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Controlling chaos has been an extremely active area of research in applied dynamical systems,
following the introduction of the Ott, Grebogi, Yorke (OGY) technique in 1990 [Ott et al., 1990],
but most of this research based on parametric feedback control uses local techniques. Associated
with a dynamical system which pushes forward initial conditions in time, transfer operators,
including the Frobenius–Perron operator, are associated dynamical systems which push forward
ensemble distributions of initial conditions. In [Bollt, 2000a, 2000b; Bollt & Kostelich, 1998],
we have shown that such global representations of a discrete dynamical system are useful in
controlling certain aspects of a chaotic dynamical system which could only be accessible through
such a global representation. Such aspects include invariant measure targeting, as well as orbit
targeting. In this paper, we develop techniques to show that our previously discrete time
techniques are accessible also to a differential equation. We focus on the Duffing oscillator as
an example. We also show that a recent extension of our techniques by Góra and Boyarsky
[1999] can be further simplified and represented in a convenient and compact way by using a
tensor product.

1. Introduction

The purpose of this work is to demonstrate para-
metric feedback control over global aspects of a
chaotic differential equation. Specifically, we choose
the popular Duffing oscillator [Alligood et al., 1996]
as our main example. We have shown in our pre-
vious work [Bollt, 2000a, 2000b; Bollt & Kostelich,
1998] that the global action of a discrete dynami-
cal system is well approximated by a transfer ma-
trix, and that this fact is useful for designing global
control strategies. The purpose of this paper is to
review these techniques in a unifying framework,
and then to explicitly show for the first time here,
that the ε-chain pseudo-orbits implied by walks
through a directed graph representation can be

realized and stabilized by appropriately designed
parameter feedback control, specifically in the
case of a differential equation on Poincaré surface
of section.

In [Bollt & Kostelich, 1998], we used a dis-
cretization of a global transfer operator on a grid,
which is hence a transfer matrix [A]i,j . Given this
approximation, we showed that standard path
searching algorithms [Gould, 1988; Bondy & Murty,
1976], such as the BFS or Dijkstra’s algorithms, can
be used to target optimal walks through the graph,
which by construction, are fast ε-chain pseudo-
orbits of the dynamical system. In [Bollt, 2000a],
we used another sort of transfer operator repre-
sentation of the dynamical system; Ulam’s method
[Ulam, 1960] again uses an arbitrary grid, but to
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approximate the Frobenius–Perron operator Pf , by
a probability matrix [S]i,j. We showed that careful
manipulation of the entries of this matrix can be
performed to design a desirable dominant eigenvec-
tor, and then by the so-called Inverse-Ulam problem
(IUP) [Bollt, 2000a], a nearby dynamical system
can be constructed which has exactly the redesigned
F–P operator, and hence exactly the desired invari-
ant density. The IUP constructs a nearby map,
which we previously described as implying an open-
loop (no feedback) control strategy. On the other
hand we now interpret such a solution as giving an
ε-chain pseudo-orbit of the original map.

In this paper, we design techniques to formulate
global control strategies by combinatorial meth-
ods, and then to realize these rough pseudo-orbits
found by combinatorial methods as true orbits of
a differential equation by means of multiparametric
feedback-control. We assume a discrete dynamical
system, fλ : M → M , M ∈ �n, where generally in
this paper, this map is derived from a set of ordinary
differential equations by Poincaré surface mapping.
For such a map, one can ask what is the long term
statistics of ensembles of initial conditions under fλ.
We take λ ∈ �m to be the set of adjustable control
parameters. We will show control of statistical as-
pects of such systems, as well as global targeting.

Ott, Grebogi, and Yorke, introduced the OGY
method [Ott et al., 1990], to stabilize an unsta-
ble periodic orbit embedded in a chaotic attractor.
This original idea opened the field of controlling
chaos. During the last decade, a major emphasis
of dynamical systems theory research has been fo-
cused on the realization that sensitive dependence
provides that control of a chaotic dynamical system
can be flexible and efficient. We cannot begin to de-
scribe the scope of literature in this active area of
research, or its many important and physical appli-
cations, and so we refer the reader to recent books
[Ott et al., 1994; Chen & Dong, 1998]. A main idea
in this literature is that the sensitive dependence,
characteristic of chaos, is actually advantageous to
build a highly agile control system in which a small
deliberate perturbation can cause a large response.
A chaotic attractor can be considered as an un-
limited reservoir of widely varied behaviors. OGY
[Ott et al., 1990] uses a local linear feedback control
loop by targeting the stable manifold of an unsta-
ble fixed point through small parameter variations.
Ergodicity causes an arbitrary initial condition to
eventually wander close enough to the fixed point
that the tiny parameter variations are sufficient to

stabilize the orbit. With this in mind, it can be said
that the global strategy of OGY is patience plus er-
godicity. The “butterfly effect” allows us to quickly
steer trajectories to targets with only small pertur-
bations, [Shinbrot et al., 1990; Shinbrot et al., 1992;
Kostelich et al., 1993]; this is called “targeting,”
and is related to the time-optimal control problem
for maps [Bollt & Meiss, 1995]. However, the ma-
jority of research has relied on local analysis, which
has limited application for global control objectives.
The above describes feedback control of single tra-
jectories, and the techniques are generally local in
nature. The present work is distinguished due to
the global scope of our techniques, in that we work
with approximations of the transfer operator repre-
sentations of the action of a dynamical system on
ensembles of initial conditions, rather than directly
with the dynamical system which operates on single
initial conditions. We define more general control
objectives to include controlling, or avoiding (anti-
controlling [Schiff et al., 1994; Chen & Lai, 1997]),
long term statistical behavior over an attractor. We
call this targeting of invariant measures.

While recently there have been other solutions
to Inverse Frobenius–Perron problems [Góra & Bo-
yarsky, 1993, 1996, 1997, 1998, 1999; Koga, 1991;
Baranovsky & Daems, 1995; Pingel et al., 1999],
these usually require large variations in the map.
Hence, those IFPP strategies pertain only to maps.
Our formulation of the problem is unique, in that we
allow both for small changes to the map, and gen-
eral target densities. The approach here can be con-
sidered as a perturbation result relative to a known
dynamical system, and therefore can be realized in
a flow, by appropriately small parameter variations,
relative to a known experimental/numerical dynam-
ical system. This follows an assumption that small
next response variations on the surface of section
are continuous with respect to parameter variations.

