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Damage detection of mechanical structures such as bridges is an important research problem in civil

engineering. Using spatially distributed sensor time series data collected from a recent experiment on

a local bridge in Upper State New York, we study noninvasive damage detection using information-

theoretical methods. Several findings are in order. First, the time series data, which represent acceler-

ations measured at the sensors, more closely follow Laplace distribution than normal distribution,

allowing us to develop parameter estimators for various information-theoretic measures such as

entropy and mutual information. Second, as damage is introduced by the removal of bolts of the first

diaphragm connection, the interaction between spatially nearby sensors as measured by mutual infor-

mation becomes weaker, suggesting that the bridge is “loosened.” Finally, using a proposed optimal

mutual information interaction procedure to prune away indirect interactions, we found that the pri-

mary direction of interaction or influence aligns with the traffic direction on the bridge even after

damaging the bridge. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4967920]

Bridges are important and overwhelmingly common for

daily commuting and transportation. Because of their

prevalence, it is important to monitor the mechanical

“health” of bridges especially to assess the risk of struc-

tural fatigue and more importantly to suggest timely

maintenance in order to avoid sudden and disastrous col-

lapse. Among the various techniques for structural health

monitoring of bridges, we here consider information-

theoretic measures which require minimal assumptions

regarding the specific location, material, and age of the

bridge. The data we use are time series collected on spa-

tially distributed sensors from a controlled damage experi-

ment performed on a local bridge in Upper State New

York. We found that the primary direct interactions that

underlie the bridge, aligns with the traffic direction, and

the bridge becomes effectively “loosened” after introduc-

tion of the damage.

I. INTRODUCTION

Damage detection of civil infrastructure such as bridges

has gained considerable interest, for obvious economic and

public safety reasons. Damage here can be described as a

change of material or geometrical properties that impact the

performance of engineering systems.1 In the literature there

are many traditional methods to detect the damage of a

bridge.2–5 Among them, non-invasive techniques are appro-

priate for many situations as they are non-destructive and

often less expensive at least as a precursory scanning

approach, in case the more expensive and direct inspection

methods are prescribed.

As dynamical properties of healthy and damaged brid-

ges differ, parameters such as natural frequencies, damping

ratio, and mode shapes can be used to detect the presence of

damage in a bridge. The modal curvature method—vibration

based damage identification technique—has been used

extensively in literature as the stiffness of the structure

directly relates to the natural frequencies and mode

shapes.2–7

Model-based methods such as neural networks and

genetic algorithms8–10 have also been used as a basis to

develop damage detection of bridges utilizing artificial intel-

ligence and machine learning techniques. These methods

have been used to recognize patterns of the damaged and

non-damaged systems. In Ref. 8, the study used a genetic

algorithm based damage detection method, wherein the

authors formulated the structure damage as an optimization

problem. Moreover they used static displacements as mea-

sured responses. In Ref. 11, several drawbacks were dis-

cussed when adopting the traditional neural networks in

dealing with patterns that vary over time. Also in Ref. 11,

time-delay neural networks were proposed to detect the dam-

age of railway bridges compared with traditional neural

networks.

In this paper, we propose a mutual information (MI)

based damage detection of a highway bridge, where the spe-

cific pairwise interactions are analyzed successively by an

interaction analysis to uncover and detect interactions, and

most importantly, changes in the way various regions of the

structure may interact with each other as the system becomes

damaged. We develop what we call, optimal mutual informa-

tion interaction (oMII) as explained in Section II as analogous
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to our previously developed optimal causation entropy

(oCSE)12–14 as this is a method of uncovering direct interac-

tions that are more indicatively sensitive to system changes.

In the literature15–22 many researchers used MI based techni-

ques to analyze the different dynamical fields.

