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Identification of causal structures and quantification of direct information flows in complex systems

is a challenging yet important task, with practical applications in many fields. Data generated by

dynamical processes or large-scale systems are often symbolized, either because of the finite resolu-

tion of the measurement apparatus, or because of the need of statistical estimation. By algorithmic

application of causation entropy, we investigated the effects of symbolization on important concepts

such as Markov order and causal structure of the tent map. We uncovered that these quantities

depend nonmonotonically and, most of all, sensitively on the choice of symbolization. Indeed, we

show that Markov order and causal structure do not necessarily converge to their original analog

counterparts as the resolution of the partitioning becomes finer. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4916902]

While quantitative description and understanding of nat-

ural phenomena is at the core of science, inference of

cause-and-effect relationships from measured data is a

central problem in the study of complex systems, with

many important practical applications. For example,

knowing “what causes what” allows for the effective iden-

tification of the cause of a medical disease or disorder,

and for the detection of the root source of defects of engi-

neering systems. However, the act of measuring the states

of a dynamical system mediates the inference of cause-

and-effect relationships. For instance, all observation

procedures carry the limitation of finite precision. A

common example is the binning of data (histograms) into

discrete symbols. In this paper, we use a toy mathemati-

cal model to show that such digitization (symbolization)

may lead to inferred causal relationships that differ

significantly from those of the original system, even when

the amount of data is unlimited. Although based on a sim-

ple mathematical model, our results shed new light on the

challenging nature of causality inference.

I. INTRODUCTION

Uncovering cause-and-effect relationships remains an

exciting challenge in many fields of applied science. For

instance, identifying the causes of a disease in order to pre-

scribe effective treatments is of primary importance in medi-

cal diagnosis;1 locating the defects that could cause abrupt

changes of the connectivity structure and adversely affect

the performance of the system is a main objective in struc-

tural health monitoring.2,3 Consequently, the problem of

inferring causal relationships from observational data has

attracted much attention in recent years.1–18

Identifying causal relationships in large-scale complex

systems turns out to be a highly nontrivial task. As a matter

of fact, a reliable test of causal relationships requires the

effective determination of whether the cause-and-effect is

real or is due to the secondary influence of other variables in

the system. This, in principle, can be achieved by testing the

relative independence between the potential cause and effect

conditioned on all other variables in the system. Such a

method essentially demands the estimation of joint probabil-

ities for (very) high dimensional variables from limited

available data and suffers the curse of dimensionality. In

practice, there are various approaches in statistics and infor-

mation theory that aim at accomplishing the proper condi-

tioning without the need of testing upon all remaining

variables of the system at once.6,19 The basic idea behind

many such approaches originates from the classical PC-algo-

rithm,19 which repeatedly measures the relative

independence between the cause and effect conditioned on

combinations of the other variables. As an alternative, we

recently developed a new entropy-based computational

approach that infers the causal structure via a two-stage pro-

cess, by first aggregatively discovering potential causal rela-

tionships and then progressively removing those (from the

first stage) that are redundant.15–17

In almost all computational approaches for inferring

causal structure it is necessary to estimate the joint probabil-

ities underlying the given process. Large-scale data sets

are commonly analyzed via discretization procedures, for

instance using binning, ranking, and/or permutation meth-

ods.20–25 These methods generally require fine-tuning of pa-

rameters and can be sensitive to noise. On the other hand,

the time-evolution of a physical system can only be meas-

ured and recorded to a finite precision, resembling an

approximation of the true underlying process. This finite re-

solution can be characterized by means of a finite set of sym-

bols, yielding a discretization of the phase space. Regardless

of the nature and motivation of discretization, the precise

impacts on the causal structure of the system are essentially

unexplored. Here, we investigate the symbolic description of

a dynamical system and how it affects the resulting Markov

order and causal structures. Such description, based on parti-

tioning the phase space of the system, is also commonly

known as symbolization. Symbolization converts the original

dynamics into a stochastic process supported on a finite sam-

ple space. Focusing on the tent map for the simplicity,
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clarity, and completeness of computation it allows,26 we

introduce numerical procedures to compute the joint proba-

bilities of the stochastic process resulting from arbitrary par-

titioning of the phase space. Furthermore, we develop

causation entropy, an information-theoretic measure based

on conditional mutual information as a mean to determine

the Markov order and (temporal) causal structure of such

processes. We uncovered that a partitioning that maintains

dynamic invariants of the system does not necessarily pre-

serve its causal structure. On the other hand, both the

Markov order and causal structure depend nonmonotonically

and, indeed, sensitively on the partitioning.

II. PHASE SPACE PARTITIONING AND SYMBOLIC
DYNAMICS

A powerful method of analyzing nonlinear dynamical

systems is to study their symbolic dynamics through some

topological partition of the phase space.26–28 The main idea

characterizing symbolic dynamics is to represent the state of

the system using symbols from a finite alphabet defined by

the partition, rather than using a continuous variable of the

original phase space. For more details, we refer to Refs.

29–32. The issue of partitioning was shown to affect entropic

computations in a nontrivial manner33,34 and, as we will

highlight in the paper, is also intricate and central to a gen-

eral information-theoretic description of the system.

A. Partition of the phase space and symbolic
dynamics

Consider a discrete dynamical system given by

xtþ1 ¼ f ðxtÞ; (1)

where xt 2 M � Rd represents the state of the system at

time t and the vector field f : M! M governs the dynamic

evolution of the states. A (topological) partition of the phase

space M is a finite collection A ¼deffA0; :::;Amg of disjoint

open sets whose closures cover M, i.e.,

M ¼
[m
i¼0

�Ai: (2)

The partition leads to the corresponding symbolic dynamics.

In particular, for any trajectory fx0; x1; x2;…g of the original

dynamics contained in the union of Ai’s, the partition yields

a symbol sequence fs0; s1; s2;…g given by

st ¼
Xm

i¼0

vAi
ðxtÞ � i; (3)

where vA is the indicator function defined as

vAðxÞ ¼
1; if x 2 A;
0; if x 62 A:

�
(4)

In other words, the symbolic state st is determined by the

open set Ai that contains the state xt. See Fig. 1 for a sche-

matic illustration.