The layout of this paper is as follows. In Sec. 2
we introduce the Duffing oscillator as our standard
example, including the Duffing map and standard
parameter values chosen, and we describe our con-
trol objectives and goals. In Sec. 3, we give some
background on transfer operators associated with a
point transformation dynamical system. In Sec. 4,
we discuss using graph theoretic algorithms to find
optimal paths through the graph approximations of
the transfer operators, and their relation to paths of
the dynamical system. In Sec. 5, we review [Bollt,
2000a] our solution of the IFPP for completeness,
using notation recently introduced by Gora and
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Boyarsky [1999], but then we introduce a newer
and simpler representation of this formalism. In
Sec. 6, we discuss how an ε-chain pseudo-orbit is
implied by a path through a graph approximation
of the transfer operator, and how these rough orbits
may be closed to become true orbits of a differential
equation by using parameteric feedback control. In
Sec. 7, we give numerical examples both of target-
ing fast trajectories, as well as targeting invariant
densities, in the case of the Duffing oscillator. Con-
cluding remarks are found in Sec. 8.

2. Goal and Example Model

In this paper, we will demostrate control over global
aspects of a differential equation by parametric
feedback variations control. We demonstrate that
the ε-chain pseudo-orbits constructed using a graph
approximation of the dynamical system’s global ac-
tion on its phase space, which achieve various global
objectives, can be stabilized to represent a true or-
bit of a differential equation, by multiparameteric
feedback control. Furthermore the graph approxi-
mation of the global action is easily learned by ob-
serving a single chaotically wandering orbit through
the partition.

As an example of dynamical system, we choose
the popular Duffing oscillator [Alligood et al., 1996],
written in autonomous form,

x′ = y
y′ = −ay − x3 + x+ b sin(τ)
τ ′ = 1

, (1)

with the nominal parameter values λ0 = (a0, b0) =
(0.02, 3). A Poincaré map is found by stroboscopic
section, every time τ pierces a multiple of 2π. See
Fig. 1.

We will demonstrate two different kinds of
control over global aspects of this dynamical
system.

1. Generalized Targeting of “short paths” from an
initial point za to a target point zb. By “general-
ized targeting,” we mean that the word “short”
need not simply weigh each iterate equally. The
other positive weight is associated with transi-
tions from various regions of the phase space.
See Sec. 4.

Fig. 1. Stroboscopic-2π map of Duffing oscillator: x′′+ax′+
x3 − x = b sin(t), where λ0 = (a0, b0) = (0.02, 3).

2. Alteration of Long Term Density Properties
of the Attractor. By applying the Inverse
Frobenius–Perron Problem, we will demonstrate
the ability to choose an invariant density on
the surface of section. Possible target densities
include densities which:

(a) avoid unfavorable regions of the phase space
(so-called anticontrol [Schiff et al., 1994;
Chen & Lai, 1997]),

(b) stabilize atomic densities supported over
periodic orbits (globally stabilize periodic
orbits),

(c) slightly varying densities from the natural
density.

See Sec. 6.

The algorithms to achieve Objective 1 [Bollt &
Kostelich, 1998] and Objective 2 [Bollt, 2000a,
2000b] are related in that we describe the global
action of a discrete map by either an unweighted
or arbitrarily weighted directed graph (Objective
1) or a probability directed graph (Objective 2).
The common thread is that walks through the graph
correspond to ε-chain pseudo-orbits1 of the discrete
map. This follows the construction of the graph:
given a partition covering Gn = {Gi}ni=1 of the at-
tractor by ε × ε × · · · × ε boxes Gi, then a single
chaotically wandering “test” orbit {zk}Nk=0 can be
used to “wire” the graph by recording a transition

1An ε-chain, ε ≥ 0, of a discrete dynamical system F : M → M is a sequence of points {wk}Nk=0 such that there is only a
small normed error at each iterate: ‖wk+1 − F(wk)‖ ≤ ε. Obviously, a true orbit of F is an ε-chain in which ε = 0.
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from vertex i to vertex j for each (zk, zk+1) pair
such that zk ∈ Gi and zk+1 ∈ Gj .

3. Approximating Transfer
Operators: Global Action
of the Map

Our global strategies were based, in [Bollt &
Kostelich, 1998] on discretizing the transfer oper-
ator L, and in [Bollt, 2000a] on discretizing the
closely related Frobenius–Perron operator Pf (x). In
this section, we give a short discussion of infinite-
dimensional transfer operators, and their approxi-
mation by transfer matrices on a fine n-element grid
Gn = {Gi}ni=1. In particular, we intend to point out
the similiarity between a probability transfer ma-
trix [S]i,j and Pf (x), and other transfer matrices
[T ]i,j.

Consider a discrete dynamical system as a map
which advances initial conditions, x �→ f(x) �→
f2(x) �→ · · · , which may be a Poincaré return map.
The action of the map, on ensembles of initial con-
ditions is addressed by integrating a transfer kernal
[Cvitanovic, 1991],

T (y, x) = δ(y − f(x)) . (2)

The Frobenius–Perron operator gives a linear dy-
namical system, Pf : L1(M) → L1(M), associated
with the map f , which describes evolution of prob-
ability densities of initial conditions, ρ(x) ∈ L1(M),
by integrating against the transfer kernal,

ρn+1(x) = Pf [ρn(x)]

=

∫
M
δ(y − f(x))ρn(y)dy

=
∑

{y:f(y)=x}

ρn(y)

|f ′(y)| , (3)

where in multidimensions, x ∈ �n, |f ′(y)| denotes
the determinant of the Jacobian derivative [Lasota
& Mackey, 1997]. Ulam’s method [Ulam, 1960]

essentially projects this infinite dimensional opera-
tor onto a finite dimensional operator [Li, 1976] de-
scribed by a matrix [S]i,j over a finite dimensional
linear subspace of L1(M), generated by character-
istic functions {χGi} and supported over a uniform
fine grid, Gn = {Gi}. For a small grid square Gi, a
continuous map f is almost constant, which moti-
vates Ulam’s conjecture to approximate Pf by the
probability matrix,

Pf [χGi(x)] ≈
∑
i

Si,jχ[Gi∩f−1(Gj)](x)

=
∑
i

Si,jχGi(x) , (4)

where

[S]i,j =
m(Gi ∩ f−1(Gj))

m(Gi)
. (5)

“Approximate” here means that as the grid Gn be-
comes finer, then the limit of the matrices Sn×n
have dominant eigenvectors vn which converge
weakly to the density of the invariant measure of
f . To show sufficient conditions for the validity of
Ulam’s method is a difficult problem in functional
analysis.2 We are not concerned here as to whether
our initial transformation f satisfies such assump-
tions, as we wish to control to a new transforma-
tion. In [Bollt, 2000a], we showed that a piecewise
affine transformation can be constructed, which we
call the Inverse Ulam Problem (IUP), such that Gn
is a Markov partition for that modified transfor-
mation. Equation (5) gives exactly this new trans-
formation’s F–P operator. We use Eq. (5) only to
get a rough snapshot of Pf , and it can be easily
approximated by a Monte-Carlo approach, by con-
sidering the transitions of a long chaotic test orbit
of f . Given {xi}Ni=0 and a partition Gn, then let

[S]i,j =
#xk ∈ Gi such that xk+1 ∈ Gj

#xk ∈ Gi
. (6)

