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• We demonstrated the success of transfer entropy in detecting information flow in two oscillators.
• We explored the limitations of transfer entropy for causality inference in various scenarios.
• We developed causation entropy for more reliable inference of causality in networks of coupled oscillators.
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a b s t r a c t

Inference of causality is central in nonlinear time series analysis and science in general. A popular
approach to infer causality between two processes is to measure the information flow between
them in terms of transfer entropy. Using dynamics of coupled oscillator networks, we show that
although transfer entropy can successfully detect information flow in two processes, it often results in
erroneous identification of network connections under the presence of indirect interactions, dominance
of neighbors, or anticipatory couplings. Such effects are found to be profound for time-dependent
networks. To overcome these limitations, we develop a measure called causation entropy and show that
its application can lead to reliable identification of true couplings.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The long-standing puzzle of ‘‘what causes what’’, formally
known as the problem of causality inference, is challenging yet
central in science [1,2]. Understanding causal relationship between
events has important implications in a wide range of areas
including as examples social perception [3], epidemiology [4], and
econometrics [5]. It is the reliable inference of causality that allows
one to untangle complex causal interactions,makepredictions, and
ultimately design intervention strategies.

Traditional approach of inferring causality between two
stochastic processes is to perform the Granger causality test [6].
A main limitation of this test is that it can only provide informa-
tion about linear dependence between twoprocesses and therefore
fails to capture intrinsic nonlinearities that are common in real-
world systems. To overcome this difficulty, Schreiber developed
the concept of transfer entropy between two processes [7]. Trans-
fer entropymeasures the uncertainty reduction in inferring the fu-
ture state of a process by learning the (current and past) states of
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another process. Being an asymmetric measure by design, trans-
fer entropy is often used to infer the directionality of information
flow and further the causality between two processes [8,9]. Re-
cently, it became increasingly popular to use transfer entropy for
causality inference in networks of neurons [10,11] and in coupled
dynamical systems with parameter mismatches [12], anticipatory
couplings [13], and time delays [14]. However, despite the over-
whelming number of proposed applications, a clear interpretation
of the resulting relationship inferred by transfer entropy is lacking.

In this paper, we study information transfer in the dynam-
ics of small-scale coupled oscillator networks. We show by sev-
eral examples that causal relationship inferred by transfer entropy
is often misleading when the underlying system contains indi-
rect connections, dominance of neighboring dynamics, or anticipa-
tory couplings. To account for these effects, we develop a measure
called causation entropy (CSE) and show that its appropriate appli-
cation reveals true coupling structures of the underlying dynamics.

2. Information theory and dynamical systems

In this section we introduce themathematical tools used in this
study, which include elements from both dynamical systems and
information theory.
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2.1. Dynamical system as a stochastic process

Our focus of this paper is on discrete dynamical systems of the
form

xt+1 = f (xt), (1)

where xt ∈ D ⊂ Rm is the state variable and f : D → D is the
dynamic rule of the system. A trajectory (or orbit) {xt} of Eq. (1)
naturally represents a time series. For a continuous dynamical
system ẋ = f (x), a time series can be obtained by sampling
its continuous trajectory at discrete time points. The time points
are often chosen to spread uniformly in time or to be the time
instances at which the trajectory intersects a given manifold that
is transversal to the trajectory, called a Poincaré section [15].

A natural bridge between dynamical systems and information
theory is the formulation of symbolic dynamics, which requires
discretization of the phase space. In particular, a finite topological
partition P = {P1, . . . , Pm} of the phase space D is a collection of
pairwise disjoint sets in D whose union is D [16]. Defining the
associated set of symbols Ω = {1, 2, . . . ,m}, one can transform
a trajectory {xt} into a symbolic sequence {st}, where st is defined
by [17,18]

xt ∈ Pi ⊂ D ⇒ st = i ∈ Ω. (2)

Viewing Ω as the sample space, the symbolic sequence {st} can
be seen as a time series of a stochastic process. Define a probability
measure over the partition P , as

µ : P → R. (3)

If µ is invariant under the dynamics, then [19,20]

Prob(st = i) = µ(i), ∀ i ∈ Ω, t ∈ R. (4)

A partition P is called aMarkov partition if it gives rise to a stochas-
tic process that is Markovian, i.e., future states of the process de-
pend only on its current state, and not the past states [21,22].

