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Abstract. Targeting control of chaos is concerned with taking advantage of sen-
sitive dependence to initial conditions to coax a dynamical system to following a
desirable trajectory. In other words, it is taking advantage of the butterfly effect so
that the rich spectrum of possible trajectories embedded within a chaotic attractor
can be selected with extremely small energy input. We review historical and pop-
ular approaches which fall under this general area in an attempt to reveal these
techniques in a useful manner for applied scientists.

1 Introduction: Is “Controlling Chaos” an Oxymoron?

Over many years, chaos has been shown to be an interesting and even com-
mon phenomenon in nature. Chaotic systems are characterized by two defin-
ing properties: 1) Sensitive Dependence to Initial Conditions, 2) Transitiv-
ity' [25,26]. Chaos has been shown to exist in a wide variety of settings:
in fluid dynamics such as Raleigh-Bernard convection, in chemistry such as
the Belousov-Zhaobitinsky reaction, in nonlinear optics in certain lasers, in
celestial mechanics, in electronics such as Chua’s circuit, in the flutter of an
overdriven airplane wing, some models of population dynamics, and likely in
meteorology, physiological oscillations such as certain heart rhythms as well
as brain patterns. A complete list of natural systems which can potentially
become chaotic would be too large to publish here. Nonetheless, chaos was
not considered a desirable property in engineering control practice.

In 1990, Ott, Grebogi, and Yorke [2] (OGY) published a paper which
most importantly, to this discussion, served as a case study which dispelled
the paradigm that chaos is undesirable. The answer to, “Why Chaos,” is this:
in [2], the authors showed that any unstable periodic orbit of the system can
be stabilized with small energy feedback control, and since a chaotic attractor
is expected to be dense with periodic orbits, there is an arbitrarily rich array
of different dynamic behaviors to choose amongst, already built into such a
system, all accessible via small energy inputs.

The OGY technique essentially stabilizes an unstable periodic orbit by
a specialized version of the pole-placement technique [3] applied to the lin-
earized system, when trajectories have already tracked closed to the to-be

! Transitivity is equivalent to the statement that there exists a dense orbit.
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stabilized orbit. Ergodicity is relied upon to ensure that such close encoun-
ters will occur. Since waiting times to apply the feedback control can be very
long,? the next obvious question is how does one shorten the waiting time.
This leads to the targeting problem. In a sense, the OGY solution to the
targeting problem is ergodicity plus time.

The initial surprise with the oxymoron of the phrase “controlling chaos”
comes from the fact that while a chaotic system is impossible to predict
in the long run, it still arises in a deterministic system, which is therefore
predictable in the short run. The short term evolution is deterministic, pre-
dictable, and controllable. In Fig. 1, we see the evolution of two initially very
close initial conditions. At first their evolutions are close and predictable, a
consequence of the usual Lipschitz continuity result that output of such a
differential equation is continuous with respect to initial conditions [4]. In
the long run, we see that the two trajectories are quite different; this is the
numerical experiment that lead E. Lorenz to the historically important ob-
served problem of sensitive dependence to initial conditions when predicting
the weather. Now, considering the exponential growth rate of such errors from
an optimistic standpoint, a vanishingly small energy input has the potential
to yield a wide range of outcomes. The problem of programming when and
how much those perturbations should be applied is the targeting problem.
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Fig. 1. Sensitive dependence to initial conditions in the famous Lorenz equations
1], £ =10(y — ),y = ©(28 — z) —y, 2 = xy — (8/3)z. Shown is the evolution of the
z-time series from two nearby initial conditions.

2 Statement of the Targeting Problem

We formulate the targeting problem in terms of a discrete-time system. Let,

Zp41 = f,\(Zn), (1)

2 See [2,3] for explicit formulation of the scaling of expected wait time as a function
of perturbation energy, for the map formulation of the problem
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where z € R™ is the phase-space variable, and A € RP are adjustable control
variables. Later in the chapter, we will discuss continuous-time systems in
terms of Poincaré section, to generalize the following techniques.

Suppose at time zero the initial state zg = a, but we wish to bring the
system to (near) z; = b as “quickly” as possible, and subject to small energy
input. The point b may for example be one iterate of a periodic orbit.

We have shown [29] that a general formulation of the targeting problem
that can then be adapted for stabilization by feedback control in a differential
equation is to find a “good” e-chain orbit. See Fig. 12.

e Define an e-chain from a to b as a set of points {z;}", such that,

ziy1 = f\(2;) + €, (2)
where
lei] <e, (3)

are the sequence of (small) errors, zg = a, and z,, € N.(b).

Here the notation N.(b) = {y : |[b—y| < €} denotes an e-neighborhood of b.

The reason for this formulation is that an e-chain can be stabilized as
a sequence of two-point boundary value problems which are expected to be
computably solvable when € is small; see Chapter 5 for more discussion on
this point. Whereas, the full two-point boundary value problem of a fast-
transporting true orbit (¢ = 0) would be hard for long time, we will effectively
break the problem into a sequence of short and easy such problems.

