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Abstract

We study the data-driven analysis methods for dynamical systems and focus on

the theories in machine learning, manifold learning, and data sciences. Learning

causation and learning global dynamics are two major field we will address in this

project.

Causal inference is a fundamental question in all science and the most popular

methods in this area are probabilistic in nature, including the Nobel prize-winning

work on Granger-causality, and also the recently highly popular transfer entropy.

In this thesis we propose a new measure to identify causal variables using a geo-

metric approach and connect transfer entropy with the new measure. Beyond the

conceptual advancement, a geometric description of causality further allows for

new and efficient computational methods of causal inference.

Trending tool for learning dynamics, Dynamic Mode decomposition (DMD)

can be used to separate spatial and temporal components of time series data. The

DMD approximates the linear Koopman operator on a projected space. In the spirit

of Johnson–Lindenstrauss lemma, we will use a random projection to estimate the

DMD modes in a reduced dimensional space. In practical applications, snapshots

are in a high-dimensional observable space and the DMD operator matrix is mas-

sive. Hence, computing DMD with the full spectrum is expensive, so our main

computational goal is to estimate the eigenvalue and eigenvectors of the DMD op-
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erator in a projected domain. We generalize the current algorithm to estimate a

projected DMD operator. We focus on a powerful and simple random projection

algorithm that will reduce the computational and storage costs. While, clearly,

a random projection simplifies the algorithmic complexity of a detailed optimal

projection, as we will show, the results can generally be excellent, nonetheless,

and the quality could be understood through a well-developed theory of random

projections. We will demonstrate that modes could be calculated for a low cost

by the projected data with sufficient dimension. This simple and computation-

ally efficient random projection improves aspects of the DMD, the Extended DMD

(EDMD), and also kernelized DMD approximations of the Koopman operator.
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Chapter 1

Introduction

Data science is currently the most trending topic in academia. Traditionally, data

from many disciplines have been obtained and used to verify a given hypothesis.

The advancement of technology makes data abundant and abundantly collected in

every single experiment at a low-cost [33]. Insight from this data can be obtained

beyond the verification of the hypothesis. It can be used to learn underlying fea-

tures and behaviors.

Mining special features from large-scale time series data is a vital part of current

research because it enhances the short-term and long-term predictions about the

system. Research in feature learning of time-series data includes the fast-growing

information theory and Koopman theory. However, there is an overall lack of re-

search regarding the geometric aspect of the information flow. Also, there are gaps

in efficient and accurate models to approximate Koopman modes. This research

aims to address two main parts. First, we build geometric tools to measure the

information flow (which is discussed in our article [48] ). Next, we discuss the

random projection-based methods to efficiently and accurately approximate the

Koopman modes (which is discussed in our article [49] ). This chapter will pro-
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vide an introduction to the study by first discussing the background and context,

followed by the research problem, and contribution.

1.1 The Historical Background

1.1.1 Information Flow

Causation Inference is perhaps one of the most fundamental concepts in science,

underlying questions such as “what are the causes of changes in observed vari-

ables”. Identifying, indeed even defining causal variables of a given observed

variable is not an easy task, and these questions date back to the Greeks [15, 54].

This includes important contributions from more recent luminaries such as Rus-

sel [40], and from philosophy, mathematics, probability, information theory, and

computer science. We have written that [9], “a basic question when defining the

concept of information flow is to contrast versions of reality for a dynamical sys-

tem. Either a subcomponent is closed or alternatively, there is an outside influence

due to another component”.

Claude Granger’s Nobel prize [20] winning work leading to Granger Causality

(see also Wiener [53]) formulates causal inference as a concept of quality of fore-

casts. That is, we ask, does system X provide sufficient information regarding fore-

casts of future states of the system X, or are there improved forecasts with obser-

vations from system Y? We declare that X is not closed, as it is receiving influence

(or information) from system Y when data from Y improve forecasts of X. Such a

reduction of uncertainty perspective of causal inference is not identical to the in-

terventionists’ concept of allowing perturbations and experiments to decide what

changes indicate influences. This data-oriented philosophy of causal inference is
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especially appropriate when (1) the system is a dynamical system of some form

producing data streams in time, and (2) a score of influence may be needed. In par-

ticular, contrasting forecasts is the defining concept underlying Granger Causality

(G-causality), and it is closely related to the concept of information flow as de-

fined by transfer entropy [6, 43], which can be proved as a nonlinear version of

Granger’s otherwise linear (ARMA) test [4]. In this spirit, we find methods such

as Convergent Cross-Mapping method (CCM) [45], and causation entropy (CSE)

[47] to disambiguate direct versus indirect influences [2, 8, 25, 31, 39, 44, 46, 47].

On the other hand, closely related to information flow are concepts of coun-

terfactuals: “what would happen if ...” [19] that are foundational questions for

another school leading to the highly successful Pearl “Do–Calculus” built on a

specialized variation of Bayesian analysis [35]. These are especially relevant for

nondynamical questions (inputs and outputs occur once across populations), such

as a typical question of the sort, “why did I get fat” may be premised on inferring

probabilities of removing influences of saturated fats and chocolates. However,

with concepts of counterfactual analysis in mind, one may argue that Granger is

less descriptive of causation inference, but rather more descriptive of information

flow. In fact, there is a link between the two notions for so-called “settable” sys-

tems under a conditional form of exogeneity [51, 52]. This thesis focuses on the

information flow perspective, which is causation as it relates to G-causality.