2.2. Information-theoretical measures: entropy, mutual information
and transfer entropy

Consider a discrete random variable X whose probability mass
function is denoted by p(x) = Prob(X = x). To quantify the unpre-
dictability of X , one can calculate its (information) entropy defined
as

H(X) = −


x

p(x) log p(x), (5)

where by convention, we use ‘‘log’’ to represent ‘‘log2’’. In general,
H(X) approximates the minimal binary description length L of the
random variable X , with the following inequality [21]:

H(X) ≤ L < H(X) + 1. (6)

It follows that, among all random variables with c elements, the
onewith uniformdistribution yields themaximumentropy, log(c).

Consider now two random variables X and Y with joint
distribution

p(x, y) = Prob(X = x, Y = y), (7)

and conditional distribution

p(x|y) = Prob(X = x|Y = y). (8)

The joint entropy H(X, Y ) and conditional entropy H(X |Y ) for X and
Y are defined, respectively, as

H(X, Y ) = −


x,y

p(x, y) log p(x, y), (9)
Fig. 1. Venn-like diagrams for information-theoretical measures. (a) Relations
between: entropies H(X) and H(Y ), joint entropy H(X, Y ), conditional entropies
H(X |Y ) and H(Y |X), and mutual information I(X; Y ), of two random variables X
and Y . (b) Relations between: transfer entropy TY→X , entropies of random variables
Xt+1, Xt , and Yt , and their joint and conditional entropies. The transfer entropy is
the difference between the conditional entropies H(Xt+1|Xt , Yt ) and H(Xt+1|Xt ),
which measures the extra information provided by Yt (in addition to Xt ) in the
determination of Xt+1 .

and

H(X |Y ) = −


y

p(y)H(Y |X = x)

= −


x,y

p(x, y) log p(x|y). (10)

Similar definition holds for H(Y |X).
It is easy to verify that conditioning reduces entropy, i.e., knowl-

edge of Y will reduce (or at least cannot increase) the uncertainty
about X , i.e.,

H(X |Y ) ≤ H(X). (11)

Similarly, H(Y |X) ≤ H(Y ).
The reduction of uncertainty of X (Y ) given full information

about Y (X) can bemeasured by themutual information between X
and Y , as [21]

I(X; Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X). (12)

The mutual information is symmetric in X and Y , and measures
their deviation from independence: if X and Y are fully dependent,
then H(X |Y ) = H(Y |X) = 0 and thus I(X; Y ) = H(X) = H(Y ); on
the other hand, if X and Y are independent, then H(X |Y ) = H(X)
and H(Y |X) = H(Y ) and therefore I(X; Y ) = 0. In general, we
have [21]

0 ≤ I(X; Y ) ≤ min[H(X),H(Y )]. (13)

It is convenient to visualize the relationship between entropy,
joint entropy, conditional entropy, and mutual information by a
Venn-like diagram, as shown in Fig. 1(a).

We now turn to stochastic processes. For a stationary process
{Xt}, its entropy rate H(X) can be defined as

H(X) = lim
t→∞

H(Xt |Xt−1, Xt−2, . . . , X1), (14)

which can be thought of as the (asymptotic) growth rate of the joint
entropy H(X1, X2, . . . , Xt). If the process is Markovian, then [21]

H(X) = lim
t→∞

H(Xt |Xt−1). (15)

For two stochastic processes {Xt} and {Yt}, the reduction of
uncertainty about Xt+1 due to the information of the past τY states
of Y , represented by

Y (τY )
t = (Yt , Yt−1, . . . , Yt−τY +1), (16)
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in addition to the information of the past τX states ofX , represented
by

X (τX )
t = (Xt , Xt−1, . . . , Xt−τX+1), (17)

is measured by the transfer entropy from Y to X , defined as [7]

TY→X = H(Xt+1|X
(τX )
t ) − H(Xt+1|X

(τX )
t , Y (τY )

t ). (18)

One can similarly define TX→Y , which does not necessarily equal
to TY→X . Note that TY→X can also be interpreted as the mutual
information between Xt+1 and Y (τY )

t conditioned on X (τX )
t . In this

paper, we focus on the case where

τX = τY = 1, (19)

unless specified otherwise. The relationship between transfer
entropy, entropy and conditional entropy is illustrated in Fig. 1(b).

