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We use control of chaos to encode information into the oscillations of the Belousov-Zhabotinsky
reaction. An arbitrary binary message is encoded by forcing the chaotic oscillations to follow a
specified trajectory. The information manipulating control requires only small perturbations to vary
the binary message. In this paper we extend our recent theoretical[®oltk and Dolnik, Phys.

Rev. E64, 1196(1990] by introducing a new and simplified encoding technique which can be
utilized in the presence of experimental noise. We numerically and theoretically study several
practical aspects of controlling symbol dynamics including: modeling noisy time-series, learning
underlying symbol dynamics, and evaluation of derivatives for control by observing system
responses to an intelligent and deliberate sequence of input parameter variations. All of the
modeling techniques incorporated here are ultimately designed to learn and control symbol
dynamics of experimental data known only as an observed time-series; the simulation assumes no
global model. We find that noise affects reliability of encoding information and may cause coding
errors. But, if the level of noise is confined to relatively small values, which are achievable in
experiments, the control mechanism is robust to the noise. Thus we can still produce a desired
symbolic code. However, scarce errors in encoding may occur due to rare but large fluctuations.
These errors may be corrected during the decoding process by a variation of the filtering technique

suggested by Roszt al.[Phys. Rev. Lett78, 1247(1997)]. © 1998 American Institute of Physics.

[S1054-150(08)01402-5

Recent applications of controlling chaotic dynamical sys-
tems focus on manipulation of information flow, for com-
munications, encryption, and targeting. A particularly in-
teresting possibility concerns encoding information into a
chemical system. We propose an alternative to a popular
and intuitive, but not well founded belief which is an
analogy to electronic computers, that information is
stored in a biological version of physical switching de-
vices. In contrast, an analogy between chemical systems
and biological system$ implies an interesting possibility
that living systems may store information in underlying
dynamics. In our previous work,2® we demonstrated the
possibility of encoding information into chemical chaos
utilizing a model of the Belousov-Zhabotinsky(BZ) reac-
tion. In this work, we extend and improve these methods
with the aim of successfully implementing a message into
a controlled oscillatory reaction in a “real world” noisy
laboratory environment. We have therefore included nu-
merical stochastic studies to argue that the improved
technique promises success given measurement toler-
ances within laboratory feasible levels.

I. INTRODUCTION

then strip off the commonly known chaotic signal to recover
the encoded information sign&l® The main purpose of this
technique is for encryption and secure communications. The
subject of this paper concerns the other main class of tech-
niques, based on controlling symbol dynamics, to encode a
binary message by forcing the chaotic oscillations to follow a
desired trajectory. Sensitive dependence on initial conditions
allows manipulation of the trajectory through a symbol par-
tition, and hence the corresponding binary message, using
only small parameter perturbation&>!*

An unavoidable fact of real world experiments is that
observations of a chaotic system are affected by noise. In
fact, even highly accurate, but finite precision numerical ex-
periments with chaos are profoundly influenced by noise.
Given finite numerical precision, and therefore rounding er-
rors, the presence of sensitive dependence to initial condi-
tions renders impossible any long term prediction of chaotic
oscillations. For years, this was considered to be a disadvan-
tage of chaos, but control of chaos techniques actually take
advantage of sensitive dependence to initial conditions. Ge-
nerically, the distance between two close points grows expo-
nentially with time. The implication is that long term predic-
tion is impossible because even a small error in specifying
the system states yields drastically varied results. In terms of

In recent years several methods of encoding informatiorcontrol, this means that a small and judiciously specified
into chaotic oscillators have been proposed. One class afontrol perturbation can result in a large and varied system
techniques is based on the synchronization of chaotic sysesponse.
tems between both receiver and transmitter. The receiver can In this work we demonstrate how the presence of experi-
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mental noise affects the reliability of encoding. It is rather TABLE |. Parameters used in the simulations.

evident that when increasing the noise level, the probability
of error occurrence also increases. In this paper we descrihe

Parameter Value

how our control technique copes in the case of experiments ky 4x10P dm mo'j Sj

with realistic noise levels. k 2 drrf mol * s+
. : . : ks 3x10° dm® mol™t s

Our paper is organized in the following way. In Sec. Il K 552 dn?® mol25 51

we present the Gygyi-Field modet? of the BZ reaction, ke 7% 1C° dm? mol-L -1

which is used in our numerical experiments. We introduce a Ke 0.09 dnf mol™t s7*

stochastic component to the deterministic model of the BZ k; 0.23 dn? mol™t s7t

600/9

reaction and thus we create a numerical analog of the real @
experimental system. In Sec. lll we review the symbol dy- ﬁ 8(;213 | ame
namics description of the one-dimensional map. We also B° 0.25 ::gl drr:,3
show how the one-dimensional map can be recovered from H 0.26 mol dni3
the scattered noisy data. Then we describe a simple method c 8.33x1074 mol dm3
of learning the observed grammar, based on revealing all Xo 0 mol dm 3
observed codes. In Sec. IV we present the technique to con- Z, 0 mol dm®
V, 0 mol dm3

trol the symbolic code sequences. Control of symbol dynam-
ics requires determination of the maps responses due to pa-
rameter perturpaﬂons. we demonst.rate how the map Change%uameterko denotes the flow rate and in this study we
can be determined from the experiments, even in the pres;