Since the working premise is that a damaged bridge’s

dynamics are different, and therefore so is the way vibra-

tional energy may transmit through the structure, the MI of

sensed accelerometry within the structure differs when com-

paring healthy bridge’s pairwise MI to that of the same

bridge later measured in a damaged state. Therefore, we

assert definitively a principle that damaged verses undam-

aged bridges have different dynamics. Specifically direct

influences may change due to damage. So comparing influ-

ences as inferred by oMII over time we claim that we can

non-invasively detect important (damage) changes. Here we

consider a specific bridge as our test platform. The New

York State Route 345 bridge crosses over Big Sucker Brook,

in the town of Waddington, NY, and it was constructed in

1957. The instrumentation has involved 30 dual-axial accel-

erometers placed on the bridge at 30 locations therein. The

test protocol has involved a collection of data from three lev-

els of damage as introduced by removing bolts from a

diaphragm.23

This paper is organized as follows: We start the paper

by introducing mathematical tools of information theory.

The methods that we use to study the damage detection are

given in Secs. II B and II C. Section III describes the experi-

mental protocol of the bridge on which we study on damage

in controlled experiments, together with the experimental

protocol and the nature of the instrumentation based on

accelerometry sensing. The mathematical analysis reveals

that the data sets more closely follow Laplace distributions

than Gaussian distributions, and the analysis of this can be

found in Section III B. Finally, in Section IV we present the

results that we obtained from pairwise mutual information

and oMII, that we use to reveal notable changes between the

damaged and undamaged bridge.

II. INFORMATION-THEORETIC MEASURES

A. Basics from information theory

Since our analysis is based on developing the oMII

which is an information theoretic quantity, first we review

some basic background theory. In this section, we review the

basic information-theoretic measures which will be useful in

the application of damage detection, leading to the mutual

information and conditional mutual information whose appli-

cation will be described in Section III and IV including

details of the relevant conditions. Consider a continuous ran-

dom variable X whose probability density function is

denoted by p(x). Then the (differential) entropy of X, denoted

by h(X), is defined as24,25

hðXÞ ¼ �
ð

pðxÞ log pðxÞdx: (1)

The entropy captures the uncertainty associated with a ran-

dom variable. Such definition naturally extends to the case of

multiple (or multivariate) random variables. For example,

the joint entropy of two random variables X and Y is given

by24,25

hðX; YÞ ¼ �
ð

pðx; yÞ log pðx; yÞdxdy; (2)

where p(x, y) is the joint density of (X, Y). When conditional

densities are involved, the corresponding entropy measures

are called conditional entropies. For two random variables,

there are two such conditional entropies24,25

hðXjYÞ ¼ �
Ð

pðx; yÞ log pðxjyÞdxdy;

hðYjXÞ ¼ �
Ð

pðx; yÞ log pðyjxÞdxdy;

(
(3)

where pðxjyÞ and pðyjxÞ are conditional densities.

The joint and conditional entropies can be used to con-

struct measures that detect the statistical dependence or

independence between random variables as the case may

be. For example, the mutual information (MI), as given

below,24,25

IðX; YÞ ¼ hðXÞ þ hðYÞ � hðX; YÞ; (4)

is nonnegative [IðX; YÞ � 0] and is equal to zero if and only

if pðx; yÞ ¼ pðxÞpðyÞ, that is, X and Y are statistically inde-

pendent. It is often convenient to visualize the relationship

among various entropies and mutual information in an infor-

mation Venn diagram as shown in Fig. 1(a).

FIG. 1. Information Venn diagram for

two (a) and three (b) variables,

respectively.
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When there is a third variable involved, the conditional

mutual information (CMI) between X and Y given Z is

defined as follows:24,25

IðX; YjZÞ ¼ hðXjZÞ þ hðYjZÞ � hðX; YjZÞ: (5)

Like mutual information, the conditional mutual information

obeys an analogous inequality, IðX; YjZÞ � 0, with equality

if and only if X and Y are independent given Z. The relation

between various entropies, mutual information, and condi-

tional mutual information are visualized using an informa-

tion Venn diagram in Fig. 1(b).

B. Spatial pairwise mutual information

In many engineering applications such as the monitoring

of mechanical structures, sensors are often placed spatially.

This motivates a concept of spatial pairwise mutual

information.