Note that without an objective function to qualify the word “good”, we
might choose any transporting orbit. The transitivity part of the definition
of chaos implies infinitely many n such that a € £~ (N,(b)), but n is usually
large if € is small.

Objective: fast and small energy A reasonable objective function should
balance short time, with low energy. Omitting either yields trivial extremes:
if € ~ O(1) then one can hit any target in one step, while if short time is
not required then we generally need to do nothing since the orbit of a will
wander near b eventually and indeed that is the original OGY solution to
targeting [2].

We state our favorite objective functions:

e Minimum iterate, constrained energy,

F({zi}iLo) = m, (4)

subject to {z;}72, is an e-chain such that € < €,q4-
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Other reasonable cost functions [5] might be continuous time, which will
be different in general than number of iterates when time-of-flight between
Poincaré surfaces is nonuniform, or perhaps fuel required in designing a space
flight mission design, or reaction rate in a chemical reaction for example.

As far as we know, solving any such problem as an optimal control prob-
lem is in general an open problem. Nonetheless, it is important to have a
good objective function to have a basis to compare quality between various
candidate solutions. Surprisingly, there is still almost no mention of objective
or cost in the now relatively large literature on targeting.

3 Targeting: A Simple and Instructive
One-Dimensional Example

We present here a concrete example of targeting, which while limited in scope
in that it only works for one-dimensional maps, it serves as a “cartoon” of
how sensitive dependence can be leveraged and useful. The following was
inspired by [6, 7], but was explicitly developed in [8] as a undergraduate
student project.

Consider the logistic map,

Tn1 = fr(xn) = rxn(]- - Zn), (5)
and given the initial condition a = x¢ = 0.4 for example, suppose we wish to
hit the target b = 0.8 in as few iterates as possible subject to small parameter
variations. Let 7o = 3.9 be the nominal parameter value, and constrain,

3.8 < 1o+ or <4.0, (6)

for the example.

Xn+l

Fig. 2. Parametric variations in the logistic map yields an initially small interval
of possible outcomes, which then grows exponentially under sensitive dependence
to initial conditions.
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Iterating the initial condition under the entire family of maps, correspond-
ing to the parameter interval, we get (See Fig. 2),

T1 € fi3.8,4.0(0.4) = [0.91,0.96]. (7)

Then returning the parameter to » = rg, for simplicity of the example, we
get,

Ty € f3.0([0.91,0.96]) = [0.14976, 0.312998],
T3 € f3.9([0.14976,0.312998]) = [0.496595,0.838618]. (8)

At this point we see that the target is bracketed, and since f, is continu-
ous with respect to r, the intermediate value theorem implies a root of the
equation,

fs90 f390 f(0.4) =0.8, (9)

for the unknown control parameter r. Bisection yields, r = 3.831890....

The lesson we learn from this example is that a small and deliberate per-
turbation quickly grows to fill the compact phase space, and hence sensitive
dependence to initial conditions can be helpful to design a responsive control
system.

In fact, this simple technique can be adapted to experimental systems [9,
10]. However, the specific details of this algorithm requires a one-dimensional
map. One-dimensional maps are however surprisingly common in nature,
since strong dissipation often creates surprisingly low-dimensional attractors.
For example, plotting successive maxima of the z(t) time-series seen in Fig. 1
of the Lorenz system is known [1] to yield a one-humped map.

3.1 The higher-dimensional generalization

The direct generalization of the above algorithm is to iterate a neighborhood
N(a) forwards under f, and perhaps iterate N (b) backwards under f~! if
the inverse exists. This is the idea behind the work by Shinbrot, Ott, Grebogi
and Yorke, [11] sometimes called SOGY. The idea is to resolve (the boundary
of) Nc(a) and N.(b) into a fine enough grid so that iterating under f and
F~Lif it exists allows us to solve for an m and n which solve,

f"(Ne(a)) 0 f"(Ne(b)) # 0, (10)

Deciding the intersection of two regions defined by grid points on their bound-
aries reduces to a problem of computational geometry: deciding crossings of
pairs of vectors from successive grid points of from each boundary. One simple
solution in terms of the cross product can be found in, [12].

This method works adequately well when there exist a small p = m +n
solution of Eq. (10). Simple low-dimensional attractors, such as the Henon
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attractor lend themselves well to this technique, [11,12]. However, if the
minimal solution p = m+n to Eq. (10) is not small, then the problem becomes
computationally impossible. Since a grid of 7 points, spread uniformly around
N¢(a), is expect to spread approximately by factors of A\, where A, > 1 is
the largest Lyapunov number, then those points which were initially 27e/r
apart are expected to be approximately 2me/r A" apart for large m. Quickly,
no initial grid is fine enough that 2mwe/r A is still small for large m. Likewise,
if Ay < 1 is the smallest Lyapunov number, the s initial points around N(b)
gets spread too thinly according to, 2me/sA; ™. Leaving the simple details to
those interested, it is clear that sensitive dependence works against us here: it
is computationally impossible to resolve intersections such as those depicted
in Fig. 3 for large p by the brute force of iterating grids.