If we are interested in topological but not statis-
tical properties, then we consider a “pure” transfer

2The Ulam conjecture was first proved by Li [1976] for 1-D transformations, and using bounded variation arguments requir-
ing that f ∈ piecewise C2[0, 1], with M > inf|f ′| > 2. The n-dimensional generalization was proved by Froyland in the
cases that Q is a Markov partition of an expanding Anosov diffeomorphism, using symbol dynamics techniques in [Froyland,
1995], and by mixing arguments in [Froyland, 1998]. The conjecture was also proved [Boyarsky & Lou, 1991], for expanding
Jablonski transformations (n-dimensional maps such that, on a grid, each componentwise function of f is only a 1-D func-
tion: fQi(x1, . . . , xn) = (f1Qi(x1), f

2
Qi

(x2), . . . , f
n
Qi

(xn)), using bounded-variation arguments modeled after the methods in
[Li, 1976]. Likewise the methods in [Ding & Zhou, 1994] for piecewise affine functions also use bounded variation arguments
and therefore require an expanding transformation [Proppe et al., 1990].
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Fig. 2. Coarse-grained diGraph approximation of the action of Henon map. Representing a probability matrix [S]i,j , edges
carry probabilities of transitions, while representing a purely transfer matrix [T ]i,j , edges carry purely the nonzero entries of
the matrix.

operator L, which moves ensembles of initial con-
ditions around, without regard to quantity. Ignor-
ing rates,3 gives a transfer operator describing the
purely one-step action of the map on the partition,

[T ]i,j = L(Gi, Gj)
= floor(χGj ◦ Pf [χGi(x)] + 1)− 1

≡ if(Gi ∩ f−1(Gj) = ∅, 0, 1) . (7)

This may arguably be an awkward way to deter-
mine whether or not there exists a point xk ∈ Gi
such that xk+1 ∈ Gj . Our intent here is only to
draw analogy to the formalism of the previous para-
graph. In other words, [S]i,j > 0 ⇒ [T ]i,j = 1, and
[S]i,j = 0 ⇔ [T ]i,j = 0, which is most easily deter-
mined by observing a test orbit.

Remark. Note that an approximation of a transfer
matrix can be graphically represented by a directed
graph, the idea of which is caricatured by the very
coarse grid picture in Fig. 2. Our main point in this

section is that the graph roughly approximates the
global one-step action of the map, in the sense that
any path through the graph has a realization as an
ε-chain pseudo-orbit of the true map f . In other
words, for each i → j, there exists an x ∈ Gi such
that f(x) ∈ Gj , but this does not mean that such
can be generalized to a two-step orbit. In short, the
general partition Gn is not expected to be Markov
[Bowen, 1975], and so a two-step path through the
graph cannot be guaranteed to correspond to a real
orbit of f , but only an ε-chain. If such were true,
then the partition would generate the symbolic dy-
namics. This caveate is important for our applica-
tion, since it means that we expect to use parameter
variations at each step to force the controlled tra-
jectory to follow an ε-chain with either desirable
statistics or trajectory.

4. Optimal Paths

Optimal path searching is a classical problem in
graph theory [Gould, 1988; Bondy & Murty, 1976].

3Rates and approximations are considered by inspecting periodic orbits, and traces of transfer operators in the “cycling-theory”
which provides that integrating the transfer kernal, Eq. (2) over a partition box Gi,

∫
Gi
δ(y − f(x))dy ≡ Pf [χGi(x)], can be

used to calculate the escape rate from Gi [Kadanoff & Tang, 1984], by considering Pnf [χGi(x)], most efficiently by the spectrum
derived by zero’s of the Fredholm determinant [Cvitanovic, 1988, 1991; Artuso et al., 1990] considering traces of iterates of
this transfer operator trT n, which in turn has been described as a series expansion on periodic orbits.
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We recount here solutions for two different graph
problems which pertain to our control problem.

4.1. Iterate optimal

The Breadth-First-Search (BFS) algorithm finds
the shortest path from vertex A (corresponding to
the box containing the initial condition) to vertex
B in an unweighted directed graph [Gould, 1988;
Bondy & Murty, 1976]. The algorithm is as follows.
Starting from vertex A, we inspect each adjacent
vertex, those vertices that can be reached in one
step. From these vertices, we check all adjacent
vertices that have not yet been visited; these ver-
tices can be reached from A in exactly two steps.
We continue until we find the target vertex among
the vertices reachable in exactly k steps.

To implement the algorithm, we maintain two
lists. The second list contains the vertices that have
never been visited (initially, all vertices except A),
and the first list contains the vertices that have been
reached in k or fewer steps (initially, only vertex
A). When a vertex is added to the first list, it is
removed from the second list. Hence, the number of
steps through the graph is bounded by the number
of vertices, n. Starting at A, the program can find
the distance (number of steps) to every vertex in
the graph in time complexity O(E), where E is the
number of edges in the graph. The output of BFS is
a 3×n array, where the first entry is an identifier for
the vertex, the second entry is the number of steps
to reach the vertex, and the third entry identifies
the predecessor of the vertex. Given the graph’s
connectivity (set of edges), we can easily backtrack
through this array to find the shortest path from
vertex A to vertex B.

Figure 3 shows the results of an example appli-
cation of BFS to the Duffing attractor. The color
used for each box indicates the minimal number of
iterates required to reach, starting from the initial
box, marked by an “X”, for an optimal ε-chain tra-
jectory which will be stabilized by the techniques of
Sec. 6.

4.2. Optimizing other functions

Dijkstra’s algorithm finds cost-optimal paths
through a directed graph whose edges have arbi-
trary positive weights. A detailed description can
be found for example in [Gould, 1988; Bondy &
Murty, 1976]. The time complexity of Dijkstra’s al-
gorithm is O(n2), where n is the number of vertices

Fig. 3. Targeting the Duffing map using a grid of size
0.1 × 0.1. Colors indicate the number of steps through the
directed graph required to reach each given colored box, cor-
responding to an ε-chain of a certain length. These can be
forced to a real orbit of the differential equation by parame-
teric feedback control.

in the graph. This time requirement is small com-
pared to the O(M2) time needed to construct the
graph from a test orbit of length M -iterates.

A natural choice for a positive cost function
F (x) is the time of flight from x to its next re-
turn to the surface of section for a Poincaré return
map. Dijkstra’s algorithm can be used to find an
orbit on the Poincaré section that corresponds to a
very fast orbit in the original flow. In our example,
the 2π-stroboscopic mapping method makes for a
special case in which time of flight is uniform. In
other common dynamical systems, such as Rossler,
Lorenz, Restricted-Three-Body-Problem, etc., time
of flight to Poincare’ surface is not expected to be
uniform, and therefore iterate optimization is dis-
tinct from time optimization.