The idea of damage detection by information flow is to

compare how signals measured from different spatial loca-

tions on the bridge respond to the challenge of the truck pas-

sage. Therefore, the hypothesis is that the signals compared

between sites, pairwise, may show a given coincidence as

measured by MI when the bridge is in a healthy state, but the

transmission of vibrational energy between sites becomes

different if the bridge has been altered or damaged. We

assert that just as energy is transmitted by forces, similarly

information associations detect the resulting changes of

states. The assumption here is that the manner in which

information flow occurs may be detectably different between

damaged and undamaged bridges. In particular, the MI

between measurements at spatially nearby sensor pairs are

dynamically different, considering a healthy bridge versus a

damaged bridge. Rather than just the MI of sensors with

respect to each other sensors, we consider a spatial pairwise

MI carefully conditioning to isolate the effects as we go. It is

important to note that there is often a difference between the

direct and indirect influences. Most notably, if there is an

indirect influence, the path of information flow may have

many multiple channels through the structure, and therefore,

even if damage diminishes one or many of the channels, then

there still may be significant information flow when an influ-

ence is indirect. Thus the change might be hard to detect or

masked if simply using the pairwise MI without carefully

conditioning. Therefore, it is important to identify the direct

influences as the direct MI channels, as these are more sensi-

tive to specific damage states. By our algorithm called oMII

described in Section II C that selects primary (direct) trans-

mission channels, we consider the likely direct information

coincidence of oMII as a more direct and sensitive measure

of changes.

C. Optimal mutual information interaction (oMII)

It is important to distinguish between direct and indirect

influences, because a direct change or damage site may sub-

sequently affect many further sites downstream. So by iden-

tifying the most direct influences, we hope to both identify

the specific location of changes and damage, but also this

prevents what otherwise would be an overly populated map

of (indirect) influences making it difficult to understand the

clear and significant changes. The concept behind oMII is to

judiciously select, based on the conditional maximization of

MI, a smallest number of channels that yield the largest MI,

analogous to the oCSE principle that we previously devel-

oped for causality inference.14

Therefore, in this way, the direct vibration transmission

network routes in the bridge and between the sensor loca-

tions, can be identified, and most importantly, distinguished

from the indirect influences. This iterative discovery process

has been previously developed to identify direct causal net-

works from time series data.14

Consider a multivariate time series fxðiÞt g that encodes

the temporal variation of N components in a system,

i ¼ 1; 2;……::N. In the case of the bridge experiment, x
ðiÞ
t

represents the t-th data point measured at the i-th component

where the component is either the lateral or vertical accelera-

tion collected from an individual accelerometer sensor.

For a given sensor component i, the oMII approach

infers a set of sensor components that directly influence i
as follows. First, in the “Discovery” stage (Algorithm 1),

components are added one at a time to maximally reduce

the additional uncertainty as measured by conditional

entropies, until no further reduction is possible. Then, in

the “Removal” stage (Algorithm 2), each component

inferred from the Discovery stage is examined and

removed if such removal does not result in an increase of

uncertainty regarding the time variability of i. In both

stages, a shuffle test (Algorithm 3) is used to determine

whether uncertainty reduction as measured by conditional

MI is statistically significant. For the results shown in this

paper, we set the parameters h ¼ 0:1 and Ns ¼ 100 in the

shuffle test.

ALGORITHM 1: Discovery stage

Input: time series Xt ¼ fxðiÞt gi¼1;…;N;t¼1;…;T and component i

Output: Ki

1: Initialize: Ki  f;g; p /; x 1

2: while x> 0 do

3: p arg maxj 6¼fi;KigIðX
ðiÞ
t ; X

ðjÞ
t jXðKiÞ

t Þ
4: if ðXðiÞt ; X

ðpÞ
t ; X

ðKiÞ
t Þ passes the Shuffle Test (Algorithm 3) then

5: Ki  Ki [ fpg
6: else

7: x 0

8: end if

9: end while

ALGORITHM 2: Removal stage

Input: time series Xt ¼ fxðiÞt gi¼1;…;N;t¼1;…;T , component i, and set Ki

Output: K̂i

1: for every j 2 Ki do

2: if ðXðiÞt ; X
ðjÞ
t ; X

ðKi=fjgÞ
t Þ fails the Shuffle Test (Algorithm 3) then

3: Ki  Ki=fjg
4: end if

5: end for

6: K̂i  Ki
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ALGORITHM 3: Shuffle test

