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Abstract 

Regularity statistics have been previously applied to walking gait measures in the hope 
of gaining insight into the complexity of gait under different conditions and in different 
populations.  Traditional regularity statistics are subject to the requirement  of 
stationarity, a limitation for examining changes in complexity under dynamic conditions 
such as exhaustive exercise.  Using a novel measure, Control Entropy (CE), applied to 
triaxial continuous acceloreometry, we report changes in complexity of walking and 
running during increasing speeds up to exhaustion in highly trained runners.  We further 
apply Karhunen-Loeve (K-L) analysis in a new and novel way to the patterns of CE 
responses in each of the three axes to identify dominant modes of CE responses in the 
vertical, mediolateral and anterior/posterior planes.  The differential CE responses 
observed between the different axes in this select population may provide insight into 
the constraints of walking and running that can serve as benchmark comparisons for 
healthy untrained, and clinical populations.  This represents a first report of a regularity 
status of running in highly trained subjects. 

Lead Paragraph 

Previous investigations have used regularity statistics, applied to walking gait measures, 
in the hope of gaining insight into the complexity of gait and factors that affect it.  Most 
regularity statistics, though, are subject to stationarity, and this limits their usefulness for 
examining changes in complexity under dynamic conditions like running, and in 
particular, exhaustive running.  Using a novel measure, Control Entropy (CE), applied to 
triaxial continuous acceloreometry, we report changes in complexity of walking and 
running during increasing speeds up to exhaustion in highly trained runners.   Particular 
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properties of CE allow us to interpret control constraints of the physiological system as a 
feedback control plant, and changes therein become of particular biological interest.  
We further apply Karhunen-Loeve (K-L) analysis in a new and novel way to the patterns 
of CE responses in each of the three axes to identify dominant modes of CE responses 
in the vertical, mediolateral and anterior/posterior planes.  The results reported here 
may serve as a benchmark and provide insight into factors that affect complexity of gait 
in untrained or clinical populations.   

Introduction 

Running is a popular participation sport, with 10.5 million participants running at 
least 100 days/year [1].  Despite its popularity, there is little data with regard to the gait 
patterns of highly trained or elite runners, particularly during maximal exertion and/or 
fatigue.  Presumably, with accumulated specific training, these individuals would 
develop the optimal pattern of movement for a particular activity [2, 3] .  Moreover, it 
could be argued that not only would trained individuals find the optimal movement 
pattern, they would also exhibit optimal variability, though, as it has been argued that 
practice/training imparts both higher and lower variability [2], and it is not clear which is 
best for optimal performance.  Further, the nature of the variability that is identified 
(linear vs non-linear) may impact the interpretation of the results.  Regardless, by 
looking at the characteristics of movement patterns in highly trained athletes we may 
gain insight into clinical aspects of gait.  Alternatively, characteristics exhibited by 
accomplished runners might serve as models of optimization for the development of 
robotic locomotion systems [4, 5]. 

A specific area of research interest regards the impact of fatigue on gait, 
important because gait patterns change under conditions of fatigue [3, 6-9], which can 
have ramifications for activity incurred injuries [1, 7].  There is likely a spectrum of gait 
changes under conditions of fatigue ranging from responses exhibited by clinical 
populations [10, 11] to those exhibited by highly trained athletes [6, 9], and again, the 
non-linear characteristics of these changes exhibited by trained athletes may provide 
unique understanding of “optimized” responses relative to normal or clinical populations.   

In the field of non-linear dynamical systems analysis there are numerous tools 
that can provide valuable insight with regard to various aspects of human gait.  In 
particular, tools from information theory, generally referred to as entropy or regularity 
statistics, have been applied to gait analysis [12-18].  Specifically, Approximate Entropy 
(AE) [13-16, 19] and more recently, Sample Entropy (SampEn) [18] have been used to 
investigate differences in regularity/complexity of gait as a result of perturbations and/or 
associated with normal and clinical populations.  There are other related regularity 
approaches that have also been applied, but in general, a serious limitation to most 
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currently available regularity statistics is the requirement of stationarity [20].  Although 
statistics such as AE and SampEn are subject to conditions of stationarity, it has been 
fairly common in the literature to examine physiological conditions (including gait) under 
quasi-stationary, or even non-stationary conditions, an approach that may be expected 
to represent technical problems.  That being said, it is often of interest to use non-linear 
approaches to examine physiological parameters, under non-stationary conditions.  
Therefore, to address this need for a regularity statistic that is not subject to conditions 
of stationarity, Bollt et al. [20] recently developed a novel tool termed Control Entropy 
(CE).  A key property of control entropy is that it allows us to infer the control “effort” of a 
dynamical system which generates the signal being analyzed, and furthermore, it 
permits us to do so in a manner somewhat freed from the usual difficulties associated 
with requiring a stationary signal. 

Bollt et al. have argued that CE is a tool that is generally applicable to any 
measurement signal [20], but, in particular, it is well suited to monitoring streaming, 
continuous signal that is recorded at high frequencies.  This is in contrast to other 
commonly used regularity statistics that are typically applied to discretized samples (e.g. 
stride rate, HR).  This characteristic could allow researchers to exploit the more robust 
information properties of streamed waveforms which may provide novel insight into the 
regularity of gait or other physiological parameters.  One particular gait analysis tool that 
has recently become popular is the high resolution MEMS accelerometer (HRA).  
Accelerometers have been utilized for some time for both gait analysis [21-23], as well 
as the estimation of energy expenditure [24-27].  In the case of the later, the devices 
used have generally been “low resolution” in nature producing a discretized count that 
represents activity level, as opposed to an actual measured waveform that putatively 
provides more information.  In the former approach, gait analysis, HRA have been used 
to describe characteristics of gait patterns with the objective typically to collect 
information in less restrictive environment imposed by a typical gait laboratory.   