3. Measuring information transfer in two coupled oscillators

Coupled oscillator networks are commonly used for modeling
the dynamic behavior of complex systems in various areas
[23–26]. Here we consider discrete dynamics of coupled oscillator
networks, in the form

x(i)
t+1 = f [x(i)

t ] + ϵ

j≠i

cijg[x
(i)
t , x(j)

t ], i = 1, 2, . . . ,N. (20)

Here x(i)
t ∈ D ⊂ Rd is the state of oscillator i at time t, f : D → D

is the dynamics of individual oscillators, g : D × D → D
is the coupling function, and ϵ is the coupling strength. Term cij
represents the coupling from j to i. In this paper, we use

f (x) = ax(1 − x) (21)

with parameter a = 4. The coupling function is chosen to be

g(x, y) = f (y) − f (x). (22)

The choice of ϵ ∈ [0, 1] and normalization condition
j≠i

cij = 1 (23)

guarantees that

x(i)
t ∈ D = [0, 1] for all i and t. (24)
We first explore information transfer in two coupled oscillators,

with bidirectional and unidirectional couplings, respectively. With
a slight abuse of notation, we use X and Y to represent oscillators 1
and 2, respectively. In terms of Eq. (20), the bidirectional coupling
corresponds to having c12 = c21 = 1 and unidirectional coupling
corresponds to c12 = 1, c21 = 0. Results from numerical simula-
tion are shown in Fig. 2.

One direct observation is that mutual information can be used
as a measure of synchrony between two oscillators X and Y . When
X and Y are synchronized, their mutual information

I(X; Y ) = H(X) = H(Y ). (25)

When they are not synchronized,

I(X; Y ) < min[H(X),H(Y )]. (26)

We remark that this observation suggests a new and alternative
way of measuring generalized synchronization or synchronization
among a partial set of nodes in a large-scale network [27,28].

For bidirectionally coupled oscillators, synchrony occurs when
the coupling strength [29]

ϵ ∈ (0.25, 0.75), (27)

as shown in Fig. 2(a). Themutual information reaches itsmaximum
for the same range of ϵ. Similarly, synchronization and maximum
mutual information both occur when

ϵ ∈ (0.5, 1], (28)
in the case where X and Y are unidirectionally coupled (Fig. 2(c)).
Fig. 2(b), (d) show typical time series of the bidirectionally and
unidirectionally coupled oscillators with ϵ = 0.1 (unsynchronized
trajectories) and ϵ = 0.6 (synchronized trajectories), respectively.

When two oscillators synchronize, the transfer entropy from ei-
ther one of them to the other becomes zero because no extra infor-
mation can be gained by learning the past trajectory of the other
oscillator (in addition to that from one’s own). As a consequence,
detection of coupling by transfer entropy (or any other measure)
is valid only when the oscillators are not synchronized. Oscillators
that are synchronized produce identical trajectories and therefore
appear indistinguishable.

When the two oscillators are not synchronized, there is a
positive transfer entropy following the directionality of coupling.
For bidirectionally coupled oscillators,

TX→Y = TY→X > 0 if ϵ ∈ (0, 0.25) ∪ (0.75, 1], (29)

except for those parameters at which the trajectories of X and Y
settle into a periodic orbit (Fig. 2(a)). For unidirectionally coupled
oscillators, positive transfer entropy TX→Y is observed when

TX→Y > TY→X = 0 if ϵ ∈ (0, 0.5). (30)

This asymmetry of transfer entropy confirms the dominant
direction of information flow from X to Y , and not the other way
around (Fig. 2(c)).

4. Measuring information transfer in coupled oscillator net-
works

Having studied the application of transfer entropy in systems of
two coupled oscillators, we now turn to networks.