Other cost functions might be natural, such as
money, fuel, etc. A cost function can also be cho-
sen to design a control strategy to avoid prespec-
ified regions of the chaotic attractor. To avoid a
“bad region,” a directed graph constructed from a
test orbit on the full attractor, vertices correspond-
ing to undesirable regions on the attractor can be
eliminated by assigning an infinite weight to the in-
coming edges. This is equivalent to assigning zero
probability of transition, which is how we described
the construction of the Cantor-like nonattracting
chaotic saddles described in [Bollt et al., 1997].
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Dijstra algorithm allows optimal paths to be
designed for any problem whose coarse-grained
transitions can be stated with positive weights.

5. Choosing Invariant Measure: IFPP

5.1. Designing a desirable
F P operator

In [Bollt, 2000a], we first stated the following con-
trol problem, called the Inverse Frobenius–Perron
Problem. So that this can be a self-contained pre-
sentation, we repeat some of that pertinant infor-
mation here, along with some new information.

Consider f :M →M ,M ⊂ �n, to be a smooth
nonsingular dynamical system, which for our pur-
poses may be derived by Poincare’ surface of sec-
tion from say, Eq. (1). Suppose we wish to con-
trol a desirable probability density function (pdf)
ρ∗ ∈ L1(M), which is different from the (pdf) of
f which in general we do not even need to assume
exists. Our goal will be to construct a C0 nearby
transformation f+δf such that this new dynamical
system has the desired pdf ρ∗. We have an inverse
problem to modify the Frobenius–Perron operator.

Since our target invariant density ρ∗ is the
fixed point of the Frobenius–Perron eigenequation,
Pf+δf [ρ

∗] = ρ∗, our approach will be to work with
an approximation of the Frobenius–Perron opera-
tor of f . Given f , and a uniform partition Gn, a
probability matrix Sn×n may derived by the Ulam-
like Eq. (5), or more efficiently by observing a test
orbit and using Eq. (6). Roughly said, the domi-
nant (λ = 1) eigenvector vn of Sn×n gives the long
term statistics of the Markov process described by
the directed graph. Likewise, it is expected to ap-
proximate the long term probability density (pdf)
of f , in a weak limit sense. We do not give here the
sufficient conditions for any of the several theorems
[Li, 1976; Froyland, 1995], Froyland2, Ding–Zhou,
[Góra & Boyarsky, 1997] which have successfully
proven for which transformations the last sentence
is true, because we are not really concerned with in-
variant density of f , but rather that of our control
target f+δf . We have given [Bollt, 2000a] mild suf-
ficient conditions under which the new transforma-
tion f + δf has the new probability matrix S∗n×n as
its Frobenius–Perron operator. One such sufficient
condition is that S∗n×n is irreducible (the directed
graph allows walks between any two vertices) and
aperiodic, which allows us to produce a piecewise
affine transformation f∗ such that Pf∗ ≡ S∗n×n.

Stated in terms of matrices, our control prob-
lem is as follows. Given a stochastic matrix Sn×n,
produce a new probability matrix S∗n×n such that
a desired probability vector un is stationary, un ·
S∗n×n = un, where un approximates ρ∗ on the grid.
To guarantee C0 small variations between the new
transformation f∗ and the old transformation f , we
require that S∗n×n respect the grammar of Sn×n,
meaning [Sn×n]i,j = 0 ⇒ [S∗n×n]i,j = 0. In gen-
eral this is not a well posed problem. As such, this
allows us a certain amount of freedom. The state-
ments of, (i) invariance (S∗n×n ·un = un), (ii) gram-
mar respect, and (iii) that S∗n×n be a probability
matrix, each can be described by linear constraint
of order no larger than n× n2.

Our constraints [Bollt, 2000a] may be stated in
the following abreviated notation inspired from a
recent paper by Gora and Boyarsky [1999]. First
let s∗n2 be an n

2× 1 vector whose entries come from
n × n unknown matrix S∗n×n; S∗i,j �→ s∗[(j−1)n+i+1],
for 1 ≤ i, j ≤ n, which reads each row of S∗n×n, in
turn, into the vector s∗n2 .

1. Target Invariance. Rewrite the invariance con-
straint un · S∗n×n = un to emphasize that in gen-
eral the target density vector un is known and
the matrix S∗n×n is unknown by the equivalent

system K(1) · s∗n2 = B(1) in which the matrix
is known, and the vector is the unknown. Map
each of the n constraint values of the n× 1 vec-
tor un into an n×n2 “place-holder” matrix K(1);

let K
(1)
i,j = [un]j , for (i − 1)n + 1 ≤ j ≤ (i)(n),

i = 1, 2, . . . , n, and otherwise K
(1)
i,j = 0. Let

B(1) = un.
2. Grammar respect. [Sn×n]i,j = 0⇒ [S∗n×n]i,j = 0,

can be stated as a linear constraint by mark-
ing each of the k, 1 ≤ k ≤ n2, zero entries
of Sn×n into a “place-holder” matrix K(2). Let
K(2) be a k × n2 matrix defined such that each
mth row of K(2) has a 1 for each zero entry of
Sn×n; let 1 ≤ m ≤ k index the mth zero entry

of [Sn×n]i,j > 0, and define K
(2)
[m,i+n(j−1)] = 1,

and let all other entries of K(2) be zero. Let
B(2) = 0 be the k × 1 vector. Then grammar
invariance is now the linear constraint on s∗n2 :
K(2) · s∗n2 = B(2).

3. Stochastic. If S∗n×n is constrained to be a prob-
ability matrix, it must row sum to 1. Define
K(3) to be n × n2 such that the ith row of
K(3) corresponds to the ith row sum of S∗n×n,
recorded in the vector of matrix entries s∗n2 . Let
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K
(3)
i,j = 1 if for each 1 ≤ i ≤ n, and for each

1 + (i − 1)n ≤ j ≤ 1 + (i)(n), and all other
entries of K(3) are zero. To force each row
sum to be 1, choose B(3) = 1, the n × 1 vec-
tor of ones. We have now the linear constraint
K(3) · s∗n2 = B(3).

The intersections of these constraints can now be
stated as a single linear constraint ,

K · s∗n2 = B , (8)

where we simply “stack” the above constraints 1–3;
let K = [K(1) : K(2) : K(3)]T and B = [B(1) : B(2) :
B(3)]T . See the worked example in Sec. 5.1.1.