In general, the same symbol sequence may result from

distinct trajectories. If the partition is generating, then every

symbol sequence corresponds to a unique trajectory.35 A spe-

cial case is the so-called Markov partition,27,36 for which the

transition from one symbolic state to another is independent

of past states, analogous to a Markov process. On the other

hand, a generating partition is not necessarily Markov.28,37

The precise effects of partitioning on the symbolic dy-

namics remain an interesting and challenging problem, with

recent progress in a few directions. Focusing on the equiva-

lence between the original and symbolic dynamics, Bollt

et al. studied the consequence of misplaced partitions on dy-

namical invariants,33,34 while Teramoto and Komatsuzaki

investigated topological change in the symbolic dynamics

upon different choices of Markov partitions.38 On the other

hand, the degree of self-sufficiency of the symbolic dynam-

ics, irrespective of the equivalence to the original dynamics,

has started to gain increasing interest, focusing on

information-theoretical measures such as information closure

and prediction efficiency.39 We here adopt a different per-

spective and study how causal structures emerge and/or

change under different choices of partitioning.

B. From dynamical systems to stochastic processes
via symbolic dynamics

The symbolic description of a dynamical system leads

naturally to an interpretation of such systems as stochastic

processes.40 Let ðM;R; lÞ be a measure space with Borel

field R and probability measure l such that l : R! ½0; 1�
and lðMÞ ¼ 1. Furthermore, assume that l is the unique er-

godic invariant measure under the mapping f, that is

ðInvarianceÞ For every B 2 R; lðf�1ðBÞÞ ¼ lðBÞ;
ðErgodicityÞ For every B 2 R with f�1ðBÞ ¼ B; either lðBÞ ¼ 0 or lðBÞ ¼ 1:

�
(5)

FIG. 1. Schematic illustration of partitioning the phase space and the

resulting symbolic dynamics. Given the partitioning A ¼ fA0;A1;A2g, the

trajectory ðx0; x1; x2; x3;…Þ leads to a symbol sequence ðs0; s1; s2; s3;…Þ
¼ ð2; 0; 0; 1;…Þ.
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Given the partitioning defined by Eq. (2), the symbol space

(alphabet) X is made of mþ 1 symbols (alphabet letters)

X ¼def f0; 1;…;m� 1;mg: (6)

We can formally define a random variable S as a measurable

function S : X! R with the probabilities given by

PðstÞ ¼def
ProbðSt ¼ stÞ ¼ lðAst

Þ; 8st 2 X: (7)

This line of reasoning can be generalized to accommodate

joint probabilities of arbitrary finite length

Pðst; stþ1; stþ2;…Þ ¼def
ProbðSt ¼ st;Stþ1 ¼ stþ1;Stþ2 ¼ stþ2;…Þ
¼ lðAst

\ f�1ðAstþ1
Þ \ f�2ðAstþ2

Þ…Þ:
(8)

The probabilities in Eqs. (7) and (8) are time-invariant

because l is invariant as assumed in Eq. (5). Within this set-

ting, P(s) denotes the probability that the symbolic state of

the system (at any time) is equal to s, while Pðs; s0Þ is the

probability of the current and next symbols being s and s0,
respectively. Therefore, this framework defines a discrete

stochastic process where the symbolic states are regarded as

random variables whose stationary joint distributions are

determined by Eqs. (7) and (8). We point out that the support

of such a stochastic process associated with the symbolic dy-

namics is commonly referred to as a shift space.27

III. MARKOV ORDER, CAUSAL STRUCTURE,
AND INFERENCE

For a given symbolization of a dynamical system that

originates from a chosen partitioning of the phase space, we

are interested in defining and identifying a minimal set of

past states that encode information about the current state St.

This will enable us to remove redundant information of the

past when making efficient predictions about the future.

A. Markov order and causal structure of the symbolic
dynamics

In view of the probabilistic interpretation of the symbol

dynamics, we refer to a partition as Markovian of order k if

the resulting stochastic process is Markov order k; that is, if

the symbolic state only depends on its past k states rather

than on the entire history. Using the following notations:

st� ¼defðst�1; st�2;…Þ;
st�nsðt�kÞ� ¼

defðst�1; st�2;…; st�kÞ;

(
(9)

a process is Markov order k if and only if the conditional

probabilities satisfy

Pðstjst�Þ ¼ Pðstjst�nsðt�kÞ�Þ (10)

for every choice of st� and no nonnegative integer smaller

than k fulfills this requirement (When k¼ 0, we call the pro-

cess an i.i.d. process.). In other words, information carried in

the past states is all conditionally redundant given

information about the past k states. On the other hand, there

might be further redundancy in the information encoded in

these k states. In particular, let

Pt � ft� k; t� k þ 1;…; t� 1g (11)

be a minimal set contained in the Markov time indices for

which

Pðstjst�Þ ¼ PðstjsPt
Þ (12)

holds for every st� . Therefore, for every proper subset P0t of

Pt, Eq. (12) does not hold. We refer to Pt as the set of causal
time parents of time t. Conditioning on the states with time

indices given by Pt, information of all other states becomes

redundant. The states at time(s) Pt are the only ones that

cause the current state, and therefore, the set Pt defines a

causal structure of the symbolic dynamics. This can be

viewed as a finer description than the Markov order, which

in turn allows for a more efficient encoding of the process.

Figure 2 illustrates the difference between Markov order and

causal structure of an example process.

B. Entropy, mutual information, conditional mutual
information, and causation entropy

Practical evaluation of joint probabilities is delicate for

two reasons: first, numerical imperfections due to finite pre-

cision of the computing machines are unavoidable; second,

when the probabilities need to be estimated from finite data

samples, estimation errors are inevitable. Naturally, the

appearance of such numerical and estimation errors will

propagate into Eqs. (10) and (12), making it difficult to dis-

tinguish equalities from inequalities. These equations need

to be examined for joint sequences, leading to an over-

whelming number of (heuristic) decisions that need to be

made. This, in turn, renders unreliable the direct determina-

tion of Markov order and causal structure based on their re-

spective formal definitions. From a statistical standpoint, it is

preferable to base such determination on a minimal number

of equations/decisions. Appropriately defined information-

theoretic measures fulfill this goal by collectively grouping

the joint probabilities, therefore greatly reducing the number

of equations/decisions.

FIG. 2. An example causal structure of a Markov process. Here, the process

is of order k¼ 4, although only three (marked in red) out of the four past

time indices (enclosed by dashed box) are needed to render the current state

(green) conditionally independent of the rest of the past. The set of causal

time parents of t is therefore Pt ¼ ft� 4; t� 3; t� 1g in Eq. (12).
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Recall that Shannon entropy is a quantitative measure of

the uncertainty of a random variable. For a discrete random

variable X with probability mass function PðxÞ ¼def

ProbðX ¼ xÞ, its entropy is defined as41

HðXÞ ¼ �
X

x

PðxÞ log PðxÞ; (13)

where log is taken to be base 2 throughout the paper. The

mutual information between two random variables X and Y
is given by42

I X; Yð Þ ¼
X
x;y

P x; yð Þlog
P x; yð Þ

P xð ÞP yð Þ
: (14)

Mutual information measures the deviation from independ-

ence between X and Y. It is generally nonnegative and equals

zero if and only if X and Y are independent. Similarly, the

conditional mutual information between X and Y given Z is

defined as42

I X; YjZð Þ ¼
X
x;y;z

P x; y; zð Þlog
P x; yjzð Þ

P xjzð ÞP yjzð Þ ; (15)

and it measures the reduction of uncertainty of X (Y) due to Y
(X) given Z. Conditional mutual information is nonnegative,

and equals zero if and only if X and Y are conditionally inde-

pendent given Z.