4.1. Effect of indirect influence

First we explore information transfer under the presence of
indirect couplings. Consider a directed linear chain

Z → Y → X, (31)

where Z indirectly influences X through Y (Fig. 3(a)). We focus
on the dynamics of this three-node network according to Eq. (20),
with ϵ ∈ [0.2, 0.4], a regime where coupling has a non-negligible
effect on the dynamics but not strong enough to result in synchro-
nization.

In Fig. 4(a) we plot values of the transfer entropies TX→X , TY→X ,
and TZ→X (TX→Y ≈ TX→Z ≈ 0 are not plotted). By definition,
TX→X = 0. The direct influence of Y on X is validated by the
positive values of TY→X . Interestingly, values TZ→X are also positive,
despite the fact that there is no direct coupling from Z to X . Similar
results are found for other networks that contain the direct linear
chain Z → Y → X but without the direct coupling Z → X . See
Fig. 3(b)–(c) for the other two networks and Fig. 4(c), (e) for the
corresponding results.

One important implication of these results is that the use of
transfer entropy for inferring network structure can be inappro-
priate under the presence of indirect influences. Since indirect
couplings are common in many networks, directed edges that are
inferred by measuring transfer entropy can often be ‘‘false positive’’.

4.2. Causation entropy

We note that the key reason transfer entropy can fail in iden-
tifying indirect couplings from direct ones is that it is a pairwise
measure between twoprocesses. For example, the transfer entropy
TZ→X shown in Fig. 4(a), (c), (e) does not account for the fact that
the observed information transfer from Z to X is indeed a conse-
quence of the direct information transfer from Z to Y , and then Y
to X .
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Fig. 2. Measuring information flow in two coupled logistic maps. (a) Dependence of mutual information IX−Y = I(X; Y ) and transfer entropies TX→Y and TY→X on coupling
strength ϵ for two bidirectionally coupled oscillators. Synchronization occurs when ϵ ∈ (0.25, 0.75), which is the same region where the mutual information reaches its
maximum. Due to the symmetry of coupling, TX→Y = TY→X . (b) Typical time series for two bidirectionally coupled oscillators, with ϵ = 0.1 (top, unsynchronized trajectories)
and ϵ = 0.6 (bottom, synchronized trajectories). (c)–(d) Same as (a)–(b), but for two oscillators with unidirectional coupling from oscillator X to oscillator Y . In this case,
synchronization appears when ϵ ∈ [0.5, 1). For ϵ ∈ (0, 0.5), TX→Y ≫ TY→X , indicating that the dominant direction of information flow between X and Y is from X to Y .
In all simulations of the paper, we generate trajectories of length 105 and discard the initial 5% segments for all computations. The interval [0, 1] is divided evenly into 24

subintervals for the estimation of discrete probabilities. In our simulations, we made the choice of 24 based on the balance between the length of the time series and the
number of variables in the joint distribution: too few subintervals will only reveal limited information about the true dynamics and on the other hand, toomany of themwill
lead to statistical under-sampling [37,38]. Note that this problem of finding an appropriate number of subintervals for the estimation of entropy is analogous to the problem
of finding an appropriate number of bins to construct a histogram, for which no universal ‘‘best’’ solution exists.
Fig. 3. Small-scale directed binary networks. (a)–(c) Networks with a directed
linear chain Z → Y → X , but no direct coupling Z → X . (d) A network that
contains a direct coupling X → Z , but not Z → X .

Here we propose a new measure, which we call causation
entropy. The causation entropy from Z to X (conditioned on X and
Y ) is defined as

CZ→X |(X,Y ) = H(Xt+1|Xt , Yt) − H(Xt+1|Xt , Yt , Zt). (32)

Thus, CZ→X |(X,Y ) measures the extra information provided to X by Z
in addition to the information that is already provided to X by other
means.

For an arbitrary set of processes, causation entropy is defined as
follows.