Generally, there is freedom in solving for s∗n2
since K is usually far from full rank. In our previ-
ous work [Bollt, 2000a], we took the point of view
that a particular solution can be found by minimiz-
ing ‖Sn×n − S∗n×n‖ by the Penrose-Pseudo Inverse
(least squares) solution in the l2 norm or in [Bollt,
2000b] by repeated linear programming in the l∞
norm. Equation (8) will always have a minimal so-
lution, but if S∗n×n is to be a real probability matrix,
it is necessary to require entry-wise of the matrix
that,

0 ≤ s∗n2 ≤ 1 . (9)

In our formulation of the problem [Bollt, 2000a,
2000b], constraint Eq. (9) can only be used as an a
posteriori check of success; either our exact target
density is attainable within the fine grid partition,
or it is not. We gave theorems which indicated that
one expects that a coarser-grid is expected to admit
a solution to Eqs. (8) and (9). In [Bollt, 2000a], we

interpreted Eq. (8) as defining a hyperplane in �n2 ,
since K is generally not of full rank. Continuing
with this geometric point of view, Eq. (9) defines
a unit hyperbox, and hence we stated that a use-
ful solution exists iff hyperplane Eq. (8) pierces the
unit box Eq. (9).

In our previous work [Bollt, 2000a, 2000b], we
discussed minimization of the variation to the ma-
trix approximation of the F–P operator,

C(s∗n2) = ‖Sn×n − S∗n×n‖

=
√ ∑
1≤i, j≤n

(Si,j − S∗i,j)2 , (10)

which is a least squares problem, best solved
by Singular Value Decomposition. We discussed
that this required choosing a given target density.
We presented controllability theorems that if no

good minimum of an arbitrary target density ex-
ists within constraints, one must manually modify
the target, s∗n2 . Gora and Boyarsky have recently
made an important modification [Góra & Boyarsky,
1999] to our control problem by using another cost
function,

C(s∗n2) = ‖un − vn‖2

=
√ ∑
1≤i≤n

(ui − vi)2 , (11)

the Euclidean distance between the target density
vn and the dominant vector un of S∗n×n. We can
minimize Eq. (11) subject to both types of linear
constraints Eqs. (8) and (9), by applying standard
minimization packages. For example, the routine
constr which is built into MatLab’s Optimization
Package [Colemann et al., 1999]; see also [Press
et al., 1986]. Using the cost function Eq. (11),
Gora and Boyarsky minimize error between target
density v, and the attainable density u. They re-
marked that such an approach to optimization is fa-
vorable to our less flexible Pseudo-Inverse solution
which insists on the invariance property in Eq. (8)
but sometimes gives the unsatisfactory answer that
no solution exists which also satisfies Eq. (9). The
more general optimization approach finds the prob-
ability matrix with the dominant eigenvector vn as
close as possible (if not exact) to the target domi-
nant vector s∗n2 , within matrix constraints.

For a more detailed description of setting-up
Eq. (8), please see [Bollt, 2000a, 2000b] and [Góra
& Boyarsky, 1999]. We give a worked example in
the following subsection.

5.1.1. Example of designing a
desirable F–P operator

The linear algebra formalism of the last section
is perhaps confusing without a concrete example,
which we provide in this subsection. Exposing a
small example matrix is facilitated both by choos-
ing a low dimensionional example and of extreme
coarseness. Albiet, a finer grid is likely more useful
in practice. Hence, we choose the one-dimensional
successive maxima map derived from the Lorenz dif-
ferential equations [Lorenz, 1963], rather than our
primary Duffing oscillator example.

We choose an n = 8 element grid, over the
range of the z-variable of the Lorenz equations. See
the caption Fig. 4. This one-dimensional map gives
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an approximation,

S8×8 =




0.6957 0.3043 0 0 0 0 0 0

0 0.5455 0.4545 0 0 0 0 0

0 0 0.4202 0.5798 0 0 0 0

0 0 0 0.1057 0.4978 0.3700 0.0264 0

0 0 0 0 0.2566 0.3009 0.3628 0.0796

0 0 0.0197 0.6184 0.3618 0 0 0

0 0.1818 0.8182 0 0 0 0 0

0.3333 0.6667 0 0 0 0 0 0




, (12)

(a) (b) (c)

(d) (e) (f)

Fig. 4. IFPP and the Lorenz successive maxima map. The well-known [Lorenz, 1963] Lorenz equations, ẋ = 10(y − x),
ẏ = x(28− z)− y, ż = xy − (8/3)z, create the 1-D map shown in red in (a) when successive local maxima of z(t) are plotted
z(tNext Max) = f(z(tLocal Max). Using an n = 8 element grid, the approximated uncontrolled invariant density is shown in (b).
We choose the uniform invariant density as our target shown in (c). The closest possible minimization of Eq. (11) subject
to Eqs. (8) and (9) does not exactly hit the uniform target density shown in (c), since uniform is not an invariant density of
the original transformation. In (d) we show the error between uniform (c), and the density actually found by optimal matrix
S∗8×8, and in (e) we plot this density. In (a) and (f) we show the original Lorenz map in red, and its “measure-models” in blue.
That is, the blue piecewise linear maps shown are found by the inverse Ulam problem, and are those linear transformations
which have exactly a specific matrix, S8×8 and S∗8×8 respectively as their Frobenius–Perron operators on the chosen uniform
n = 8 element grids. Hence the blue curve shown in (f) is our measure target.
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to the Frobenius–Perron operator on the successive
maxima surface of section, and using the n = 8
element grid. Its dominant eigenvector is shown
in Fig. 4(b). We wish to target a uniform density
shown in Fig. 4(c). Now we can discuss points 1–3
of formulating IFPP as a linearly constrained opti-
mization problem.

Choose the target eigenvector of u8 ·S8×8 = u8
to be,

u8 =

(
1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

)t
. (13)

Let us define the unknown vector of the entries of
S∗8×8 to be the vector unknowns s∗64, where the first
row of the matrix S∗8×8 is the first 8 entries of s∗64.
The second row of S∗8×8 is then the next 8 entries
of s∗64, that is entries 9–16, etc.

Now we are in a position to explicitly describe
each of the three parts from the previous sec-
tion, in building the rules of our linear constraint
Eq. (8).

1. Target Invariance. u8 ·S∗8×8 = u8 can be written

K
(1)
8×64 · s∗64 = B

(1)
8 , to emphasize that the entries

of S∗8×8 are unknown, by letting

K
(1)
8×64 =




ut8 0t8 0t8 0t8 0t8 0t8 0t8 0t8
0t8 ut8 0t8 0t8 0t8 0t8 0t8 0t8
0t8 0t8 ut8 0t8 0t8 0t8 0t8 0t8
0t8 0t8 0t8 ut8 0t8 0t8 0t8 0t8
0t8 0t8 0t8 0t8 ut8 0t8 0t8 0t8
0t8 0t8 0t8 0t8 0t8 ut8 0t8 0t8
0t8 0t8 0t8 0t8 0t8 0t8 ut8 0t8
0t8 0t8 0t8 0t8 0t8 0t8 0t8 ut8




.

(14)

In general, Eq. (14) may be written more com-
pactly using the Kronecker “tensor product” ⊗,
[Fallet, 1996], which has become popular lately
in the syncronization literature under the name
“direct product,” [Pecora & Carroll, 1998; Pec-
ora et al., 1997] (in formulating the “master-
stability function”). Let,

K
(1)
n×n2 = In×n ⊗ utn . (15)

We use the notation that 0n is the n×1 vector of
zeros, and In×n is the identity matrix. Finally,

let B
(1)
8 = u8 be the target vector.

