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Abstract. We propose an entropy statistic designed to assess the behavior of
slowly varying parameters of real systems. Based on correlation entropy, the
method uses symbol dynamics and analysis of increments to achieve sufficient
recurrence in a short time series to enable entropy measurements on small data
sets. We analyze entropy along a moving window of a time series, the entropy
statistic tracking the behavior of slow variables of the data series. We employ
the technique against several physiological time series to illustrate its utility in
characterizing the constraints on a physiological time series. We propose that
changes in the entropy of measured physiological signal (e.g. power output)
during dynamic exercise will indicate changes in underlying constraint of the
system of interest. This is compelling because CE may serve as a non-invasive,
objective means of determining physiological stress under non-steady state con-
ditions such as competition or acute clinical pathologies. If so, CE could serve
as a valuable tool for dynamically monitoring health status in a wide range of
non-stationary systems.

1. Introduction. Information theoretic analysis of dynamical data has become
a popular approach to leverage thermodynamic concepts, information theory, and
statistical mechanics in an attempt to quantify the so-called “complexity” of the
system is responsible for generating the data. Particularly for the biological and
physiological data-sets , quantifying disorder of the system has become popular as an
intense area of promising recent research; see for example cardiac variability analysis
[19, 16, 9, 13], gait analysis [15, 8], circadian rhythm [1], postural control [6, 7], and
other important physiological experimental time series have been analyzed by such
methods. At the heart of such analysis, is the concept of quantifying the information
evolution of transitions associated with probabilities assigned to each state, with a
goal of providing single value (an entropy) to describe this information content. For
example, with an appropriate finite partition of labeled states, i = 1, 2, ..., n, and a
probability measure pi on that partition, the Shannon entropy of a random variable
is defined [30, 10] by

SE = −
∑

pi ln pi. (1)
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However, given a finite data set (for instance, a portion of a time series), the issue of
how to partition and how to best estimate these quantities pi is not trivial. When the
data comes from a dynamical system, one may proceed as Grassberger and Proccia,
to generalize Shannon entropy by constructing the the Renyi spectrum of entropies,
[14, 26]. From a time series of measurements, {x(ti)}N

i=1, after constructing delay
vectors, X(ti) = (x(ti), x(ti + τ), x(ti + (m − 1)τ), i = 1, ..., n, n = N−(m−1)τ , to
create the m-dimensional Taken’s embedding [32, 29, 12]. Then in terms of the m-
dimensional partition of uniformly sized hypercubes of side r-hypercubes, a relative
probability pi may be associated to be the relative occupancy of the orbit in the
i-th hyper-cube. Then Renyi-entropies are defined,

Kq = lim
r→0

lim
m→∞

1

1 − q
ln Iq(r), where, Iq(r) =

∑

(pj)
q, q ≥ 0, (2)

although, more generally one would need to take the supremum over all possible
partition refininements, rather than simply refining the partition. As a special case,
Komolgorov-Sinai entropy [31, 12], hKS -also called measure theoretic entropy, as-
sociated with K1, provides an ergodic quantifier of information theoretic complexity
of a dynamical system. It defines a rate at which a dynamical system loses initial
precision, and amplifies external noise, where this rate is emphasized according to
the system’s natural measure [22]. However, hKS is generally not easy to accurately
estimate from data, with difficulty in actually quantifying the appropriate proba-
bilities. Another special case is the correlation entropy (K2) [12, 17], defined by (2)
with q = 2. In addition to being a lower bound of KS-entropy as discussed in [17],
due to convexity [35], it serves in its own right as a suitable quantifier of diversity of
a data set. Most important to application is that K2 can be quickly and accurately
computed from a correlation integral, for which there are excellent algorithms for
estimation from finite discrete data sets, such as in [33].

A great deal of attention has been paid lately toward a particular statistical
estimator of an entropy of a given time series, called Approximate Entropy (ApEn)
by Pincus [23, 25]. Recently, an “unbiased” estimator of an entropy called Sample
Entropy (SampEn) was developed by Richman and Moorman [27] as a counter-
point of ApEn. We do not present the details of SampEn of a signal here, since it
is well defined in [27]. We will say only that the codes are widely accessible on the
author’s webpage, and they serve as a good estimator of K2. However, any code
which adequately estimates K2 (for some q) could be substituted in its place, such as
the subroutines of the TISEAN package [17] or the maximum likelihood estimator of
[21]. A typical application is to use the algorithms to compute a regularity measure
on a time series and then to use that computed value to classify the time series as
being of one type or another. In many biological applications, they have been used
to distinguish “healthy” from “unhealthy” biological signals [24, 34, 13].

As an extension of these applications, we consider the problem of continuous
health monitoring, where the time series is not a fixed and complete set, but is
“streaming.” If we can associate a change in signal complexity with a change in
health of the system, then we might hope that an entropy-like measure might detect
a developing problem (and possibly provide some warning before system failure).
An inherent difficulty is that the basis for the entropy estimators makes an assump-
tion of sufficient stationarity of the process such that the estimates of probabilities
pi can be accurately and efficiently collected from the finite data sample. Moreover,
our goal of detecting a change in the system implies an essential non-stationary at
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some time-scale. We remark that generally, empirical KS analysis assumes that the
process that generates the time series is sufficiently stationary that the underlying
attractor in the phase space of the dynamical system becomes sufficiently sampled
so that probability estimates become representative of the ergodic statistic. How-
ever, estimators such as ApEn and SampEn may be viewed as simply a statistic
of the finite sample, without requiring stationarity. But even under this less for-
mal interpretation, for these statistics to reasonably interpret the complexity of
the signal requires that there is sufficient recurrence so that computed values can
be interpreted as estimates of transition probabilities. Our main question in this
work will be the development of a method to infer observations from a time series,
of solutions from the system, whether there has been a significant parameter drift
within the system.