Recently, we have shown [28] that data obtained from high resolution 
accelerometers exhibit strong linear relationships to oxygen consumption (VO2) in 
trained runners.  Since VO2 is an indirect measure of metabolic power, the objective of 
this study was to use CE analysis of continuous HRA signal obtained over a range of 
speeds in highly trained runners during treadmill locomotion in an effort to gain insight 
into the control constraints that are present in this population.  The range of speeds 
used would encompass constrained walking, unstressed walking/running, and 
exhaustive running.  It was anticipated that changes in CE of HRA would be reflective of 
the changes in constraints imposed on the individuals and this would help provide a 
better understanding of the changing constraints under non-stationary conditions in fit, 
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highly trained individuals, which could serve as baseline comparisons for other less 
fit/trained populations.   

Methods 

Subjects 
Seven male NCAA Intercollegiate Division 1 runners (Table 1) gave written 

informed consent to take part in this study.  All procedures were approved by the local 
Human Subjects Review Board and performed in compliance with Eastern Michigan 
University. 

  

 
Table 1: Values are mean ± SD and range. BM, body mass. VO2peak, peak oxygen 
uptake. 

 
Experimental Design 

Subjects completed two continuous, incremental exercise tests on a motorized 
treadmill (True ZX-9, St. Louis, MO) with at least 6 days separating each trial.  Exercise 
tests were performed to volitional exhaustion while high resolution triaxial acceleromety 
(HRA) and open circuit spirometry was collected to determine relationships between 
metabolic parameters (e.g. Ve, VO2, VCO2) HRA, walking and running speed which are 
presented elsewhere.  The subjects reported to the laboratory on the day of testing after 
having refrained from strenuous exercise, alcohol, and caffeine for 24 hours prior to the 
day of testing and having fasted for 3 hr.   
 
Incremental exercise tests to volitional exhaustion 

In each of the two tests, subjects stood for 2 min before walking to establish a 
baseline measure for CE determination.  At two min, they began walking at 2km/h and 
speed was increased 2km/h every two minutes until volitional exhaustion.  The treadmill 
grade was held constant at 1% to simulate normal over-ground walking/running.  During 
tests, metabolic data was collected on a breath-by-breath basis using portable open 
circuit spirometry (Jaeger Oxycon Mobile, CA).  VO2max was determined as the highest 
30s average of the test. From this maximal aerobic speed (lowest speed eliciting 
VO2max) and maximal speed (maximal speed attained before exhaustion) were 
determined. 

 
Metabolic Measurements 
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Indirect calorimetry was used to collect breath-by-breath measurements of VO2 
and VCO2 using electrochemical oxygen measuring cell (SBx) in an Oxycon Mobile 
(Cardinal Health, OH) and averaged over 5 sec.  Heart rate was collected continuously 
via telemetry using a Polar coded transmitter belt (Polar t-31, Polar Electro, Oulu, 
Finland).  The oxygen and carbon dioxide sensors were calibrated prior to each test for: 
ambient conditions (temperature and barometric pressure), volume and gas content 
against precision analyzed gas mixtures.  

 
Accelerometry 

The HRA device consisted of a triaxial MEMS accelerometer model ADXL210 
(G-link Wireless Accelerometer Node ± 10g,  Microstrain, Inc., VT).  The device was 
mounted to a semi-rigid strap and placed,  anatomically,  at the intersection of the 
sagittal and axial planes on the posterior side of the body in line with the top of the iliac 
crest in order to approximate the subject’s center of mass [29].  It was additionally 
secured with elastic tape in order to remove extraneous movement of the device not 
associated with locomotion.  Acceleration in g’s was streamed in real time using 
telemetry to a base station at a frequency of 625 Hz.   

 
Linear Data Analysis 

Raw accelerometry signal (in g’s) was saved in Agilelink software (Microstrain, 
VT) and exported to Signal Express software (Labview, TX) in ASCII format.  The RES 
value was calculated using the usual Euclidean norm, 

 
RESxyz

2 = (ix)2 + (jy)2 + (kz)2 
 

where x, y and z equal the VERT, M/L and Anterior/Posterior axes, respectively.   
 
For determination of RMS of acceleration signal in relation to speed, full length 

files were parsed into 1 min segments, and the last one minute of each treadmill stage 
was used to calculate Root Mean Square (RMS) value using Signal Express for each 
axis (e.g.  vertical (VERT), mediolateral (M/L), anterior/posterior (A/P),  and Resultant 
(RES).   The 1 minute RMS of acceleration in each axis were compared to speed of 
each corresponding stage.  Comparisons were made using a linear regression curve fit 
(SPSS, IL; α=0.05). 