. ) . choose it to be the adjustable control parameter, written as

ence of noise. Then in Sec. V we present numerical experix . =

ments in which we have encoded a short message in th% nommall val_ug of the controll paramete)xo—3.5
X 10 % s 1 is within the widest chaotic window of the low

bresence of NOISE. By increasing the _s;Fandarq deviation cHow rate parameter bifurcation diagrafiTo control symbol
the imposed noise, we search for a critical noise level. We

demonstrate that for the experimental noise confined belovflsgifgries’ we apply small perturbations to the control pa-

this critical value, the encoding technique works in a reliable Previously, we have employed the mod#), with pa-
manner. .
rameters from Table |, to demonstrate the encoding

techniqué In the present study, we introduce small fluctua-
tions to one of the fixed parameters to demonstrate reliability
of the encoding technique in the presence of noise. In a real

A simple model of the BZ reaction in a continuous-flow chemical experiment in a flow reactor, there are several pos-
stirred-tank reactor(CSTR suggested by Gygyi and  sible and unavoidable sources of experimental noise, includ-
Field'? consists of three ODE's: ing imperfect mixing, flow rate fluctuations and temperature
fluctuations'® It is cumbersome to introduce every source of
noise into the model. Rather, for simplicity, we assume that
only one parameter is affected by noise and all other param-
eters remain fixedbut affected due to coupling

We allow parameteA to experience noise according to
the equation,

A=RAo(1+&n), ()

(1) WhereAq is the average value of paramet®r and &, is
Gaussian white noise with zero mean value and a standard
deviation ofo,. Our map based simulation assumes that the
noise randomly affects the parameterat the moment of

Il. MODEL OF THE BZ REACTION

X 2 2 1.5
Tr =~ KiHXYF KoAH?Y — 2kgX?+ 0.5 ky(HA)

X (C—Z)XP5—KksXZ]+ ko(Xo— X),

dz 1.5 0.5
4t =Ka(HA)IHC = 2)X 5~ ksXZ— akeV'Z

— Bk7BZ+ko(Z,—2),

dv , ,
Tp = 2KHXY+ KoAHY +koX? — akeV Z

+ko(Vo—V), intersection with the Poincarsurface, and thaA is held
constant during the time of flight between piercings. To ac-
where . e : !
curately integrate the stiff differential equations, Eb), we
akgZV @ use the 4th order modified semi-implicit Runge-Kutta
= leX+k2AH2+k0' method, with automatic step length control.

X, Z, V andY denote the concentrations of HByOC&' ™",

IlI. ONE-DIMENSIONAL MAPS AND THEIR SYMBOLIC

bromomalonic acid and Br, respectively. The subscript CODES

The paramete represents the concentration of HRt® is

the concentration of malonic acid, afdis the total concen-
tration of the catalysC=[Ce*"]+[Ce®"]. The values of

0” indicates the concentrations on the input of the reactor.

Rather than directly studying trajectories in the full
three-dimensional phase space, we analyze the sequence of
maxima of Z(t), which can be considered to be a special
case of the Poincarsurface of section mapping technique.

these parameters, as well as the kinetic parameters demotedThe sequence of successive oscillatory maxima of the noise-
and B and the rate constanks—kg, are given in Table I. The free model of the BZ reaction defines a map,
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FIG. 2. Symbolic binary codes produced by three iterations of the cubic

18 smoothed spline map. Symbolic codes are Gray ordered along the vertical
axis. Dashed line illustrates the decision palntEmpty code levels repre-
sent the forbidden codes 0.000, 0.001 and 1.000.

0 14
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FIG. 1. The one-dimensional m&ffx) for the nominal value of control
parametei ,=3.5x 10" s 1. The data set contains 200 successive inter-

sections with the Poincaurface. Data are obtained from simulations with tions x. . We call the first bit of am-bit symbol sequence
added Gaussian white noise with the standard deviatipn0.001. The ! X - ' ! It sy qu ;

solid line depicts the cubic smoothing spline fit calculated by the general the most significant bit” and the last bit, “the least signifi-
cross validation metho(tRef. 17. cant bit.”