For a stationary stochastic process fStg and a given set

of time indices Jt � t�, we propose to define the (temporal)

causation entropy (CSE) from Jt to t to be

CJt!t ¼ IðSJt
; StjSt�nJt

Þ: (16)

Being a conditional mutual information, causation entropy is

always nonnegative. It is strictly positive if and only if

uncertainty about the state St is reduced due to the knowl-

edge about SJt
. This occurs when the past states with time

indices Jt carry information about the current state at time t.
We remark that Eq. (16) is an adapted definition of causation

beyond our previous work15–17 for a specific scenario, in the

sense that direct causality is now intimately linked to causa-

tion entropy being strictly positive without the need of

appropriately choosing the conditioning set.

C. Inference of Markov order and causal Structure

Based on the definition of Markov in Eq. (10), a stochas-

tic process has Markov order k if and only if

Cðt�kÞ�!t ¼ 0 (17)

for the smallest possible nonnegative integer k.

Algorithmically, we start by examining Eq. (17) for k¼ 0. If

it holds true, then the process is i.i.d. If not, we proceed with

k ¼ 1; 2;…, until the equation is satisfied. The resulting

value of k is the Markov order of the process. As a side

remark, we note that there are other entropy-based

approaches to determine the Markov order.43–45

Now we discuss the inference of causal structure via

causation entropy. Given the definition of causal structure in

Eq. (12), it follows that a Markov process of order k has

causal time parents Pt if and only if

Cðt�nPtÞ!t ¼ 0; (18)

where Pt � ft� k; t� k þ 1;…; t� 1g and no proper subset

of Pt fulfills the equation. Computationally, it is generally

infeasible to efficiently find the causal structure without

additional assumptions about the underlying joint distribu-

tions. A general assumption, called the faithfulness or stabil-

ity assumption, requires that the joint effect/cause is

decomposable into individual components.16,19,46 That is to

say, for every t0 2 Pt, the contribution measured in terms of

the conditional mutual information IðSt0 ; StjSQt
Þ is non-

vanishing for every Qt that does not include t0 or t. Under

this assumption, we can show that the causal time parents Pt

form the minimal set of time indices that maximizes causa-

tion entropy,16 i.e.,

Pt ¼
\

Jt�K
Jt; where K¼ fJ � t� : 8K � t�;CJ!t �CK!tg:

(19)

We refer to Eq. (19) to as the optimal causation entropy prin-

ciple, which allows the transformation of the causal infer-

ence problem into a numerical optimization problem.

Algorithmically, we propose to infer the causal set Pt

via a two-stage iterative process, described as follows. The

first stage, which we call aggregative discovery, starts by

finding a time index t0 2 t�, which maximizes the mutual in-

formation IðSt0 ; StÞ, provided that such mutual information is

strictly positive. That is,

t1 ¼ argmax
t02t�

IðSt0 ; StÞ: (20)

Then, at each subsequent step, a new time index tlþ1 is iden-

tified among the rest of the indices to maximize the condi-

tional mutual information given the previously selected time

indices, that is,

tlþ1 ¼ argmax
t02ðt�nft1;t2;…;tlgÞ

IðSt0 ; StjSt1;t2;…;tlÞ: (21)

Such iterative process ends when the corresponding maximum

conditional mutual information equals zero, and the outcome

yields a set of time indicesQt ¼ ft1; t2;…; tLg � Pt.

Then, in the second stage, we progressively remove

time indices in Qt that are redundant (i.e., do not belong to

Pt). In particular, we enumerate through the time indices in

Qt and remove each component tl for which

IðStl ; StjSQtntlÞ ¼ 0: (22)

Every time a component is removed, the set Qt is updated

accordingly. The end of the process is then inferred as the set

of causal time parents Pt. We remark that the discovery and

removal stages of our algorithm are reminiscent of the for-

ward selection and backward elimination in regression analy-

sis.47 Here, for the purpose of correct and consistent inference

of Markov order and causal structure, we have adopted condi-

tional mutual information in our algorithm.16
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Two practical considerations need to be taken into

account for the inference of Markov order and causal struc-

ture. First, the history of a variable needs to be truncated,

i.e., t– will be approximated by t� � ft� T; t� T þ 1;
…; t� 1g for some T 	 1 in Eq. (17) (regarding Markov

order) and Eqs. (20) and (21) (regarding causal structure). In

particular, such truncation leads to a partial fulfillment of

both the Markov requirement in Eq. (10) and causal structure

in Eq. (12). Second, numerical and estimation errors gener-

ally render information-theoretic quantities such as the mu-

tual information, conditional mutual information, and

causation entropy nonzero (and in particular, even nega-

tive48,49). In order to decide whether or not an estimate

should be regarded as zero, one needs a threshold-selecting

procedure:16 an estimated quantity smaller than a predefined

threshold will be considered vanishing.

IV. MARKOV ORDER AND CAUSAL STRUCTURE
FROM THE SYMBOLIZATION OF TENT MAP

In this section, we provide an application of our theoreti-

cal procedure in determining the Markov order and causal

structure of symbolic dynamics of the tent map. The primary

reason why we have chosen the one-dimensional tent map as

an example is twofold. First, the tent map is simple enough

to allow explicit analytical computations of the entropic

functionals of known probability distributions. Such compu-

tations are not only useful for cross-checking numerical esti-

mates but also provide some insights into the information-

theoretic measures employed in our investigation. Second,

regardless of its simple form, the tent map appears to serve

as a rich test-bed for the investigation of how Markov order

and causal structure of a dynamical system are affected by

the choice of symbolization. In fact, under symbolization,

even a 1D map such as the tent map can be regarded quite

complex from a topological standpoint.27–32 Finally, we

remark that our computational framework can be applied to

arbitrary unimodal maps.

