smaller will be the flat spot.

The fact that the topological entropy of the
chaotic saddle decreases only slightly in a range of
gap sizes (0, As) has important practical implica-
tions. Say the noise amplitude is As/10. Then the
chaotic saddles with gap sizes in (As/10, As) are
immune to noise, yet their transmitter capacity is
only slightly less than that of the original chaotic
attractor. There are an infinite number of codes
that can generate chaotic saddles with gap sizes in
(As/10, As). From the stand point of transmit-
ter capacity and noise resistance, these codes are
therefore optimal. Similar results appear to hold
for high-dimensional chaotic systems [Lai & Bollt,
1999].

6. Feedback Control of the
Successive Maxima Map

Suppose that we have a chaotic attractor of a flow.
The idea of controlling chaos by staying within the
chaotic attractor’s natural behavior by using only

small feedback controls was a natural but brilliant
epiphany [Ott et al., 1990], using sensitive depen-
dance to initial condition to our advantage.

Feedback control of a chaotic trajectory may be
realized by small parameter variations. For exam-
ple, given a flow of z(t) € R where we explicitly
write the parameter dependence p € R",

&= F(z, p), (20)

(take the Lorenz equations for example, Eq. (1)),
one can hope to affect the trajectory in a pre-
dictable manner in the short run. In particular, if
the desired short-term response is small, a Lipschitz
continuous right-hand side F' provides that small
parameter variations should suffice. Furthermore
for small enough desired short term responses,
the required parameter variation can be usefully
and easily found by directly solving a two-point-
boundary-value-problem (TPBVP). More specifi-
cally, suppose that on the surface of section M,
the initial condition z¢g € M flows forward under
Eq. (20) to z1 € M, zo = f(z0) = Pi(z0) (¢ is the
time of flight of the mapping, which is generally not
uniform with respect to x, and this is not a concern
to us here) at next Poincaré surface piercing, under
a nominal/uncontrolled parameter value pg. The
Poincaré mapping we now denote,

f@,p): M — M, (21)

to emphasize a family of mappings parameterized
by accessible parameter p. If we prefer the next
iterate to be Xgesired, then the next controlled re-
sponse, is a solution to the equation,

Ldesired = f(l‘(), pl) (22)

whose solution is formally a TPBVP of the flow
Eq. (20), where p;p is the unknown in the equation
to be found, usually by shooting [Press et al., 1988].
For long duration of flight, the general TPBVP is
expected to be numerically unreasonable to solve.
However, since we assume || qesired — Zo||2 < € for a
small € > 0, and continuity of the flow with respect
to parameter and spacial variations, we expect that
llp1 — poll2 will be likewise small. In such a case,
a standard shooting algorithm, based on Newton’s
method generally works well [Bollt, 2001], choos-
ing p = po as the initial seed. A solution exists
for small enough £ > 0, and nonsingular Jacobian
derivative, by continuation of the trivial solution
x1 = f(xo0, po) along a parameterized solution man-
ifold, ép(z), and x = f(xo, po + dp(x)), which is



an application of the implicit function theorem. In
fact, the linearized equations of variation, dx =
(0F/0x)(x, p) - 6x + (OF/0p)(x, p) - Op, can often
be used to directly solve for p1, to good approxima-
tion, where OF /0x and OF /Op are respectively the
Jacobian matrices of x and p variations. This gen-
eralizes the main idea behind the special case of the
OGY technique [Ott et al., 1990], in which Zgesired
is chosen to lie on the stable manifold of an unstable
periodic point. The pole-placement version of OGY
was written about in a general higher dimensional
form in [Romerias et al., 1992]. Note that paramet-
ric control works particularly well when controlling
unstable periodic orbits since the required paramet-
ric variations quickly become negligible.

A significant technical difficulty to our purposes
is that once the parameters have been varied, even
slightly to say pg+ dp, the flow is pushed away from
the nominal attractor of pg. If the perturbation is
small, and the negative Lyapunov exponents of the
nominal pg attractor are large, then the expecta-
tion is that the trajectory will quickly settle back
towards the nominal attractor, once the parameter
is returned to its nominal value of py. On the other
hand, if the parameters were left at the new per-
turbed values pg + dp, then the flow could settle to
a new and slightly deformed version of the attractor.
However, for our purposes of pushing an arbitrary
bit into the shift registrar during each successive
iteration of the map, parametric variations must
be applied at each step. Hence, while our param-
eter variations are expected to remain small, they
are not expected to become negligible as in OGY.
Therefore we must correct the map-based predic-
tion of linear response.

We discuss below a black-box approach,
whereby all of the necessary temporal and paramet-
ric variation responses can be learned from an ex-
periment running on the fly, such as was introduced
in [Dolnik & Bollt, 1998].

In particular, we describe here the parametric
feedback rules for the successive maxima map as if
the flow behaved as a truly one-dimensional map.
Then we make corrections to allow for the fact that
we vary the parameters at each step, therefore never
allowing the response trajectory to settle back to
the attractor. Suppose we have an interval map,
fp : la, b] — [a, b] such as approximately given by
the Lorenz successive maxima map, Eq. (2) and
fixed parameter values (say the nominal parame-
ter value is po = (10, 28, 8/3)). Suppose fp,(x)
shifts a 0 into the corresponding bit registrar, but
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we need a 1 (or vice-versa). For example, suppose
o(x) = 0.010101... to 7-bit precision, and suppose
that s(o(x)) = o(fp,(x)) = 0.1010100..., but we
prefer o(f,(x)) = 0.1010101.... Then by continu-
ity of the homeomorphism Eq. (8) and the metric
in the symbol space Eq. (7), only a small temporal
variation is needed — the more bits used for the
register, the smaller the temporal variation. Let

Af(@) = faes(x) = f(z), (23)

which is small, for any controlled iteration x = x,,
where f(x) is the uncontrolled response, and fges()
puts the required bit in the bit registrar. The map-
based analysis performed in [Bollt & Dolnik, 1997;
Bollt, 1997] follows the linearization of f with re-
spect to p,

Ofl Af(x
Af(x) ~ 8—” dp, ordp=~ WA (24)
Pl po.) S
Pl po.)