 

Non-linear Data Analysis 
 

We shall adapt a new tool from dynamical systems theory, namely control 
entropy (CE) and a second tool from statistical theory of spatiotemporal systems, 
namely the Karhunen-Loeve (K-L) transform, for classifying group responses.  Many 
dynamical systems tools associated within applied measurable dynamics [30] have 
been adapted to classify time series from experimental sources, including those from 
biological sources.  In many biological applications, they have been used to distinguish 
“healthy” from “unhealthy” biological signals.  However, two key issues complicate 
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otherwise would be simple but popular quantifiers like Lyapunov exponents or 
entropies.  These are embedding coordinates, including dimensionality and data 
population on the one hand, and then partition of the phase space in the appropriate 
representation for the later.  Regarding embedding and representation, we will only say 
that a finite and finitely sampled scalar time series, {x(ti)}i=1

N , from some experiment, 
numerical or physical, is presumed to have a representation as an m-dimensional 
dynamical system.  A great deal has been written about how delay embedding 
coordinates using the Taken’s method [31] can produce sufficient representations, and 
how to use such concepts to deduce appropriate and sufficient coordinates in practical 
computations.  This literature is extensive and remains active [30, 32], and is in a sense 
a complementary problem to that which we wish to work here, regarding change 
detection, health monitoring, and gaining insight into control effort.  We present methods 
of systems monitoring for “control effort” and health monitoring by what we call control 
entropy (CE).  Furthermore, we discuss here a method for group analysis of responses.  
This group analysis is based on a variation of principle component analysis (PCA), with 
some registration, which may also be considered an adaptation of the K-L transform, so 
popular  recently [33] in empirical analysis of partial differential equations.  
 

Control Entropy 
 In [20] we developed a regularity statistic which we call control entropy (CE). Our 
goal was an entropy- like regularity statistic that can be applied against (possibly) 
nonstationary time series data in a way that allows insight into the (possibly) time 
varying parameters of the system.  While there is a long well understood tradition in 
measurable dynamics and ergodic theory to relate concepts of informaton theory, and 
the Shannon entropy [34, 35], 

 

SE = − pi∑ ln p  

 

motivates, in a sense, the Renyi-entropies, following [32, 36],  

 

Kq = lim
r→0

lim
m→∞

1
1− q

ln Iq (r), where, Iq (r) = ( p j∑ )q ,q ≥ 0, 

 

where m-dimensional partitions of uniformly sized hypercubes of side r-hypercubes with 
relative occupancy probability pi , although in general, one must define the supremum 
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over all possible partitions and their refinements.  A most notable entropy for our 
discussion here is the Komolgorov-Sinai (KS) entropy, which is the special case K1, 
often called measure theoretic entropy [37] and widely considered as a quantifier of 
information theoretic complexity of a dynamical system, descriptive of the rate at which 
the system looses precision and amplifies noise and errors.  Due to difficulties in 
estimating K1, one often considers the lower bounding which follows from convexity 
[38], K2 , which can be associated with the so-called correlation entropy [30, 39]. K2  is 
often preferred in calculation regarding data sets since it can be computed more quickly 
and accurately by consideration of a correlation integral such as described by Theiler in  
[30].  In practice, in consideration of data sets sampled from empirical, analytical or 
experimental systems considered to be inherently dynamical systems, a good deal of 
attention has been paid to the approximate entropy (AE) of Pincus [40-42], 
(approximate entropy, also introduced as a regularity statistic), and a more recent 
modifcation called sample entropy (SampEn) designed to remove self matching biases 
inherent in ApEn.  We wish to point out that the many excellent algorithms from 
numerical ergodic theory built into the popular package TISEAN include reliable 
estimators of K2  in the spirit of [30].  The difficulty to relate such concepts to dynamical 
systems must consider appropriate embedding.  

While in the case of a chaotic dynamical system with an invariant measure, it is suitable 
to discuss the full Renyi spectrum of entropies [39], it becomes less well founded for our 
goal problem, to identify changes in complexity of non-stationary time-series data.  

We defined control entropy via correlation sums [20].  Suppose a data set {zi}i=1
N  to be a 

scalar time series from an ergodic process sampled on a uniform time grid.  Let an 
embedding dimension m  by a delay embedding [29],vi = (zi,zi−1,...,zi−m+1), with unit index 
delay.  The correlation sum is given [39],  

 

C2({zi};m,r,T) = 1
N pairs

Θ(r− || vi − v j ||∞
j< i−T

N

∑
i=m

N

∑  

 

where Θ is the Heaviside function, r  is a parameter defining a neighborhood, and  

N pairs = (N −m +1)(N −m −w +1) /2  is the total number of pairs of delay vectors.  Integer 
parameter T ≥1 is a Theiler window used to mitigate effects of time correlation in the 
data.  Let, 
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ˆ h ({zi};m,r,T) = ln C2({zi},m,r,T})
C2({zi},m +1,r,T})

. 