1.1.2 Approximating Koopman Operator

Koopman operator[26] theory provides great utility in data-driven analysis and

high dimensional non-linear dynamical systems. Hence, the Koopman theory is

becoming a popular alternative formalism for the dynamical systems [3]. Koop-

man operator is linear in the infinite-dimensional space of observables. This oper-
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ator can be used to decompose the spatial and temporal components of the system.

Numerical methods known as dynamic mode decomposition (DMD), extended

DMD, and kernel DMD, approximate the Koopman operator on projected func-

tion space.

The DMD algorithm is introduced by Schmid, P. J. (2010) and is currently known

as the standard dynamic mode decomposition. He introduces this method in the

field of fluid dynamics to exact dynamic information from flow fields that are

either generated from numerical simulation or physical experiments. It has be-

come popular among the community of fluid mechanics because it is similar to the

Proper Orthogonal Decomposition (POD) methods. POD and DMD methods are

data-driven equation-free methods and in contrast to the POD algorithm, DMD

methods can isolate the spatial features related to specific frequencies. The DMD

thrived after realizing its connection[[] mazic, rowly] to the Koopman theory. Tu

et. al.(2014) improve the DMD algorithm to a larger class of datasets, including

non-sequential time series.

The gap between the Koopman spectrum and the DMD spectrum is filled by

Williams et. al.(2015) extending the DMD into a larger function space. He later

introduces the kernel method which is a computationally feasible alternative to

EDMD. The Kernel method uses sets of scalar observables that are implicitly de-

fined by Mercer’s kernel. They also proved EDMD and KDMD approximates the

Koopman eigendecomposition. Depending on the chosen kernel, the dimension of

the observable space can be increased without increasing the calculation or storage

complexity.
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1.2 Research Problems and Contributions

1.2.1 Geometry of Information Flow

The traditional narrative of information flow is in terms of comparing stochastic or

deterministic dynamical systems in probabilistic terms. However, highly popular

probabilistic method transfer entropy suffer from boundedness issue when data

arise from a deterministic system (see section ??). Even though the geometry is

perhaps a natural place to describe a dynamical system, there is a huge lack of

research in the geometric interpretation of the information flow. Thus, we will

try to provide a bridge between concepts of causality as information flow to the

underlying geometry. This connection will empower to boost the accessible data

analysis tools in the field of information theory. For example, manifold learning

methods such as diffusion maps can be used to identify the underlying geometry

of the data which may be used to find the causal inference. This thesis offers a

unifying description for interpreting geometric formulations of causation together

with traditional statistical or information-theoretic interpretations and develops a

new measure for the information flow.

We analyze connections between information flow by transfer entropy to ge-

ometric quantities that describe the orientation of underlying functions of a cor-

responding dynamical system. In the course of this analysis, we have needed

to develop a new “asymmetric transfer operator” (asymmetric Frobenius–Perron

operator) evolving ensemble densities of initial conditions between spaces whose

dimensionalities do not match. With this, we proceed to give a new exact for-

mula for transfer entropy, and from there we are able to relate this Kullback–
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Leibler divergence-based measure directly to other more geometrically relevant

divergences, specifically total variation divergence and Hellinger divergence, by

Pinsker’s inequality. This leads to a succinct upper bound of the transfer entropy

by quantities related to a more geometric description of the underlying dynam-

ical system. Then, we present a new measure in the spirit of G-causality that is

more directly motivated by geometry. This measure is developed in terms of the

classical fractal dimension concept of correlation dimension.

The main connections and corresponding sections of this part of the work are

summarized as a dichotomy: Geometry and Causation (information flow struc-

ture) as described in Figure (1.1). Our contribution in this paper is as follows:

• We present analytical and data-driven approach to identify causality by geo-

metric methods, and thus also a unifying perspective.

• We show that a derivative (if it exists) of the underlining function of the time

series has a close relationship to the transfer entropy (Section 3.2).

• Correlation dimension can be used as a measurement for dynamics of a dy-

namical system. We will show that this measurement can be used to identify

the causality (Section 4).

• We provide a new tool called geoC to identify the causality by geometric

terms (Section 4).

Geometry

– Dimensionality

– Information
flow structure

– Level sets

Causation (Granger)

– Transfer en-
tropy

– Geometric
Causation

Equations (4.2), (3.16)

Figure 1.1: The relationship of causation and geometry.
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1.2.2 Randomized Dynamic Mode Decomposition

Since the Koopman operator is an infinite-dimensional operator, current research

is mostly focused on lifting up the dimension of the observable space. However,

due to the limited resources, the final calculation needs to be achieved in a low-

dimensional space. Even though DMD methods are implicitly projecting the ob-

servable space, there is a lack of generalized explicit formalism regarding this is-

sue. In addition, standard existing DMD algorithms reliance on a singular value

decomposition (SVD) of the snapshot matrix. However, direct SVD calculations

of such matrices can be quite memory-consuming and computationally intensive.