Input: time series ðXðiÞt ¼fx
ðiÞ
t g;X

ðjÞ
t ¼fx

ðjÞ
t g;X

ðKÞ
t ¼fx

ðKÞ
t g; t¼1;…;TÞ,

threshold h and number of shuffles Ns

Output: pass/fail

1: for ‘ ¼ 1;…;Ns do

2: generate a random permutation: r : f1;…; Tg ! f1;…; Tg
3: use r to obtain a shuffled time series, Yt ¼ fytg, where yt  x

ðjÞ
rðtÞ

4: compute I‘  IðXðiÞt ; YtjXðKÞt Þ
5: end for

6: S the bð1� hÞNscth largest value from fI1;…; INs
g

7: if IðXðiÞt ; X
ðjÞ
t jXðKÞt Þ > S then

8: output: pass

9: else

10: output: fail

11: end if

III. WADDINGTON BRIDGE DATA: DESCRIPTION
AND BASIC STATISTICAL PROPERTIES

A. Description of the Waddington bridge data

In this section, we describe the bridge that was used for

damage detection, the instrumentation setup, and the levels

of damage introduced to the structure.

1. The Waddington bridge

The Waddingtonbridge, constructed in 1957, is located in

the New York State Route 345 over Big Sucker Brook in the

town of Waddington, NY (see Fig. 2). The highway bridge

investigated consists of a 19.1 cm (7.5 in.) thick reinforced

concrete slab supported by three interior W33� 152 and exte-

rior W33� 141 steel girders over each span. The bridge has

two-lane structures consisting of three 13.7 m (45 ft) simply

supported spans carrying a total span of 41.7 m (137 ft) at an

elevation of approximately 1.2 m (4 ft) from waterline. The

girders have a center-to-center spacing of 2.1 m (7 ft) and are

supported by fixed and rocker steel bearings.

2. Instrumentation

In this case study, we use wireless sensor solution

(WSS) for bridge health monitoring and condition

assessment. The WSS was developed at Clarkson University

as a versatile wireless sensing platform optimized for large

scale, high rate, real-time acquisition.26,27 The system was

developed based on off-the-shelf components to provide a

low-power sensing interface for vibration, strain, and tem-

perature measurements with signal conditioning tailored to

the typical highway bridge response spectrum. The wireless

communication is facilitated by a low-power chip transceiver

employing a direct sequence spread spectrum modulation

over a 2.4 GHz carrier frequency. Proprietary embedded soft-

ware was used to sample data at an effective rate of 128 Hz.

The bridge span was instrumented in a rectangular grid

array at 30 locations with dual-axis (vertical and lateral)

accelerometers, in effect resulting in 60 vibration sensors.

The sensor locations are shown in Fig. 3(a). The lateral

and longitudinal spacing between these accelerometers are

2.13 m and 1.96 m, respectively.

3. Field testing and damage introduction

The sequence of tests performed is outlined in Table I.

Each test consisted of the acquisition of approximately 90-s

time history. Each case included three passes across the bridge

with a truck in both directions. More explicitly, first test was

performed for �90 s, and measurements of the sensors were

taken after first pass of the truck, the second set of test meas-

urements was taken after the second pass of the truck for

another �90 s, and so on. In total, 9 tests were performed.

Peak acceleration induced by the truck loading, as mea-

sured across the sampled locations, was generally 15 mg,

while the peak lateral acceleration of 7 mg was typical. The

damage test was done with 6 bolts in 1st diaphragm connec-

tions (see Fig. 3(b)).

For each test (�90 s), lateral and vertical accelerations

are measured and recorded at 128 Hz, producing a raw time

series f~xðkÞt g for each sensor, where k denotes the index of

the sensor as labeled in Fig. 3(a) and t ¼ 1; 2;…; T ¼ 11536.

We standardize each raw time series by a linear

transformation

x
ðkÞ
t ¼ ð~x

ðkÞ
t � lð~xðkÞÞÞ=rð~xðkÞÞ; (6)

where lð�Þ and rð�Þ denote the empirical mean and standard

deviation of the given time series fxtgT
t¼1, that is,

lðxÞ ¼ 1
T

PT
t¼1 xt and rðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T�1

PT
t¼1 ðxt � lðxÞÞ2

q
. Such

transformation produces time series that have a zero mean

and unit variance. For the remainder of the paper, we shall

always deal with such standardized time series fxðkÞt g.