Definition 1 (Causation Entropy). The causation entropy from
process Q to process P conditioned on the set of processes S is
defined as

CQ→P |(S) = H(Pt+1|St) − H(Pt+1|St , Qt). (33)
Causation entropy CQ→P |(S) is a generalization of transfer
entropy. In fact, by letting S = P , we have

CQ→P |(P ) = TQ→P . (34)

In general, causation entropy CQ→P |(S) measures the reduction in
uncertainty in P due to the extra knowledge of Q in addition to
that of S.

If S = ∅, we simply write

CQ→P = CQ→P |(∅). (35)

It follows that

CQ→P = H(Pt+1) − H(Pt+1|Qt) = I(Pt+1; Qt), (36)

which is the mutual information between Pt+1 and Qt . When S ≠

∅, causation entropy CQ→P |(S) can be interpreted as the mutual
information shared between Pt+1 and Qt conditioned on St .

Fig. 4(b), (d), (f) shows that, for the networks in Fig. 3(a)–(c),
both CX→X and CY→X |(X) are positive, as a result of the influence of
X on itself (self-dynamics) and the direct influence of Y on X . On
the other hand, and by design, the causation entropy CZ→X |(X,Y ) ≈

0, in sharp contrast to the positive transfer entropy, TZ→X > 0
(Fig. 4(a), (c), (e)). The reason CZ→X |(X,Y ) is close to zero is that,
the information provided by Z (to X) is merely a subset of the
information provided by Y . No extra information about X ’s future
state can be gained by learning the current state of Z if those of X
and Y are already known.
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Fig. 4. Causation entropy and transfer entropy for the identification of indirect coupling. (a)–(b) Transfer entropies {TX→X , TY→X , TZ→X } and causation entropies
{CX→X , CY→X |(X), CZ→X |(X,Y )} for the network shown in Fig. 3(a) with dynamics (20). Note that the transfer entropy TZ→X is positive despite the absence of direct coupling
from Z to X . On the other hand, the causation entropy CZ→X |(X,Y ) ≈ 0, since information that are being indirectly transferred from Z to X all go through Y . (c)–(d) Same as
(a)–(b), for the network in Fig. 3(b). (e)–(f) Same as (a)–(b), for the network in Fig. 3(c).
4.3. Example: dominance of neighbors

Dominance of neighbors refers to a scenario where an
oscillator’s future state is dominantly determined by the state of
its neighboring nodes, rather than by itself. In terms of Eq. (20),
this occurs when the coupling strength ϵ ≈ 1. We here explore
its effect on information transfer. As an example, we consider
dynamics by Eq. (20) on the network shown in Fig. 3(d), where
node X receives input from Y , but not from Z (even indirectly).

As shown in Fig. 5(a), transfer entropy TY→X is positive, due to
the direct influence of Y on X . Surprisingly, transfer entropy TZ→X
is also found to be positive, despite the fact that no information
flows from Z to X , either directly or indirectly.

The reason positive transfer entropy TZ→X is found in the
absence of influence of Z on X is that TZ→X is taken to be the
difference between H(Xt+1|Xt) and H(Xt+1|Xt , Zt). Here since Xt+1
is dominantly determined by Yt and only depends weakly on Xt ,
the conditional entropies
H(Xt+1|Xt) ≈ H(Xt+1),
H(Xt+1|Xt , Zt) ≈ H(Xt+1|Zt).

(37)

A closer inspection of the network reveals that under the strong
coupling regime where the dynamics of an oscillator depends
dominantly on its neighbors dynamics, the state of Xt+1 depends
mostly on Yt (and not Xt ). Since Yt depends mostly on Xt−1 by
the very same argument, we conclude that themutual information
between Xt+1 and Xt−1 is high. Similarly, since Zt depends mostly
on Xt−1 and Yt−1, there is high mutual information between Zt
and Xt−1. Based on this analysis, the mutual information between
Xt−1 and Xt should be low and that between Zt and Xt+1 should
be non-negligible, which is confirmed in Fig. 5(c)–(d). Although
information in the network flows directly from X to Z , without
accounting for the dominant factors that determine the value of
Xt+1, one would indeed infer a directed link from Z to X based on
the calculation of the transfer entropy TZ→X .

