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We use control of chaos to encode information into the oscillations of the Belousov-Zhabotinsky
reaction. An arbitrary binary message is encoded by forcing the chaotic oscillations to follow a
specified trajectory. The information manipulating control requires only small perturbations to vary
the binary message. In this paper we extend our recent theoretical work@Bollt and Dolnik, Phys.
Rev. E 64, 1196 ~1990!# by introducing a new and simplified encoding technique which can be
utilized in the presence of experimental noise. We numerically and theoretically study several
practical aspects of controlling symbol dynamics including: modeling noisy time-series, learning
underlying symbol dynamics, and evaluation of derivatives for control by observing system
responses to an intelligent and deliberate sequence of input parameter variations. All of the
modeling techniques incorporated here are ultimately designed to learn and control symbol
dynamics of experimental data known only as an observed time-series; the simulation assumes no
global model. We find that noise affects reliability of encoding information and may cause coding
errors. But, if the level of noise is confined to relatively small values, which are achievable in
experiments, the control mechanism is robust to the noise. Thus we can still produce a desired
symbolic code. However, scarce errors in encoding may occur due to rare but large fluctuations.
These errors may be corrected during the decoding process by a variation of the filtering technique
suggested by Rosaet al.@Phys. Rev. Lett.78, 1247~1997!#. © 1998 American Institute of Physics.
@S1054-1500~98!01402-5#

Recent applications of controlling chaotic dynamical sys-
tems focus on manipulation of information flow, for com-
munications, encryption, and targeting. A particularly in-
teresting possibility concerns encoding information into a
chemical system. We propose an alternative to a popular
and intuitive, but not well founded belief which is an
analogy to electronic computers, that information is
stored in a biological version of physical switching de-
vices. In contrast, an analogy between chemical systems
and biological systems1 implies an interesting possibility
that living systems may store information in underlying
dynamics. In our previous work,2,3 we demonstrated the
possibility of encoding information into chemical chaos
utilizing a model of the Belousov-Zhabotinsky„BZ… reac-
tion. In this work, we extend and improve these methods
with the aim of successfully implementing a message into
a controlled oscillatory reaction in a ‘‘real world’’ noisy
laboratory environment. We have therefore included nu-
merical stochastic studies to argue that the improved
technique promises success given measurement toler-
ances within laboratory feasible levels.

I. INTRODUCTION

In recent years several methods of encoding information
into chaotic oscillators have been proposed. One class of
techniques is based on the synchronization of chaotic sys-
tems between both receiver and transmitter. The receiver can

then strip off the commonly known chaotic signal to recover
the encoded information signal.4–9 The main purpose of this
technique is for encryption and secure communications. The
subject of this paper concerns the other main class of tech-
niques, based on controlling symbol dynamics, to encode a
binary message by forcing the chaotic oscillations to follow a
desired trajectory. Sensitive dependence on initial conditions
allows manipulation of the trajectory through a symbol par-
tition, and hence the corresponding binary message, using
only small parameter perturbations.2,10,11

An unavoidable fact of real world experiments is that
observations of a chaotic system are affected by noise. In
fact, even highly accurate, but finite precision numerical ex-
periments with chaos are profoundly influenced by noise.
Given finite numerical precision, and therefore rounding er-
rors, the presence of sensitive dependence to initial condi-
tions renders impossible any long term prediction of chaotic
oscillations. For years, this was considered to be a disadvan-
tage of chaos, but control of chaos techniques actually take
advantage of sensitive dependence to initial conditions. Ge-
nerically, the distance between two close points grows expo-
nentially with time. The implication is that long term predic-
tion is impossible because even a small error in specifying
the system states yields drastically varied results. In terms of
control, this means that a small and judiciously specified
control perturbation can result in a large and varied system
response.

In this work we demonstrate how the presence of experi-
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mental noise affects the reliability of encoding. It is rather
evident that when increasing the noise level, the probability
of error occurrence also increases. In this paper we describe
how our control technique copes in the case of experiments
with realistic noise levels.

Our paper is organized in the following way. In Sec. II
we present the Gyo¨rgyi-Field model12 of the BZ reaction,
which is used in our numerical experiments. We introduce a
stochastic component to the deterministic model of the BZ
reaction and thus we create a numerical analog of the real
experimental system. In Sec. III we review the symbol dy-
namics description of the one-dimensional map. We also
show how the one-dimensional map can be recovered from
the scattered noisy data. Then we describe a simple method
of learning the observed grammar, based on revealing all
observed codes. In Sec. IV we present the technique to con-
trol the symbolic code sequences. Control of symbol dynam-
ics requires determination of the maps responses due to pa-
rameter perturbations. We demonstrate how the map changes
can be determined from the experiments, even in the pres-
ence of noise. Then in Sec. V we present numerical experi-
ments in which we have encoded a short message in the
presence of noise. By increasing the standard deviation of
the imposed noise, we search for a critical noise level. We
demonstrate that for the experimental noise confined below
this critical value, the encoding technique works in a reliable
manner.