Specifically, transport is too slow to directly solve Eq. (10) in many sys-
tems, such as for example, in higher dimensions [16], or in Hamiltonian sys-
tems with resonance layers, [12-15].

@L. ,f—\; la)
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Fig. 3. The SOGY [11] is a constructive targeting method. A forward iterate of a
neighborhood of a which is found to intersect an inverse iteration of a neighborhood
b implies, by continuity, existence of fast trajectory. The difficulty is that represent-
ing N¢(a) and Nc(b) with a fine enough grid so that f™(Nc(a)) and f~"(Nc(b))
can still be resolved accurately enough at time of intersection, for large p = m +n
is exponentially memory consuming.

3.2 A web approach to higher-dimensional targeting

The exponential growth of N.(a) upon iteration is equivalent to growth of
possibilities of outcomes, and this idea is essentially related to the entropy of
the system. The first technique to address growth of possibilities used a tree
structure as designed by E. Kostelich et. al., [16]. See also, [17,18].

The idea of the Kostelich technique is to find a tree of paths leading to
a target point b. For example, if a free-running trajectory leads to N¢(b) in
say 30 iterates, then keep that last 30 iterates, and call them the primary
trunk of the tree and label them {z!}3° . Then continuing to iterate, one

i Ji=
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expects a recurrence to one of the points {z!}?°,. Record those, say 30, pre-
vious iterates and call them, {z?’1 30, and these are a primary branch. By
construction, z3) € N,(z!) for some i. Likewise collect several (j = 1,2..)
more primary branches, by simple iteration, and collecting primary trunk
intersections, {z?’J 30, . Similarly by recurrence and iteration construct sec-
ondary branches of paths which lead to primary branches, etc. See Fig. 4.
When we are done, we have constructed a tree of paths, which hopefully cov-
ers a significant measure of the attractor, and more specifically every possible
initial condition is no more than a few iterates from one of the members of
the tree. In [16], the authors showed this technique to be successful in the
four-dimensional double-rotor map [19].

In a sense, this technique is a generalization of the OGY technique. In
the OGY technique, there is an essentially random transient time while one
waits for the orbit to wander into the capture window around a periodic orbit.
With the Kostelich tree, one also has a transient time of waiting while the
orbit wanders into a now extended set of neighborhoods of point, and active
feedback control is launched as soon as any one of those pre-recorded points
is approached.

Fig. 4. Caricature of a typical tree of e-chain paths leading to a target point b, as
in [16].

3.3 Targeting through recurrence through resonance layers and
to the moon

Uncontrolled transport in one and a half degree of freedom Hamiltonian
systems with resonance layers is particularly slow, [20,21] and the above
described techniques do not work well, [12-15]. Consider for example the
Chirikov Standard map,

7= (1) =rw=(, " dabanl.). a



8 E. M. Bollt

often used as the prototypical example of an area-preserving twist map.
Specifically, we expect KAM circles which become “cantori” as k increases,
but which still serve as partial barriers inhibiting transport. This is responsi-
ble for the sticky islands-around-islands effect. Chaotic transport mechanisms
provides that a fast orbit must pass through the “turnstiles” [21] via “lobe
dynamics” [66] corresponding to intermediate barriers. It follows that a fast
orbit should pass through these localized regions exactly once [12,14]. The
constructive approach is to compute the turnstiles, and perhaps find short
orbit segments between them, such as was tried in [12,14] and also [27], but
a problem with this approach is the fact that there are infinitely many res-
onances which layer the phase space with a great deal of resonance overlap,
and it is not obvious which are most important. We have found the explicit
approach to be unnecessary by the following technique which provides that a
slow orbit goes through all of the intermediate obstacles and more, and thus
signals the fast way, needing only some shortening.

Fig.5. A fast orbit of the standard map, (the “0”’s) from near a = (Tq,¥ya) =
(0.5,0.0), to near b = (x3,y5) = (0.5,1.0). Here, k = 1.25 > k., and a slow test
orbit wanders in the “chaotic sea” (the large white region) from near a = to near
b. The test orbit which may wander near the remaining resonance islands remains
for a long sojourn before again escaping to continue towards the target. A 80307
test orbit has been used to find a nearby 131 fast orbit.

As a concrete example, we investigate transport from a neighborhood of
the (0,1) hyperbolic point to a neighborhood of the (1,1) resonance. The
notation (p, q) denotes the frequency of an orbit, i.e. ¢ iterations of the map
results in exactly p wraps around the cylinder: T9(z) = z + p. The starting
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point (0,1) a is located at (z4,y,) = (0.5,0.0), and (1,1), our target point b,
at (xp,yp) = (0.5,1.0).