 

which may be considered as a regularity measure, independent of any attempt to relate 
this to asymptotic and limiting values by considerations of scaling regimes.   This 
formula lead to the development of SampEn [43, 44].  Thus, we may define,  

 

SE( j + J,w,{zi}i=1
n ;m,r,T) = ˆ h ({zi} i=1+ j

w+ j ;m,r,T)  for 0 ≤ j ≤ n − w, 

 

where J  represents time offsets.  SampEn, with these arguments, represents an 
entropy assignment to each time window of dataset, and associated to each time instant 
J .  From the SampEn entropy of a signal {zi}, we define the control entropy of the 
signal, 

 

CE( j + J,w,{zi}i=1
n ;m,r,T) = SE( j + J,w,{zi − zi−1}i= 2

n ;m,r,T) for 0 ≤ j ≤ n − w, 

 

in terms of first difference of the signal.  We have found that symbolization adds a great 
deal of stability, but still has sufficient robustness and rapid convergence relative to the 
continuous r-neighborhood statistic.  We choose a symbolized control entropy statistic, 

 

CEb ( j + J,w,{zi}i=1
n ;m,r,T) = CE( j + J,w,{si}i=1

n ;m,0.5,T) (1) 

 

where b denotes a symbol set.  As discussed specifically in our [20], and in theoretical 
basis in [43, 44], the specific choice of partition, that is symbolization function converting 
continuous signal value, xi into symbols si.  In [20], we presented two major 
approaches, one being by signs, b = {−1,0,1} by si = sign(xi − xi−1) .  The other is the SAXn  
method [45] which we adopt here, where by b is chosen to consist of n  symbols, and xi 
is mapped to si according to an equipartition of Z-values from a normal model on the 
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data set.  We shall use the SAXn  symbolization in computing CEb  as according to an 
entropy time series according to Eq. (1), where n will be chosen to satisfy the saturation 
criterion which we described in [20] – that is if measured CEb  becomes lnn  at any time 
t, then it is assumed that n  is too small and the cause is that there is overloading of 
symbolization, as described in detail in the theoretical work in [43, 44]. 

Registered Principle Component Analysis and the Karhunen Loeve Transform for 
Analysis of Groups of CE Time Series 

Principle Component Analysis (PCA) as applied to groups of time series, 
especially spatiotemporal data sets as is typical in the partial differential equations 
literature [33, 46], has become to be known as Principle Orthogonal Decomposition 
(POD) as well as the Karhunen-Loeve Transform (K-L).  The analysis of many time 
series can be cast into standard terms, and discussed by Singular Value Decomposition 
(SVD) [47], which we review here.  Note that there are many points here will remind the 
reader of facial image analysis methods, so called Eigenfaces [48], which involves 
similar steps, namely registration of the signal, and then decomposition into principle 
components which are optimal across the time average population. As applied to a 
population of signals, such a population of CE times series, we note that this part of our 
analysis could and should be applied to any other entropy analysis designed to track 
complexity changes in time, across populations. 

 

Considering a population of p members, each of which presents a signal, thus 
presenting theoretical data set, {zi(t)}i=1

p , which however in practice is discretely 
sampled in time, {{zi(t j )} j=1

N }i=1
P  may rather be considered as a data array, Zp×N , 

 

Zi, j = zi(t j ). 

 

While we have written this in general terms, here we shall always take each zi(t) to be 
the CE time series signal processed from each of the ith member sampled.  Then 
considering demeaned data, we would denote 

 

ˆ Z i, j = zi(t j ) − zi(t j )
j
∑ , (2) 
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but for comparison to common spatiotemporal analysis notation, w(i, t) ≡ ˆ Z i,t , where due 
to sampling, t  is one of t j , 1≤ j ≤ N .  Then, K-L eigenmodes are the eigenfunctions of 
the autocorrelation matrix, 

 

K j, j ' =< ˆ Z i, j
ˆ Z i, j ' >=

1
P

ˆ Z i, j
i
∑ ˆ Z i, j ', 

 

which denotes products at each time pairing t j  and  t j ', averaged across sample 
indexed by i , where the brackets <.> denotes integration across the sample set indexed 
by i.  It is known by the spectral decomposition theorem [47], that the eigenfunctions of 
K are orthogonal, since K must be positive semidefinite, and represent an optimal basis 
in population average.  Therefore, writing as in K-L analysis, we write,  

 

w(i,t) = an (i)φn (t)
n=1

P

∑ . (3) 

 

Here, φn (t)  denotes the eigenfunction, which is a function of time, and an (i) is the 
coefficient of projection for each sample. However, unlike the use of such a modal 
expression in spatiotemporal systems [46], with both time-t and space aspects, we use 
this expression where i-denotes the index of the members, as is more typical in POD 
analysis, and as used in such applications as Eigenfaces [33].  What is most relevant 
and special concerning this modal analysis, in contrast say to a modal expansion in 
terms of Fourier sines and cosines, is that the modes φn (i)  are known to be orthogonal, 
and optimal in average.  That is, the power spectrum is fastest decaying in time 
average, when compared to a power spectrum as developed by any other basis set.  
These statements both follow a spectral decomposition analysis [47], or alternatively by 
[46].  Orthogonality in time means,  

 

< an (i)am (i) >= λnδnm , 
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in terms of the bracket <.>  of sums averages across the sample.  Here, λn  are the 
eigenvalues of K ; the expressionn represents the decorrelated Fourier coefficients 
an (i). By consequence, projecting data Eq. (2) onto each mode φn (t)  gives uncorrelated 
samples from each mode, which is a statement of statistical independence.  An 
eigenvalue may be written, 

 

λn =
(φn,Kφ)

||φn ||
=<| (φn ,w) |2> 

 

where round parahentesis (.,.) denote an inner product with respect to integration in 

time, ( f (t),g(t)) = f (t)g(t)dt
0

T

∫  , and <.> denotes the average across the samples.  In 

these terms the K-L modes have been shown to also be derived by a problem of 
calculus of variations to optimize the projection of the data onto each successive mode 
[46], meaning, the power spectrum (as seen in Figures 6c, 7c, 8c, and 9c) decays faster 
in time average than a power spectrum would using any other basis set of functions. 