B. Basic statistical findings—Laplace distribution

Since the information theoretic entropies are in terms of

probabilities, there is the necessity for “good” statistical esti-

mation from sampled time series data. Recall that there is a

total of 30 sensors, and 2 time series are measured and

recorded at each sensor (accelerometer) location: lateral

acceleration and vertical acceleration. Fig. 4 shows the distri-

bution of the sensor time series plotted against two baseline

distributions: the normal distribution and the Laplace
FIG. 2. The Waddington Bridge, in New York State Route 345 over Big

Sucker Brook in the town of Waddington, NY.
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distribution, both standardized to have a zero mean and unit

variance, given below

Normal distributionð Þ f xjl; r2
� �

¼ 1

r
ffiffiffiffiffiffi
2p
p exp

x� lð Þ2

2r2
;

Laplace distributionð Þ f xjl; bð Þ ¼ 1

2b
exp
�jx� lj

b
;

8>>><
>>>:

(7)

with mean l¼ 0, r¼ 1 (normal distribution), and b ¼
ffiffiffi
2
p

=2

(Laplace distribution).

From the figure it is visually evident that the measured

acceleration data more closely follow Laplace distribution

than normal distribution. To draw this conclusion from a

quantitative standpoint, we compute the l1 norm between the

standardized distribution of the time series for each sensor

component and either a Laplace distribution or a normal dis-

tribution. The results are shown in Fig. 5, confirming that

Laplace distribution is generally a better fit for the observed

data across all sensors in all test scenarios.

IV. RESULTS

A. Parametric entropy estimator for multivariate
Laplace distribution

In Section III B, we established that the lateral and verti-

cal accelerations recorded by the bridge sensors more closely

follow Laplace distribution than normal distribution

(Assuming) a parametric estimator for entropy generally

requires fewer data points for the same level accuracy.

If the underlying data follows a normal distribution, there

is a parameter estimator based on a closed-form formula that

only involves the variance (and covariance for multivariate

data) of the time series. However, no such closed-form for-

mula exists for the Laplace distribution. Our strategy is to use

a Monte Carlo method to numerically evaluate the integrals

which define entropies and mutual information, where the pdf

in the integrals are assumed to be Laplace distributions whose

covariances are directly estimated from the data. Since there

are multiple variables involved, the assumed distribution is a

multivariate Laplace distribution whose pdf is given by28

fX xð Þ ¼ 1

2p d=2ð Þ
2

k

K d=2ð Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffi
2

k
q xð Þ

r !

ffiffiffiffiffiffiffiffiffiffiffiffi
k
2

q xð Þ
r ! d=2ð Þ�1

; (8)

FIG. 3. Physical layout of the accelerometers and the field test vibration introduction. (a) Top view: Physical spatial layout of the indexed accelerometers,

within the bridge structure. The bridge is divided into three sections. When a truck goes by, its goes through all three sections. In this particular experiment,

the sensors are placed to cover one of these sections near one end of the bridge. (b) Top view with the same orientation and coverage area as in (a), here show-

ing the location of the 1st diaphragm connections where the damages are introduced in the experiment. Vibrational energy is introduced to the bridge in a con-

trolled manner by driving a truck over the structure, both before and after damage has been introduced.

TABLE I. Baseline and damage test scenarios.

Case Test ID Scenario Comments

1 1–3 Baseline “Healthy” structure

2 4–6 1st diaphragm Removal of four out of six bolts

(damage 1)

3 7–9 1st diaphragm Removal of all six out of six bolts

(damage 2)
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where x 2 Rd; Kðd=2Þ�1 is the modified Bessel function of

the second kind with order (d/2) � 1 evaluated at x,

qðxÞ ¼ kðx� lÞ>R�1ðx� lÞ; (9)

l is the mean vector, R is the covariance matrix and

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðRÞ

p
.