Such an orbit does not exist if k < k. ~ 0.97163540631... [21]; k. is the pa-
rameter value at which the last invariant curve dividing phase space between
(0,1) and (1,1) becomes a cantorus. The most robust curves between (0, 1)
and (1, 1) are the circles with rotation frequencies % and 7—12, where v = %g
is the golden mean. If £ > k., there are no invariant curves separating vertical
transport of the cylinder, and therefore according to Mather’s theorem [22],
there exists a heteroclinic connection between the (0,1) and (1,1) orbits for
which we will search.

For k > k., the golden mean invariant curves become cantori. They have
the smallest lobe areas, and hence, represent the most difficult barriers to
transport. An arbitrary orbit will typically pass through these lobes many
times before finally reaching the target point b. This effect also occurs when
an orbit is trapped near an island, and near islands around islands, and so on.
This phenomenon has been successfully modelled using Markov trees [23,24].
It was found that a point initially “near” a KAM surface has a survival
probability F(t) is asymptotic to t~* and that the orbit will still be near the
surface at large time ¢ with small constant « [24]. Therefore in the presence of
KAM surfaces, we find long correlations and, hence, roughly power law decay.
However the important point is that, without knowing where the lobes are
located, recurrence is a way of locally detecting globally inefficient orbits.

The idea of cutting recurrent loops is as follows:

e All orbits go through intermediate barriers, which for area preserving
maps are the turnstiles. Distinguishing fast from slow is that fast trans-
porting orbits go through necessary pseudo-barriers (turnstiles) exactly
once, and do not go through unnecessary barriers (drawing closer to
islands) at all. Slow transporting orbits go through necessary pseudo-
barriers (turnstiles) some odd number of times greater than once, and
go through turnstiles leading to islands some even number of times. See
caricature in Fig. 6.

e Unnecessary or slowing transport is signaled by recurrence in the turn-
stiles.

e A slow transporting orbit may be used as a test orbit, and the long
recurrent loops can be removed if the error can be forced to be small
by the hyperbolicity method described below in Eq. (12). We define a
recurrence as unnecessary when a solution to Eq. (12) is found.

Once a recurrence has been identified between z; and z;ys, to find an
e-chain which skips the s-step recurrent loop, we must solve the following
two-point boundary valued problem. See Fig. 7. We require that a point on
the unstable direction f, at z;_,, lands on the stable direction fs at z; 454
Thus we must find ¢ which solves [15],

[sz(zi—m + gfu) - Zi+s+m] X fs =0. (12)
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To find the stable and unstable foliations [14,67], recall that the Jacobian
matrix rotates a vector in the tangent space towards the unstable direction,
and the Jacobian matrix of the inverse map 7! rotates a vector towards the
stable direction (if they exist!). Therefore, in practice, we choose an arbitrary
unit vector u and forward multiply, starting at z_,,, the Jacobian matrices
along the orbit to z, normalizing the vector at each step:

DT,  u=DT|, ,-DT|, ,-..-DT|,_ -u— fu,(z)asn — oco. (13)

Likewise, the stable direction is formed from the inverse Jacobian starting at
T"(z).

DT, -u=DT |, -DT7Y,, ... DT, -u— f.(z) as n — oco. (14)

b

Fig. 6. Caricature of a slow transporting orbit, which recurs with itself many times
during its flight to b. The fast orbit in red does not suffer unnecessary recurrence.

>
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Fig. 7. Hyperbolicity is used to diminish a recurrence error, and to remove the
recurrent loop.
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Considering the specific standard map k£ = 1.25, with a and b shown
in Fig. 5. The first recurrence that we can successfully remove from one
representative 80307 step orbit is between zi6 and z7g794 which recurs to a
distance of § = 0.08. In this example, we construct an orbit patch {2z, ..., z5; }
such that the error to perturb on to the orbit patch is only ||z} —z1|| = 0.002,
and the error to perturb back off of the orbit patch is ||z4; — z7s720] =
0.002. With this single patch, we have already demonstrated a 1619 step
epsilon chain orbit near our original orbit. By finding every recurrence within
a threshold 0 = 0.1 and cutting those that can be patched within the error
€ = 0.005 we eventually construct a 131 step epsilon chain orbit including 13
overlapping patches. The largest error found in this example was ||T'(zg2) —
Zgs|| = 0.003, but there were several others of the same order.

As an example of the utility of targeting in area-preserving maps, con-
sider the circular, Restricted-Three-Body Problem (RTBP), defined by the
Hamiltonian [28],

(pe +4)*> + (py —2)*> +p2

H: 9 _Q(xvyvz)a (15)
where,
P4y 1-p  op | p(l—p)
7 _ Ty LN S ) 1
@)= T Il 2 i), (16)
and,
m=V(E+ )2ty 422 = (v — 14 p)2 +y2 + 22 (17)

The resulting equations of motion,

_oH _ o OH _ 0
= 8}% =Pz 7Y, Pz = Oz =Py — T D)
oOH OH
Y = — —_ ) = = = — T —_ Q . 18
U= Gy, TPy T Py 9y Pe — Y+ (2 (18)

evolve as a flow in R4, but there is the Jacobi integral, which is constant
along the flow,

J(@,y,2,&,9, %) = (&° + §° + 2°) — 202(,y, 2), (19)

whose existence implies that the flow occupies a 3-dimensional submanifold.
Thus a Poincaré mapping, of = versus & for each point when the flow trans-
verse y = 0 with y > 0 yields an area preserving map. See Fig. 8.