A. Tent map and partitioning

The tent map is a one-dimensional system given by

xtþ1 ¼ TðxÞ, where T : ½0; 1� ! ½0; 1� is defined as

T xð Þ ¼def
2x; if 0 
 x 
 1

2
;

2 1� xð Þ; if
1

2
< x 
 1:

8>><
>>: (23)

Specifically, we shall discuss the manner in which different

choices of the partitioning lead to (qualitatively and quantita-

tively) different symbolizations of the original dynamics

with specific Markov orders and causal structures. For the

time being, we limit our investigation to a binary symbolic

description of the dynamical map. Consider a general binary

partitioning of the phase space defined by the parameter

a 2 ð0; 1Þ, so that

A ¼ fA0;A1g ¼ f½0; aÞ; ða; 1�g: (24)

Such partitioning allows us to represent a continuous trajec-

tory by a sequence of binary symbols (bits). We remark that

the choice of a ¼ 0:5 leads to a generating partition which

gives rise to a symbolic dynamics that is topologically equiv-

alent to the original system.27,33,34

B. Invariant probability measure and joint probabilities

The unique ergodic invariant measure of the tent map

can be found by solving the first equation in (5) (also called

a continuity equation) for each subinterval of ½0; 1�, leading

to

lð½a; b�Þ ¼ b� a: (25)

This immediately gives Pð0Þ ¼ a and Pð1Þ ¼ 1� a. From

Eq. (8), the joint probability of an arbitrary sequence of

length nþ 1 is determined by

Pðs0; s1; s2;…; snÞ ¼ l
\n
l¼0

I
ðslÞ
l

 !
; (26)

where the intervals are defined by the preimages of ½0; aÞ and

ða; 1� as

I
ð0Þ
l ¼

deffx 2 ½0; 1� : TlðxÞ 2 ½0; aÞg;
I
ð1Þ
l ¼

deffx 2 ½0; 1� : TlðxÞ 2 ða; 1�g:

(
(27)

In other words, the initial conditions corresponding to a spe-

cific symbolic string of length n are formed by a finite

disjoint union of intervals. Figure 3 shows an example of

these intervals fIð0Þl ; I
ð1Þ
l g for a ¼ 0:45 and four levels

l ¼ 0; 1; 2; 3.

This offers a computationally feasible description with

which joint probabilities can be calculated. From Eq. (26),

we obtain that for n¼ 0, Pðs0Þ ¼ lðIðs0Þ
0 Þ, giving Pð0Þ ¼ a

and Pð1Þ ¼ 1� a as expected. For n¼ 1, we have

Pðs0; s1Þ ¼ lðIðs0Þ
0 \ I

ðs1Þ
1 Þ. This gives the probabilities

Pð0; 0Þ ¼ a=2; Pð0; 1Þ ¼ a=2; Pð1; 0Þ ¼ 1� 3a=2, and

Pð1; 1Þ ¼ a=2 for all a < 2=3 (see also Fig. 3). For general

values of n, we proceed as follows. First, we define the

FIG. 3. Preimages of partitioning intervals of the tent map. The intervals I
ð0Þ
l

(green) and I
ð1Þ
l (red) are defined by Eq. (27) and are shown for levels l

¼ 0; 1; 2; 3 for the choice of a ¼ 0:45. In general, at each level l, the subin-

tervals start from I
ð0Þ
l and then alternate in between I

ð1Þ
l and I

ð0Þ
l . The relative

ordering of the subintervals across levels can change for different values of

a, although they remain the same as shown in the picture for all

a 2 ð4=9; 4=7Þ.
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level-l preimages of a to be faðiÞl g (i ¼ 1; 2;…; 2l), which are

the roots of the equation

TlðxÞ � a ¼ 0: (28)

For convenience, we sort faðiÞl g in the ascending order of i
and, additionally, define að0Þl ¼

def
0 and að2

lþ1Þ
l ¼def

1. Then, the

preimages sets of ½0; aÞ and ða; 1� as introduced in Eq. (27)

can be explicitly computed as (for every l � 1)

I
ð0Þ
l ¼

[2l�1

i¼0
ðað2iÞ

l ; að2iþ1Þ
l Þ;

I
ð1Þ
l ¼

[2l�1

i¼1
ðað2iÞ�1

l ; að2iÞ
l Þ:

8><
>: (29)

Such preimages sets are subsequently used to calculate joint

probabilities. Note that for symbolic strings of length n, both

the total number of joint probabilities and the total number

of intervals contributing to these probabilities equal 2n.

Note that the joint probability of the symbol sequence

Pðs0; s1; s2;…; snÞ depends on the particular choice of the

partitioning point a. However, the functional a-dependences

of such probabilities remain the same for all a values within

intervals determined by the 2n distinct roots fxðiÞ� g of the

equation TnðxÞ � x ¼ 0, given by

xðiÞ� ¼
i=ð2n � 1Þ; i ¼ 0; 2;…; 2n � 2;
ðiþ 1Þ=ð2n þ 1Þ; i ¼ 1; 3;…; 2n � 1:

�
(30)

We emphasize that although the analytical expressions

derived above are specialized to the tent map, the proposed

procedure is, in general, suitable for the computation of joint

probabilities of arbitrary unimodal maps.37

C. Markov order

We numerically investigate the Markov order of the sto-

chastic processes arising from the symbolic dynamics of the

tent map. Recall from Eqs. (10) and (17) that the Markov

order can be determined as the smallest nonnegative integer

k for which the causation entropy Cðt�kÞ�!t vanishes. The

Markov order reveals the length of the history that carries

unique information about the present symbolic state of the

system.

Figure 4 shows the causation entropy Cðt�kÞ�!t as a

function of k for a few choices of the partitioning point a
with values equal to 0.444, 0.47, 0.5, and 0.516, respectively.

For each a, the causation entropy decreases in k. Such mono-

tonic dependence of k is in fact of general validity since for

every k < k0, the difference of causation entropies

Cðt�kÞ�!t � Cðt�k0Þ�!t can be expressed in terms of a condi-

tional mutual information, which is nonnegative. On the

other hand, the mutual information IðSt; St�1;…; St�kþ1; St�kÞ
generally increases in k and saturates when the causation en-

tropy reaches zero. Results shown in Fig. 4 suggest that

Markov orders can be different upon different choices of the

partition point, yielding k¼ 3 for a ¼ 0:444, k¼ 4 for

a ¼ 0:47, k¼ 0 for a ¼ 0:5, and k¼ 5 for a ¼ 0:516, respec-

tively. Such difference is remarkable given the relative small

differences in the values of a.

How does the Markov order depend on the partition

point a in general? We address this question by computing

the causation entropy Cðt�kÞ�!t in Eq. (17) as a function of a
for a range of k values, k ¼ 0; 1; 2;…. The results are shown

in Fig. 5. Visually, the symbolic dynamics achieves Markov

order k at the values of a for which all curves beyond the

ðk � 1Þ-th one reach zero. For example, Fig. 5 confirms the

same Markov orders for the a values as shown in Fig. 4.