B. Spatial pairwise MI—baseline, damage 1, damage 2

This section illustrates the use of pairwise mutual infor-

mation to study the damage detection of the bridge. Bridge

layout has 30 accelerometers. Each accelerometer records

time series data for vertical and lateral directions, each. We

use the spatial pairwise mutual information as a probe to

study the difference between healthy bridge structure and

damaged bridge structures. In particular, for each sensor, we

compute the MI between the time series produced by it and

those from each of its 4 spatially nearest neighbors. All the

results here are shown only for the scenarios that we call,

baseline, damage 1, damage 2 after the first pass of the truck

(tests 1, 4, 7 in Table I). Fig. 6 shows the estimated pairwise

mutual information of the lateral-direction accelerometer for

the first pass of the truck in both directions. In particular,

Fig. 6(a) describes the mutual interactions for baseline,

which is referred as the healthy bridge. Here the thicknesses

of the lines are drawn proportional to the corresponding pair-

wise MI. Maximum pairwise mutual information is found

between accelerometers 28–29 and 26–27. Interactions are

less than 0.108 between accelerometer 9–10 and 15–16. Fig.

6(b) describes the mutual interactions for the partially dam-

aged bridge, which is referred as the first damage of study of

FIG. 4. Probability distributions of the

sensor time series after first pass of the

truck. (a) Baseline-lateral, (b) baseline-

vertical, (c) damage 1-lateral, (d) dam-

age 1-vertical, (e) damage 2-lateral,

and (f) damage 2-vertical. In all panels,

we also plot the normal distribution

and the Laplace distribution for visual

comparison. All distributions have

been standardized to have a zero mean

and unit variance.
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the bridge. Notice that, first damage study was done by

removing 4 bolts (out of 6) from the first diaphragm. We can

see that after the first damage, interactions remain in the

same range for almost all the accelerometers. However, there

is a loss of MI between 10–11 and 8–9, which can be identi-

fied clearly in Fig. 8. Further damage to the bridge in the

tests was done by removing all 6 bolts from the first dia-

phragm, with the resulting pairwise mutual information

shown in Fig. 6(c). Similar plots are shown with respect to

the vertical accelerations in Fig. 7.

To more clearly illustrate the difference in information

association between the nearby spatial sites, we further plot

the difference of spatial pairwise mutual information

between the healthy bridge and damaged bridges, as shown

in Fig. 8 (lateral direction) and Fig. 9 (vertical direction). In

these figures, red and blue are used to, respectively, denote

the negative and positive changes due to the damage.

Several observations are in order. First, (with very few

exceptions) damage to the structure (as achieved by the

removal of bolts in the tests) seems to generally lower the

value of mutual information in the lateral direction between

spatially nearby sites, indicating a lower coupling, and such

change is enhanced with further structural damage [Fig. 8].

Second, some difference in connection strengths can be

seen in both Figs. 8 and 9. For example in Fig. 8(a) 11–12,

10–11, 8–9, and 7–8 and in Fig. 9(a) 11–12, 10–11, 8–9,

and 16–17. Same mutual interaction strength differences

between the above mentioned accelerometers can be seen in

FIG. 5. Relative l1-norm error of the

probability distributions of the sensor

time series after first pass of the truck.

Here relative l1-norm error is defined

by jjp1 � p2jj=jjp1jj, where p1 is the

empirical distribution and p2 is either

the standard normal or Laplace distri-

bution. (a) Baseline-lateral, (b)

baseline-vertical, (c) damage 1-lateral,

(d) damage 1-vertical, (e) damage 2-

lateral, and (f) damage 2-vertical. In all

panels, the distribution error is com-

puted against both the standard normal

and the Laplace distribution.
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Figs. 8(b) and 9(b), which describe the differences in infor-

mation flow between the healthy bridge and the bridge after

second damage in the lateral and vertical directions, respec-

tively. However, some connections remain the same as mea-

sured by the spatially pairwise MI. Ex: see the connection

9–15 in the lateral direction [Fig. 8] and the connection 1–7

in the vertical direction [Fig. 9].

C. oMII—baseline, damage 1, damage 2

In Section IV B, we use a spatial pairwise MI to study

damage detection of the bridge structure. However, a pair-

wise mutual information itself cannot differentiate between

direct and indirect couplings or select the most influential

pairs among all possible couplings. The oMII connections by

FIG. 6. Spatial pairwise mutual infor-

mation between accelerometers in the

lateral direction after first pass of the

truck. (a) Healthy bridge, (b) damaged

bridge after removing 4 bolts of six

bolts, and (c) damaged bridge after

removing all 6 bolts from the first dia-

phragm. There is a significant loss of

mutual information in both damaged

bridges compared with the healthy

bridge.