Many real world systems evolve in time may be idealized by a general determin-
istic model of the form,

ẋ = f(t,x(t), λ), x(t) ∈ ℜm, λ ∈ ℜq. (3)

In this form, we may explicitly define a stationary system to be a dynamical system
of the form (3), where the parameter(s) λ is (are) constant and where there is no
explicit dependence on time in the description of f. One may argue that no real
world system maintains its “constant” parameters λ, to be constant indefinitely.
For example, consider the simple forced spring oscillator, ÿ + γẏ + λ = A sin wt,
which may be written in the form of (3) with constant parameters for short times
scales, but on much longer time-scales, the spring constant λ may actually be time
varying and perhaps decaying. To emphasize fast variables x and slow variables λ,
it is common to write the standard singularly perturbed system [5],

λ̇ = f1(λ,x),

ǫẋ = f2(λ,x). (4)

whose long term dynamics of the slow variable λ corresponds to the ǫ = 0 slow
manifold, with corresponding differential-algebraic system, λ̇ = f1(λ,x), f2(λ,x) =
0. However, when calling λ to be approximately constant, we are referring to the
so-called associated system [2]; in the fast time-scale, s = t/ǫ, hence (4) becomes,

λ′ = ǫf1(λ,x),

x′ = f2(λ,x), (5)

and in the limit ǫ → 0, (5) yields the associate system,

x′ = f2(λ,x), λ = constant. (6)

In this sense, it can be said that the parameter λ changes slowly in time.
In the rest of this paper, we will write x(t) to denote a vector valued function

parameterized by time-t,

x : Ω ∈ ℜ →: ℜm, (7)

where Ω is the scalar time domain. Similarly, x(t) will be written to denote a scalar
measurement of the vector value,

h : ℜm → ℜ, h[x(t)] 7→ x(t), (8)

typically one of the vector components. Our measurements may come from a dy-
namical system, or a stochastic process, with measurement error. It is also notable
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that real world data sets from a continuous process are necessarily discretely sam-
pled, and we will write,

xi ≡ x(ti), i = 0, 1, ..., n, (9)

where typically, ti+1 − ti = constant, is a uniform time grid controlled largely
by the engineering of the experimental measuring devices. For this reason, it is
natural to consider not just continuous time processes such as flows from differential
equations, or solutions from stochastic differential equations. For the rest of the
presentation of this paper, we restrict our model problems to be discrete time maps,
F : ℜm → ℜm,xi 7→ xi+1 = F(xi), which may be related to a flow by the Poincaré
section method or by the stroboscopic method.

2. Development of control entropy (CE) . Our goal is to develop an entropy
like regularity statistic that can be applied against (possibly) nonstationary time
series data in a way that allows insight into the (possibly) time varying parameters
of the system. While in the case of a chaotic dynamical system with an invariant
measure, it is suitable to discuss the full Renyi spectrum of entropies [17], it becomes
less well founded for our goal problem. For this reason, we adopt the philosophy
of ApEn [23, 25], and similarly SampEn [27], developing a statistical measure of
a data stream without a specific claim that the statistics should be converging to
some “true” entropy value. Consequently, we may tune the algorithm to improve
its utility in a particular setting. As such, our techniques are meant to allow the
user to exploit (where possible) any expert knowledge of the underlying physical
system that generates the data. The general characteristics of our statistic, which
we call control entropy, are as follows:

1. The control entropy should be calculated in a moving window along the time
series, generating an entropy value for each of many (possibly overlapping)
windows. As such, the original data time series may be viewed as generating
an associated control entropy series. In some cases, the physical system that
generates the data might lead to reasoned choices of window, but one might
also consider under multiple window sizes provides a multiscale view of the
data.

2. Computing entropy on only a window of the data necessitates a rapidly con-
verging statistic. As such, we use entropy based on correlation sums [17],
closely related to the technique of SampEn, but where we allow for removing
the effects of short time correlation by using a Theiler window [33].

3. To increase the stationarity of the analyzed signal, when we consider time
series signal x(t), control entropy of x(t) is based on a correlation entropy
of dx

dt . For data signals sampled in discrete time, we simply compute on the
finite difference (or increment) of the signal. That differences often render
the signal stationary, can be viewed as an empirical observation of many real
world time series [11, 17] without trying to establish a rigorous basis. We
remark that many of the stochastic processes that arise in modeling (Levi
process, Brownian motion, Poisson process, etc.) have stationary increments

as a fundamental assumption of the model, making our choice to analyze the
differences a very natural approach to the non-stationarity.

4. Standard methods for computing correlation entropy estimates on a contin-
uous space require the choice of a “neighborhood size,” which is related to
the partitioning required to compute a numerical approximation of (2). As
an alternative, one may transform the continuous signal into a sequence of



CONTROL ENTROPY: A COMPLEXITY MEASURE 5

symbols, and analyze the entropy of the symbol stream. We will often apply
this symbolization approach, using the methodology of [20], with a primary
goal of reducing the number of tunable parameters to increase the robustness
of the approach [18].