Interestingly, the Markov order seems to depend sensitively

on the choice of partitioning: a tiny bit of change in a gener-

ally results in a (large) change in the Markov order. This

behavior is evident from the non-smooth and fractal appear-

ance of the curves in Fig. 5 and, from the seemingly erratic

manner in which they overlap and collapse.

Having explored the influence of the location of the par-

tition point a, we ask: How do partition refinements affect

the Markov order? We now extend our investigation to non-

binary symbolic descriptions of the tent map. Consider a

map refinement of a given partitioning A ¼ fA0;A1;…;Amg,
which is given by the intersection of the original partition

elements and their preimages under f, as

RðAÞ ¼def

�
f�1ðAiÞ

\
Aj

�m

i;j¼0

: (31)

Inspecting Eq. (8) and the definition of Markov order given

by Eq. (10), we conclude that if the Markov order resulting

FIG. 4. Numerical determination of Markov order from causation entropy. The curves show numerically computed causation entropy Cðt�kÞ�!t (a) and mutual in-

formation IðSt; St�1;…; St�kþ1; St�kÞ (b) as functions of k for various choices of a. The results imply that the Markov order of the symbolic dynamics of the tent

map equals 3 (a ¼ 0:444), 4 (a ¼ 0:47), 0 (a ¼ 0:5), and 5 (a ¼ 0:516), respectively. In the numerical calculations, we approximate t� by its finite truncation

ðt� 15; t� 14;…; t� 1Þ.
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from the original partition A is k, then the Markov order

upon the map-refinement partition RðAÞ equals k � 1 if

k> 1 and is less or equal to 1 if k 
 1 (see proof in the

Appendix). This result is numerically confirmed in Fig. 6(a)

for the tent map. In particular, for the original partition point

a ¼ 0:5, the Markov order equals 0 and map refinement

increases it by 1 while further map refinement does not

change the order. On the other hand, for a ¼ 0:444 which

yields Markov order 3, each map refinement decreases its

order by 1 until the order reaches 1. Interestingly, the same

does not hold true for arbitrary refinements of the partition.

Fig. 6(b) shows that a general refinement can either increase,

decrease, or maintain the Markov order of the resulting pro-

cess. There seems to be no predicable pattern for which the

Markov order changes upon arbitrary refinement. This behav-

ior is further explored in Fig. 6(c), which shows that for a spe-

cific initial partition (here a ¼ 0:444), different locations of the

new partition point generally result in different Markov orders.

Once again, such behavior appears in an irregular pattern.

D. Causal structure

Finally, we turn to the causal structure of a symbolic dy-

namics, which provides a description of the process finer

than the Markov order. Unlike the Markov order, causal

structure quantifies the minimal amount of the past history

that is needed to mitigate the uncertainty about the present

symbolic state.

FIG. 5. Causation entropies for the symbolic states of the tent map. Causation entropies Cðt�kÞ�!t (for k ¼ 1; 2;…; 7) are computed and shown for a range of a
values: a 2 ð0; 1Þ (a) and a 2 ð0:43; 0:52Þ (b). Vertical dashed lines in panel (b) mark four specific choices of a: 0.444, 0.47, 0.5, and 0.516, respectively. A

grayscale bar is shown below each plotting panel to visualize the numerically determined Markov order as a function of a, where a darker color corresponds to

a higher Markov order (white corresponds to order 0). For each a, the Markov order is numerically determined as the smallest integer k such that

Cðt�kÞ�!t < 10�3HðaÞ.

FIG. 6. Markov order upon map-

refinements (a) and arbitrary refine-

ments (b) and (c). In panels (a) and (b),

the partition points are shown, whereas

in panel (c), the initial partition point is

fixed at 0.444 while the new partition

point varies from 0 to 1. In all

calculations, we truncated t� as

ðt� 15; t� 14;…; t� 1Þ. A grayscale

bar in the bottom of (c) shows the

numerically computed Markov order

as a function of a, where a darker color

corresponds to a higher Markov order

(white corresponds to order 0). For

each a, the corresponding Markov

order is computed as the smallest inte-

ger k for which Cðt�kÞ�!t < 10�3HðaÞ.
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For the tent map, the uncertainty of the symbolic state as

measured by the entropy HðStÞ achieves its maximum at

a ¼ 0:5. Including information of past states generally

reduces the uncertainty, as shown in Fig. 7(a), except at

a ¼ 0:5, which is in fact a point for which the symbolic dy-

namics is topologically conjugate (equivalent) to the original

one. The fact that the a ¼ 0:5 partition creates an i.i.d. pro-

cess is interesting because from the dynamic equation of the

system, states that are adjacent in time are intimately linked

and expected to be causally related. An important conclusive

message here is the following: partitioning of the phase

space that results in a symbolic dynamics that is equivalent

to the original dynamics can in fact yield a causal structure

which differs significantly from that inferred from the form

of the equations of the original system.

Recall that a process is Markov of order k if no further

reduction is possible beyond the k-th past state. However,

the extent to which uncertainty is reduced does not need to

be monotonic in time indices. In other words, the immediate

past does not necessarily encode the most amount of infor-

mation about the present state. In fact, for several values of a
(e.g., a ¼ 0:444 and a ¼ 0:47), the difference between con-

ditional entropy HðStjSt�k;…;t�1Þ for consecutive k’s is not

monotonically decreasing in k [Fig. 7(b)], vertical spacing

between curves). Applying the oCSE algorithms to infer the

causal structure for these a values, we confirmed the Markov

order previously computed and, more importantly, found

that the relative importance of past time states are ordered in

a non-monotonic manner, namely ðt� 2; t� 3; t� 1Þ
for a ¼ 0:444 (Markov order k¼ 3) and ðt� 3; t� 2; t� 1;
t� 4Þ for a ¼ 0:47 (Markov order k¼ 4). We examine all

values of a in the interval ½0; 1� in a uniform manner:

f0; 0:001; 0:002;…; 0:999; 1g, using a threshold value of

10�3HðaÞ for the causation entropy at the given a. The

results are shown in Fig. 8. In particular, we found several

examples for which the Markov order satisfies k 
 6

while the number of causal parents is strictly less than k (i.e.,

certain Markov time indices are skipped in the causal

structure).