The partial derivatives 9f!/0p represent the
“dynamic shift” of the one-dimensional map due
to parameter variations. Because the full dynam-
ics occurs as a flow of the differential equations, a
small parameter variation does not generally occur
as predicted by the one-dimensional map represen-
tation on the surface of section. The dynamic shift
defines the observed iterative variation of the map
immediately after the control parameter is varied.

The fact that an arbitrary message requires
controlling parameter perturbations during every
iteration is an important technical issue which pre-
vents us from returning to the nominal parameter
value pg. Instead, the (n + 1)th “uncontrolled it-
eration of x assumes that the parameter from nth
iteration p,, is unchanged. Therefore, instead of the
nominal 1-D map fp,(z), the estimate of f(z) in
Eq. (23) uses the map f,,(z) which corresponds to
the parameter p,,,

f(@) = fp.(@n) . (25)

We estimate fp, (z,) by linearization around
the nominal map fp,(x):

of

. (26)
P (2,p0)

fpn(xn) = fpo(xn) + (pn - pO)

Combining Egs. (23)-(26) we obtain the required
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parameter perturbation 0k, 1.

0Pnt1 = Pntl — Pn

of
es\Tn) — Tn) — Pn — -
) faes(Tn) = fpo(zn) — (P po)ap (enn)
oft
O |2 o)

(27)

The derivative df/0p characterizes the rate of
the static map variations. To estimate this quan-
tity, one must experimentally “iterate” the one-
dimensional maps obtained for several successive
Poincaré sections, for three values of the fized ad-
justable parameter p. Each time a simulation with
a new value of p is started, the first intersection
with Poincaré surface is neglected, because it is not
part of static 1-D map. In our previous chemical re-
action application [Dolnik & Bollt, 1998], we have
dealt with unavoidable noise fluctuations, by appli-
cation of cubic smoothing spline fits [Hutchinson,
1986]. We estimate the derivatives df/Jp from the
equation,

8_f _ fp+8(33) - fpo(x)
Pl (e po) 3 ’ 2
i B e a t

Direct application of the above formulas would
require random access to initial conditions, which
is generally not possible in learning the real physi-
cal experiment. We proposed a method [Dolnik &
Bollt, 1998] of learning these quantities on-the-fly
by appropriate manipulations of a running experi-
ment. The dynamic rate of map variations, 9f*/9p,
can be learned experimentally. As described in fig-
ures in more detail in [Dolnik & Bollt, 1998], we
wait for two iterates at the nominal value pg, be-
tween experimental parameter variations, to make
sure that the transients settle onto the 1-D attrac-
tor, to a high degree of accuracy. The observed next
piercing of the Poincaré surface, after a parameter
variation, is the dynamic response f!(z). Each two-
iterate-time interval of fixed p(t) = po are followed
by a one “iterate” time interval of p(t) = pote. The
response function x(¢) must be read accordingly.
After sampling this dynamic response value f!(x),
we reset the flow rate back to the nominal value
for two reference events. This procedure can be re-
peated, or a perturbation with the same amplitude
but of opposite sign can be applied. By periodically
repeating this process with positive and negative
perturbations, we learn dynamic responses f;oia(a:)
for values of x ergodically scattered throughout the

A r m ¥ !

Fig. 9.

t

The z(t) time-series from the Lorenz Equations, Egs. (1), can be controlled to any desired message, when successive

maxima are read relative to the generating partition, which is the horizontal line. This particular z(t) time-series is from
the (z(t), y(t), 2(t)) trajectory shown in Fig. 1. The underlined bits denote noninformation bearing buffer bits which are
necessary either due to nonmaximal topological entropy of the underlying attractor, or further code restrictions which were
added for noise resistance, as discussed in Sec. 5. The code used was the “no-two zero’s in a row” rule, which requires a buffer
“17-bit be inserted after every “0”-bit appears. The message is encoded in standard ASCII, and requires 63-bits, but with the
extra 33 buffer bits, the total transmission is slowed to 96-bits. This particularly restrictive code has a topological entropy of
hr =1In((1 4+ v/5)/2) = 0.4812, but gives a particularly wide noise gap.



interval. The derivative df!/0p is estimated sim-
ilarly to the derivative 0f/0p, from the difference
quotient:

8_fl _ f;}0+a(33) - fpo(ﬂf) '

P | o) ¢

(29)

More details are given in [Dolnik & Bollt, 1998]
concerning these necessary technical considerations
to control a one-dimensional map derived by suc-
cessive maxima of a measured time-series of a dif-
ferential equation, or real experiment. We conclude
this section by presenting for the first time a plot in
Fig. 9 of a controlled trajectory of the Lorenz equa-
tions which have been forced to follow a path whose
z(t) time-series corresponds to a popular message at
the author’s home institution.
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