To define control entropy via correlation sums, we proceed as follows: Let {zi}N
i=1

be a scalar time series where data is taken on a uniform time grid. Without loss of
generality, we assume unit spacing in time. For embedding dimension of m, let vi =
(zi, zi−1, . . . , zi−m+1) be a delay embedding, where we assume a unit embedding
delay. The correlation sum [17] is given by

C2({zi} ; m, r, T ) =
1

Npairs

N
∑

i=m

∑

j<i−T

Θ(r − ‖vi − vj‖∞), (10)

where Θ is the heaviside function, r is a parameter defining a neighborhood, and
Npairs = (N −m+1)(N−m−w+1)/2 is the total number of pairs of delay vectors.
Integer parameter T ≥ 1 is the Theiler window, which mitigates the effects of time
correlation in the data. We define

ĥ2({zi} ; m, r, T ) = ln

(

C2({zi} , m, r, T )

C2({zi} , m + 1, r, T )

)

. (11)

Using this formulation as a regularity measure (without trying to consider scaling
regimes and limiting values) is essentially equivalent to SampEn, which motivates
are choice of symbology for the windowed version. Consider time series {zi}n

i=1 :
Define

SE(j + J, w, {zi}n
i=1 ; m, r, T ) := ĥ2({zi}w+j

i=1+j ; m, r, T ),

0 ≤ j ≤ n − w, (12)

where J represents a time offset. SE assigns an entropy value to a time window of
the dataset. J allows us to associate that entropy with a specific instant in time.
Choosing J = w associates the entropy of the window with the ending time of that
window, while J = w/2 would associate that entropy with the time at the middle
of the window. We now define control entropy CE by applying SE to the first
difference,

CE(j + J, w, {xi}n
i=0 ; m, r, T ) := SE(j + J, w, {xi − xi−1}n

i=1 ; m, r, T ),

0 ≤ j ≤ n − w − 1. (13)

The CE statistic may be reasonable applied to both deterministic and stochastic
process. In 2.1, we show a short example based on Pincus’ MIXp signal [23] and
a stochastic random walk. Additionally, in Appendix A, we apply the method to
a simple system of deterministic chaos. That example focuses on the robustness
of the procedures in the presence of significant observational noise and added non-
stationarity of the measured variable.

2.1. A motivating, historical example. In [23], Pincus defines a family of
signals called MIXp as a prototype for use in study of ApEn. In that setting, fixed
parameter 0 = p = 1 determined the amount of randomness. For any p, the signal
is mean 0 with unit variance. Pincus showed that an entropy measure could be used
to assess the randomness of the signal. We will use MIXp as a building block to
create a signal that will illustrate the CE tool.
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Let us assume that instead of being fixed, the parameter p is slowly varying in
time. (For our example, p(t) is a prescribed function, graphed in Fig-1. At each
instant in time (t = j), the MIX process uses the current value of p(t) to generate
a step size mj which feeds a random walk, given by

xj = xj−1 + mj ,

where we take x(0) = 0 as a starting point. The result sequence is a sample from a
generalized random walk, with strong correlations in time. Although the increments
are not stationary, they are always mean 0 with unit variance. (See Appendix B
for a detailed description of this process.) The goal of the CE analysis attempts to
recover the shape of p(t) through entropy measurement of {xj}. Figure 1 shows a
plot of signal {x}, parameter p(t) and an windowed SE and CE analysis. We remark
that on windows that are small enough to follow the changes in p, there is insufficient
recurrence in x(t) to provide reliable entropy analysis, and SE provides little insight
to the parameter, while CE provides a reasonable recovery of the variations in p(t).
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Figure 1. A random walk from Mixp. (Top) The signal
{xj} to be analyzed. The “constant width” of the noise (small
scale oscillations) is due to unit variance of the Mixp signal, which
provides the increment for the random walk. (Bottom) Drive signal
p(t) (gray) was specified. The black signal p300 shows resultant
(random) realization, where the plotted value shows the fraction of
random steps within a length w = 300 moving window. CE8 (red)
(using a 8 symbol discretization of data, as described in Sec-2.2,
and window size w = 300) provides a very reasonable tracking of
p(t). However SE8 (blue) is unable to follow the changes in the
parameter.
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2.2. Symbolization and SAX partitions. Symbolic methods have a long history
in application to dynamical systems. In many statistical and datamining environ-
ment, converting from continuous signals to a symbol space has been shown to be
a robust way of detecting changes in signal characteristics [20, 18]. Let us assume
that we have a reasonable method for converting continuous values xi to symbols
si, where the cardinality of the symbol set is b. If we assume ‖si − sj‖ = 0 when
si = sj , and 1 otherwise, then we can compute control entropy on the symbolized
space by

CEb(j + J, w, {xi}n
i=0 ; m, T ) = CE(j + J, w, {si}n

i=0 ; m, 0.5, T ). (14)

We acknowledge that the symbolization procedure can give misleading results; we
have written extensively about the role of generating partitions in dynamical sys-
tems and the computation of entropy with so-called “misplaced” partitions [4, 3].
The relevant message here, from our work, is that the role of the partition is im-
portant to the specific results. At best, one expects the numerical values to be
biased, but it may also lead to nonintuitive non-monotonicity (inconsistency) of the
results. With respect to symbolic dynamics from dynamical systems, we take a
broad view here, toward a principle that the partition should be designed to allow
the data set to demonstrate its full “complexity.” While, for an infinite data set,
refining the partition to allow more symbols may lead to better results, refinement
eventually leads to poor results for finite data sets because of an under-sampling of
recurrences through the partition. On the other hand, as analyzed extensively in
[4, 3], when investigating a highly complex signal with a theoretical entropy > ln b,
then an b-symbol partition cannot reveal the full complexity.

We take the design goal of a useful partition to be to facilitate the finite sig-
nal to “maximally express itself” in the sense of frequent recurrences through the
designed partition while maintaining a simplicity of implementation. As a general
approach, one would like to have approximately equal usage of each of the symbols
in the chosen symbol set. In Fig-2, we show an empirical histogram of the power
data, {x(ti)}, for the Giro d’Italia data set from Fig-11, which suggests a normal
distribution, in this case. Further, in Fig-11 (Right), we show a windowed collec-
tion of histograms resulting from sliding block windows across the same data set.
In this case, we see a generally unimodal distribution is maintained throughout.
This motivates our standard partitioning method, called SAX, Symbolic Aggregate
approXimation, [20]. The method fits an appropriate normal distribution, N (µ, σ),
to the data set {x(ti)}, and then converting to the standard normal distribution

N (0, 1), by the usual Z = x(ti)−x
σ , we may associate a integer j ∈ 1, 2, ..., b by a

uniform partition of the z-score of each {x(ti)}. In particular applications, we may
find that the data set requires other partitioning schemes, but the SAX approach
provides an “off-the-shelf” approach that appears to perform satisfactorily against
a wide variety of signals.