We note that, because of the dominance of Y on X (as opposed
to X on itself), one should indeed measure the causation entropies
CY→X , CX→X |(Y ), and CZ→X |(X,Y ), respectively. Results are shown in
Fig. 5(b). The value CY→X > 0, as expected. The value CX→X |(Y ) ≈ 0,
due to the dominant influence of Y (rather than X itself) on X . The
value CZ→X |(X,Y ) ≈ 0 aswell, suggesting the absence of information
transfer from Z to X , which is consistent with the structure of the
network shown in Fig. 3(d).

4.4. Iterative evaluation of causation entropy in a network of N
processes

The determination of causation entropies (i.e., the order Y , X, Z)
can in fact be done a priori, by first choosing the process Q1 ∈ {X,
Y , Z} that maximizes the causation entropy CQ1→X , and then iter-
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Fig. 5. Causation entropy versus transfer entropy under the dominance of neighbors. (a) Transfer entropies {TX→X , TY→X , TZ→X }. (b) Causation entropies
{CX→X |(Y ), CY→Y , CZ→X |(X,Y )} for the network in Fig. 3(d) whose dynamics follow Eq. (20). (c) Scatter plot between Xt−1 and Xt for ϵ = 1. (d) Scatter plot between Zt−1
and Xt for ϵ = 1. In (c) and (d), points are taken from a randomly select trajectory segment (of the full trajectory) of length 1000.
atively select Qk as the process that maximizes CQk→X |(Q1,...,Qk−1)

(see the following paragraph for details). For the example used in
Fig. 5, we found that Q1 = Y and Q2 = X . Therefore, in contrast
to transfer entropy, causation entropy can successfully identify the
dominance of neighbors and in turn avoid erroneous inference of
couplings due to its effect.

For a network of N coupled stochastic processes {X (i)
t }

N
i=1, we

propose to identify the set of causal processes of a given process i
by iterativemaximization of causation entropy. Let n0 = i. We first
find process n1 that satisfies
n1 = argmax

j
CX(j)→X(i) . (38)

Then we iteratively seek for nk (k = 2, 3, . . .) that satisfies
nk = argmax

j
CX(j)→X(i)|(X(n0),X(n1),...,X(nk−1))

. (39)

We stop the search at step kwhen
CX(nk)

→X(i) < θ, (40)
where θ is a preselected tolerance value. The processes n1, n2, . . . ,
nk−1 (in the decreasing order of dominance) form the set of causal
processes of i.

Note that in theory the value of CX(nk)
→X(i) will be exactly zero if

the dynamics of node nk does not causal-determine the dynam-
ics of node i. In practice, however, the numerical estimation of
CX(nk)

→X(i) is based on the estimation of probability distributions
from finite sample and will at best be close to (but not necessarily
equal to) zero for a finite number of data points. A rigorous way
of determining whether the numerically computed causation en-
tropy should be identified as zero is to perform a hypothesis test.
It can be challenging to do such a test in practice and often times
one can instead use a shuffle test to obtain approximate confidence
intervals [14].

4.5. Example: anticipatory couplings

Our last example is a unidirectionally coupled dynamical sys-
tem with anticipatory coupling [13]

xt+1 = f (xt),
yt+1 = (1 − ϵ)f (yt) + ϵ[(1 − α)f (xt) + αf 2(xt)],

(41)

where f (x) = ax(1−x)with a = 4, parameter ϵ ∈ [0, 1] is the cou-
pling strength, and parameter α ∈ [0, 1] is the strength of antici-
patory coupling. Notation f 2 means that themap f is applied twice.

Here we adopt the concept and notation of transfer entropy to
define

TXt→Yt+1 = TX→Y = H(Yt+1|Yt) − H(Yt+1|Yt , Xt), (42)

and

TXt+1→Yt+1 = H(Yt+1|Yt) − H(Yt+1|Yt , Xt+1). (43)

Fig. 6(a) shows that both TXt→Yt+1 and TXt+1→Yt+1 are positive,
with comparable values. Does this suggest that both Xt and Xt+1
independently influence Yt+1? Standard interpretation (of transfer
entropy) would suggest that the answer to this question is yes.