 

We note that better power spectral decomposition, again meaning fastest decaying 
power spectrum, will be achieved if the time series data is registered, meaning events 
are shifted so as to start at the same instant.  Stated simply, the data may be shifted to 
pairwise minimize a convolution integral, 

 

z j (t) = argmin
τ

zi(t j )z j (t − τ )dt∫  

 

 before resorting to demeaning (2). In practice, we take a simplified version of this 
registration statement. 

 

 

Considering the data as statistical samples from an appropriate random sample, we 
may interpret the K-L analysis as descriptive as maximally decorrelated representations 
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of a least squares model, from which description leads to confidence limits on the model 
[49].  The setting in which the singular values and singular vectors lead to statistical 
confidence in the representation is the language of multivariate regression analysis.   
Said succinctly, Eq (3) can be considered to be a standard regression problem related 
to optimal low-rank representation of a matrix by the spectral decomposition theorem, 

 

K =
1

sn
2

n=1

P

∑ v(n ) ⊗ v(n ) 

 

where the singular vectors and singular values of K describe the correlation matrix K.  
Again this is the spectral decomposition theorem stating that K may be represented as a 
sorted sum of rank one projector matrices, v(n ) ⊗ v(n ), weighted inversely proportionally 

to the singular values, sn
2 .  Viewing the SVD as the solution of a least squares problem 

in the over determined case, the representation relates to a χ 2 distribution in the fitted 
parameters by treating the sample of data as an ellipsoid cloud in the parameter space, 
where the length of the major and minor axis of the ellipsoid are inversely proportional 
to each sn

2.   Equivalently, taking the data as a statistically sampled ensemble with 
standard assumptions regarding normally distributed i.i.d. data, SVD yields the least 
squares solution to a parametric fit descriptive of how each individual signal is a linear 
combination of the singular vectors by an equation which describes level curves of the 
χ 2 distribution, [49, 50], 

 

∆χ 2 = s1
2(v1 ⋅ δa) + s2

2(v21 ⋅ δa) + ...+ sP
2 (vP ⋅ δa) (4) 

 

where δa  describes the projection of a particular data point (a new sampled 
experimental and processed CE time series in this case) onto the singular vectors.  As 
such, by orthogonality, this gives a direct description of the likelihood of a new data set 
by inspection of the energy of the new sample in the energy spectrum tail, which 
describe the unlikely modes in the original representative data set.  

The point here is that a fast decaying average power spectrum indicates that only a few 
singular vectors describe dominant modes, then if a new experimental data set is 
brought to bear, it can be compared to the current data set by projection onto those 
singular vectors basis which capture most of the energy of the original population.  If 
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there is a large representation in the orthogonal unlikely modes, then this represents an 
experiment which is unlike the original data set with great confidence.  Specifically 
interpreting Eq. (4), projections onto the few major axis and therefore the time average 
of the projected coefficients, when the data is tightly correlated, it is all contained within 
a low dimensional ellipsoid.  On the other hand, any outlier data is quickly identified as 
outlying such an ellipsoid.  Referring this statement to the running data in Figure 8, 
where it is already apparent in the CE time series that two members of the population 
are somewhat different from the rest, one greatly so, we corraborate this appearance 
with the time average spectral projections as shown in Figure 10.  

Results 

Linear characteristics of unfiltered signal 

 

Figure1. Unfiltered accelerometry signal collected during incremental treadmill trials 
starting at 2 km/h (after 2 minutes of quiet standing) and increasing 2 km/h every 2 
minutes until exhaustion.  a) VERT b) M/L c) A/P.  Yellow circles identify the walk to run 
transition and red circles identify exhaustion.   

Unfiltered accelerometry signal of three representative subjects is presented in 
Figure 1.  The subjects represent the best and poorest performers, as well as a middle 
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performer (maximum speed 24, 22 and 24 kph, respectively).  It is evident that each 
subject transitioned from walking to running at the 8 kph stage (yellow circle) regardless 
of performance level.  This is in agreement with previous studies (Jordan and Newell) 
that the preferred walk to run transition occurs at approximately 7 kph.  Since the highly 
trained athletes in the current study walked at 6 kph, and ran at 8 kph, it appears that 
training status may not affect preferred walk to run transition speed on a treadmill.  At 
the first run stage, the magnitude of accelerations in the VERT axis, both positive and 
negative, increased dramatically relative to the last walk stage.    In the A/P axis, at the 
walk to run transition, there is a shift in accelerations to a negative bias, and yet the 
magnitude of the RMS of the accelerations in this axis remain linear with relation to 
speed (Figure 2c, R = 0.94; p<0.001).  

Regression curve fits of acceleration to speed 

 

Figure 2.  Curve fit regressions of 1 min RMS of accelerometry signal vs speed during 
incremental treadmill trials to exhaustion.  The accelerations in each axis from the last 1 
min of each speed were used to generate RMS of acceleration.  A) VERT b) M/L c) A/P.  
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The VERT axis exhibited a significant quadratic fit, while M/L and A/P both exhibited 
linear fits (all p<0.001) 

Regression fits of RMS values for the last 1 min of each speed are displayed in 
Figure 2.  Both responses from the M/L and A/P axes exhibited linear relationships to 
speed (r = 0.88, F= 512.6; r = 0.94, F= 1201.5, respectively).  In contrast, RMS of 
acceleration in the VERT axis was best described by a quadratic relationship to speed (r 
= 0.94, F = 531.0).  These observations are consistent with other reports that 
accelerations plateau in the vertical axis during running (**REF), but, to our knowledge, 
a quadratic relationship has not been previously reported.  