Although these symbolic procedures reduce the number of parameters, we must
still choose an appropriate alphabet size. We note that the theoretical maximum
entropy on b symbols is ln b. In practice, if we find CEb({x(ti)} ≈ ln b, then we say
that the signal is saturating the entropy measurement, indicating that the partition
is not fine enough to accurately capture the relevant dynamics. The competing
limitations to balance in choosing b are that,

• if b is too small, there may be saturation, but,
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Figure 2. Data histogram(s) of the power data from a profes-
sional bicycle rider on the open road, as shown in Fig-11. (Top)
A pdf suggestive of a normal distribution, supporting the use of
the SAX algorithm. The notable deviation from normality is the
p(t) = 0 bin, which is due to the moments when the bicycle racer
“coasts” during a ride. (Right) Windowed Histograms, moving in
time, maintains a generally unimodal distribution, for this data set,
suggesting some validity in this case in maintaining the partition
developed using the full time series.
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Figure 3. Basic feedback controller. e(t) is the error between the
reference power and the actual power. u(t) is the control signal.

• if b is too large, we may observe lack of recurrence, making estimates of
transition probabilities (and the entropy estimate) unreliable.
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See the example data set in Fig-11 (Left) of a power data set which suggested to
us the need of just such a non-saturating CEb as in Fig-11 (Right) in which b = 8
symbols are chosen for SAX-8.
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Figure 4. Two Tent Maps with different underlying entropy. The
time series experiment in Fig-14 is run for half of the time with
the higher entropy blue map, and then is switched abruptly to the
lower entropy red map.

2.3. Biomedical and physiological examples. The kind of natural data sets
with nonstationarity we are now able to address, consider the samples demonstrated
in Figs. 5-10. These are each biomedical and physiological examples for purpose of
this paper, each with the characteristic nonstationarity renders traditional entropy
methods more difficult. These examples range from cyclists power output during
exercise in the lab during a Vo2Max test, Fig-5, a maximal aerobic power test Fig-
6, during an intervals session in the lab, Fig- 7, to heart rate data taken during
ergonomic testing, Fig- 8, to accelerometer on muscles during isometric exercise
data, Fig- 9, and accelerometer data taken during treadmill testing for VO2max
Fig- 10. One may compare this to nonlaboratory data taken on the open road
during a professional Grande Tour bicycle race, Fig- 11.

2.4. Time-scales and variability. We are primarily interested in how the data
set may evolve in time. In particular, we hope to assess the behavior of some
underlying, slowly varying parameter. We use a windowed fraction of the data, we
compute the statistic CE on windows of size w, and then observe the windowed
CE value as it evolves in time. The choice of window size must balances competing
factors of:

• Smoothing and convergence of the estimated statistic CE with larger w.
Larger numerical samples reduce statistical fluctuations in the computed statis-
tic for each sliding window. If w is too small, the fluctuations may be so large
as to mask the underlying parameter change of interest.

• Detecting changes on (relatively) short time-scales. If w is chosen too large,
the window may stretch across several “features” of a parameter change. The
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Figure 5. CE of power output during incremental cycling
VO2max test on laboratory ergometer. (Upper) Plot of p(t), mea-
sured power in Watts, versus t in minutes. The subject completes
a warm up at 60 Watts. At 5 minutes, the workrate is increased
to 100 Watts, and increases thereafter 15 Watts per minute until
exhaustion while metabolic gasses are collected (data not shown).
(Bottom) The CE of power as a function of time t displays what we
have observed to be a typical scenario during stressful exertions,
that being a decline in CE.

CE algorithm assigns an “average” value to the window. Real fluctuations
of the parameter that occur on time-scales that are shorter than the window
length may be difficult to discern.

The balance is similar to that of standard moving average filters, with longer win-
dows providing smoother curves while limiting the capability to follow higher fre-
quency fluctuations in the signal of interest.

The examples, shown in Fig-13, as well as Fig-12, illustrate the smoothness
gained by longer windows, while shorter time-scales pushes the limits of limited
data for convergence of the entropy statistic. We remark that the average period
of the underlying system drives the sampling rate that is needed for the discrete
time series to capture the full dynamics, and such sampling requirements are well
understood. However, since the signal of interest is the changing behavior of some
system parameter, that theory cannot be directly applied. To find the appropriate
data scale, we run the the windowed CE analysis, across many time-scales, as shown
in Figures 12 and 13.

3. The name control entropy. In this section, we motivate the choice of the
term Control Entropy to define our statistic. Although the formulation of section
2 may be viewed simply as an estimator of correlation entropy of the derivative
of a time series, we focus our description on a primary application of interest,
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Figure 6. A cycling effort on laboratory ergometer at maximal
aerobic power (MAP) established by VO2max test shown in Fig-5.
(Upper). Again, p(t), measured power in Watts, plotted versus t in
minutes. The subject performs a warm up at 25%, ramp to 50%,
then maximal effort at MAP until exhaustion. (Bottom). CE of
power is elevated during the warm up, and declines as workrate
is ramped to 50%, then reaches a nadir during the effort at MAP
despite the relatively short duration of the maximal effort.

where the measured time series is taken from some physical process where control
is required. We remark that a vast number of physical systems of interest can be
interpreted within the framework of control systems theory such that our discussions
are relevant to the broader set of examples.