Figure 2 shows the 4-bit symbol sequences produced by
initial conditions plus their three successive iterations of the
cubic smoothing spline map. The codes are displayed along

Xn+1:f>\o(xn)' (4) the vertical axis according to the Gray-code ortfelt is
vident that the symbolic codes are Gray ordered for gradu-
ly increasing initial conditionxg from X,y 10 Xpmax- The
ray ordering of symbol sequences has the important prop-
erty that the binary representations, of any two adjacent
codes, differ by exactly one bit, which is key to the equiva-
lence between the symbol dynamics, and the dynamics in the

noise-free map to which noise has been added, but we cdipase space. This property i§ important for gncoding mes-
recover an approximation of this underlying noise-free maps_ages !nto the symbol dynamics t_hrough sensitively co ntrol-
by a cubic spline-based least-squares fitting procedure. whing trajectories of the corresponding phase space varigble
employ the procedure named CUBGEMo fit the noisy 25 W€ present below. N . .
data points by cubic smoothing spline. The degree of An important technical issue arises from the nonexist-

smoothing is chosen to minimize the generalized cross vali€Nce of some codes, as not all 4-bit binary codes are pro-
dation. To account for unequally spaced data, which is disduced by the 1-D map. We observe that for the parameter

tributed according to the invariant measure, we use nonun/lues chosen, and in the 4-bit representation, the codes

form weightsw; defined, f‘0.0QO,” “0.001" and “;.000” are not present; these levels
in Fig. 2 are unoccupied. We can take this directly as the

which is truly one dimensional after the transients have®
settled. However, in the presence of noise, as modeled b
Eq. (3), the model Eq(1) generates scattered data points of
the “next-maxima map,” shown in Fig. 1. This picture
agrees qualitatively with experimental dafal® Given

purely experimental data, we will not know the underlying

[Xis1—Xi_1 grammar of the symbol dynamics, but in this special case,
Wi= T 2(AX) (5 we can reduce the grammar. These three codes have a 3-bit
pattern in common: each includes three “0” bits in a row.
where(AXx) is the average spacing: Therefore this is thebservedgrammatical restriction on the
1 Nt Xp— X1 opservedsymbol dynamics_. Ir_1 terms.of the phase vgriable,
(Ax)= mizl (Xip1— X)) = =L (6)  this means that the chaotic time series never contains three

successive oscillatory maxima with<<d. To achieve our

We have tested several other weighting functions, including©@! of communicating a digital messageing only small
uniformly weighted data, but the weights definition, £g), ~ cONtrols we must respect this grammar.

produced the best smoothed fit of the noisy data, in compari-
son to the noise-free one-dimensioi&D) map? IV. CONTROLLING THE SYMBOLIC CODE

To represent the symbolic dynamics of the map, we asSEQUENCE

sign a binary code, for every initial conditio. The maxi- In this section, we describe how to encode information
mum of the cubic smoothing spline defines the decision poininto chaotic oscillations by controlling corresponding sym-

d. Forx,=<d we designate the first bit of the symbolic code bolic codes, and we extend our previous metRddsallow

as “0,” and for x,>d, we designate the first bit as “1.” A for the experimentally feasible situation in whichoisy
decimal point charactdr) separates the first bit of the initial data and the system responses may only be sampled on-the-
state from successive bits which represent successive iterfly. We also describe the encoding technique using the cubic
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6 L7 , . . Q011 ) FIG. 4. A schematic representation of the encoding technique—enlargement
6 d 10 x [uM] 14 18 of the smoothing spline map. Two examples of shifting “0” in the least

important bit when the natural iteration would produce shifts in a “1” bit.
The centers of the symbolic codésolid triangle$ are the desired values.

ot-dashed lines represent the desired “shifted” 1-D mdysg) are the
uncontrolled iterations antl.{X) are the desired iterations.

FIG. 3. Cubic smoothing spline of the mé&fx) divided into domains of the
identical 5-bit symbolic codes. The solid lines indicate the map section
with symbolic codes containing a bit “1” in the least significant position,
while dashed line indicate a bit “0” in the least significant position. Paint
shows the decision point. The diagoridash-doted linecrosses the map at
the domain with symbolic code “1.1111.” minimize the effect of noise, we target the code centers,

which are depicted by small triangles in Fig. 4. Similarly in

. o . . . the jth iteration, when “1.101” is assigned to the uncon-
smoothed spline maf(x) divided into sections with the olled iterationf, (x;), a “0” bit can be encoded into the
identical symbolic codes. Figure 3 shows the assignment ot{ o Nor 7 O
5-bit symbolic codes to corresponding sections of the 1-geast significant position by application of a small perturba-