II. MODEL OF THE BZ REACTION

A simple model of the BZ reaction in a continuous-flow
stirred-tank reactor~CSTR! suggested by Gyo¨rgyi and
Field12 consists of three ODE’s:

dX

dt
52k1HXY1k2AH2Y22k3X210.5@k4~HA!1.5

3~C2Z!X0.52k5XZ#1k0~Xo2X!,

dZ

dt
5k4~HA!1.5~C2Z!X0.52k5XZ2ak6VZ

2bk7BZ1k0~Zo2Z!,
~1!

dV

dt
52k1HXY1k2AH2Y1k3X22ak6VZ

1k0~Vo2V!,

where

Y5
ak6ZV

k1HX1k2AH21k0

. ~2!

X, Z, V and Y denote the concentrations of HBrO2, Ce41,
bromomalonic acid and Br2, respectively. The subscript
‘‘ o’’ indicates the concentrations on the input of the reactor.
The parameterA represents the concentration of HBrO3, B is
the concentration of malonic acid, andC is the total concen-
tration of the catalystC5@Ce41#1@Ce31#. The values of
these parameters, as well as the kinetic parameters denoteda
andb and the rate constantsk1–k6, are given in Table I. The

parameterk0 denotes the flow rate and in this study we
choose it to be the adjustable control parameter, written asl.
A nominal value of the control parameterl053.5
31024 s21 is within the widest chaotic window of the low
flow rate parameter bifurcation diagram.12 To control symbol
sequences, we apply small perturbations to the control pa-
rameterl.

Previously, we have employed the model~1!, with pa-
rameters from Table I, to demonstrate the encoding
technique.2 In the present study, we introduce small fluctua-
tions to one of the fixed parameters to demonstrate reliability
of the encoding technique in the presence of noise. In a real
chemical experiment in a flow reactor, there are several pos-
sible and unavoidable sources of experimental noise, includ-
ing imperfect mixing, flow rate fluctuations and temperature
fluctuations.13 It is cumbersome to introduce every source of
noise into the model. Rather, for simplicity, we assume that
only one parameter is affected by noise and all other param-
eters remain fixed~but affected due to coupling!.

We allow parameterA to experience noise according to
the equation,

A5A0~11jn!, ~3!

where A0 is the average value of parameterA, and jn is
Gaussian white noise with zero mean value and a standard
deviation ofsj . Our map based simulation assumes that the
noise randomly affects the parameterA at the moment of
intersection with the Poincare´ surface, and thatA is held
constant during the time of flight between piercings. To ac-
curately integrate the stiff differential equations, Eq.~1!, we
use the 4th order modified semi-implicit Runge-Kutta
method, with automatic step length control.

III. ONE-DIMENSIONAL MAPS AND THEIR SYMBOLIC
CODES

Rather than directly studying trajectories in the full
three-dimensional phase space, we analyze the sequence of
maxima of Z(t), which can be considered to be a special
case of the Poincare´ surface of section mapping technique.
The sequence of successive oscillatory maxima of the noise-
free model of the BZ reaction defines a map,

TABLE I. Parameters used in the simulations.

Parameter Value

k1 43106 dm6 mol22 s21

k2 2 dm6 mol22 s21

k3 33103 dm3 mol21 s21

k4 55.2 dm7.5 mol22.5 s21

k5 73103 dm3 mol21 s21

k6 0.09 dm3 mol21 s21

k7 0.23 dm3 mol21 s21

a 600/9
b 8/23
A0 0.1 mol dm23

B 0.25 mol dm23

H 0.26 mol dm23

C 8.3331024 mol dm23

Xo 0 mol dm23

Zo 0 mol dm23

Vo 0 mol dm23
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xn115 f l0
~xn!. ~4!

which is truly one dimensional after the transients have
settled. However, in the presence of noise, as modeled by
Eq. ~3!, the model Eq.~1! generates scattered data points of
the ‘‘next-maxima map,’’ shown in Fig. 1. This picture
agrees qualitatively with experimental data.14–16 Given
purely experimental data, we will not know the underlying
noise-free map to which noise has been added, but we can
recover an approximation of this underlying noise-free map,
by a cubic spline-based least-squares fitting procedure. We
employ the procedure named CUBGCV17 to fit the noisy
data points by cubic smoothing spline. The degree of
smoothing is chosen to minimize the generalized cross vali-
dation. To account for unequally spaced data, which is dis-
tributed according to the invariant measure, we use nonuni-
form weightswi defined,

wi5Axi 112xi 21

2^Dx&
, ~5!

where^Dx& is the average spacing:

^Dx&5
1

N21 (
i 51

N21

~xi 112xi !5
xN2x1

N21
. ~6!