By use of causation entropy, we find that Yt+1 is primarily
determined by Yt . The second dominant influence on Yt+1 is Xt+1,
as confirmed by the values of

CXt+1→Yt+1|(Yt ) = H(Yt+1|Yt) − H(Yt+1|Yt , Xt+1). (44)

It turns out that additional information of Xt (beyond Yt and Xt+1)
does not contribute to the reduction of uncertainty of Yt+1. This is
validated by the causation entropy

CXt→Yt+1|(Yt ,Xt+1) = H(Yt+1|Yt , Xt+1) − H(Yt+1|Yt , Xt+1), (45)

which remain close to zero, as shown in Fig. 6(b).
Therefore, in contrast to transfer entropy analysis, whichwould

suggest that both Xt and Xt+1 participate in the determination
of Yt+1, causation entropy analysis reveals that information of
Xt is indeed completely redundant in inferring Yt+1. In fact, by
expressing f (xt) as xt+1 in Eq. (41), it appears that the value of yt+1
depends solely on yt and xt+1, and not on xt .
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Fig. 6. Causation entropy versus transfer entropy under anticipatory coupling. (a) Transfer entropies TXt→Yt+1 and TXt+1→Yt+1 . (b) Causation entropies CXt+1→Yt+1 |(Yt ) and
CXt→Yt+1 |(Yt ,Xt+1) . Here parameter ϵ = 0.3.
Fig. 7. Examples of time-dependent networks. First (leftmost) column: structure of static networks (the same as those in Fig. 3). Second to the last (rightmost) columns:
typical network structures at different times, obtained from keeping each directed edge of the static network independently with probability p = 0.5 at each time t .
5. Information transfer in time-dependent networks

The effects of time-dependent structures on network dynamics
are often intriguing and pose considerable challenges for analysis.
For example, the problem of synchronization stability of coupled
oscillators in time-dependent networks has been fully addressed
only for a few specific cases [30–34]. Here, our focus is to measure
information transfer among oscillators that are coupled through a
time-dependent network structure (that is, a networkwhose edges
change in time). In particular, we generalize Eq. (20) to allow for
time-dependent interactions in between oscillators, as

x(i)
t+1 = f [x(i)

t ] + ϵ

j≠i

cij(t)g[x
(i)
t , x(j)

t ], i = 1, 2, . . . ,N. (46)

Here all terms in Eq. (46) except for cij(t) are the same as those in
Eq. (20). The term cij(t) represents the coupling from j to i at time t
and explicitly accounts for the time-dependent network structure.
We consider time-dependent networks constructed as follows.
Start with a baseline static network whose adjacency matrix is
C̄ = [c̄ij]n×n. The edges in the network are then allowed to ‘‘blink’’
according to the following rule, to generate a time-dependent
network: at each time t ,

cij(t) =


c̄ij, with probability p;
0, with probability 1 − p. (47)

Therefore, when the blinking probability p = 1, the network is the
same as the baseline static network; on the other extreme, when
p = 0, no edge exists and the network becomes empty (i.e., each
oscillator is isolated and does not couple to other oscillators). For
the values of p in between 0 and 1, the network structure changes
in time in a stochastic fashion (see Fig. 7 for a few illustrative
examples).

Our interest lies in the information transfer within such time-
dependent networks. Different from its static counterpart, the
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Fig. 8. Causation entropy versus transfer entropy for time-dependent networks. (a)–(b) Transfer entropies {TX→X , TY→X , TZ→X } and causation entropies
{CX→X , CY→X |(X), CZ→X |(X,Y )} for the time-dependent network originates from the network in Fig. 3(a) via Eq. (47) and endowed with dynamics (46), for the fixed coupling
strength ϵ = 0.4. (c)–(f) Same as (a)–(b), for the networks in Fig. 3(b) and (c), respectively, and ϵ = 0.4. (g)–(h) Same as (a)–(b), for the network in Fig. 3(d) and ϵ = 0.9.
flow of information in a time-dependent network often cannot
be directly obtained from examining the edges cij(t), because it
is possible for a network to be disconnected at all times and yet
be able to transfer information from one node to another. Such
a scenario has been previously considered in the synchronization
of coupled oscillators in time-dependent networks with edges
being switched on and off [32] and in moving-neighbor networks
whose edges are defined by the local interactions between agents
that move in space [31]. In both cases, even though the original
static network is connected, the corresponding time-dependent
network obtained by blinking the edges might not be (see Fig. 7
for examples).