2. Grammar respect is also easily written into a lin-

ear constraint K
(2)
k×n2 ·s∗64 = B

(2)
k , as described in

the previous section. Specifically, we need each
entry of S∗8×8 to be zero whenever the corre-
sponding entry of S8×8 is also zero, and corre-
spondingly in s∗64. For example, observe that the
(i, j) = (1, 3) entry of S8×8, in Eq. (12), is zero.
Calling this the first zero, we write into the first

row of the place-holder matrix K
(2)
k×n2 by letting

the first row of K
(2)
k×n2 be all zeros, except in the

third column. Showing only this first row,

K
(2)
43×64 =

(
0 0 1 0 → 0

∗∗ →

)
(16)

Counting the zero entries of S8×8 in Eq. (12)

yields k = 43, and hence we choose B
(2)
43 = 043

to be the 43 × 1 zero matrix. It is easy to see
that the matrix multiplication in the equation

K
(2)
43×64 · s∗64 = B

(2)
43 will force the third entry of

s∗64 corresponding to the (i, j) = (1, 3) entry of
S8×8 to be zero, as required. The other zero’s

of S8×8 may be similiarly written into K
(2)
43×64 as

described in the previous section.
3. Stochastic. As already stated in the previous sec-

tion, constraining S∗8×8 to be a stochastic ma-
trix is partially satisfied by requiring that its
column sums to one. The reshaping of these
unknown matrix entries to the vector s∗64 re-
quires a linear constraint in which the jth row
of K selects each element of the jth column of
S∗8×8 from its reshaping as s∗64. For our exam-

ple, we let, w1 = (1 0 0 0 0 0 0 0 ),

w2 = (0 1 0 0 0 0 0 0 ), and w3 =

(0 0 1 0 0 0 0 0 ), etc., be 1 × 8 ma-
trices. Showing the first few rows only,

K
(3)
8×64=



w1 w1 w1 w1 w1 w1 w1 w1

w2 w2 w2 w2 w2 w2 w2 w2

w3 w3 w3 w3 w3 w3 w3 w3

∗∗ →


 .

(17)

Again the tensor product permits a compact
notation, as follows,

K
(3)
n×n2 = 1tn ⊗ In×n . (18)

Choosing B
(3)
n = 1n to be the n× 1 matrix of all

ones, it is easy to see that the linear constraint
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K
(3)
n×n2 · s∗n = B

(3)
n forces corresponding column

sums of corresponding entries of S∗8×8 to be one.
In this example, n = 8.

Note that Eqs. (15) and (18) are new and
simplified representations of Eqs. (14) and (17)
respectively.

Now stacking each of these three linear con-
straints yields the intersection equality constraint,
Eq. (8). Finally, solving our linear mixed equal-
ity and inequality Eqs. (8) and (9) constrained op-
timization of Eq. (11) does not yield exactly the
matrix whose left eigenvector is the uniform target
vector Eq. (13). Instead, the optimal solution is the
matrix,

S∗8×8 =




0.7365 0.2635 0 0 0 0 0 0

0 0.3060 0.6940 0 0 0 0 0

0 0 0 1.0000 0 0 0 0

0 0 0 0 0 0.6926 0.3074 0

0 0 0 0 0 0.1717 0.2342 0.5941

0 0 0 0 1.0000 0 0 0

0 0.1657 0.8343 0 0 0 0 0

0.4428 0.5572 0 0 0 0 0 0




, (19)

whose left eigenvector is the best possible within
the grammar (and grid). We show the error be-
tween target and actually hit invariant densities in
Fig. 4(d), and we show the actually hit invariant
density shown in Fig. 4(e), which is,

vt = (0.1316 0.1318 0.1577 0.1577

0.1318 0.1318 0.0793 0.0783)t . (20)

In Figs. 4(a) and 4(f), we show in blue the piece-
wise linear measure models which we will discuss in
more detail in the next section.

5.2. Designing the dynamical system

Once the probability matrix S∗n×n has been found,
we must formulate a discrete dynamical system f∗
such that S∗n×n is its Frobenius–Perron operator on
the given grid partition Gn. The point transforma-
tion f∗ serves as our local model, which we consider
here to be our local targets to be achieved by feed-
back control. These are small by construction. This
point is made explicitly obvious in the low dimen-
sional Lorenz map example depicted in Fig. 4. We
first briefly recall [Bollt, 2000a] the deterministic
solution, which we call IUP, and then we formu-
late the stochastic solution which is both simpler,
and more stable in the present context of feedback
control.

5.2.1. Inverse Ulam problem

Given a probability matrix S∗n×n and a partition
Gn, it is straightforward to construct a piecewise

affine transformation f∗ which is consistent with
the Frobenius–Perron operator Eq. (3). In 1-D,
on each grid element, it is only required that the
transformation’s derivatives come from one over the
matrix entry which can easily be done so that f∗ is
Markov; see Fig. 4 for pictoral insight, and [Góra
& Boyarsky, 1997; Bollt, 2000a] for details. In
multi-dimensions, the appropriate piecewise affine
transformation can also be easily constructed by
mapping horizontal strips in Gi linearly onto ver-
tical strips in Gj , (which guarantees the Markov
property [Bowen, 1975]), in such a way that change
in volume of the strips, is given by the determi-
nant of the Jacobian derivative. This agrees with
Eq. (3) and the target matrix entry [S∗n×n]i,j . Hence
correspondance between the matrix S∗n×n, and the
Frobenius–Perron operator Pf∗ of the constructed
transformation is ensured.

We have reviewed here only in the briefest of
details the deterministic solution of the IFPP by
IUP, since it is our opinion that such is not the
best local model for feedback control of a differ-
ential equation. This is because, considering that
probabilities of transitions depends so sensitively on
position, from strip to strip, any slight error in tar-
geting f∗(x) by feedback control will affect the next
transition, and so on. It is feasible that a consistent
error in targeting f∗(x) could bias the density re-
sults unexpectedly. The IFS stochastic model of f∗
below is more immune to such error, since as long as
the controlled next iterate is anywhere within the



2156 E. M. Bollt

target box, then statistics are exactly as expected
and desired. Note that the piecewise linear maps
shown in Fig. 4 are only offered as measure models,
as we use an IFS for actual feedback control.

5.2.2. Iterated Functions System (IFS)

Given a probability matrix S∗n×n and the partition
Gn, an iterated functions system model [Barnsley,
1988] for f∗ is realized as follows. For each x, deter-
mine i such that x ∈ Gi. Choose a random number
z uniformly in [0, 1] and determine j cumulatively,
by requiring that

j−1∑
k=1

[S∗n×n]i,k < z ≤
j∑
k=1

[S∗n×n]i,k , (21)

or j = 1 if z ≤ [S∗n×n]i,1. Next, simply assign
the center of box Gj as the next iterate target; let
f∗(x) = Gj . Note that choosing the center of Gj
best allows immunity to small errors.