map. Note that, except in the vicinity of the symbol partition, ion- In this case, the adjacent coded region with a 0 bit |n
there is always a region with a “1” bit in the least significant f[he least significant p_osmon, ie., the reglon.coded 1.100
position adjacent to a region with a “0” bit in the least 'S located below the like-coded region of points correspond-

significant position, andiice versa This follows from the N9 1O ““1-101-” Thiﬁ means that the 1-D map must be per-
Gray ordering of codes found on the interval, which has thdurbed “downward,” as illustrated by the double dot-dashed

additional property that two adjacent regions with differing In€- , , _
bits in least significant positions must agree in all the other ~ ENcoding an arbitrary message requires a sequence of

bits. The equivalence between the dynamics of the phas%ma” variations to the symbol representations, which corre-

space variable in the topology of the interval, and the dynamSPONds o & sequence of displacemehfgx). Let Af(x)

ics of the shift on symbol sequences in the symbol spacdenote the difference between the desired iterafigdx)
topology, is in terms of a semiconjugaéy continuous and (corresponding to a desired bi&nd the uncontrolled itera-

onto change of coordinatesThis is due to the Gray-code fon f(X):

ordering of the symbolic codes on the unit interval, as indi- A f(x)="f 44 x) — f(x). (7
cated by the monotone nondecreasing coding function in Fig. . .
2. In fact, the lack of any observed attracting periodic set on Theq as presented in our brevious wéitke formula for
the interval is evidence of a faithful representation of thethe required parameter perturbation is
chaotic oscillations in the symbol dynamics, i.e., a full con- Af(x)
jugacy. Thus a small perturbation of the map in the phase

A= ——————.
- : : : - L (ot on) |
variable representation results in encoding a desired bit into (x:Ao)

the Iez_ist significant position in the symbol sequence reprerpq partial derivativeaf}/oN represents the “dynamic
sentation. _ _ shift” of the one-dimensional map. The original system is
Figure 4 shows a schematic representation of the contryescribed by the three ODE’s, and there are transient effects
technique on a blow-up of the 1-D map. Letbe theith  connected with parameter perturbations. Our simulations
iterate on the surface of section, and, for example, we wany;ith the noise free systémevealed that the intersection with
to encode a “0” bit into the least significant position of the iha poincaresurface does not correspond to a perturbed 1-D
4-bit symbolic representation of the next iterate. In this Casémap, immediately following a parameter perturbation. In-
the ungon'tr'olled |tera.1t'|on causes the “1” bit to shift into .the stead, the response is significantly larger than predicted by
least significant position becausg (x;) has the symbolic e corresponding 1-D model. However, if the control pa-
code “0.111.” However, the encoding of a “0” bit into the rameter is fixed at the new parameter value, then after the
least significant position of the symbolic representation refirst intersection, all subsequent intersections with the Poin-
quires a small controlling parameter perturbation. The percare surface settle onto the attractor of the perturbed 1-D
turbation S\ must cause a variation in the iteration of the map. To distinguish between the transiéfitst) response
1-D mapf, ;s (X) from the symbolic region “0.111" to  and the transient-fresteady response, we use notatidh
the adjacent “0.110” region. This “upward" shift in the andf, respectively. We denote the dynamic map fiyx),
one-dimensional map is illustrated by the dot-dashed line. Tand the static map bf/(x).

®
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The fact, that an arbitrary message requires controlling
parameter perturbations during every iteration, is an impor-
tant technical issue which prevents us from returning to the
nominal parameter valug,. Instead, therf+ 1)th “uncon-
trolled” iteration of x assumes that the parameter from the
nth iteration\ , is unchanged. Therefore instead of the nomi-
nal 1-D mapf, (x), the estimate of(x) in Eq. (7) uses the
mapfxn(x) which corresponds to the paramelgy,

F(x) =", (X). 9)

We estimatefkn(xn) by linearization around the nominal
mapfko(x):

f(x) ([uM]

of 6 10 x [uM] 1 18
— N ) — 0.5
f, O =Fr () + (=X (10 ) 4
(Xp Ng)
Combining Eqs(7)—(10) we obtain the required parameter 0.4
perturbationd\ 1.
OMn+1= N1~ A <037
D
=
:fdes(xn)_f)\o(xn)_()\n_)\o)‘?f/’”\hxn,)\o) (-00.2 4
I ON|(x, ag)
The derivativedf/d\ characterizes the rate of the static ‘e
1 1 1 -di 1 0 1 1 Il 1
map variations. Figure(8) shows the one-dimensional maps 3 10 x [uM] 14 s

obtained for 50 successive Poincagetions, for three values
of the fixed flow rate; solid circles and the dashed line belong:G. 5. The one-dimensional maps constructed for the constant value of
to the parametex =3.45<10 # s 1, while crosses and the control parametek (a) and estimates of the derivative$ /o\ (b). Each
dotted line belong ta = 3.55% 104 s ! Each time asimu- data sets contain 50 successive Poincseetions. Crosses i =3.55