We have tested several other weighting functions, including
uniformly weighted data, but the weights definition, Eq.~5!,
produced the best smoothed fit of the noisy data, in compari-
son to the noise-free one-dimensional~1-D! map.2

To represent the symbolic dynamics of the map, we as-
sign a binary code, for every initial conditionx0. The maxi-
mum of the cubic smoothing spline defines the decision point
d. For x0<d we designate the first bit of the symbolic code
as ‘‘0,’’ and for x0.d, we designate the first bit as ‘‘1.’’ A
decimal point character~.! separates the first bit of the initial
state from successive bits which represent successive itera-

tions xi . We call the first bit of ann-bit symbol sequence,
‘‘the most significant bit’’ and the last bit, ‘‘the least signifi-
cant bit.’’

Figure 2 shows the 4-bit symbol sequences produced by
initial conditions plus their three successive iterations of the
cubic smoothing spline map. The codes are displayed along
the vertical axis according to the Gray-code order.18 It is
evident that the symbolic codes are Gray ordered for gradu-
ally increasing initial conditionsx0 from xmin to xmax. The
Gray ordering of symbol sequences has the important prop-
erty that the binary representations, of any two adjacent
codes, differ by exactly one bit, which is key to the equiva-
lence between the symbol dynamics, and the dynamics in the
phase space. This property is important for encoding mes-
sages into the symbol dynamics through sensitively control-
ling trajectories of the corresponding phase space variablex,
as we present below.

An important technical issue arises from the nonexist-
ence of some codes, as not all 4-bit binary codes are pro-
duced by the 1-D map. We observe that for the parameter
values chosen, and in the 4-bit representation, the codes
‘‘0.000,’’ ‘‘0.001’’ and ‘‘1.000’’ are not present; these levels
in Fig. 2 are unoccupied. We can take this directly as the
grammar of the symbol dynamics, but in this special case,
we can reduce the grammar. These three codes have a 3-bit
pattern in common: each includes three ‘‘0’’ bits in a row.
Therefore this is theobservedgrammatical restriction on the
observedsymbol dynamics. In terms of the phase variable,
this means that the chaotic time series never contains three
successive oscillatory maxima withZ,d. To achieve our
goal of communicating a digital messageusing only small
controls, we must respect this grammar.

IV. CONTROLLING THE SYMBOLIC CODE
SEQUENCE

In this section, we describe how to encode information
into chaotic oscillations by controlling corresponding sym-
bolic codes, and we extend our previous methods2 to allow
for the experimentally feasible situation in which~noisy!
data and the system responses may only be sampled on-the-
fly. We also describe the encoding technique using the cubic

FIG. 1. The one-dimensional mapf (x) for the nominal value of control
parameterl053.531024 s21. The data set contains 200 successive inter-
sections with the Poincare´ surface. Data are obtained from simulations with
added Gaussian white noise with the standard deviationsj50.001. The
solid line depicts the cubic smoothing spline fit calculated by the general
cross validation method~Ref. 17!.

FIG. 2. Symbolic binary codes produced by three iterations of the cubic
smoothed spline map. Symbolic codes are Gray ordered along the vertical
axis. Dashed line illustrates the decision pointd. Empty code levels repre-
sent the forbidden codes 0.000, 0.001 and 1.000.
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smoothed spline mapf (x) divided into sections with the
identical symbolic codes. Figure 3 shows the assignment of
5-bit symbolic codes to corresponding sections of the 1-D
map. Note that, except in the vicinity of the symbol partition,
there is always a region with a ‘‘1’’ bit in the least significant
position adjacent to a region with a ‘‘0’’ bit in the least
significant position, andvice versa. This follows from the
Gray ordering of codes found on the interval, which has the
additional property that two adjacent regions with differing
bits in least significant positions must agree in all the other
bits. The equivalence between the dynamics of the phase
space variable in the topology of the interval, and the dynam-
ics of the shift on symbol sequences in the symbol space
topology, is in terms of a semiconjugacy~a continuous and
onto change of coordinates!. This is due to the Gray-code
ordering of the symbolic codes on the unit interval, as indi-
cated by the monotone nondecreasing coding function in Fig.
2. In fact, the lack of any observed attracting periodic set on
the interval is evidence of a faithful representation of the
chaotic oscillations in the symbol dynamics, i.e., a full con-
jugacy. Thus a small perturbation of the map in the phase
variable representation results in encoding a desired bit into
the least significant position in the symbol sequence repre-
sentation.