The RTBP is considered a good initial model of the Earth-Moon system,
in which a third small particle, such as a spaceship is too small to essen-
tially alter the integrable Kepler motion of the primaries. Choosing realistic
relative masses, m1/mo = 0.0123, there is insufficient energy in the sys-
tem for an Earth-Moon escape for Jacobi-integral J < —3.1883. We choose
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Fig. 8. Circular Restricted-Three Body Problem, as the Poincaré mapping, (z, )
for each transverse point when y = 0 with y > 0.

J = —3.17948, just after transport is possible, and well below the J = —2.761
energy required for the pictured Hohmann transfer. Our technique reduced a
“Chaotic test orbit” (See Fig. 8) from 10710 iterates to 58 iterates on Poincaré
section, or down to 2.05 years. Whereas the Hohmann transfer (Apollo-type
mission) shown takes 6.61 days and a 1219.8m /s impulse budget, the chaotic
transfer requires 2.05 years and only 749.6m /s of impulse, most of it to boost
from the same circular orbit around the Earth to the J = —3.17948 trans-
ferring parameter. Since rockets expel most of their weight as ejected fuel,
this translates to 83% more payload with a constant sized booster. Thus the
theme of targeting in chaos: we can trade time for energy.

4 Combinatorial Targeting and Symbolic Dynamics

The tree description of the growing possible orbits, such as that depicted in
Fig. 4 is suggestive of the combinatorial explosion in possible outcomes, which
is essentially a discrete approximation of the notion of sensitive dependence
to initial conditions. In [5,29], we posed the targeting control problem in
terms of approximating the action of a dynamical system on its phase space
as a directed graph between vertices which label a rectangular covering of
the phase space. In fact, a map on a topology of open sets can be considered
as a directed graph between the sigma algebra of open sets; such an abstract
description is simplified by a generating partition, from which follows the
symbolic dynamics [30-32]. We and others have shown that combinatorial
[5, 29, 33] and symbolic methods [10, 34-37], and [56] are a complete and
efficient descriptions of all possible orbits of a dynamical system. Within
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Fig. 9. Left: A “Hohmann transfer” in the Circular Restricted-Three Body Prob-
lem; this is essentially skeet shooting in a 1/r? potential well and it is the sort
of trajectory the Apollo astronauts flew. Right: A chaotic transfer. The Homann
transfer takes less time but substantially more fuel than the chaotic transfer.

such a description, targeting is reduced to the simpler and well-understood
discrete problem of path searching in graph theory. For example, the shortest
path through an unweighted directed graph is found by the breadth-first-
search algorithm and through a positively weighted graph by the Dijkstra
algorithm [38,39].

For these reasons, we will briefly review the role of symbolic dynamics
in dynamical systems, first for one-dimensional mappings, followed by diffeo-
morphisms of the plane. Then following, we review application of symbolic
dynamics to targeting control.

4.1 One-dimensional maps with a single critical point

First consider a one-humped interval map, such as the logistic map Eq. (5)
or Lorenz’s successive maxima map, which follows by plotting just the local
maxima of the z(t) time-series from the Lorenz differential equations [1] in
Fig. 1 and similarly for many other systems.

f:a,b] — [a,b)]. (20)

Such a map “has” symbolic dynamics [40,41] relative to a partition at the
critical point z.. Choosing a two symbol partition, labelled Z={0, 1}, names
iterates of an initial condition xg dynamically,

oi(0) = (0 if fi(xo) < x) . (21)

1if fl(l‘o) > T

The function h labels each initial condition xy and corresponding orbit
{zp,x1,x2,..} by an infinite symbol sequence,

h(zo) = o(x9) = o0(x0).01(x0)o2(x0)... (22)
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Defining the “fullshift” X = {o = 0¢.0109... where oy = 0 or 1} to be the
set of all possible infinite symbolic strings of 0's and 1’s, any given infinite
symbolic sequence is a singleton (a point) in the fullshift space, o € X5. The
usual topology of open sets in the shift space X5 follows the metric,

o0
=7
dEQ (Ua U) = Z %’ (23)
i=0
which defines two symbol sequences to be close if they agree in the first
several bits. Eq. (21) is a good “change of coordinates,” or more precisely a
homeomorphism,?3

h: [avb] - Uioiof_i(mC) - Eév (24)

under conditions on f, such as piecewise |f’| > 1.* The Bernoulli shift map
moves the decimal point in Eq. (22) to the right, and “eliminates” the leading
symbol,

S(O’l) = 0j+1- (25)

All of those itineraries from the map f, Eq. (1) by Eq. (21), correspond to
the Bernoulli shift map restricted to a subshift,® s : X} — X%. Furthermore,
the change of coordinates h is a conjugacy®.