H H . . . . —4 1. H i = —4 1 e
lation with a new value of is started, the first intersection 10 ' S " solid circles -A=3.45¢10" s ". The standard deviation of

. . . . . fthe added noise ie,=0.001. Dashed lines represent smoothed cubic splines
W|th_ Poincaresurface is _neglected, _because it IS not part_ O¥or the data sets; the solid line {a) illustrates smoothed map from Fig. 1;
static 1-D map. The solid line depicts the cubic smoothinghe solid line in(b) is a smoothed cubic spline fit of all data points.
spline fit for the nominal value of the fixed flow ratg,
=3.50x10 * s 1. We estimate the derivatived/J\ from

the equation, face, after a parameter variation, is the dynamics response

f1(x). Each two-iterate time interval of fixed(t)=X\, is
of frgre(¥) =5 (%) followed by a one “iterate” time interval of (t)=\y* €,
NN T T o (12 where we choose the small variatier2x107® s™%. The
response functiorZ(t) must be read accordingly. For ex-

- -6 o1 ;
wheree=+5x10"° s, Figure §b) shows the estimates ample, the second maximum #{t), denoted by an empty

of the derivativesif/g\ obtained from Eq(12). The scat-
tering of data in Fig. 5 is caused by the added white noise.
Again, we have used CUBGCYV to fit the data by a smoothed
cubic spline fit. The solid line in Fig. (6) displays the
smoothed spline fit off/J\.

The direct application of the above formulas requires
random access to initial conditions, which is very difficult
and time consuming in an experiment. However, we now
present a new method of learning these quantities on-the-fly
by appropriate manipulations of a running experiment. The
dynamic rate of map variationgf!/d\, can be learned ex-
perimentally by the method shown schematically in Fig. 6.
The top part of Fig. 6 shows the flow rate, and the bottom '

part shows the concentration of the catalgstwe wait for 0 200 ti?r(l)g [s] 600 800
two iterates at the nominal valug,=3.50<10"% s 1, be-

tween experimental parameter variations, to make sure th {
the transients settle onto the 1-D attractor, to a high degree Qﬁcreased and increased around the nominal value. Empty circles represent

accuracy. The observed next piercing of the PoinGane  thex values and solid circles the function valu@sof the shifted 1-D maps.

G. 6. A schematic representation of the determination of the map changes
e to dynamic parametric variations. The flow rate is stepwise periodically
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18 == TABLE Il. The encoded message.

N (a)
ASCII
Character Decimal Binary
C 67 1000011
E h 104 1101000
e a 97 1100001
= (o] 111 1101111
%: S 115 1110011
1 fL . (x)—f, (X)
of No+e o
- = 13
AN | XM € ' (

wheree=+2x10°¢ s The solid circles in Fig. (b) de-
pict the estimated derivative for decreasing flow rate and the
crosses for increasing flow rate. Both data sets represent co-

081 inciding dependences and we use all of the data points to
calculate the cubic smoothed spline fit, which is shown as the
<06 solid line in Fig. 1b).
;\S These technical considerations are generally necessary to
(8] 04l any experimental control problem in which the dynamics and
’ the control responses are learned only through an observed
time-series. The experimentally controlled encoding tech-
02t nigue requires: the cubic smoothed spline fit of map from
Fig. 1, the fitted derivativegf/d\ from Fig. 5, and the fit of
0 , ) , aft/on from Fig. 7. The grammar derived from the map

6 10 x [uM] 14 18 together with the smoothed fits allows us to efficiently con-
trol the symbol sequences of the chaotic oscillations using

FIG. 7. The one-dimensional maps constructed from the small dynami(‘sma” parameter variations

variations of the control parametéa) and estimates of the derivatives
afY 9k (b). Crosses -\ is increased from the nominal valug, to 3.52