For specificity, let us suppose that we desire to analyze power signal P (t), the
measured output by a bicycle rider. Furthermore, suppose the rider is trying to
achieve some specified power level, denoted Pref . Obviously, over the course of time
that value may change, but let us treat it as a constant over some time interval of
interest, with the rider doing something to try to reach and maintain that level. We
would expect that some type of feedback control description of the system would
provide a reasonable characterization of the important dynamics. (See Fig 3)

Let x(t) be defined by
x(t) = P (t) − Pref , (15)

where we now view x(t) as carrying the state variable information (where some em-
bedding may be required to properly characterize the state equations). A standard
control theory approach is to assume that we are near the desired control point,
so that a linearized approximation is reasonable, with the system governed by the
dynamical system

ẋ = Ax + Bu, (16)

where ẋ denotes derivative with respect to time. u = u(t) is a control signal,
generated based on the sensed error. In our simple description, x(t) is the difference
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Figure 7. An intermittent cycling effort on laboratory ergometer
at MAP. (Upper). p(t), measured power in Watts, plotted versus
t in minutes. The subject performs a warm up at 25%, ramp to
50%, then effort is alternated between 100 and 50% of MAP until
exhaustion. (Bottom). Again, despite the variable nature of the
effort, CE of power declines at the end of the warm up and stays
suppressed during the remainder of the protocol.

from reference power, and can be treated as the error, and the controller generates
signal u(t) as some function g of the error. If we continue the assumed simplification
of a linear form, then this relationship can be described by

u(t) = g(x(t)) = Kx(t), (17)

where K is a matrix that defines the controller. Then (16) can be rewritten as

ẋ = (A + BK)x. (18)

The control system designer chooses K so that the resultant system of (18) is

stable. CE is computed as an entropy of Ṗ . If we assume that the rider is trying
to maintain a constant power, then dPref/dt = 0 most of the time, deviating only
during those short intervals when the rider decides to ride at a different power level.
Differentiating (15), we have

Ṗ = ẋ = (A + BK)x, (19)

which we interpret as indicating that the CE computation as allowing direct insight
into the control system behavior, providing an entropy measure of the control signal.

The linear analysis above is meant to justify the view that CE is descriptive of
the controller is not rich enough to show why we consider the evolution of CE, as
described in the time-window statistic of (13). To provide a heuristic argument, we
consider the following general description of the controlled dynamical system: If x
describes a vector of state variables for some system, then the controlled behavior



CONTROL ENTROPY: A COMPLEXITY MEASURE 13

a)

b)

Figure 8. CE of heart rate during cycling on laboratory ergome-
ter. In both (a) and (b), (Upper) HR(t), measured heart rate
(bpm), versus t in seconds. (Lower). CE of heart rate. a) Con-
stant effort cycling on laboratory ergometer at MAP: The same
exercise protocol was used as presented in Fig-6. (Bottom). CE of
heart rate declines, as did CE of power, once the maximal effort be-
gins at 600 seconds. b) CE of heart rate during intermittent cycling
effort at MAP. The same exercise protocol was used as presented
in Fig-7. (Lower). As with CE of power, CE of heart rate declines
despite the variable nature of the effort, and cardiovascular re-
sponse.

is

ẋ = f(x, us(t), uc(t), t), (20)

where f gives the functional dependence of the evolution of the system on state
x at time t, with control u decomposed into a subconscious component us, and
conscious component uc. While the control signals will certainly depend upon some
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Figure 9. CE of mechanomyography (MMG) during isometric
muscle action at 100% maximal voluntary contraction. (Upper).
V (t), measured voltage, versus t in seconds. Voltage is signal from
a uniaxial accelerometer placed on the surface of the Vastus later-
alis muscle of the thigh. Signal is collected during a 10 sec baseline
rest, 70 sec maximal isometric leg extension, and 10 sec recovery.
The accelerometer measures muscle vibration as a result of muscle
action. (Bottom). CE of accelerometer voltage declines dramati-
cally at the start of the contraction, and remains depressed until
fatigue and return to baseline rest.

desired reference behavior, we make no specific effort to distinguish feedback and
feedforward controllers, allowing that these control signals might also depend upon
the state x. Then CE can be viewed as measuring the complexity of the signal

s(t) = f(x, us, uc, t), (21)

Changes in the complexity of this signal would indicate changes in the characteristics
of the attractor of this system, which would logically be associated with either
changes in the control system or changes in the underlying physiology of the system.
Analysis of human gait experiments indicate that subjects walking at their natural
pace (called unconstrained walking) show a complex pattern in stride interval, with
long time correlations in the time series data, with these correlations disappearing
when the person was required to walk to a metronome [15]. CE measurement of
the signals indicates higher entropy for the metronome walking as compared to the
unconstrained case. One interpretation of the stride walking data is that without a
metronome, the body is required to generate a clocking signal to drive the overall
cadence. With the goal of a steady walking pace, this requires periodic control signal
uc. The resultant signal is correlated in time, which implies that the future states
is correlated with current state, so that less information (per-unit time) is required
to describe the evolution of the system (a lowe entropy). When stepping with a
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metronome, the periodic drive is generated by an external source, with entrainment
to that signal requiring only a small amount of conscious (periodic) control. In other
dynamic exercise situations, the “constraint” might be the individual’s desire to
maintain a certain work output (e.g. running speed). During extended efforts, as the
body fatigues, the natural (unconstrained) action by the body would tend to slow
down the system. Anecdotal evidence indicates that the athlete must concentrate
harder to maintain a constant work rate. If we associate this concentration with an
increased conscious control uc, (asking the body to maintain a steady level), then the
entropy of signal s(t) would fall as the athlete becomes more fatigued. Additionally,
we might expect that if the athlete loses concentration, uc would be small, and the
signal entropy would rebound to previous levels, though now the work rate output
by the system might be significantly reduced. Although we use the uc and us

designations for this heuristic justification, from a practical standpoint, CE does
not depend on conscious control. Simply stated, the time-varying methodology
is meant to detect complexity shifts that would be indicative of changes in an
underlying system parameter.