Changes in CE of accelerations in individual axes (individual responses) 

 

 

Figure 3.  Plots of CE response relative to speed for individual subjects for each of two 
trials.  (top left) = VERT, (top right) = M/L, (bottom left) = A/P.  The horizontal red line 
corresponds to a CE = 0.75.   

Individual responses of CE of accelerations in the VERT axis can be seen in 
Figure 3.  Manually grouping data sets with similar response gives two readily apparent 
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aspects of the individual plots (Figure 3).  First, when comparing the CE response 
relative to the 0.75 CE benchmark in the VERT relative to the M/L and A/P axes, it 
appears as though the VERT exhibits a suppressed CE.  In most cases, the CE doesn’t 
increase beyond the horizontal line corresponding to 0.75, and if it does, the peak CE 
occurs before the walk to run transition.  In contrast, several of the individual CE plots in 
both the M/L and A/P axes increase above the 0.75 criterion line. In particular, CE in the 
A/P axis increases above the 0.75 line, and do so later than is observed in the M/L axis.  
These observations may provide insight in that the overall CE response in the VERT 
appears “suppressed”, indicating higher constraints than in the other axes.  This may be 
due to the fact that constraints due to gravity are the most significant constraints in the 
VERT axis and are imposed consistenly across the speed spectrum [51, 52].  The 
second observation here is that CE appears to reach a maximum later in the A/P 
compared to the VERT and M/L axes.   Again, this may be indicative of the constraints 
unique to this particular axis [52], and may be indicative of an adaptive uncoupling [53] 
in this select population.    

 

Changes in CE of accelerations in individual axes (group responses) 

 Results of K-L analysis of CE of accelerations for individual axes can be seen in 
Figures 6-8.  For each axis, a dominant mode was identified (Figures 6b, 7b, and 8b) 
and its likelihood determined and presented as a power spectrum (Figures 6c, 7c and 
8c).  In the case of the VERT axis, the dominant mode contains less power relative to 
the collective responses.  The dominant modes identified for the M/L and A/P axes 
contained more power (Figures 7c and 8c), with the A/P axis exhibiting the “strongest” 
dominant mode.  When “outliers” (those with more projection component on the 
nondominant modes) in this response were removed, the power of the dominant mode 
(Figure 9b) increased substantially (Figure 9c). 
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a) b)        

c)  

Figure 6.  Karhunen-Loeve (K-L) analysis: CE of accelerations in the VERT axis.  a) K-L 
analysis   b) Dominant Mode  c)  power spectrum  

a) b)  

c)  
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Figure 7.  Karhunen-Loeve (K-L) analysis: CE of accelerations in the M/L axis.  a) K-L 
analysis  b) Dominant Mode c) power spectrum 

a) b)  

c)  

Figure 8.  Karhunen-Loeve (K-L) analysis: CE of accelerations in the A/P axis.  a) K-L 
analysis b) dominant mode  c) power spectrum 

a) b)  

c)  
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Figure 9. Karhunen-Loeve (K-L) analysis: CE of accelerations in the A/P axis with 
outliers removed.  a) K-L analysis b) Dominant Mode c) power spectrum 

 

Figure 10. A projection of the demeaned CE time series of the population shown in raw 
form in Figure 8 onto the dominant singular vectors, v1 and v2 , quickly identifies outlier 
members of the population, in this case, one significant outlier – in agreement with the 
two apparent outliers in Figure 8, and then furthermore that the rest of the data is tightly 
correlated.   

 

Discussion 

In the current study we report changes in complexity of HRA in highly trained 
runners over a wide range of running speeds that encompassed walking, the walk/run 
transition, running and volitional exhaustion.  Further, signals from 3 axes were 
collected from the same point in space, at the approximate center of mass during 
locomotion, and yet, distinct differences in complexity and patterns of complexity were 
observed between individual axes, as well as between individuals. Finally, we 
demonstrate how K-L analysis can be applied to CE results to identify predominant 
patterns of complexity changes in these data.   

Technical considerations 

Two unique technical aspects of this study were the nature of the subjects 
utilized and the signal analyzed for changes in complexity related to the control input.  It 
is not uncommon to use highly trained/fit subjects to present extreme examples of 
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optimized systems as a point of reference and contrast to sick or diseased systems and 
in some cases, this approach been used in both human and animal models to add 
insight and understanding to the nature of diseased states [54-58].  Within the context of 
gait analysis though, there is not an extensive literature in this regard.  Specifically in 
the current study in reference to walking/running, it is well established that although 
highly trained/elite runners are certainly highly fit, and have excellent aerobic capacity, 
there are also biomechanical/structural characteristics that make good runners better at 
the task than equally fit non-runners [59-63].  Therefore, this work was intended to 
provide a benchmark for those who have optimized the aspects of running that will 
serve as a comparison to other populations in future work.  In fact, several of the 
subjects in this study exhibited aerobic capacity (VO2max) that would be comparable to 
some recreational runners (e.g. VO2max ~ 60 ml/kg/min), and will serve as ideal 
comparators to fit, running specific non-trained populations.  This will hopefully provide 
insight into the changes in complexity observed in optimized vs non-optimized systems 
with regard to running.    