X10 % s1; solid circles A is decreased from the nominal valug to
3.48<107* s L. There are 40 data points for each data set. Noise level an0/. ENCODING IN THE PRESENCE OF NOISE

lines notation are the same as in Fig. 5. . .
In next two sections we describe how to encode the mes-

sage “Chaos,” in 7-bit ASCII binary form shown in Table

I, bit by bit, into the chaotic dynamics of the BZ reaction,

and we evaluate the success of our “arbitrary” message en-
circle in Fig. 6, represents the coordinate. Immediately coded in the presence of increasing noise amplitudes. We
following, we set(t)=Ao— € and therefore the following also discuss techniques to improve noise resistance. We have
maximum is thef(x)-coordinate(solid circle of the per- used several different lengths of the binary code representa-
turbed 1-D map. After sampling this dynamic response valugion of phase point§ranging from 4 bits through 8 bitsvith
f1(x), we reset the flow rate back to the nominal value forthe conclusion that in the presence of noise, more than 6-bits
two reference events. This procedure can be repeated, ord® not improve reliability. Therefore we employ the 6-bit
perturbation with the same amplitude but of opposite sigrfode representations in these simulations. Thus there is a five
can be applied, as shown in Fig. 6. By periodically repeatingterate delay between controlling a message bit into the cha-
this process with positive and negative perturbations, wétic oscillations, and the observability of the bit in the most
learn dynamic reSponséﬁoie(X) for values ofx ergodically ~ Significant position in terms of the position 4t) relative to

scattered throughout the interval. Only the points, depicteéihe decision poind. In th's specific case, just as for the 4-bit
. S 1 grammar, the codes with three zeros in a row are also for-
as empty circlegx values and solid circles {~ values, are

bidden for the 6-bit grammar, and all other codes are
used to construct the perturbed 1-D maﬁs(),te(x). allowed?® Once the grammar has been determined, we can

Figure 1a) shows the maps constructed from data genpredetermine the desired valués.{X), for each possible
erated by the method depicted in Fig. 6. One set of datgode as the centers of the like-coded regitsee the solid
points (squares represents the map when the flow rate wastriangles in Fig. 4 Throughout the experiments these cen-
increased and the other set of data points represents the mafs of like-coded regions are used as the targets for the con-
for decreased flow rate. The solid line illustrates the cubiarol mechanism.
smoothed spline fit of the fixed flow rate at the nominal  Encoding starts at an arbitrary initial conditioq, to
value. The derivative?f!/o\ is estimated similarly to the which we assign its corresponding 6-bit code
derivative of/ o\, from the difference quotient: ag.a,a,a3a,4a5, Wherea; is either a “0” or a “1.” For
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example, assume that at least one of the djtendasg is a (a)  CT hl alo

“1.” Therefore the first bit of the message from Table Il 1010111001001 111010010 100100L 10111 ] 11001
m;=1, is controlled into the least significant position by S5

targeting the appropriate bin cenfgg{x). After the decimal = ﬁ ﬂ A A ﬂ
character is shifted one bit to the rigtthe Bernoulli-shift N10j ll ll“l | ”J ““J “I

map and the most significant bit is forgotten, a new target ) w WWUUUUWW \;\MWU wwwwwum

codem, is inserted, forcing the code; .a,azasasm;. The

center of this like-coded region, or bin, defines the desired (b) 101011}10010%111;1101(})10@!1100?0011}110(1)111I1110§1_11
value f g{Xo) used in Eq(11) to estimate the required per- s

turbation. The perturbation applied to the system is expected §

to bring the next intersection on the Poincarefacex, near Ew- “l l IM A A l A l l
the desired valuéy.{Xg). Therefore the code assignedxtp | | i A

should be identical to the targeted caalg a,azazasm;. 5] wwwwwwwwwww UUUUW

Due to modeling errors, internal control errors and noise,

and external channel noise, there can be mistakes in the (C) 101011}10010(:0111{1101(1)10_1_0!1100?00_1_1}110?111!1010051_11
transmitted bits. When and where a bit error occurs, and how =15 i
we deal with such errors, affects whether a message error §
occurs. As shown in Figs. 2 and 3 some codes are assigned Niofl | |, I ”I AL L lll
to a very narrow range of and a few “misfits” may land in w w WUUW WU WUUU
an unintended region, corresponding to another code. When 5 . . !
the targeted and the actual code differ in other then in the (d) Cl hl al/ 1 S
most significant bit, the difference can be corrected during 010131001001 110100101100L00L G101 110100111
the next control step by using the proper target code 515-
a,.azazasm;m,. That is, the solution is to target the in- =
tended second iterate as if no error occurred, and if success- N10; l um “ | u“ | M lll
ful, the previous error will be eliminated. The penalty is that W\MM W UMUU

54

a slightly larger than usual control signdarger than the

radius of the largest bjrmay be necessary to overcome the
noise. Correction works in any case other than with erroric. 8. Oscillations of the Belousov-Zhabotinsky reaction controlled to
which cause a most significant digit difference between théontain the message “Chaos” in 7-bit ASCII characters. The dashed line