Note that this stochastic model of f∗ is
neither completely deterministic, nor completely
random. Such is typical of an IFS. We have essen-
tially defined a stochastic process which is highly
constrained to follow the large-scaled transitions of
a given directed graph. The process is determin-
istic on the global scale, and random on the small

scale, which of course sensitively affects the long
term global scale process.

In the general and realistic settings of a slightly
and additively randomly perturbed dynamical
system xn+1 = f(x) + g where g is some ran-
dom variable with small standard deviation, such
a coarse-grained IFS model is not only natural, but
perhaps most realistic since small scaled specifica-
tion of transitions are blurred by the noise g.

6. Multi-Parametric Control Closes an
ε-Chain in a Flow

Given a discrete transformation f , existence of a
new transformation f∗ with desirable invariant den-
sity may be considered to be an open-loop control
strategy. Such is not feasible for a differential equa-
tion. Rather, f and f∗ exist simply as a snap-shot
of the flow and flow targets on Poincare’ surface
of section. For a flow, f∗ should be considered to
be the function of all possible next iterate targets,
overM , which will achieve some desirable long-term
steady state, described as an invariant density ρ∗
of f∗. To achieve f∗(x) in a differential equation,
pointwise for each given phase-state x, we choose
to use constant parametric feedback as our control

(a) (b)

Fig. 5. Observed next responses due to paramater variations of the Duffing oscillator: x′′ + ax′ + x3 − x = b sin(t), where
λ0 = (a0, b0) = (0.02, 3). (a) Dots show N = 10 000 iterates of 2π-stroboscopic map. Bold squares show “from” and “to”
vertices, in this (overly-large characature) grid. Blue bold crossed curves show observed next responses due to maximal
variations |δλ| = (|δa|, |δb|) ≤ (0.02, 0.25), where either δa or δb is varied separately, while the other is held fixed. With these
blue curves, we see a spanning range of possible next targets due to a maximal parameter variation |δλ. (b) Characature of
flow between piercings of uncontrolled fδλ, and controlled differential equation fδλ+λ0 , to target box.
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plant. Such is straightforward, since by construc-
tion |f∗(x)− f(x)| is uniformly small.

Parameteric feedback control of next iterate
response is realized as follows, on Poincaré sur-
face. Assuming an initial condition x and our tar-
get response is xwant = f∗(x) we need to solve the
equation,

fδλ+λ0(x) = xwant , (22)

for the unknown control parameter perturbation
vector δλ. Next response variation is a function
of both initial position and target, δλ(x, xwant). In
other words, we have to solve a two point boundary
value problem (BVP). In general, shooting requires
a good initial guess, but as we have already pointed
out, δλ is expected to be small. So we make the ini-
tial guess δλ = 0 to seed a Newton’s method based
shooting algorithm to solve Eq. (22). See Fig. 5.

7. Numerical Examples

We will now demonstrate numerical examples of
controlling Eq. (1) around nominal parameter val-
ues λ0 = (a0, b0) = (0.02, 3).

7.1. Numerical examples of
stabilizing an optimal path

With the ability to formulate an optimal path as
an ε-chain orbit by methods described in Sec. 4, to-
gether with the ability to formulate a true orbit of

the flow by time varying parameter perturbations,
we can now show an example of optimal targeting
of the Duffing oscillator.

We show in Fig. 6 a shortest path, calculated by
BFS as in Sec. 4.1, between the empty red box and
the blue box labeled “6”. Using a 40× 40 grid cov-
ering corresponds to (hx, hy) = (0.0997, 0.1606).
Each step of the path is likewise indexed and out-
lined by a blue box, except that the next iterate
(and the one to worry about during the calcula-
tion of the current parameter perturbation) is the
red box labeled “1”. We show in the second part
of Fig. 6 the control of the just mentioned ε-chain
orbit, by hitting the centers of each of the labeled
boxes in turn. This requires the calculation of pa-
rameter variations δλ = (δa, δb) about the nom-
inal values λ0 = (a0, b0) = (0.02, 3). The blue
crosses show the possible range of spacial varia-
tions achievable by using either a parameter con-
trol a0 − δa ≤ a ≤ a0 + δa and b = b0, or
b0 − δb ≤ b ≤ b0 + δb and a = a0. It is interest-
ing to note that the angle between δa and δb varia-
tions is sometimes very small. It is conceivable that
such angle could be approximately zero for some
dynamical systems, at some points. In such a case,
an extra control parameter would be necessary as
the ones used were found to be linearly dependant
at certain points. We did not find such a problem
with this example.

In Fig. 7, we show the time-dependant pa-
rameter variations used, during the time of flight

Fig. 6. Targeting the Duffing oscillator, using an 40× 40 grid covering. (Left) Starting in the empty red square, the shortest
ε-chain path is found and indexed starting from the empty red square, to the blue square labeled “6”. (Right) Using small
time-varying parametric perturbations, a true orbit of the flow Eq. (1) hits the centers of each square in turn along the path.
The black dot at the center of each blue cross shows where the uncontrolled iteration from the ith box along the path would
land instead of hitting the (i + 1)th box. The blue crosses through the black dot show the spacial variation range δF(z)
possible due to varying each parameter independently.
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Fig. 7. Time-dependant control parameter variations. The
controls used δλ = (δa, δb) about the nominal values λ0 =
(a0, b0) = (0.02, 3), to force a true trajectory to follow the
6-step ε-chain shown in Fig. 6, are small.

between the Poincaré surface, to force the true orbit
of the ODE, Eq. (1), to follow the ε-chain sequence
of boxes depicted in Fig. 6, and calculated by BFS.
Continuity of variation of the Poincaré map with re-
spect to parameter variation guarantees these per-
turbations will be small when using a fine grid, and
indeed we do observe that our calculated parameter
variations are small.

In Fig. 8, we show that using a coarser 10× 10
square grid allows a shorter ε-chain path between
the starting square covering the starting point and
the final square covering the target. In the limit

ε → 0, or n → ∞, we essentially limit to the orbit
of the starting point za. If the target point zb is
already on the orbit of fN (za) = zb, then “short-
est” path is this shortest number of iterates N . If
the target point zb is not already on the orbit of
za, then the shortest path length tends to infinity,
since we are limiting to allowing no perturbations.
On the other end of the scale, if we allow one big
grid square covering the attractor, then the min-
imal path length is zero, since any two points on
the attractor, za and zb are already identified, as
being in the same square. However, coarser grids
require larger parameter perturbations to force. We
generally find that the parameter perturbations re-
quired to force the controlled flow to follow a coarser
ε-chain (smaller value of n) are larger.