Typically, regularity statistics are applied to discretized or downsampled 
measures (e.g. heart rate, stride rate, ventilatory rate, center of posture).  In contrast, in 
the current study, we used CE applied to the continuous, raw signal from HRA.  To 
address the technical aspect of complexity analysis of continuous signal compared to 
discretized samples, it has been argued that stride rate, for example, is the “final output” 
of the neuromuscular control system [64].  In some sense this may be true, but it could 
be argued that more information is contained in the continuous signal (e.g. frequency, 
amplitude, direction) of a measure such as acceleration.   This is evidenced by the 
results of the present work in which differences in complexity between different axes of 
movement are discernible (Figures 6-9).  This phenomenon would not be observable if 
examining the entropy of a discrete measure such as stride rate.  Further, filtering can 
influence the characteristics of waveform patterns, which makes this approach 
undesirable if avoidable.  We have shown that i.i.d. noise does not adversely affect the 
CE analysis [20], which facilitates the use of continuous, unfiltered signal.  If we 
compare the results of current study to previous studies that have examined changes in 
entropy during walking or running, but it should also be cautioned that due to the 
technical differences in the parameter analyzed and the nature of the statistics (e.g. 
partitions, embedding, etc.), differences may exist between previous studies and the 
current study with regard to changes in complexity.  These differences may be valid 
despite appearing contradictory.       

Changes in Control Entropy relative to walking speed 

K-L analysis was performed with the purpose of identifying common CE 
responses and generalizing them to the population utilized for this study.  In doing so, 
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for each axis a “dominant mode” was identified which exemplified the most likely 
common CE response for each axis.  Therefore, for purposes of generalization we will 
refer to the dominant mode as exemplars of a given response, and present caveats and 
exceptions where necessary.   

In the VERT axis, during walking at increasing speeds, the dominant K-L mode 
(Figure 6b) exhibited an increasing CE until the first run stage (8 kph).  It should be 
noted though that the power of the dominant mode in the VERT axis was not strong 
(Figure 6c) and other moderately strong responses were observed (Figure 3, Figure 
6a).  This is in contrast to the M/L and A/P axes both of which exhibited more consistent 
CE responses.  Both of the dominant modes in these axes (Figures 7b and 8b) 
exhibited increasing CE while walking speeds increased, and the power of these modes 
(Figures 7c and 8c) indicated these were the most common responses.   

How can these changes in complexity during increasing walking speeds be 
interpreted?  It has been proposed that CE can be viewed as a measure of system 
constraint [20].  In young, healthy humans, preferred walking speed is approximately 4 
kph (1.2 m/s) [65] and it may be that CE increases during the first 3 stages during 
walking as a result of reduced constraint as the individuals reach preferred gait speed.  
In the A/P axis though, this is unlikely as CE continues to increase in the dominant 
mode during run phase (discussed later).  Further, the inconsistent response in the 
VERT axis is difficult to interpret as well.  Buzzi and Ulrich [13] reported decreasing AE 
with increasing walking speed in both healthy and comparably aged youth with Down 
Syndrome (DS).  To our knowledge, there have been no other reports of changes in 
regularity measures such as AE or SampEn with changes in walking speed.  It should 
be noted though that the same authors [13] reported decreased Lyapanov exponent 
(LyE) of joint segments with increasing walking speed.  Further the DS subjects 
exhibited significantly higher LyE than controls, which the authors claimed indicated DS 
exhibited increased instability of gait relative to controls, but instability of gait decreased 
with increasing speed in both groups.  This is in contrast to England and Granata [66] 
who recently reported increasing maximum finite-time LyE of various joint angles with 
increasing walking speed.  This included speeds beyond preferred walking speed and 
preferred walk-run transition.  The authors interpreted these observations as indicating 
increased instability of gait as walking speeds increased.   

 

Changes in Control Entropy relative to running speed 

In the VERT axis, after the walk-run transition, during running at increasing 
speeds, the dominant K-L mode (Figure 6b) exhibited a decreasing CE until exhaustion 
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where the CE was lower than the starting point both standing and during the initial walk 
stage (2 kph).  As was noted in the previous section, the power of the dominant mode in 
the VERT axis was not strong (Figure 6c) and therefore a generalization regarding CE 
of acceleration in the VERT axis during running is difficult to make.  As we point out in 
“Changes in CE of accelerations in individual axes (individual responses)” in reference 
to Figure 3, when examining individual plots, CE does not appear to rise to the same 
extent in the VERT axis relative to the other two axes.  Further, the “peak” CE response 
appears to occur sooner, during the walking phase, relative to the other two axes.  In 
several cases, the CE increases in the A/P well into the run phase and generally peaks 
latest in this axis.  Group analysis using the K-L method confirmed this observation.  In 
the M/L and A/P axes both of which exhibited more consistent CE responses than the 
VERT axis, the dominant modes in these axes (Figures 7b and 8b) exhibited decreasing 
CE while running speeds increased, and, again, the power of these modes (Figures 7c 
and 8c) indicated these were the most typical responses for each axis.     