Figure 4 shows a schematic representation of the control
technique on a blow-up of the 1-D map. Letxi be the i th
iterate on the surface of section, and, for example, we want
to encode a ‘‘0’’ bit into the least significant position of the
4-bit symbolic representation of the next iterate. In this case,
the uncontrolled iteration causes the ‘‘1’’ bit to shift into the
least significant position becausef l0

(xi) has the symbolic
code ‘‘0.111.’’ However, the encoding of a ‘‘0’’ bit into the
least significant position of the symbolic representation re-
quires a small controlling parameter perturbation. The per-
turbation dl must cause a variation in the iteration of the
1-D map f l01dl(xi) from the symbolic region ‘‘0.111’’ to
the adjacent ‘‘0.110’’ region. This ‘‘upward‘‘ shift in the
one-dimensional map is illustrated by the dot-dashed line. To

minimize the effect of noise, we target the code centers,
which are depicted by small triangles in Fig. 4. Similarly in
the j th iteration, when ‘‘1.101’’ is assigned to the uncon-
trolled iteration f l0

(xj ), a ‘‘0’’ bit can be encoded into the
least significant position by application of a small perturba-
tion. In this case, the adjacent coded region with a ‘‘0’’ bit in
the least significant position, i.e., the region coded ‘‘1.100’’
is located below the like-coded region of points correspond-
ing to ‘‘1.101.’’ This means that the 1-D map must be per-
turbed ‘‘downward,’’ as illustrated by the double dot-dashed
line.

Encoding an arbitrary message requires a sequence of
small variations to the symbol representations, which corre-
sponds to a sequence of displacementsD f (x). Let D f (x)
denote the difference between the desired iterationf des(x)
~corresponding to a desired bit! and the uncontrolled itera-
tion f (x):

D f ~x!5 f des~x!2 f ~x!. ~7!

Then as presented in our previous work,2 the formula for
the required parameter perturbationdl is

dl5
D f ~x!

~] f 1/]l! u~x,l0!

. ~8!

The partial derivative] f 1/]l represents the ‘‘dynamic
shift’’ of the one-dimensional map. The original system is
described by the three ODE’s, and there are transient effects
connected with parameter perturbations. Our simulations
with the noise free system2 revealed that the intersection with
the Poincare´ surface does not correspond to a perturbed 1-D
map, immediately following a parameter perturbation. In-
stead, the response is significantly larger than predicted by
the corresponding 1-D model. However, if the control pa-
rameter is fixed at the new parameter value, then after the
first intersection, all subsequent intersections with the Poin-
caré surface settle onto the attractor of the perturbed 1-D
map. To distinguish between the transient~first! response
and the transient-free~steady! response, we use notationf 1

and f , respectively. We denote the dynamic map byf 1(x),
and the static map byf (x).

FIG. 3. Cubic smoothing spline of the mapf (x) divided into domains of the
identical 5-bit symbolic codes. The solid lines indicate the map sections
with symbolic codes containing a bit ‘‘1’’ in the least significant position,
while dashed line indicate a bit ‘‘0’’ in the least significant position. Pointd
shows the decision point. The diagonal~dash-doted line! crosses the map at
the domain with symbolic code ‘‘1.1111.’’

FIG. 4. A schematic representation of the encoding technique—enlargement
of the smoothing spline map. Two examples of shifting ‘‘0’’ in the least
important bit when the natural iteration would produce shifts in a ‘‘1’’ bit.
The centers of the symbolic codes~solid triangles! are the desired values.
Dot-dashed lines represent the desired ‘‘shifted’’ 1-D maps.f (x) are the
uncontrolled iterations andf des(x) are the desired iterations.
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The fact, that an arbitrary message requires controlling
parameter perturbations during every iteration, is an impor-
tant technical issue which prevents us from returning to the
nominal parameter valuel0. Instead, the (n11)th ‘‘uncon-
trolled’’ iteration of x assumes that the parameter from the
nth iterationln is unchanged. Therefore instead of the nomi-
nal 1-D mapf l0

(x), the estimate off (x) in Eq. ~7! uses the
map f ln

(x) which corresponds to the parameterln ,

f ~x!5 f ln
~xn!. ~9!

We estimatef ln
(xn) by linearization around the nominal

map f l0
(x):

f ln
~xn!5 f l0

~xn!1~ln2l0!
] f

]l U
~xn ,l0!

. ~10!

Combining Eqs.~7!–~10! we obtain the required parameter
perturbationdln11.

dln115ln112ln

5
f des~xn!2 f l0

~xn!2~ln2l0!] f /]lu~xn ,l0!

] f 1/]lu~xn ,l0!

.

~11!