In summary, the previous paragraph simply says that corresponding to the
orbit of each initial condition of the map Eq. (20), there is an infinite itinerary
of 0's and 1’s, describing each iterate’s position relative the partition in a
natural way which acts like a change of coordinates such that the dynamical
description is equivalent. For our purposes, controlling orbits of the map f in
phase space which is an interval corresponds also to controlling itineraries in
symbol space. The control over x composed with the change of coordinates
h can essentially be considered to be a coding algorithm.

3 A homeomorphism between two topological spaces A and B is a one-one and onto
continuous function h : A — B, which may be described loosely as topological
equivalence.

Note that pre-images of the critical point are removed from [a,b] for the home-
omorphism. This leaves a Cantor subset of the interval [a, b]. This is necessary
since a shift space is also closed and perfect, whereas the real line is a con-
tinuum. This is an often over-looked technicality, which is actually similar to
the well known problem when constructing the real line in the decimal system
(the ten-shift X10) which requires identifying repeating decimal expansions of
repeating 9’s such as for example 1/5 = 0.199 = 0.2. The corresponding op-
eration to the shift maps [25] is to identify the repeating binary expressions
00.01..0,011 = 09¢.01..0,111, thus “closing the holes” of the shift space Cantor
set.

A subshift X} is a closed and Bernoulli shift map invariant subset of the fullshift,
Eé C Y.

A conjugacy is a homeomorphism h between topological spaces A and B, which
commutes maps on those two spaces, a: A — A, §: B — B, then hoa = (oh.
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Fig.10. Successive maxima map of the z(t) variable, of the Lorenz flow
(z(t),y(t), 2(t)) from Fig. 1.

4.2 Higher-dimensional systems and symbolic dynamics of
diffeomorphisms

Diffeomorphisms arise naturally by Poincaré mapping of a flow. In general,
a diffeomorphism f: M — M is expected for an N — 1 manifold M which is
transverse to a flow in RV.

Symbolic dynamics of higher dimensional systems is still a highly active
research area and details here are necessarily slight. In particular, we refer
the reader to see [44-46]. The fundamental difference of dimensionality is
that invertible maps and hence diffeomorphisms are necessarily simple in
the interval, whereas in more than one dimension, there may be chaos. In
the interval, only a many-to-one map allows for the folding property which
is an ingredient of chaos. However, S. Smale [48] showed that the folding
mechanism of a horseshoe allows for chaos in a planar diffeomorphism.

In the development in the previous subsections, the one-sided shifts reflect
the noninvertible nature of the corresponding interval maps Eq. (1). The
generalization of symbolic dynamics for invertible maps requires bi-infinite
symbol sequences,

Yo ={0=..0_20_100.0103... where o9 = 0 or 1}. (26)

The main technical difficulty of symbolic dynamics for a map with a
more than one-dimensional domain is well defining a partition. A notion of
Markov partitions is well defined” for Axiom A diffeomorphisms [49,50], but

" R. Bowen [49,51], defined conditions for a partition of “rectangles” to be Markov.
A topological partition {Q;} of open rectangles is Markov if, {Q;} have nonover-
lapping interiors, such that when f(Q;)NQ; # 0, then f(Q;) stretches across Q;,
in that stretching directions are mapped to stretching directions and contracting
directions are mapped to contracting directions. Said more carefully, we require

that Wu(fn(z)le) C fn(Wu(Z7Ql) and f'n(WS(Z7Ql) C Ws(f"(z)7Ql)
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such maps are not expected to be generic. The more general notion of a
generating partition [30] is also well defined,® but particularly in the case
of a nonuniformly hyperbolic dynamical system construction of the generat-
ing partition is an open problem for most maps. A well regarded conjecture
for planar diffeomorphisms, such as the Henon map [44—46], is that the gen-
erating partition should be a curve that connects all “primary” homoclinic
tangencies. See also [47,52-55].

4.3 Learning the grammar in practice

In a physical experiment, corresponding to the one-dimensional map such as
Eq. (1), it is possible to approximately deduce the grammar of the correspond-
ing symbolic dynamics by systematic recording of the measured variables rel-
ative either to a reasonable approximation of the generating partition, or a
fine grid. First note that any real measurement of an experiment consists of a
necessarily finite data set. Therefore, in practice, it can be argued that there
is no such thing as a grammar of infinite type in the laboratory. So with-
out loss of generality, we may consider only grammars of finite type for our
purposes. Such a subshift is a special case of a sophic shift [42,43]. In other
words, there exists a finite digraph which completely describes the grammar.
All allowed words of the subshift, X’ corresponding to itineraries of orbits of
the map correspond to some walk through the graph.
For example, the Henon map,