V. SUMMARY AND FINAL REMARKS

Symbolization is a common practice in data analysis: in

the field of dynamical systems, it bridges topological dynam-

ics and stochastic processes through partitioning/symboliza-

tion of the phase space; in causality inference, it allows for

the description of continuous random variables by discrete

ones. Symbolized data, in turn, are not as demanding in

terms of precision and are often considered more robust with

respect to parameters and noise.23,24,50

Motivated by the problem of uncovering causal struc-

tures from finite, discrete data, we investigated the symbol-

ization of outputs from a simple dynamical system, namely,

the tent map. We provided a full description of the joint

probabilities occurring from partitioning/symbolization of

the phase space and investigated how Markov order and

causal structure can be determined from these probabilities

in terms of causation entropy, an information-theoretical

measure. We found that in general, partitioning of the phase

space strongly influences the Markov order and causal struc-

ture of the resulting stochastic process in an irregular manner

which is difficult to classify and predict. In particular, a

small change in the partition can lead to relatively large and

unexpected changes in the resulting Markov order and causal

structure. To the best of our knowledge, this is the first

attempt in the literature that aims at unravelling the intricate

dependence of inferred causal structures of dynamical sys-

tems on their different symbolic descriptions analyzed in an

information-theoretic setting. Furthermore, although the

effects of map refinements are well understood, it remains a

main challenge to discover the exact consequences of arbi-

trary refinements. Especially for this reason, we have left the

application of our approach to more complex dynamical sys-

tems and/or experimental time-series data to future

investigations.

FIG. 7. Uncertainty quantification of

symbolic states of the tent map.

(Conditional) Entropies HðStjSt�1;…;

St�kþ1;St�kÞ for values of k¼0;1;…;5,

for the entire range of a2ð0;1Þ (a) and

a subrange a2ð0:43;0:52Þ (b). Vertical

dashed lines in both panels mark four

specific choices of a: 0.444, 0.47, 0.5,

and 0.516, respectively.

FIG. 8. Causal structures from the symbolic dynamics of the tent map when

the partition point a is chosen from 0; 0:001; 0:002;…; 0:999; 1. For each a,

we distinguish the first causal parent computed from the forward (aggrega-

tive discovery) step of the oCSE algorithm (light red), all causal parents of t
from the set ft� 1; t� 2;…; t� 6g (gray), and noncausal components

(black). In all computations, we used a threshold 10�3HðaÞ under which

causation entropy is regarded as zero.
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On a different perspective, we note that although finding

partitions that preserve dynamical invariants (i.e., generating

partitions) are known to be a real challenge especially for

high-dimensional systems,51–53 it is yet unclear whether or

not such challenge remains when considering partitions that

maintain Markov order and/or causal structure. This venue

of research can be especially interesting to explore given

recent advances in many different perspectives on partition-

ing the phase space including adaptive binning,20 ranking

and permutation of variables,21–25,54 and nearest-neighbor

statistics.7,55–58

Finally, we remark that the non-uniqueness of symbolic

descriptions of a system implies that important concepts

such as the Markov order and causal structure are not neces-

sarily absolute concepts: rather, they unavoidably depend on

the observational process, just like classical relativity of

motion and quantum entanglement.59 This, in turn, suggests

the possibility of the causal structure of the very same system

to be perceived differently, even given unlimited amount of

data. The concept of causality, therefore, is observer-

dependent.
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APPENDIX: MONOTONIC DEPENDENCE OF MARKOV
ORDER ON MAP REFINEMENTS

We will prove that for a transformation f that has a

uniquely ergodic invariant probability measure l, the

Markov order of the stochastic process resulting from a parti-

tion A of the phase space decreases strictly by one under a

map refinement of the partition unless the original Markov

order is less or equal to one.

Definition: Markov order of a partition. Consider a

measure-preserving transformation f : M ! M on a compact

metric space with a uniquely ergodic invariant probability

measure l.60 Let A ¼ fAigm
i¼0 be a measurable partition of

the phase space that yields a stochastic process with time-

invariant joint probabilities

Pðst ¼ it; st�1 ¼ it�1;…; st�‘ ¼ it�‘Þ

¼def
lðAit�‘

\
f�1ðAit�‘þ1

Þ…
\

f�‘ðAitÞÞ: (A1)

If such a process is Markov of order k, we define the Markov

order of the partition to be k.

Remark: In the definition, the uniqueness of the invari-

ant measure implies ergodicity and ensures the well-

definedness of the joint probabilities.60

Definition: map refinement. Consider a measure-

preserving transformation f : M! M with a probability

measure l. The map refinement of a given measurable parti-

tion A ¼ fAigm
i¼0 is defined as the partition

RðAÞ ¼def
f�1ðAÞ�A ¼ ff�1ðAiÞ

\
Ajgm

i;j¼0: (A2)

Theorem (Markov order upon map refinement). Consider

a measure-preserving transformation f : M! M on a com-

pact metric space with a uniquely ergodic invariant probabil-

ity measure l. Let A ¼ fAigm
i¼0 be a partition of M and

RðAÞ be its map refinement. Suppose that the Markov order

of A and RðAÞ are k and ~k, respectively. It follows that ~k

 1 for k 
 1, and ~k ¼ k � 1 when k> 1.

Proof. We shall denote the probabilities resulting from

the map refinement of A as

~Pð~st ¼ ðit; jtÞ; ~st�1 ¼ ðit�1; jt�1Þ;…; ~st�‘ ¼ ðit�‘; jt�‘ÞÞ

¼def
lð ~Ait�‘;jt�‘

\
f�1ð ~Ait�‘þ1;jt�‘þ1

Þ…
\

f�‘ð ~Ait;jtÞÞ;
(A3)

where ~Ai;j ¼def
f�1ðAiÞ \ Aj. Since every sequence f~stg is

determined by some orbit fxtg of f under the partition RðAÞ,
it follows that ~st ¼ ðit; jtÞ if and only if xt 2 f�1ðAitÞ \ Ajt .

On the other hand, xt ¼ f ðxt�1Þ implies that xt 2 Ait�1
.

Therefore jt ¼ it�1 in Eq. (A3) and

~Pð~st ¼ ðit; jtÞ; ~st�1 ¼ ðit�1; jt�1Þ;…; ~st�‘þ1 ¼ ðit�‘þ1; jt�‘þ1ÞÞ
¼ Pðst ¼ it; st�1 ¼ it�1;…; st�‘ ¼ it�‘Þ (A4)

for all sequences ðit; it�1;…Þ with nonvanishing probability.