The derivative] f /]l characterizes the rate of the static
map variations. Figure 5~a! shows the one-dimensional maps
obtained for 50 successive Poincare´ sections, for three values
of the fixed flow rate; solid circles and the dashed line belong
to the parameterl53.4531024 s21, while crosses and the
dotted line belong tol53.5531024 s21. Each time a simu-
lation with a new value ofl is started, the first intersection
with Poincare´ surface is neglected, because it is not part of
static 1-D map. The solid line depicts the cubic smoothing
spline fit for the nominal value of the fixed flow ratel0

53.5031024 s21. We estimate the derivatives] f /]l from
the equation,

] f

]l
U ~x,l0!5

f l01e~x!2 f l0
~x!

e
, ~12!

wheree56531026 s21. Figure 5~b! shows the estimates
of the derivatives] f /]l obtained from Eq.~12!. The scat-
tering of data in Fig. 5 is caused by the added white noise.
Again, we have used CUBGCV to fit the data by a smoothed
cubic spline fit. The solid line in Fig. 5~b! displays the
smoothed spline fit of] f /]l.

The direct application of the above formulas requires
random access to initial conditions, which is very difficult
and time consuming in an experiment. However, we now
present a new method of learning these quantities on-the-fly
by appropriate manipulations of a running experiment. The
dynamic rate of map variations,] f 1/]l, can be learned ex-
perimentally by the method shown schematically in Fig. 6.
The top part of Fig. 6 shows the flow rate, and the bottom
part shows the concentration of the catalystZ. We wait for
two iterates at the nominal valuel053.5031024 s21, be-
tween experimental parameter variations, to make sure that
the transients settle onto the 1-D attractor, to a high degree of
accuracy. The observed next piercing of the Poincare´ sur-

face, after a parameter variation, is the dynamics response
f 1(x). Each two-iterate time interval of fixedl(t)5l0 is
followed by a one ‘‘iterate’’ time interval ofl(t)5l06e,
where we choose the small variatione5231026 s21. The
response functionZ(t) must be read accordingly. For ex-
ample, the second maximum ofZ(t), denoted by an empty

FIG. 5. The one-dimensional maps constructed for the constant value of
control parameterl ~a! and estimates of the derivatives] f /]l ~b!. Each
data sets contain 50 successive Poincare´ sections. Crosses -l53.55
31024 s21; solid circles -l53.4531024 s21. The standard deviation of
the added noise issj50.001. Dashed lines represent smoothed cubic splines
for the data sets; the solid line in~a! illustrates smoothed map from Fig. 1;
the solid line in~b! is a smoothed cubic spline fit of all data points.

FIG. 6. A schematic representation of the determination of the map changes
due to dynamic parametric variations. The flow rate is stepwise periodically
decreased and increased around the nominal value. Empty circles represent
thex values and solid circles the function valuesf 1 of the shifted 1-D maps.

706 Chaos, Vol. 8, No. 3, 1998 M. Dolnik and E. M. Bollt



circle in Fig. 6, represents thex coordinate. Immediately
following, we setl(t)5l02e and therefore the following
maximum is thef 1(x)-coordinate~solid circle! of the per-
turbed 1-D map. After sampling this dynamic response value
f 1(x), we reset the flow rate back to the nominal value for
two reference events. This procedure can be repeated, or a
perturbation with the same amplitude but of opposite sign
can be applied, as shown in Fig. 6. By periodically repeating
this process with positive and negative perturbations, we
learn dynamic responsesf l06e

1 (x) for values ofx ergodically

scattered throughout the interval. Only the points, depicted
as empty circles~x values! and solid circles (f 1 values!, are
used to construct the perturbed 1-D maps,f l06e

1 (x).

Figure 7~a! shows the maps constructed from data gen-
erated by the method depicted in Fig. 6. One set of data
points ~squares! represents the map when the flow rate was
increased and the other set of data points represents the map
for decreased flow rate. The solid line illustrates the cubic
smoothed spline fit of the fixed flow rate at the nominal
value. The derivative] f 1/]l is estimated similarly to the
derivative] f /]l, from the difference quotient:

] f 1

]l
U ~x,l0!5

f l01e
1 ~x!2 f l0

~x!

e
, ~13!

wheree56231026 s21. The solid circles in Fig. 7~b! de-
pict the estimated derivative for decreasing flow rate and the
crosses for increasing flow rate. Both data sets represent co-
inciding dependences and we use all of the data points to
calculate the cubic smoothed spline fit, which is shown as the
solid line in Fig. 7~b!.

These technical considerations are generally necessary to
any experimental control problem in which the dynamics and
the control responses are learned only through an observed
time-series. The experimentally controlled encoding tech-
nique requires: the cubic smoothed spline fit of map from
Fig. 1, the fitted derivatives] f /]l from Fig. 5, and the fit of
] f 1/]l from Fig. 7. The grammar derived from the map
together with the smoothed fits allows us to efficiently con-
trol the symbol sequences of the chaotic oscillations using
small parameter variations.