The connection between these time-dependent networks and
the original static network is that the asymptotic temporal average
of eachdirected edge, ⟨cij⟩, is proportional to theweight of the same
edge in the static network:

⟨cij⟩ = lim
T→∞

1
T

T
t=1

cij(t) = pc̄ij. (48)

We ran numerical simulation on several time-dependent
networks and focus on the information flow measured both by
transfer entropy and causation entropy. Fig. 8(a) shows that, for the
directed linear chain Z → Y → X with fixed coupling strength
ϵ = 0.4, when the blinking probability p increases, the trans-
fer entropy TZ→X becomes increasingly non-negligible, indicating
direct information transfer from Z to X from standard interpre-
tation. On the other hand, the causation entropy CZ→X remains
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essentially zero, suggesting that the information transferred from
Z to X is merely a redundancy of the information that are trans-
ferred from Z to Y and Y to X , respectively, possibly at different
times. Fig. 8(b)–(c) show similar comparison between transfer en-
tropy and causation entropy for measuring the information flow in
time-dependent networks that originate from the networks shown
in Fig. 3(b)–(c) with the fixed coupling strength ϵ = 0.4.

The possible misinterpretation of transfer entropy becomes
more evident under the dominance of neighbors scenario, where
the coupling strength ϵ is close to 1. As shown in Fig. 8(d), un-
der such scenario, transfer entropy identifies a strong information
transfer from Z to X whereas in the average network of the time-
dependent network, it is the exact opposite. Causation entropy, on
the other hand, successfully identifies the dominant nodes that in-
fluence the dynamics of X , namely, its neighbor Y and then X itself.

6. Discussion and conclusion

Ourmainmessage here is thatwhile being an essential problem
in science in general, and dynamical systems in particular, the
question of what is cause and what is influence in complex system
analysis is challenging, not due to the lack of methodology, but
rather due to the lack of clear and comprehensible understanding
of the applicability of proposed methods, in particular when the
underlying system involves complex, possibly time-dependent
interactions. The popular concept of transfer entropy has been
used lately to serve as a way of inferring causality, without much
understanding of its domain of success.

We here explored information flowmeasured from the dynam-
ics of small-scale coupled oscillators network, attempting to gain
insights into the validity of transfer entropy as well as its limita-
tions. For two coupled oscillators, transfer entropy is found to suc-
cessfully detect the directionality of information flow, even in cases
where the couplings are blinking (time-dependent). However, its
validity breaks down under the presence of indirect couplings,
dominance of neighboring dynamics, anticipatory couplings, or
time-dependent couplings, which are common in large-scale com-
plex systems.

To overcome the limitations of transfer entropy, we introduced
anewmeasure of information flowcalled causation entropy,which
is designed to allow inference of causation despite the presence
of primary and secondary influences between elements of a larger
coupled system. We highlighted the success of our approach with
several examples where specifically the transfer entropy cannot
distinguish between causation and independence, but causation
entropy successfully infers the true causal relationships.

Given the recent advancements in estimating transfer entropy
in rather general settings includingmultivariate time series and in-
finite time delay [14,35], it is our hope to build on the idea of cau-
sation entropy to explore information flow and coupling inference
in larger-scale systems, which are important for a wide range of
applications across scientific fields. One challenge is that, for large-
scale systems, naive binning methods would require an exponen-
tial number of data points with respect to the number of variables,
in order to reliably calculate entropies (including joint entropy,
transfer entropy, and also causation entropy). Nonparametric den-
sity estimationmethods previously developed formutual informa-
tion [8,36] are likely to offer a route toward the reliable estimation
of causation entropies in large-scale dynamical systems.
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