Then, the Theorem follows from applying Eq. (A4) to the

definition of Markov order given in Eq. (10) rewritten using

the product rule (chain rule) of conditional probability. �

1A. Lesne, “Chaos in biology,” Riv. Biologia-Biology Forum 99, 413–428

(2006).
2Q. Gao, X. Duan, and H. Chen, “Evaluation of effective connectivity of

motor areas during motor imagery and execution using conditional

Granger causality,” NeuroImage 54, 1280 (2011).
3R. Vicente, M. Wibral, M. Lindner, and G. Pipa, “Transfer entropy-a

model-free measure of effective connectivity for the neurosciences,”

J. Comput. Neurosci. 30, 45 (2011).
4T. Schreiber, “Measuring information transfer,” Phys. Rev. Lett. 85, 461

(2000).
5K. J. Rothman and S. Greenland, “Causation and causal inference in epi-

demiology,” Am. J. Public Health 95, S144 (2005).
6K. Hlavackova-Schindler, M. Palus, M. Vejmelka, and J. Bhattacharya,

“Causality detection based on information-theoretic approaches in time se-

ries analysis,” Phys. Rep. 441, 1 (2007).
7S. Frenzel and B. Pompe, “Partial mutual information for coupling analy-

sis of multivariate time series,” Phys. Rev. Lett. 99, 204101 (2007).
8S. Guo, A. K., Seth, K. M. Kendrick, C. Zhou, and J. Feng, “Partial

Granger causality—Eliminating exogenous inputs and latent variables,”

J. Neurosci. Methods 172, 79 (2008).
9J. J. Heckman, “Econometric causality,” Int. Stat. Rev. 76, 1 (2008).

10A. B. Barrett, L. Barnett, and A. K. Seth, “Multivariate granger causality

and generalized variance,” Phys. Rev. E 81, 041907 (2010).
11T. S. Cubitt, J. Eisert, and M. W. Wolf, “Extracting dynamical equations

from experimental data is NP hard,” Phys. Rev. Lett. 108, 120503 (2012).
12J. Runge, J. Heitzig, V. Petoukhov, and J. Kurths, “Escaping the curse of

dimensionality in estimating multivariate transfer entropy,” Phys. Rev.

Lett. 108, 258701 (2012).
13J. Runge, J. Heitzig, N. Marwan, and J. Kurths, “Quantifying causal cou-

pling strength: A lag-specific measure for multivariate time series related

to transfer entropy,” Phys. Rev. E 86, 061121 (2012).
14D. Marinazzo, M. Pellicoro, and S. Stramaglia, “Causal information

approach to partial conditioning in multivariate data sets,” Comput. Math.

Methods Med. 2012, 303601.

043106-9 Cafaro et al. Chaos 25, 043106 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.153.18.158 On: Fri, 01 May 2015 17:42:17

http://dx.doi.org/10.1016/j.neuroimage.2010.08.071
http://dx.doi.org/10.1007/s10827-010-0262-3
http://dx.doi.org/10.1103/PhysRevLett.85.461
http://dx.doi.org/10.2105/AJPH.2004.059204
http://dx.doi.org/10.1016/j.physrep.2006.12.004
http://dx.doi.org/10.1103/PhysRevLett.99.204101
http://dx.doi.org/10.1016/j.jneumeth.2008.04.011
http://dx.doi.org/10.1111/j.1751-5823.2007.00024.x
http://dx.doi.org/10.1103/PhysRevE.81.041907
http://dx.doi.org/10.1103/PhysRevLett.108.120503
http://dx.doi.org/10.1103/PhysRevLett.108.258701
http://dx.doi.org/10.1103/PhysRevLett.108.258701
http://dx.doi.org/10.1103/PhysRevE.86.061121
http://dx.doi.org/10.1155/2012/303601
http://dx.doi.org/10.1155/2012/303601


15J. Sun and E. M. Bollt, “Causation entropy identifies indirect influences,

dominance of neighbors and anticipatory couplings,” Physica D 267, 49

(2014).
16J. Sun, D. Taylor, and E. M. Bollt, “Causal network inference by optimal

causation entropy,” SIAM J. Appl. Dyn. Syst. 14, 73–106 (2015).
17J. Sun, C. Cafaro, and E. M. Bollt, “Identifying coupling structure in com-

plex systems through the optimal causation entropy principle,” Entropy

16, 3416 (2014).
18A. Porta, L. Faes, V. Bari, A. Marchi, T. Bassani et al., “Effect of age on

complexity and causality of the cardiovascular control: Comparison

between model-based and model-free approaches,” PLoS One 9, e89463

(2014).
19P. Spirtes, C. N. Glymour, and R. Scheines, Causation, Prediction, and

Search (MIT Press, 2000).
20G. A. Darbellay and I. Vajda, “Estimation of the information by an adapt-

ive partitioning of the observation space,” IEEE Trans. Inform. Theory 45,

1315 (1999).
21C. Bandt and B. Pompe, “Permutation entropy: A natural complexity mea-

sure for time series,” Phys. Rev. Lett. 88, 174102 (2002).
22J. M. Amigo, M. B. Kennel, and L. Kocarev, “The permutation entropy

rate equals the metric entropy rate for ergodic information sources and er-

godic dynamical systems,” Physica D 210, 77 (2005).
23M. Staniek and K. Lehnertz, “Symbolic transfer entropy,” Phys. Rev. Lett.

100, 158101 (2008).
24D. Kugiumtzis, “Transfer entropy on rank vectors,” J. Nonlinear Syst.

Appl. 3, 73 (2012).
25T. Haruna and K. Nakajima, “Symbolic transfer entropy rate is equal to

transfer entropy rate for bivariate finite-alphabet stationary ergodic

Markov processes,” Eur. Phys. J. B 86, 230 (2013).
26K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos: An Introduction to

Dynamical Systems (Springer-Verlag New York, Inc., 1996).
27E. M. Bollt and N. Santitissadeekorn, Applied and Computational

Measurable Dynamics (Society for Industrial and Applied Mathematics,

2013).
28A. Boyarsky and P. Gora, Laws of Chaos: Invariant Measures and

Dynamical Systems in one Dimension. Probability and Its Applications
(Birkhauser Boston, Boston, MA, 1997).

29D. A. Lind and B. Marcus, An Introduction to Symbolic Dynamics and
Coding (Cambridge University Press, Cambridge, UK, 1995).

30D. Lind, “Multi-dimensional symbolic dynamics,” Proc. Symp. Appl.

Math. 60, 61 (2004).
31B. Kitchens, Symbolic Dynamics: One-Sided, Two-Sided, and Countable

State Markov Shifts (Springer, 1998).
32E. A. Robinson, Jr., “Symbolic dynamics and tiling in Rd ,” Proc. Symp.