V. ENCODING IN THE PRESENCE OF NOISE

In next two sections we describe how to encode the mes-
sage ‘‘Chaos,’’ in 7-bit ASCII binary form shown in Table
II, bit by bit, into the chaotic dynamics of the BZ reaction,
and we evaluate the success of our ‘‘arbitrary’’ message en-
coded in the presence of increasing noise amplitudes. We
also discuss techniques to improve noise resistance. We have
used several different lengths of the binary code representa-
tion of phase points~ranging from 4 bits through 8 bits! with
the conclusion that in the presence of noise, more than 6-bits
do not improve reliability. Therefore we employ the 6-bit
code representations in these simulations. Thus there is a five
iterate delay between controlling a message bit into the cha-
otic oscillations, and the observability of the bit in the most
significant position in terms of the position ofZ(t) relative to
the decision pointd. In this specific case, just as for the 4-bit
grammar, the codes with three zeros in a row are also for-
bidden for the 6-bit grammar, and all other codes are
allowed.19 Once the grammar has been determined, we can
predetermine the desired valuesf des(x), for each possible
code as the centers of the like-coded regions~see the solid
triangles in Fig. 4!. Throughout the experiments these cen-
ters of like-coded regions are used as the targets for the con-
trol mechanism.

Encoding starts at an arbitrary initial conditionx0, to
which we assign its corresponding 6-bit code
a0 .a1a2a3a4a5, where ai is either a ‘‘0’’ or a ‘‘1.’’ For

FIG. 7. The one-dimensional maps constructed from the small dynamic
variations of the control parameter~a! and estimates of the derivatives
] f 1/]k ~b!. Crosses -l is increased from the nominal valuel0 to 3.52
31024 s21; solid circles -l is decreased from the nominal valuel0 to
3.4831024 s21. There are 40 data points for each data set. Noise level and
lines notation are the same as in Fig. 5.

TABLE II. The encoded message.

ASCII
Character Decimal Binary

C 67 1000011
h 104 1101000
a 97 1100001
o 111 1101111
s 115 1110011
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example, assume that at least one of the bitsa4 anda5 is a
‘‘1.’’ Therefore the first bit of the message from Table II,
m151, is controlled into the least significant position by
targeting the appropriate bin centerf des(x). After the decimal
character is shifted one bit to the right~the Bernoulli-shift
map! and the most significant bit is forgotten, a new target
codem1 is inserted, forcing the codea1 .a2a3a4a5m1. The
center of this like-coded region, or bin, defines the desired
value f des(x0) used in Eq.~11! to estimate the required per-
turbation. The perturbation applied to the system is expected
to bring the next intersection on the Poincare´ surfacex1 near
the desired valuef des(x0). Therefore the code assigned tox1

should be identical to the targeted codea1 .a2a3a4a5m1.
Due to modeling errors, internal control errors and noise,

and external channel noise, there can be mistakes in the
transmitted bits. When and where a bit error occurs, and how
we deal with such errors, affects whether a message error
occurs. As shown in Figs. 2 and 3 some codes are assigned
to a very narrow range ofx and a few ‘‘misfits’’ may land in
an unintended region, corresponding to another code. When
the targeted and the actual code differ in other then in the
most significant bit, the difference can be corrected during
the next control step by using the proper target code
a2 .a3a4a5m1m2. That is, the solution is to target the in-
tended second iterate as if no error occurred, and if success-
ful, the previous error will be eliminated. The penalty is that
a slightly larger than usual control signal~larger than the
radius of the largest bin! may be necessary to overcome the
noise. Correction works in any case other than with errors
which cause a most significant digit difference between the
actual and the target code. Most significant bit errors repre-
sent message errors.

As mentioned above, the grammar of the attractor for-
bids more than two zeros in a row; to use only small control
signals we must respect this grammar. So if both bits of the
initial code a4 and a5 are ‘‘0’’ bits, then a nonbearing bit
bn51 must be transmitted, between message bits. The mes-
sage bitm1 is then encoded in the second controlled itera-
tion, targeting the codea2 .a3a4a5bnm1. Any time there is a
sequence of two ‘‘0’’ bits in the message, a nonbearingbn

51 bit must transmitted, and then removed by the receiver
to decode the message. The grammar can be additionally
restricted to introduce a degree of noise-resistance.