(xn+17yn+1) = f(‘rnyyn) = (18 - xi + byn7xn)7 (27)

has a symbolic dynamics as represented in Fig. 11. For this picture, for the
illustration, we have explicitly calculated the generating partition in terms of
homoclinic tangencies discussed above, [44-47]. Iterates and pre-iterates of
the critical curve finely partitions the phases space, but most importantly, it
finely partitions the attractor. We see that since the attractor fails to cover
all 2% labelled permutations of the 4-bit symbols, there are missing words,
in this relatively coarse (for sake of artistic Caricature) approximation. In
the directed graph approximation of the corresponding transitions on the

8 Given a dynamical system f : M — M, a finite collection of disjoint open sets,
{Bi},, BiNB; = 0 (k # j), is defined to be a topological partition if the union
of their closures exactly covers M: M = UF_, By, [Lind & Marcus, 1995]. The set
of intersection of the images and pre-images of these elements ﬁ?:,nf(fi)(Bxi)
is in general open. For a faithful symbolic representation of the dynamics, the
limit NpZg Ni=_,, f(_i)(Bxi) should be a single point if nonempty. Given a dy-
namical system f : M — M on a measure space (M, F,u), a finite partition
P = {B}X_, is generating if the union of all images and preimages of P gives
the set of all u-measurable sets F'. In other words, the “natural” tree of parti-
tions: V2 _ f*(P), always generates some sub-o-algebra, but if it gives the full
o-algebra of all measurable sets F, then P is called generating [30]
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attractor, observe that paths through the graph correspond to trajectories
on the attractor, and cycles correspond to periodic orbits (or at least to
e-chain pseudo-orbits).

L | f-!Partition) [

A\ / Mo

Fig. 11. Left, the Hénon attractor has a symbol dynamics generated by the w-
shaped partition, which allows us to color the attractor Blue for current state is
’0’ above the curve, or Red for '1’. It is believed that iterates and pre-iterates
of the curve generates the topology of opens sets. Right, using our coarse 4-bit
approximation, we see all 4-bit transitions on the attractor, and hence all pseudo
orbits are walks through the graph and cycles are pseudo-periodic orbits. This graph
generates the symbolic dynamics X5 on the attractor.

Forcing the symbolic dynamics, via forcing paths through the correspond-
ing graphic descriptions is all that is necessary now to create e-chain pseudo-
orbits of the dynamical system. In the next section, we discuss making these
into real orbits of a differential equations. We close by mentioning that we
are actually controlling the information production of the dynamical sys-
tem, which can either be viewed as a control strategy over orbits as we are
interested here, or alternatively as a communication via chaos scheme as
we [10,34,35] and others [36,37] have researched extensively elsewhere. As
a technical note of practical importance, we have found link-lists to be the
most efficient method to record a directed graph together with its allowed
transitions.

5 Forcing the Path: Feedback Control

We have seen in the previous section that combinatorial and symbolic de-
scription of trajectories are efficient for designing trajectories of the dynami-
cal system as e-chain pseudo-orbits. What remains to be discussed is how to
force the orbit of a randomly chosen initial condition to follow the above de-
signed pseudo-orbit “plans,” in the case of a differential equation which is the
necessary step to argue physical relevance of the above described techniques.
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We will mention three main techniques: 1) Parametric feedback control which
reduces to a sequence of two-point-boundary-valued-problems (TPBVP), 2)
adaptive targeting, and 3) limiter control.

5.1 Parametric feedback control

By construction, the e-chain pseudo-orbits are designed with small e, and
thus parametric control may be used [16,29]. We refer the reader to Fig. 12
for what we hope is a clear pictorial description of this basic idea.

Fig. 12. Observed next responses due to parameter variations of the Duffing oscil-
lator: 2’ 4 ax’ + 2® — & = bsin(t), where Ao = (ao, bo) = (0.02, 3). Left) Dots show
N = 10,000 iterates of 2w-stroboscopic map. Bold squares show “from” and “to”
nodes, in this (overly-large caricature) grid. Bold crossed curves show observed next
responses due to maximal variations [§A| = (|dal,|6b]) < (0.02,0.25), where either
da or db is varied separately, while the other is held fixed. Right) Caricature of flow
between the piercings on the Poincaré section of the uncontrolled and controlled
differential equation, and the target box.

Feedback control of a chaotic trajectory may be realized by small param-
eter variations. For example, given a flow of z(t) € RY where we explicitly
write the parameter dependence p € R",

z = F(z,p), (28)

one can hope to effect the trajectory in a predictable manner in the short run.
In particular, if the desired short-term response is small, a Lipschitz continu-
ous right hand side F' provides that small parameter variations should suffice.
Furthermore for small enough desired short term responses, the required pa-
rameter variation can be usefully and easily found by directly solving the (TP-
BVP). More specifically, suppose that on surface of section M, the initial con-
dition zg € M flows forward under Eq. (28) to z; € M, z; = f(z¢) = P+(zo)
(t is the time of flight of the mapping, which is generally not uniform with
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respect to z, and this is not a concern to us here) at next Poincaré surface
piercing, under a nominal/uncontrolled parameter value pg. The Poincaré
mapping we now denote,

f(z,p) : M — M, (29)

to emphasize a family of mappings parameterized by adjustable parameter p.
If we prefer the next iterate to be zjqgir0q, then the next controlled response,
is a solution to the equation,