FIG. 8. Difference of the spatial pair-

wise mutual information between

accelerometers in the lateral direction

after 1st pass of the truck. (a)

Difference between the healthy bridge

and the bridge after first damage and

(b) difference between the healthy

bridge and the bridge after second

damage. There is some difference of

connection strengths after first damage

and second damage.

FIG. 7. Spatial pairwise mutual infor-

mation between accelerometers in the

vertical direction after first pass of the

truck. (a) Healthy bridge, (b) damaged

bridge after removing 4 bolts of six

bolts, and (c) damaged bridge after

removing all 6 bolts from the first

diaphragm.
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contrast identify direct influences, whether they be spatially

nearest neighbors or more remote sites on the bridge struc-

ture. It is particularly valuable in a damage detection sce-

nario where oMII connections may be especially fragile to

changes in the structure. Applying the oMII algorithm as

described in Section II C to the lateral time series with

parameters h¼ 0.1 for the stopping criteria and Ns¼ 100 in

the shuffle test, we show the resulting direct connections in

Figs. 10 and 11 for lateral and vertical directions.

Figure 10(a) shows the optimal mutual information

interactions for the healthy bridge. It can be seen from the

figure that the bridge structure supports more information

flow in the same direction as the truck lanes (horizontal

direction in the figure). Exceptions are near the center of the

bridge which could have been due to the first diaphragm

placed in the bridge structure (see Fig. 3(b)). The optimal

mutual information interactions after the first damage

(removal of 4 out of 6 bolts) and second damage (removal of

all 6 bolts) are shown in Figs. 10(b) and 10(c). After the first

damage, we can see there is both a loss of oMII connections

and new ones. This indicates that the loosening of the bridge

potentially allows for new pathways of vibrational signals to

propagate. Clear change in the information flow in the center

of the bridge can be seen from Fig. 11. However, in the

FIG. 9. Difference of the spatial pair-

wise mutual information between

accelerometers in the vertical direction

after 1st pass of the truck. (a)

Difference between the healthy bridge

and the bridge after first damage and

(b) difference between the healthy

bridge and the bridge after second

damage. There is some difference of

connection strengths after first damage

and second damage in the vertical

direction.

FIG. 10. Optimal mutual information

interactions between accelerometers in

the lateral direction after first pass of

the truck. (a) Healthy bridge (base-

line), (b) damaged bridge after remov-

ing four bolts from 6 bolts (damage 1),

and (c) damaged bridge after removing

all the 6 bolts from the first diaphragm

(damage 2).
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vertical axis also bridge structure supports more information

flow in the same direction as the truck lanes.

To more clearly see which oMII connections are lost/

created after damage, we compute and plot the difference of

the oMII connections between the healthy bridge and the

damaged bridges in Fig. 12(a) (healthy vs. first damage) in

lateral direction, Fig. 12(b) (healthy vs. second damage) in

lateral direction, Fig. 13(a) (healthy vs. first damage) in ver-

tical direction, and Fig. 13(b) (healthy vs. second damage) in

vertical direction, respectively. In these figures, the lost con-

nections are shown as dashed red lines and the new ones are

illustrated by solid black lines. Directionality is denoted by

arrows. One can see that there are 10 new connections (solid

black lines) and 7 loss connections (dashed red lines) appear

after the first damage in Fig. 12(a).

Due to the second damage, we can see there are signifi-

cant changes in the information transfer between sensors: 10

new connections are occurred and 16 connections are lost

after the second damage (see Fig. 12(b)). We can see from

Figs. 13(a) and 13(b) that the number of changes of connec-

tions in the vertical direction and lateral direction remain the

same after the first damage. After the second damage, num-

ber of new and loss connections (so number of changes)

have decreased in the vertical direction. However, the num-

ber of changes in the connections have increased in the lat-

eral direction.