Avoiding the region near the symbol partitiond de-
creases the probability that white noise can push the signal
across the partition causing a most significant digit error. The
region aroundx5d, and its preiterates, can be avoided by
designing an appropriate further restriction on the grammar,
thus introducing a ‘‘noise-resistant gap’’.20 The idea here is
that all regions of phase space correspond to a digital code in
the symbol space, and so we avoid the region near the sym-
bol partition by never transmitting the code corresponding to
that region. For example, we note that regions near the sym-
bol partition have the 6-bit codes ‘‘0.10011’’ on the left, and
‘‘1.10011’’ on the right. So if we simply never transmit the
codes ‘‘0.10011’’ and ‘‘1.10011,’’11 then these neighbor-
hoods ofx5d will never be visited, nor will any preiterates
of that region~and so we will actually be controlling orbits
on a subset of the chaotic attractor which is a Cantor set

nonattracting chaotic saddle!. We use buffer bits to respect
the attractor’s grammar of the forbidden sequence ‘‘000,’’
and we also use buffer bits for our designed grammar to
avoid transmitting ‘‘10011’’ to introduce a degree of noise
resistance. That is, in this example, both transmitter and re-
ceiver must know that ‘‘100’’ will be followed by a buffer
bit ‘‘1’’ to avoid three zeros and yielding ‘‘1001,’’ which
will be followed by a buffer ‘‘0,’’ yielding ‘‘10010’’ to
avoid the noise resistant gap. The noise resistance in com-
municating with chaos has been studied by Bolltet al.20 who
addressed two points:~1! the noise resistance comes at the
cost of slightly slowing transmission rate of the message, due
to the extra time required to transmit extra buffer bits,~2!
more ~or less! noise resistance can be designed into an ap-
propriately designed grammar, but the trade-off is that in-
creasing noise resistance decreases the channel capacity or
transmission rate of the chaotic oscillator.

Figure 8 shows several examples of encoding of the
word ‘‘Chaos’’ in 7-bit binary ASCII characters, in the pres-
ence of noise according to Eq.~3!. The dashed line indicates
the symbol decision value—all oscillatory maxima ofZ(t)

FIG. 8. Oscillations of the Belousov-Zhabotinsky reaction controlled to
contain the message ‘‘Chaos’’ in 7-bit ASCII characters. The dashed line
indicates the decision pointd. A maximum below the line represents a ‘‘0’’
bit and above corresponds to a ‘‘1’’ bit. The bits are displayed at the top of
each figure with the decoded message. The encoding technique obeys the
grammar - after every two ‘‘0’’s in a row a mandatory nonbearing bit ‘‘1’’
~underlined! is encoded.~a! Errorless encoding with the added white noise
with standard deviationsj50.001;~b! sj50.002 - encoding without error;
~c! sj50.002 - encoding with one error.~d! s i50.004 - encoding with
multiple errors. The error bits are emphasized by solid squares.
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which are below the dashed line are read as a ‘‘0’’ bit and
maxima above the dashed line are read as a ‘‘1’’ bit. The
message is decoded by removing the first six random bitsai

and all the nonbearing bitsbn to respect the grammar. The
nonbearing bits are underlined in Fig. 8.

Figure 8~a! shows an example of errorless encoding for a
standard deviation ofsj50.001. Whensj50.002, the en-
coding is often errorless as in Fig. 8~b!, but errors are pos-
sible, as demonstrated by the case of the one error shown in
Fig. 8~c!. For sj50.004, in Fig. 8~d!, errors are more fre-
quent; encoding the word ‘‘Chaos’’ includes more than one
incorrectly encoded bit. We used identical initial conditions
in all the examples shown in Fig. 8, but the sequence of
pseudorandom numbers is different for every example.

VI. DISCUSSION

The reliability of the encoding method can be tested in
the presence of noise by repeatedly encoding the 7-bit ASCII
binary form of the message ‘‘Chaos,’’ using pseudorandom
initial conditions. Figure 9 shows probability of an error oc-
currence as a function of the noise standard deviationsj .
There are two curves depicted: the upper curve, fitting the
crosses, shows transmission trials without designing a noise
resistant gap, and the lower curve, fitting the squares, shows
trials with noise resistant gap by never transmitting ‘‘10011’’
~as well as the forbidden sequence of the attractor ‘‘000’’!.
The probability of an error occurrence is estimated from the
relative number of trials in which at least one error in the
encoded message occurs. The trials depicted in Fig. 9 give
very good estimates of the experimental noise level require-
ments for successful encoding. Forsj.0.003 at least one
error occurs essentially in every trial, forsj,0.0005 there is
very low probability of an error in encoding. We choose as

successful encoding the encoding where the error probability
is lower than 0.5. The dashed line in Fig. 9 designates the
critical standard deviationscrit with an error probability
equal to 0.5. The conclusion from the lower curve in Fig. 9 is
that by avoiding the sequence ‘‘10011’’ of the noise gap
around the symbol partition, one can improve the encoding
reliability. The dotted line shows an increasedscrit by using
the noise resistant gap, and we can see that forsj,0.0007,
there are essentially no observed errors.