PN ; indicates the decision poiat A maximum below the line represents a “0”
actual and the target code. Most Slgmflcant bit errors Iremebit and above corresponds to a “1” bit. The bits are displayed at the top of

sent messag_e errors. each figure with the decoded message. The encoding technique obeys the
As mentioned above, the grammar of the attractor for-grammar - after every two “0”s in a row a mandatory nonbearing bit “1”

bids more than two zeros in a row; to use only small Contro|(qnder|ined is enc_od_ed(a) Errorless encoding with the 'adde.d white noise
signals we must respect this grammar. So if both bits of thég‘é')th(ritjgfjgég qe;’:‘ctl)odnirrf;mﬁlggtg :f;(%)ogzi:' gg%id'_ngemé?ﬁ; S
initial code a, and a5 are “0” bits, then a nonbearing bit nytiple errors. The error bits are emphasized by solid squares.
b,=1 must be transmitted, between message bits. The mes-
sage bitm, is then encoded in the second controlled itera-
tion, targeting the code,.azasasb,m;. Any time there is a nonattracting chaotic saddleNe use buffer bits to respect
sequence of two “0” bits in the message, a nonbeatiyg the attractor's grammar of the forbidden sequence “000,”
=1 bit must transmitted, and then removed by the receiveand we also use buffer bits for our designed grammar to
to decode the message. The grammar can be additionalavoid transmitting “10011” to introduce a degree of noise
restricted to introduce a degree of noise-resistance. resistance. That is, in this example, both transmitter and re-
Avoiding the region near the symbol partitiath de-  ceiver must know that “100” will be followed by a buffer
creases the probability that white noise can push the signdlit “1” to avoid three zeros and yielding “1001,” which
across the partition causing a most significant digit error. Thavill be followed by a buffer “0,” yielding “10010” to
region aroundx=d, and its preiterates, can be avoided byavoid the noise resistant gap. The noise resistance in com-
designing an appropriate further restriction on the grammammunicating with chaos has been studied by Beilal2° who
thus introducing a “noise-resistant gap® The idea here is addressed two point$l) the noise resistance comes at the
that all regions of phase space correspond to a digital code itost of slightly slowing transmission rate of the message, due
the symbol space, and so we avoid the region near the synte the extra time required to transmit extra buffer bi®),
bol partition by never transmitting the code corresponding tanore (or less noise resistance can be designed into an ap-
that region. For example, we note that regions near the synpropriately designed grammar, but the trade-off is that in-
bol partition have the 6-bit codes “0.10011" on the left, and creasing noise resistance decreases the channel capacity or
“1.10011” on the right. So if we simply never transmit the transmission rate of the chaotic oscillator.
codes “0.10011” and “1.10011,*! then these neighbor- Figure 8 shows several examples of encoding of the
hoods ofx=d will never be visited, nor will any preiterates word “Chaos” in 7-bit binary ASCII characters, in the pres-
of that region(and so we will actually be controlling orbits ence of noise according to E). The dashed line indicates
on a subset of the chaotic attractor which is a Cantor sethe symbol decision value—all oscillatory maxima oft)

0 ' 1000  time [s] 2000
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1.0 successful encoding the encoding where the error probability
is lower than 0.5. The dashed line in Fig. 9 designates the
critical standard deviatioro®™ with an error probability
equal to 0.5. The conclusion from the lower curve in Fig. 9 is
that by avoiding the sequence “10011” of the noise gap
around the symbol partition, one can improve the encoding
reliability. The dotted line shows an increase®" by using

the noise resistant gap, and we can see thatrfer0.0007,
there are essentially no observed errors.

To further increase reliability, there are modifications to
the encoding algorithms which can be introduced. As we
have already mentioned, one can increase the size of the
noise resistant gap around the symbol partition by using an
' _ ' appropriately designed code, but at the cost of transmission
0 0.001 o 0002 5 - 0.003 rate. Also, the recent work of Roset al?! has outlined a

> method to filter a noisy signal generated by anpriori
FIG. 9. Probability of an error occurrence when encoding the messagkNownone-dimensional model by using hyperbolicity to di-
“Chaos” in 7-bit binary ASCII form. The error probability is estimated for minish error through inverse iteration along a “probabilisti-

every fixed value of the noise standard deviatipnfrom 100 trials using caIIy most Iikely path.” In summary their noise cleaning
pseudorandom initial conditions. There are two sets of trials. The top Curv?’nethod makes use of two main idée(&) (Noise errors
(* +" signs) tests the grammar of the attractor, with forbidden three zeros