Appl. Math. 60, 81 (2004).
33E. M. Bollt, T. Stanford, Y.-C. Lai, and K. Zyczkowski, “Validity of

threshold-crossing analysis of symbolic dynamics from chaotic time

series,” Phys. Rev. Lett. 85, 3524 (2000).
34E. M. Bollt, T. Stanford, Y.-C. Lai, and K. Zyczkowski, “What symbolic

dynamics do we get with a misplaced partition? On the validity of thresh-

old crossing analysis of chaotic time-series,” Physica D 154, 259 (2001).
35D. J. Rudolph, Fundamentals of Measurable Dynamics, Ergodic Theory

and Lebesgue Spaces (Clarendon Press, Oxford, 1990).
36E. M. Bollt and J. Skufca, Markov Partitions, Encyclopedia of Nonlinear

Science, edited by A. Scot (Routledge, New York, 2005).

37P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical
Systems (Birkhauser Boston, 2009).

38H. Teramoto and T. Komatsuzaki, “How does a choice of Markov

partition affect the resultant symbolic dynamics?,” Chaos 20, 037113

(2010).
39O. Pfante, E. Olbrich, N. Bertschinger, N. Ay, and J. Jost, “Closure meas-

ures for coarse-graining of the tent map,” Chaos 24, 013136 (2014).
40R. G. Gallager, Stochastic Processes, Theory for Applications (Cambridge

University Press, Cambridge, UK, 2013).
41C. E. Shannon, “A mathematical theory of communication,” Bell Syst.

Tech. J. 27, 379 (1948).
42T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.

(John Wiley & Son, Inc., Hoboken, New Jersey, USA, 2006).
43M. Ragwitz and H. Kantz, “Markov models from data by simple nonlinear

time series predictors in delay embedding spaces,” Phys. Rev. E 65,

056201 (2002).
44M. Papapetrou and D. Kugiumtzis, “Markov chain order estimation with

conditional mutual information,” Physica A 392, 1593 (2013).
45S. D. Pethel and D. W. Hahs, “Exact significance test for Markov order,”

Physica D 269, 42 (2014).
46J. Pearl, Causality: Models, Reasoning, and Inference, 2nd ed. (Cambridge

University Press, Cambridge, UK, 2009).
47N. Draper and H. Smith, Applied Regression Analysis, 2nd ed.

(John Wiley & Sons, Inc., New York, 1981).
48P. Grassberger, “Finite sample corrections to entropy and dimension

estimates,” Phys. Lett. A 128, 369 (1988).
49P. Grassberger, “Entropy estimates from insufficient samplings,” preprint

arXiv:physics/0307138 (2008).
50J. P. Crutchfield and N. H. Packard, “Symbolic dynamics of one-

dimensional maps: entropies, finite precision, and noise,” Int. J. Theor.

Phys. 21, 433 (1982).
51P. Grassberger and H. Kantz, “Generating partitions for the dissipative

Henon map,” Phys. Lett. A113, 235 (1985).
52Y.-C. Lai, E. M. Bollt, and C. Grebogi, “Communicating with chaos using

two-dimensional symbolic dynamics,” Phys. Lett. A 255, 75 (1999).
53R. L. Davidchack, Y.-C. Lai, E. M. Bollt, and M. Dhamala, “Estimating

generating partitions of chaotic systems by unstable periodic orbits,” Phys.

Rev. E 61, 1353 (2000).
54B. Pompe and J. Runge, “Momentary information transfer as a coupling

measure of time series,” Phys. Rev. E 83, 051122 (2011).
55A. Kraskov, H. Stogbauer, and P. Grassberger, “Estimating mutual

information,” Phys. Rev. E 69, 066138 (2004).
56M. Vejmelka and M. Palus, “Inferring the directionality of coupling with

conditional mutual information,” Phys. Rev. E 77, 026214 (2008).
57I. Vlachos and D. Kugiumtzis, “Nonuniform state-space reconstruction

and coupling detection,” Phys. Rev. E 82, 016207 (2010).
58A. Porta, P. Castiglioni, V. Bari, T. Bassani, A. Marchi, A. Cividjian, L.

Quintin, and M. Di Rienzo, “K-nearest-neighbor conditional entropy

approach for the assessment of the short-term complexity of cardiovascu-

lar control,” Physiol. Meas. 34, 17 (2013).
59C. Cafaro, S. Capozziello, and S. Mancini, “On relativistic quantum infor-

mation properties of entangled wave vectors of massive fermions,” Int. J.

Theor. Phys. 51, 2313 (2012).
60A. Katok and B. Hasselblatt, Introduction to the Modern Theory of

Dynamical Systems (Cambridge University Press, 1995).

043106-10 Cafaro et al. Chaos 25, 043106 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.153.18.158 On: Fri, 01 May 2015 17:42:17

http://dx.doi.org/10.1016/j.physd.2013.07.001
http://dx.doi.org/10.1137/140956166
http://dx.doi.org/10.3390/e16063416
http://dx.doi.org/10.1371/journal.pone.0089463
http://dx.doi.org/10.1109/18.761290
http://dx.doi.org/10.1103/PhysRevLett.88.174102
http://dx.doi.org/10.1016/j.physd.2005.07.006
http://dx.doi.org/10.1103/PhysRevLett.100.158101
http://dx.doi.org/10.1140/epjb/e2013-30721-4
http://dx.doi.org/10.1090/psapm/060/2078846
http://dx.doi.org/10.1090/psapm/060/2078846
http://dx.doi.org/10.1090/psapm/060/2078847
http://dx.doi.org/10.1090/psapm/060/2078847
http://dx.doi.org/10.1103/PhysRevLett.85.3524
http://dx.doi.org/10.1016/S0167-2789(01)00242-1
http://dx.doi.org/10.1063/1.3491097
http://dx.doi.org/10.1063/1.4869075
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1103/PhysRevE.65.056201
http://dx.doi.org/10.1016/j.physa.2012.12.017
http://dx.doi.org/10.1016/j.physd.2013.11.014
http://dx.doi.org/10.1016/0375-9601(88)90193-4
http://arxiv.org/abs/physics/0307138
http://dx.doi.org/10.1007/BF02650178
http://dx.doi.org/10.1007/BF02650178
http://dx.doi.org/10.1016/0375-9601(85)90016-7
http://dx.doi.org/10.1016/S0375-9601(99)00175-9
http://dx.doi.org/10.1103/PhysRevE.61.1353
http://dx.doi.org/10.1103/PhysRevE.61.1353
http://dx.doi.org/10.1103/PhysRevE.83.051122
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1103/PhysRevE.77.026214
http://dx.doi.org/10.1103/PhysRevE.82.016207
http://dx.doi.org/10.1088/0967-3334/34/1/17
http://dx.doi.org/10.1007/s10773-012-1111-0
http://dx.doi.org/10.1007/s10773-012-1111-0