In general, with regard to changes in complexity with changes in speed during 
running, there are few direct comparisons in the literature because, to our knowledge, 
no other investigators have examined changes in gait characteristics during running 
using non-linear regularity statistics.  By using highly trained athletes, we were able to 
examine changes in complexity of accelerometry over a wide range of running speeds, 
a range that would not be possible with untrained populations.  Still, it is noteworthy that 
no other investigators have examined changes in complexity during running.  Some 
investigators have applied other non-linear measures such as DFA and/or LyE to 
running.  In particular, Jordan et al. used DFA of stride interval, as well as other gait 
characteristics, and reported that alpha exhibited a “U-shaped pattern” relative to 
running speed between 8 and 13 kph with the minima occurring at approximately 10.5 
kph, which corresponded to the preferred running speed in this population.  These 
authors have interpreted this data to mean that at speeds corresponding to preferred 
running speed, constraints are minimal and long range correlations are lost.  This is in 
keeping to a certain extent, although conversely, with our view of CE changes with gait, 
in that with increasing CE, constraints are reduced, and peak CE would be associated 
with some least constrained parameters.  Running in particular is constrained by an 
interaction between metabolic power generation, elastic and spring characteristics of 
the tissues and biomechanical coupling of joints involved in the task [67, 68].  So, 
although the metabolic cost of running would be least constrained at 8 kph relative to 
higher speeds in this population, other specific parameters related to the A/P axis may 
still be relatively unconstrained as speed increases, because peak CE is not observed 
until later (18 kph) in the A/P axis (Fig 8b).   

Changes in Control Entropy at exhaustion 
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 A particularly intriguing aspect of this study was the anticipated CE response at 
exhaustion, and the stage(s) leading up to it during the running phase of the test.  
Again, because it has been argued that CE is a measure of system constraint (Bollt et 
al. 09) and that reduced CE would be indicative of increasing constraints, it was 
anticipated that at fatigue, or close to it, system constraints would be maximal, and this 
would be reflected in low, possibly minimal, CE.  In keeping with this, in all axes, CE 
was lower at exhaustion relative to the first running stage (Figures 6b, 7b and 8b).  In 
particular, in both the VERT and M/L axes, CE was lower at exhaustion than even 
during standing where it might be expected constraints to accelerations of movement 
would be maximal.  In the A/P axis, CE declined throughout the running stages to 
exhaustion, but CE at exhaustion was approximately equivalent to CE during standing.   

 Factors contributing to fatigue during maximal running remain elusive [69-72], but 
LeBris et al. [9] used HRA mounted to the lower back of trained runners in similar 
fashion to the current study to investigate changes in accelerometion during maximal 
running bouts.  The authors reported that during exhaustive runs at 17 kph, 
accelerations in the M/L axis increased significantly, while a linear “regularity index” of 
the VERT axis decreased.  LeBris et al. [9] argued that the extra energy expended in 
the M/L axis as runs progressed contributed to fatigue in these subjects.  In the current 
study, M/L accelerations increased with speed and may have been a contributing factor 
to fatigue as VO2 becomes constrained near maximal speeds.  In two other studies, 
Slawinski et al. [3, 70] reported an increase in the internal cost (Cint)of running during 
maximal over-ground running to exhaustion, which contrasted a reduction of Cint 
reported by Borrani et al. [71] during treadmill running.  The differences in these studies 
may lie primarily in inherent differences between the two running surfaces.  It should be 
noted though that in one study Slawinski et al. [3] used both fit trained and untrained 
runners, and reported a difference between the two groups in that the trained runners 
increased Cint to a lesser extent than the untrained runners.  This exemplifies the value 
in using trained runners as subjects in contrast to healthy and diseased comparators as 
differences can exist between normals and trained individuals of similar fitness, which 
can then be used to identify potentially abnormal gait parameters in diseased 
populations.  

Likely the most fascinating aspect of this study is the observation of differential 
complexity responses for individual axes of accelerations collected at the same point in 
space.  This was not anticipated, but may be of value.  Because CE is not only a 
measure of system complexity, but constraint, and moreover the system controller’s 
effort to maintain a current state of the system, or to respond to a change in state of the 
system [20], this tool could be of use in clinical situations to identify perturbed control of 
gait in one component of the system, and more specifically identify pathologies in a 
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prospective fashion rather than simply identify alterations in gait output such as with 
stride interval.  In general, in contrast to cardiovascular physiology, non-linear measures 
of variability with respect to gait patterns are associated with diseased states or poor 
health outcomes [64].  It will be necessary to perform further studies in healthy normal 
and diseased populations, in contrast to highly trained individuals, under similar 
experimental conditions to determine if this generalization applies to CE analysis of gait 
parameters.      

Conclusion 

The investigation presented here is the first to report changes in the complexity 
of control constraints in response to increasing speed during both walking and running 
gaits.  Further, this is the first work to take advantage of the properties of CE that enable 
its application to data collected during exhaustive exercise.  Finally, this is the first to 
examine changes in complexity of gait parameters in walking or running using highly 
trained athletes as test subjects.  This work will serve as a benchmark for comparison 
against other populations and such comparisons may provide unique insight into the 
constraints of walking and running.  In particular, insights with regard to the constraints 
of exhaustive running in highly trained runners may provide distinct contrasts to 
untrained healthy or clinical populations. These differences could be used to identify 
characteristic constraints in clinical populations and assist in treatment/rehabilitation.  
Additionally, these distinctions  could also be used to determine optimized patterns of 
complexity that could serve as models for development of robotic locomotor systems.   
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