Zdesired = f(20,P1) (30)

whose solution is formally a TPBVP of the flow Eq. (28), where p; is the
unknown in the equation to be found, usually by shooting [58]. For long time
of flight, the general TPBVP is expect to be numerically unreasonable to
solve. However, since we have constructed

1Zgesired — Zoll2 <€, (31)

for a small € > 0, and continuity of the flow with respect to parameter and
spacial variations, we expect that ||p; — pol|2 will likewise be small. In such
case, a standard shooting algorithm, based on Newton’s method generally
works well [29], choosing p = pg as the initial seed. A solution exists for
small enough € > 0, and nonsingular Jacobian derivative, by continuation of
the trivial solution

z1 = (20, Po), (32)

along a parameterized solution manifold, ép(z), and z = f(zg, po + 0p(z)),
which is an application of the implicit function theorem. In fact, the linearized
equations of variation,

OF

. OF
0z = 5(2713) -0z + %(Z,p) ' 6pa (33)

can be used to approximately solve for p;, where %—]’; and g—F are respectively
the Jacobian matrices of z and p variations. We mention that it is possible to
model the necessary derivatives using only measured data by appropriately

perturbing and observing responses of a physical system [9, 10].

5.2 Time-delayed feedback control

Time-delayed feedback control was first introduced (but not then so-called)
by Pyragas [59] who added to Eq. (28) a feedback control perturbation,

Ut) = K(zi(t = T) — (1)), (34)
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where 2;(t) is one of the component observed variables of z(t), K is a carefully
chosen weighting variable, and the delay T in the control rule was shown
to be useful in tuning to the period of a specific UPO; it is easy to see
that the amplitude of this control law automatically decreases as the UPO
is approached. This method has been generalized and improved by control
[60] and “adaptive recognition” [61]. In brief [62], at time ¢, measuring the
difference §(t,) between the observed variable z;(t,) dynamics, and the goal
dynamics g;(t,), 6(t) = z;(t,) — ¢i(tn), the local variation rate,

o(tn)
S(tn—1)

measures exponential growth rate between actual and desired dynamics. The
additive control rule to the observed variable is chosen,

Alt) = zOg\ , (35)

Ult) = K(ta)0s(ta) — 2i(ta)] -
where,
ﬁ — 1 (1= tanh(oA(t.))),0 > 0. Ko > 0, -

This method adapts the strength of the control to the local dynamics, tending
to push the actual evolution towards the goal, via a strength adapting to the
local instabilities and the error. Notice that choosing o = 0 specializes to the
Pyragras method. This general set-up allows for the necessary targeting [63]
to close the e-chains constructed in previous sections, by choosing the goal
dynamics to correspond to successive steps in the designed orbits.

5.3 Dynamic limiting

A particularly simple, and yet extremely effective new technique for stabiliz-
ing desired orbits is called “dynamic limiting,” by Corron and Pethel [64]. Tt
has been successfully demonstrated experimentally, in a chaotic driven pen-
dulum using a weight, and in a chaotic double scroll circuit using a diode,
emphasizing the potential of this passive control strategy [65]. For both ex-
periments, multiple unstable periodic orbits are selectively controlled using
minimal perturbations and promises as the authors state that chaos control
may apply to a much wider array of important problems.

We describe here dynamic limiting in the following language, using a
simple state dependent but otherwise constant addition to the unperturbed
dynamical system Eq. (28),

z = F(z,p) + G(z,1), (38)
and,

co N
G(z,t) =Y Y dnixe, (t)xa, (2)k;. (39)

n=0 i=1
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For each fixed i, k; is a constant vector addition to the vectorfield whose influ-
ence tends to push trajectories in the general direction of k; which should be
chosen appropriately pointing towards the goal. Each of the constant vector
perturbations {k;}%; turns on individually due to entering trigger regions of
phase space {A;} Y, since x4, (z) = 1 if z € A;, 0 else, is the usual character-
istic function or Heaviside function in the scalar case. Likewise, x, (t) serves
as a switch in time, which turns on if ¢, _1 < t < t,,, and if the corresponding
decision to do so is on, d,; = 1, as opposed to off, d,, ; = 0. The degree of
pushing depends on the amount of time spent in A;, and hence accumulated
total push, under the influence of the constant perturbation. Notice that this
perturbation is only turned-on if the trajectory enters A;. In practice this is
quite simple to implement, in circuit hardware for example as a diode, or in
a mechanical system as a weight [65]. For N > 1, a panel of diodes allows se-
lection of relative influences. By carefully choosing A; regions to actuate the
influences k;, for example A; having a desired periodic orbit on its boundary,
relatively complex motions are effectively stabilized in experiment. In fact,
n [64], Corron and Pethel used dynamic limiting to control the symbolic
dynamics of a Rossler-like attractor LC oscillator.
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