4. An effect of observation noise on CE . Since our methods are focused on
application to measured data from physical systems, the effect of noisy observa-
tions must be understood. The methodology of [27] provides a means of assessing
the expected fluctuations in the measurement due to the randomness of the model,
but they do not account for noise. Specifically, if a process has a continuous noise
input, its “true” entropy is infinite [17], with the measured entropy strongly depen-
dent upon the observation scale. Although our choice of symbolization mitigates
some of these effects, if one is attempting to assess parameter changes of the system
through entropy measurement, one must be able to quantify the effects of observa-
tional noise. CE computations are fundamentally counting statistics. Counting a
particular symbolization amounts to application of a characteristic function, which
is inherently a nonlinear function, where standard statistical methods are difficult
to apply. The goal of this section is to present a method to develop an algorithmic
approach to assess an empirical distribution of error in the noisy CE computation.

We model the noise of the time-dependent random variables X(t) leading to
individual measurement realizations x(t), where we acknowledge both a continuous
measurement noise (error) as well as discretization errors which may occur in certain
digital devices that quantize the reported signals: Let,

x(t) = X (t) + ξ(t), (22)

where X (t) is the “true” physical value being measured, with error due to added
random noise variable ξ(t). We take ξ(t) to be a time-dependent random variable,
with a time-dependent probability distribution function ν(t). Notice that we have
assumed added noise to the signal, which should be sufficient for modeling mea-
surement noise, (whereas other models might be required to study the stochastic
evolution of the system.)

Suppose we wish to compute a time series of CE from measured data {x(ti)}.
Since different realizations of the added noise ξ(t) at each instant t may lead to
different symbolizations, different computed control entropy values could result.
Therefore, if we have a good model for the noise profile, ν(t), we may use a random
number generator to produce appropriately distributed instances of possible, −ξ(t).
Thus we will define a Monte-Carlo style simulation of the noise, from which we
will simulate appropriate samples. In practice as computer code, we declare pseudo
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random numbers ξ̂(t) (a coded subroutine to be built), to be distributed as ν(t) at

each instant t. With ξ̂(t), we may generate the Monte-Carlo instance,

x̂(t) = x(t) − ξ̂(t), (23)

For each sampled instance, x̂(ti), we may compute instances of CE,

ĈE = CEb(j + J, w, {x̂(ti)}n
i=0 ; m, T ), (24)

where all parameters are chosen as in the analysis of the original time series. Re-
peated sampling, Monte-Carlo style, of this generated time series may be performed
to sample the associate distribution of ĈE(t), at each t, with error bounds based
on these distributions.

For the simulations shown here, we specialize to assume a typical form of ν(t).
We take as an example the power in watts from the professional bicyclist in Fig-11
as measured by a device called an SRM Pro powermeter, which uses several piezo-
electrical strain gauges built into the bicycle crank armature to infer applied torque.
Measured values are reported in whole integer valued numbers of watts, in the range
0-2500 watts, with a margin of error imprinted from the factory of +/-2.5%, which
we assume to indicate normally distributed and unbiased noise, which we take (as
worst case) to be identically distributed. So we take

ξ̂(t) ∼ N(0, σ) + U(−0.5, 0.5), again where, σ = 0.025x(t), (25)

where the uniform noise term is meant to describe the discretization error by as-
suming a uniform rounding procedure.

Proceeding with the given measured signal, {x(ti)}, and computing ĈE by (24)
and with discretization and noise errors modeled (25), we generate many samples,

N , of possible instances of ĈE time series. In Fig-11 (Right), we see the result of
such repeated Monte-Carlo simulations of possible CE, resulting from possible orig-
inal signals, through N = 250 simulated pseudo randomized signals. In the Figure,
we have displayed 95% (blue) error bars from the simulation, which is the CE-value
for each t such that 0.025 of the simulated pseudo randomized signals lie above (be-
low) the sampled population. Also shown in red is the computed CE[j; w, {x(ti)}]
from the measured signal {x(ti)} without any pseudo randomization. The expec-
tation is that the CE-signal will lie within the blue error bars roughly 95% of the
time. We observe in Fig-12 that as the window length increases, the error bands
of CE become tighter. This is due in part to the particular form of the noise, for
which repeated sampling gives better averages, and the essentially counting nature
of the CE computation.

On the other hand, as the window length becomes too long, the computation
averages through the slower-time scaled parameter variations, which are the very
events which are being investigated. That, the time-scale of slow varying parameters
is changed with window lengths, is also discussed in Sec-2.4. See also Fig-13 for
further study of this time-scales issue.

5. Discussion. We have introduced a new entropy statistic designed to assess the
behavior of real systems under the condition of nonstationarity. In particular the
focus is on those systems where the nonstationarity is due to some slowly varying
parameter of the system. Our focus is on application to systems where the change
in parameter would be indicative of a change in the “health” of the system. Con-

trol Entropy is based on a windowed application of correlation entropy, but uses
techniques from symbol dynamics (as well as the increased stationarity of signal
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increments) to improve the robustness of the statistic. A key component of the
approach is that to analyze for a slowly changing parameter, one must employ some
type of windowed analysis of the signal. CE provides a sufficiently rapid convergence
of the statistic to allow exploitation of this irregularity measure on real signals. In
Sec-2.3, we have shown a vast array of examples on physiological data. In Sec-3
we give an heuristic argument as to how changes in CE might be related to the
underlying control mechanism. These initial studies seem to indicate that CE may
serve as a non-invasive, objective means of determining physiological stress under
non-steady state conditions such as competition or acute clinical pathologies. Cru-
cial to being able to properly interpret these signals, especially in a clinical setting,
requires that the effects of measurement noise be understood. Section 4 explores a
statistical methodology for determining when the changes in CE can be interpreted
as “real” changes in the underlying system. With appropriate statistical tools in
hand, it appears that CE could serve as a valuable tool for dynamically monitoring
health status in a wide range of nonstationary systems.