The results obtained by oMII as plotted in Figs. 12

and 13 show that for the vertical “gap” in the middle of

the region which corresponds to where the diaphragm con-

nections are, new connections are formed after damages are

FIG. 11. Optimal mutual information

interactions between accelerometers in

the vertical direction after first pass of

the truck. (a) Healthy bridge (base-

line), (b) damaged bridge after remov-

ing four bolts from 6 bolts (damage 1),

and (c) damaged bridge after removing

all the 6 bolts from the first diaphragm

(damage 2).

FIG. 12. Difference of the oMII

between baseline and damaged bridges

in the lateral direction after 1st pass of

the truck. (a) Difference between the

healthy bridge and the bridge after first

damage (baseline—damage 1) and (b)

difference between the healthy bridge

and the bridge after second damage

(baseline—damage 2). Red and black

lines represent new connections and

loss connections after the damaged

bridge, respectively.
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introduced. Interestingly, this pattern only appears for the

lateral accelerations but not the vertical ones.

Another way to characterize the results is to look at the

degree distribution of outgoing and incoming links. The

degree distributions in the baseline and damaged bridge are

shown in Fig. 14. Yellow, cyan, and black bars represent

those corresponding to the baseline, damage 1, and damage

2, respectively. For some scenarios there are some sensors

that do not have outgoing or incoming links. The maximum

number of outgoing and incoming link is 3 for all structures.

In both the lateral and vertical directions, the probability of

having no incoming links and the probability of having no

outgoing links have increased after damage 2 (as compared

to the healthy bridge). This implies that after introducing a

relatively large damage to the bridge, there is a significant

number of locations that become “disconnected” from the

rest of the bridge in terms of information flow.

In summary, we observe that there are both vanishing

and new direct connections between sensors as the damage

experiment is progressed (Fig. 14), inferred as direct connec-

tions of the accelerometer signals by vibrational transmission

of energy, and furthermore the sensed values are relatively

stable across the repeated experiment. Therefore, we have

described a simple experimental protocol, driving a truck over

a bridge with instrumentation, and a information theoretic

approach to interpret the data, that is positively indicative of

potential structural damages.

V. DISCUSSION AND CONCLUSION

In this work, we used an MI based approach to study

damage detection of a bridge located in Waddington, New

York. The damage to the bridge was introduced by removing

bolts from the first diaphragm of the bridge and a sequence

of tests were performed with time series data collected on

various locations on the bridge. In particular, comparing to

the baseline case where no damage was introduced, two lev-

els of damage were tested by either removing four out of the

six bolts (damage 1) or all six bolts (damage 2).

Our first finding is that the measured data, which are

accelerations detected by sensors on the bridge, more closely

follow Laplace distribution than normal distribution. This

enables us to develop parametric estimators of mutual infor-

mation and conditional mutual information that are more

efficient than the non-parametric ones.

Our second finding is that the spatial nearest-neighbor

interactions as measured by mutual information tend to

become weaker as more damage is imposed. This is consis-

tent with the intuition that less force and energy pass

FIG. 14. Degree distribution of the oMII based networks of the baseline and damaged bridges after 1st pass of the truck in the (a) lateral direction (b) vertical

direction. 0, 1, 2, 3 are the number of outgoing and incoming links.

FIG. 13. Difference of the oMII

between baseline and damaged bridges

in the vertical direction after 1st pass

of the truck. (a) Difference between

the healthy bridge and the bridge after

first damage (baseline—damage 1). (b)

difference between the healthy bridge

and the bridge after second damage

(baseline—damage 2). Red and black

lines represent new connections and

loss connections after the damaged

bridge, respectively.
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between adjacent sites as the bridge is “loosened” due to the

removal of bolts.

Finally, we found that the more primary direction of

direct influence and information flow as detected by oMII

goes in the direction of traffic flow even after partial damage

to the bridge. Based on the particular experiments from

which these results are obtained, it is not yet clear whether

such unidirectional dominance of information flow comes

from the underlying mechanical structure or from the effect

of drive-through by the trucks.

Among the many unsolved problems, we note that it is

important to design experiments for which results from non-

invasive damage detection techniques such as the ones inves-

tigated herein can be experimentally validated. The success

of such validation is necessary for making reliable assess-

ments of the structural fatigue as well as the risk of sudden

and disastrous collapse of bridges.
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