7.2. Numerical examples of stabilizing
invariant densities

We now show examples of targeting invariant den-
sities of the Duffing oscillator, which have been de-
signed by the IFPP techniques described in Sec. 5.
We control the IFS corresponding to the designed
Frobenius–Perron matrix as described in Sec. 5.2.2.
Since by construction, the IFS is ε-close (the scale
of the grid) to the original dynamical system,
small-scaled parametric feedback control forces the
flow to follow these coarse-grained trajectories,
similarly to the targeting control of the previous
subsection.

Fig. 8. Targeting the Duffing oscillator, using an 10× 10 square grid covering. Comparison to Fig. 6 shows that the coarser
grid allows a shorter path between the starting square covering the starting point and the final square covering the target.
Explanation of the graphics is as in Fig. 6.
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(a)

(b) (c)

Fig. 9. (a) Invariant density of the Duffing oscillator, Eq. (1), with parameter values λ0 = (a0, b0) = (0.02, 3). We have
coarse-grained with a 25× 25 grid covering the attractor. (b) Anti-control is realized by choosing an invariant density which
avoids the “red-strip” region. (c) Uniformly nearby the Duffing map is a map whose invariant density is supported only over
the period-1 of the Duffing map. Stabilizing this nearby map makes the corresponding periodic cycle of the Duffing oscillator
globally attracting.

The coarse-grained initial invariant density of
the Duffing 2π-map of the oscillator, with param-
eter values λ0 = (a0, b0) = (0.02, 3) is shown in
Fig. 9(a). The two target invariant densities shown
in Figs. 9(b) and 9(c) were successfully solved by
IFPP and stabilized by parameteric feedback con-
trol. The time-dependant parameter controls are
shown in Fig. 10, and they are relatively small due
to the relatively fine grid. While the supports of the
invariant densities shown in Figs. 9(a) and 9(b) ap-
pear similar (aside from the removed region), care-

ful inspection of the densities reveals that they are
usually different.

Two notes of warning are in order. The first is
that not all arbitrary densities are reachable with
an arbitrarily fine grid. See [Bollt, 2000a] for the
controllability theory. The two target densities in
Figs. 9(b) and 9(c) represent the two main types
of control densities which are exactly attainable.
Both these approximate “atypical” invariant den-
sities of the original system. Figure 9(b) shows a
nonattracting chaotic saddle, and Fig. 9(c) shows
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Fig. 10. Time-series of control parameter values (left) and coordinates (right) during feedback control of density shown in
Fig. 9(c), globally stabilizing a periodic cycle.

a delta density supported over a periodic orbit. In
terms of the graph, these both represent closed sub-
systems of the original digraph. That is, if one
wishes to eliminate a set of vertices from the digraph
representation, then the remaining set of vertices
must still be closed in that each vertex must have
an allowed transition to another remaining vertex,
within the original grammar. If such closure is not
possible, then a compromise density will automat-
ically be found as the solution of the optimization
problem, Eq. (11) subject to constraints Eqs. (8)
and (9).

The second note of warning concerns the role
of noise and control feedback error when target-
ing fine-scaled statistical measurements. Obviously
fine-scaled structures of the invariant density of a
scale smaller than the noise or error are not possible.
This is partly, but not fully, solved by our choice of
IFS, which allows us to target grid square centers
to offer a small amount of noise-immunity. We are
currently invesitigating the trade-off between noise,
structure scale and attainable density targets.

8. Conclusion

In this paper, we have shown that difficult global
control problems, which have traditionally been
intractable, can be achieved by using a coarse-
grained representation of the dynamical system’s
transfer operators as a directed graph/transfer ma-
trix. Within this formalism, graph theoretic algo-
rithms can be readily posed and applied. In this
paper, we have shown that such graph theoretic

approaches do indeed apply to the control of a
chaotic differential equation, since forcing a true
trajectory to follow the trajectory designed on a
global scale graph model, is just a matter of contin-
ually applying locally calculated parametric feed-
back control.

In future research, we hope to show that our
techniques can be useful in a physical experiment,
which will require that we address some of the fol-
lowing fundamental modeling issues. In designing
parametric control, it is necessary to be able to pre-
dict responses, in order to choose parameter varia-
tions. We have taken the point of view, in this proof
of principle study, that a good closed form model,
in the form of a differential equation, is available
to predict next responses due to parameter varia-
tions on Poincare’ section. This is realistic in the
situation that the physics underlying the dynami-
cal process is known and can lead to a differential
equation model, in which the associated parameters
can often be either directly measured or sometimes
inferred. There exist two main approaches to in-
fer, or parameter estimate which we will pursue.
The first method is direct calculation. Epureanu
and Dowell [1997] linearized around a periodic or-
bit of the Duffing oscillator, and they derived the
sensitivity vector by solving local linear variational
equations, by the variation of parameters technique.
They used a rather direct method to identify pa-
rameters, assuming an ansatz form of the differen-
tial equation, x′ = f(x, c, t), where c are the un-
known parameters to be fitted. Matching this to
x′ = g(xi, p0, ti) ≈ (xi+1 − xi)/(ti+1 − ti), and
using constant time sampled data xi ≡ x(ti), they
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derived an overdetermined linear system of equa-
tions in the unknown parameters c. The sec-
ond method is called “autosyncronization,” [Parlitz,
1996; Parlitz et al., 1996a; Parlitz et al., 1996b],
which is closely related to the observer problem
from control theory [Rugh, 1996; Antsaklis, 1997;
Isidori, 1995]. The idea is that observing a chaotic
dynamical system can be achieved by synchroniz-
ing a model to a scalar signal from the observed
system [Brown & Bryant, 1991; Brown, 1993].
Parlitz [Parlitz, 1996; Parlitz et al., 1996a; Parlitz
et al., 1996b], and similarly Maybhate and Amritkar
[1999], used adaptive control based on synchroniza-
tion to estimate parameters directly from a single
scalar time-series. Given a model ansatz, it was
shown [Parlitz, 1996; Parlitz et al., 1996a; Parlitz
et al., 1996b] that system parameters can be es-
timated from the sampled scalar time-series data
by synchronization between the driving dynamical
system generating the data stream and the model
augmented by differential equations of the to-be es-
timated parameters and mediated by synchroniza-
tion error. On the other hand, we could take the
point of view that we wish to control a “black-box”
process. Time-series embedding analysis [Takens,
1980] has been shown by several groups [So & Ott,
1995; Ding et al., 1996; Yang et al., 2000] to be
a valid way to sufficiently model to achieve OGY-
type control of unstable periodic orbits in a chaotic
system which is only known through measurement
of a scalar time-series. There is hope that these
techniques might be extended to allow for our mod-
eling requirements, but such will surely be data
intensive. Hence it is our opinion that whenever
a analytic (equations) model is possible, it should
be pursued.
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