Appendix A. Example of CE applied to deterministic chaos system with
noisy observation. Consider a discrete-time chaotic map,

F : ℜ1 → ℜ1,xi 7→ xi+1 = F(xi), (26)

for which we choose the specific example, a family of skew tent maps, Fa,b : [0, 1] →
[0, 1], with

Fa,b(x) =
b + ((1 − b)/a)x if 0 ≤ x < a,
(1 − x)/(1 − a) if a ≤ x ≤ 1

. (27)

When a = 1/2, b = 0, it is known [28, 4] that this map has entropy exactly
h2(F ) = ln(2).

In Fig-4, we show two different tent maps, one with a = 1/2, b = 0, and the other
with slightly lower entropy, which will be the subject of demonstration in Fig-14.

In Fig-14 (Upper Left), we show a chaotic time-series x(t) of 25, 000 iterates,
where the parameters of the underlying dynamical system are abruptly changed
at time 12, 500, from the maximal entropy tent map, to the submaximal tent map
shown in Fig-4. Because the data-set is stationary, a windowed application of the
popular SE successfully detects the parameter change, as Fig-14 (Middle Left)
demonstrates an abrupt decrease in measured entropy. For reference, the vertical
blue line is placed at the moment of the theoretical change in the map’s parameters.

Next, we modify the stationary chaotic signal to produce what our “benchmark”
of a nonstationary signal, shown in Fig-14(Upper Right). The dark curve, which
we name y(t), running through the middle of the erratic signal shown is an artificial
and deliberately wandering baseline signal designed explicitly to produce a definitive
nonstationarity. The erratic signal, x̃(t), shown is then a sum of erratic components,

x̃(t) = x(t) + y(t) + ξ(t), (28)

where x(t) is the deterministic chaotic signal, y(t) is the wandering baseline signal,
and ξ(t) is a random component as follows: Let N(0, σ) be a normal random variable
for which we choose a large variance, U(0, 1) the uniform random variable, and
H1/20[s] is a Heaviside function, with trigger s = 1/20. Define ξ(t) by,

ξ(t) = N(0, σ)H1/20[U(0, 1)]. (29)

which yields a noise signal is “off” 95% of the time, but gives a large normal noise
component on about 5% of the measurements. The designed signal x̃(t) is highly
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erratic with both chaotic and large wandering random components. Due to the
high degree of nonstationarity, application of SE algorithm to the x̃(t) signal fails
to indicate the moment of the changed parameters, as no apparent change in SE at
the time of parameter change (see Fig-14 (Middle Right)). However, as seen in Fig-
14, CE also detects the event change in both the nonstationary and the stationary
signal.

Appendix B. A random walk from Mixp. . Pincus [23] defines a family of
signals called MIXp as a prototype for use in study of ApEn. In that setting, fixed
parameter 0 = p = 1 determined the amount of randomness. For any p, the signal
is mean 0 with unit variance. Pincus showed that an entropy measure could be used
to assess the randomness of the signal. We consider a slight modification where we
allow p to be slowly varying in time and use this signal as the step size drive for a
generalized random walk. To define our signal, let

wj = a−l/2 sin(
2πj

12
), (30)

a deterministic sinusoid, where

a :=

12
∑

j=1

1

12
sin(

2πj

12
)),

is chosen so that the sinusoidal signal has unit variance. Let Yj be a family of iid

variables taken from the uniform distribution on the interval [−
√

3,
√

3], observing
that each Yj also has unit variance. Define

Zj =

{

1 with probability p
0 with probability 1 − p,

The standard MIXp signal (from [23]) is

MIXp := (1 − Zj)wj + ZjYj . (31)

At each time increment, the MIXp is either a random value Yj , with probability
p, or it is a deterministic, periodic signal, with probability 1− p. The deterministic
signal has entropy h = 0. With increasing p, the randomness of the signal increases,
and entropy should increase. This signal is typically studied for fixed parameter
value p. However, suppose the parameter p is varying with time to create a non-
stationary signal:

wj = a−l/2 sin(
2πj

12
), (32)

Zj =

{

1 with probability pj

0 with probability 1 − pj
, (33)

Mj = (1 − Zj)wj + ZjYj , (34)

pj = g(j). (35)

The Mj are independent, with mean 0 and unit variance (though not identically
distributed). We now take this signal to be the step size for a random walk process,
defining

Xj = Xj−1 + Mj,

where we presume a particular realization of the form

xj = sj−1 + mj .
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For simplification, note that we choose to present pj as a simple function of time.
We reason that in a physical problem, there is (typically) not sufficient data to
recover a phase space representation of the slow dynamics which govern the evo-
lution of p. Rather, we only expect that we might recover the basic shape of the
signal {pj}. Consequently, for these study problems, we simply ignore the dynamics

of p and prescribe an interesting test signal {pj}N
j=1 that will help us to explore

the performance of our computational algorithms. We remark that the resultant
generalized random walk is time-inhomogeneous Markov chain with strong time
correlations and non-stationary increments.
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a)

b)