To further increase reliability, there are modifications to
the encoding algorithms which can be introduced. As we
have already mentioned, one can increase the size of the
noise resistant gap around the symbol partition by using an
appropriately designed code, but at the cost of transmission
rate. Also, the recent work of Rosaet al.21 has outlined a
method to filter a noisy signal generated by ana priori
knownone-dimensional model by using hyperbolicity to di-
minish error through inverse iteration along a ‘‘probabilisti-
cally most likely path.’’ In summary, their noise cleaning
method makes use of two main ideas:~1! ~Noise! errors
which grow in unstable directions on iteration, shrink on
inverse-iteration.~2! There is no well defined inverse of a
one-dimensional-hump map, which is often two-to-one; there
are typically two branches to choose between. They resolve
this issue by choosing the branch contained within confi-
dence intervals; only one of the two alternative preiterates of
the Gaussian distribution, around a particular iterate, is sta-
tistically reasonable with a high degree of confidence. Their
iterative method has shown outstanding error correcting
abilities, but it does not apply directly to our problem, in
which we will learn the 1-D map from cubic spline interpo-
lation of experimental data. Thus there will be an unavoid-
able modeling error, so we will not have a clean model
against which to clean the message bearing signal. A pos-
sible avenue of improvement might be to adapt the filtering
technique suggested by Rosaet al. to our scenario by design-
ing a ‘‘predictor-corrector’’ type algorithm, to generate a
cleaner model.

Another method which may increase the reliability of
our encoding technique istuning. According to this method,
the centers of the codes are first preset as targeted desired
values f des(x). Then, thorough testing of the encoding
method may reveal codes sensitive to experimental noise.
For suchsensitivecodes we can estimate new, more noise
resistant targets of the desired valuesf des(x). The new tar-
gets can be further tuned by another statistical testing. We
have not pursued these possibilities at this time as our cur-
rent approach promises to be experimentally successful
while still maintaining simplicity.

In this work, we lay groundwork for experimental con-
trol of chemical chaos, with the intention to encode an arbi-
trary message into its oscillations. To successfully encode
information into chaotic oscillations of the BZ reaction we
need to suppress the experimental noise below the critical
noise level. The primary question is, can it be done? If
‘‘yes,’’ how can the noise be confined below critical levels?
We claim that the experiments to control chaos in the BZ
reaction can be successfully accomplished and that the ex-
perimental noise level can be kept below the critical value of

FIG. 9. Probability of an error occurrence when encoding the message
‘‘Chaos’’ in 7-bit binary ASCII form. The error probability is estimated for
every fixed value of the noise standard deviationsj from 100 trials using
pseudorandom initial conditions. There are two sets of trials. The top curve
~‘‘ 1 ’’ signs! tests the grammar of the attractor, with forbidden three zeros
in a row. The bottom improved curve~‘‘ h ’’ signs! includes also the gram-
mar restriction with forbidden code sequence ‘‘10011’’ to introduce a noise-
resistant gap.scrit designates the critical value of the standard deviation
corresponding to an error probability of 0.5.
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0.0015. This requires an experimental setup which maintains
the flow rate, stirring rate and temperature fluctuations at a
minimum. We can achieve this by replacing peristaltic
pumps by piston pumps, and by usage of a precisely con-
trolled synchronous motor for mixing. The method also re-
quires precise temperature control of both stock solutions
and the reaction mixture inside the reactor. There is an ex-
perimental evidence that these precautions can reduce the
fluctuations in the BZ reaction in a well mixed system to
around 0.1% (sj50.001).16 This is below our estimated
critical standard deviation value and therefore our claim, that
an experimental encoding can be successful, has historical
support.

A technical note of importance concerns a remark by
Nosticziuset al.22 who pointed out that the chaotic oscilla-
tions of the BZ reaction strongly depend on the purity of the
input reagents, mainly on the iron contents of the malonic
acid. Therefore malonic acid should be purified to obtain
reproducible results with different samples of malonic acids.

VII. CONCLUSION

We have demonstrated, by numerical simulations, that
an arbitrary message can be encoded into chaotic chemical
oscillations in the presence of white noise. The standard de-
viation of the experimental noise directly affects the number
of errors which occur during encoding. This trade-off can be
improved by introducing a noise-resistant gap. When encod-
ing contains only a very small number of errors, then it may
still be possible to guess the correct message. But a large
number of errors will strongly modify the message. This sug-
gests that even though the encoding technique will work well
in the presence of experimental noise, it is necessary to con-
fine it to an acceptable level.

In the present study we have demonstrated that informa-
tion can be encoded in the dynamical behavior of a chemical
oscillating system by forcing the system to follow a desired
trajectory, in a numerical chemical reaction model. This re-
sult is not intended to change the classical means of human
communication. But an analogy of oscillating chemical sys-
tems to biological systems suggests that living systems could
use the information bearing capabilities inherent in chaotic
dynamics. Finally, it is our hope that the techniques devel-

oped here, in the noisy setting of a chemical reaction, will
prove useful to experimentalists working on controlling sym-
bol dynamics in other chaotic media such as optical lasers,
and electronic circuits, which could serve as chaotic commu-
nication devices.
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