in a row. The bottom improved curvé (1" signs) includes also the gram-  Which grow in unstable directions on iteration, shrink on
mar restriction with forbidden code sequence “10011” to introduce a noise-inverse-iteration(2) There is no well defined inverse of a
resistant gapo™ designates the critical value of the standard deviation one-dimensional—hump map, which is often two-to-one: there
corresponding to an error probability of 0.5. are typically two branches to choose between. They resolve
this issue by choosing the branch contained within confi-
bit ar]ddence intervals; only one of the two alternative preiterates of
ethe Gaussian distribution, around a particular iterate, is sta-

message is decoded by removing the first six randomabits tistically reasonable with a high degree of confidence. Their
and all the nonbearing bits, to respect the grammar. The iterative method has shown outstanding error correcting

nonbearing bits are underlined in Fig. 8. abi_lities, buF it does not apply directly to our _prot_>|em, in

Figure §a) shows an example of errorless encoding for a¥hich we will learn the 1-D map from cubic spline interpo-
standard deviation of;=0.001. Wheno,;=0.002, the en- lation of experlmental data. Thgs there will be an unavoid-
coding is often errorless as in Fig(t, but errors are pos- aPle modeling error, so we will not have a clean model
sible, as demonstrated by the case of the one error shown #fainst which to clean the message bearing signal. A pos-
Fig. 8(c). For 0,=0.004, in Fig. &), errors are more fre- sible avenue of improvement might be to adgpt the flllterlng
quent; encoding the word “Chaos” includes more than ongl€chnique suggested by Raeteal. to our scenario by design-
incorrectly encoded bit. We used identical initial conditionsi"g & “predictor-corrector” type algorithm, to generate a
in all the examples shown in Fig. 8, but the sequence ofleaner model.

pseudorandom numbers is different for every example. Another method which may increase the reliability of
our encoding technique tsining According to this method,

the centers of the codes are first preset as targeted desired
values f4{X). Then, thorough testing of the encoding
The reliability of the encoding method can be tested inmethod may reveal codes sensitive to experimental noise.
the presence of noise by repeatedly encoding the 7-bit ASCFor suchsensitivecodes we can estimate new, more noise
binary form of the message “Chaos,” using pseudorandonresistant targets of the desired valdgs{x). The new tar-
initial conditions. Figure 9 shows probability of an error oc- gets can be further tuned by another statistical testing. We
currence as a function of the noise standard deviatipn  have not pursued these possibilities at this time as our cur-
There are two curves depicted: the upper curve, fitting theent approach promises to be experimentally successful
crosses, shows transmission trials without designing a noisehile still maintaining simplicity.
resistant gap, and the lower curve, fitting the squares, shows In this work, we lay groundwork for experimental con-
trials with noise resistant gap by never transmitting “10011” trol of chemical chaos, with the intention to encode an arbi-
(as well as the forbidden sequence of the attractor “000” trary message into its oscillations. To successfully encode
The probability of an error occurrence is estimated from thenformation into chaotic oscillations of the BZ reaction we
relative number of trials in which at least one error in theneed to suppress the experimental noise below the critical
encoded message occurs. The trials depicted in Fig. 9 giveoise level. The primary question is, can it be done? If
very good estimates of the experimental noise level require“yes,” how can the noise be confined below critical levels?
ments for successful encoding. Feg>0.003 at least one We claim that the experiments to control chaos in the BZ
error occurs essentially in every trial, fof.<<0.0005 there is  reaction can be successfully accomplished and that the ex-
very low probability of an error in encoding. We choose asperimental noise level can be kept below the critical value of
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which are below the dashed line are read as a “0”
maxima above the dashed line are read as a “1” bit. Th

VI. DISCUSSION
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0.0015. This requires an experimental setup which maintaineped here, in the noisy setting of a chemical reaction, will
the flow rate, stirring rate and temperature fluctuations at @rove useful to experimentalists working on controlling sym-
minimum. We can achieve this by replacing peristaltichol dynamics in other chaotic media such as optical lasers,
pumps by piston pumps, and by usage of a precisely corand electronic circuits, which could serve as chaotic commu-
trolled synchronous motor for mixing. The method also re-nication devices.
quires precise temperature control of both stock solutions
ano! the reactl_on mixture inside the reac_tor. There is an X3 CKNOWLEDGMENTS
perimental evidence that these precautions can reduce the
fluctuations in the BZ reaction in a well mixed system to This work was supported by the National Science Foun-
around 0.1% &= 0.001)*® This is below our estimated dation Grant No. CHE-9615834 to M. D., and by the Army
critical standard deviation value and therefore our claim, thaResearch Labs and by the National Science Foundation
an experimental encoding can be successful, has historic&8rant No. DMS-9704639 to E.M.B.
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