Figure 10. CE of accelerometry during incremental treadmill
VO2max test. In both a) and b), (Upper). |a(t)|, measured resul-
tant acceleration magnitude in g’s of gravity, obtained by triaxial
accelerometer, versus t, sample number. Samples were recorded at
667 Hz for each axis while subjects wore the accelerometer placed
at the approximate center of mass on the lower back. The proto-
col consisted of standing for 2 min, then walking on the treadmill
at 2 kph, and speed was increased thereafter by 2 kph every 2
min until exhaustion. (Bottom). CE of acceleration increases dur-
ing the walking phase until the run transition (red arrow) where
CE declines until exhaustion. The biphasic response indicates that
biomechanical constraints of walking are reduced as speed increases
toward natural pace because energy provision is not limiting. In
contrast, during running, energy provision becomes a limiting fac-
tor and increases constraints as speed increases. This interpreta-
tion is supported by comparing plots a) Untrained runner and b)
Trained elite runner. Both exhibit the same biphasic response,
yet, CE of accelerometry remains higher in b) than a) after the
run transition (red arrow), presumably because of greater running
capacity.
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Figure 11. Power data from a professional bicycle rider on the
open road, during a major European Grande-Tour, the 2001 Giro
d’Italia. (Upper Row) Power p(t) data set in watts is plotted versus
time t in minutes. Apparently, and notably, there is a great deal
more variability in the power of a cyclist in the professional pele-
ton compared to a amateur in the laboratory setting from Fig-5-5.
(Bottom-Left) CE computed by sign-partition method, (2). With
essentially 2-symbols allow, and the highly variable and complex
signal of the open road racing, a great deal of time yields saturation
of the computed CE≈ ln 2, suggesting the need for a finer partition.
(Bottom-Right) CE8, using the SAX method and 8-symbols reveals
a common scenario here , which is decreasing entropy with rider
stress as the control signal becomes more constrained. Statistical
error bands are shown, as explained in Sec-4.
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Figure 12. Window length study of CE of power during submax-
imal cycle ergometer trial. The subject performed warm up and
cool down at 200 Watts, with three 15 min efforts at 315 Watts
and 20 min at 280 Watts (50, 78 and 68% of VO2max, respec-
tively). (Top) Power p(t) in watts as a function of time t in min-
utes. (Successively from 2nd to Bottom) CE for increasing window
lengths w = 201, 401, 801, 1601, 3201 data points, with w = 201
corresponding to a window duration of ≈ 4.2 minutes. Error bands
(black) are as described in Sec-4. Observe that smaller windows
are able to detect the high intensity intervals, but at the cost of
greater statistical fluctuation. The longer windows provide a time-
averaged interpretation that indicates the overall trend toward ex-
haustion without regard to changes in intensity of the workout.
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Figure 13. CE time-scale study of power data from a profes-
sional bicycle rider on the open road. (Left) CE[j; w, {p(ti)}],
according to (13), for increasing time windows, from top, w =
401, 801, ..., 12801, for a CE filtering of data in windows of natural
units, W = 8.41sec, 16.821sec, ..., 268.821sec. (Right) The same
data plotted simultaneously in the same window. We see for small
w variability in CE[j; w, {p(ti)}] due both to statistical variability
of the data and corresponding convergence of the CE statistic, as
well as true parameter drift. On the other hand, as w is increased,
we see smoothing of the CE variability, to the point that we can see
variations due to slow drift in parameters more clearly. However,
at some point, when the window is longer than natural trends in
parameter variations, there may be a loss in variability of CE com-
putation due to averaging between several trends. By the second
and third CE plots from the bottom-left, we see a general decline
in CE as the ride progresses, overlaying some general oscillations
which perhaps correspond to ebbs and waves of the race pace due
to mountains and strategy.



CONTROL ENTROPY: A COMPLEXITY MEASURE 25

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x
(t

)

A Benchmark Chaotic Process: theoretical h
T
 change at middle−time

0 500 1000 1500 2000 2500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

S
a

m
p

E
n

[x
(t

)]

Vertical Line indicates event of changed h
T

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

C
E

[x
(t

)]

Vertical Line indicates event of changed h
T

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

t

x
(t

)

Chaotic Benchmark signal riding on a strong global signal, with added noise

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

S
a

m
p

E
n

[x
(t

)]

Straight SampEn[x(t)] fails to identify underlying entropy event of nonstationary signal

0 500 1000 1500 2000 2500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

C
E

[x
(t

)]
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Figure 14. CE locates changes in entropy of nonstationary sig-
nals. (Top Left) A chaotic signal, determined by a chaotic tent map
is designed with a change in from the larger entropy blue chaotic
tent map to the smaller entropy red map as shown in Fig-4. (Mid
Left) a moving window estimate of entropy of the time-series signal
using SampEn method successfully detects the change in the driv-
ing process. (Lower Left) CE also successfully detects the change
in parameter corresponding to changed topological entropy. (Top
Right) The stationary signal x(t) (shown Top Left) is added to
riding signal, shown in blue through the middle, and the resultant
signal is contaminated with measurement noise, which gives the
nonstationary stochastic signal shown in red. (Mid Right) SampEn
of this noisy signal; note that SampEn cannot “find” the parameter
change in the nonstationary signal. (Lower Right) CE detects the
change, despite the highly nonstationary signal.


	1. Introduction
	2. Development of control entropy (CE) 
	2.1. A motivating, historical example. 
	2.2. Symbolization and SAX partitions
	2.3. Biomedical and physiological examples
	2.4. Time-scales and variability

	3. The name control entropy
	4. An effect of observation noise on CE 
	5. Discussion
	Appendix A. Example of CE applied to deterministic chaos system with noisy observation. 
	Appendix B. A random walk from Mixp. 
	Acknowledgments
	REFERENCES