One can notice that SVD calculations of snapshot matrices in big projects would

require the use of supercomputers or days of computation.

This thesis will discuss the explicit generalization of the projection of observ-

able space. To allow processing on small-scale computers and in a shorter time

frame, we propose developing an algorithm based on a randomized projection [13],

which is used to reduce the dimension of observable space in DMD, which we

call rDMD. In order to utilize and carefully analyzed the rDMD, we will use the

Johnson–Lindenstrauss lemma. It is clear that a random projection is simple as

compared to a detailed optimal projection method, but our analysis and examples

demonstrate, nonetheless, the quality and efficiency.

Strong theoretical support from Johnson–Lindenstrauss(JL) lemma [24] makes

the random projection method reliable and has extensive utilization in the field of

data science. According to the JL lemma, if data points lie in a sufficiently high-

dimensional space, then those data points may be projected into a sufficiently low-

dimensional space while approximately preserving the distance of the data points.

Furthermore, the projection can be done by a random matrix, which makes al-
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gorithms based on the JL lemma both past and simple. Hence, this tool is more

powerful and adopted heavily in data science.

JL lemma-based random projection and SVD-based projection can be used to

project N dimensional data into a lower dimension L << N. Data matrix XN×M

can be projected (by random projection) into a lower dimension (L) subspace as

XL := RX, where R is a random matrix with unit length. Hence, the random pro-

jection is very simple because it relies only on matrix multiplication. Moreover,

computational complexity is O(MLN), while SVD has computational complexity

O(NM2) when M < N [5]. We will use the random projection to project high-

dimensional snapshot matrices into a manageable low-dimensional space. From a

theoretical perspective, the dimensions of the input and output spaces in the Koop-

man operator can be reduced by the random projection method; thus, reducing the

storage and computational cost of the DMD algorithm.
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Chapter 2

Transfer Entropy

This chapter will discuss a currently famous probabilistic method known as trans-

fer entropy for measuring causality. First, we will introduce the transfer entropy

as a measure of difference between two probability distribution. Then we will fo-

cus on information flow between deterministic dynamical systems. Boundedness

issues of calculating transfer entropy arise with these deterministic Systems will

also be discussed. Finally, we will provide example results to demonstrate the

issue. This boundedness issue is a one of the major motivation for considering ge-

ometric measures. We will adopt standard notations in the probability theory in

this part of the discussion. Also, we will use lower case letter (x) as a value of its

upper case letter (X) random variable.

2.1 Quantifying Information Flows

For now, we assume that x, y are real valued scalars. We use a shorthand notation,

x := xn, x′ := xn+1 for any particular time n, where the prime (′) notation denotes

“next iterate”. Likewise, let z = (x, y) denote the composite variable, and its future

17
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composite state, z′. Consider the simplest of cases, where there are two coupled

dynamical systems written as discrete time maps,

x′ = f1(x, y), (2.1)

y′ = f2(x, y). (2.2)

Identifying the causal effect of y on x hinges on the contrast between two alter-

native versions of the possible origins of x′ and is premised on deciding one of the

following two cases: Either

x′ = f1(x), or x′ = f1(x, y) (2.3)

is descriptive of the actual function f1. The definition of transfer entropy [6, 7,

43] Ty→x is defined to decide this question by comparing the deviation from a

proposed Markov property,

p(x′|x) ?
= p(x′|x, y). (2.4)

The transfer entropy, measuring the influence of coupling from variables y onto

the future of the variables x, denoted by x′ is defined as Kullback-Leibler (KL)

divergence of conditional probability p(x′|x) from p(x′|x, y). Assuming the out-

come spaces may be continuous, the differential entropy version of a Kullback-

Leibler divergence definition for transfer entropy can be stated. For this purposes,

Kullback-Leibler divergence can be stated as in definition 2.1.1.

Definition 2.1.1 (Kullback-Leibler Divergence). Let outcome space Ω have a mea-

sure µ with probability measures P1 and P2 are absolutely continuous to µ, so that

p1 = dP1
dµ and p2 = dP2

dµ , then Kullback-Leibler divergence of P2 from P1 is defined
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by

DKL(P1||P2) =
∫

Ω
p1 log

p1

p2
dµ

=
∫

Ω
p1 log p1dµ −

∫
Ω

p1 log p2dµ

= −h(P1)−
∫

Ω
p1 log p2dµ,

where h(p1) = −
∫

Ω p1 log p1dµ is the differential entropy of P1.

We will allow the abuse of notation to write the KL-divergence in terms of the

pdf’s as the arguments, DKL(p1||p2). In the case of p1(x), p2(x) are probability

density functions of a continuous random variable X, KL divergence of p2 form p1

is,

DKL(p1||p2) = Ep1 [log
(

p1

p2

)
] =

∫
p1(x) log

(
p1(x)
p2(x)

)
dx. (2.5)

Furthermore, if p1(x′|x), p2(x′|x) are conditional probability density functions of

random variables (X, X′) then the KL divergence,

DKL(p1(x′|x)||p2(x′|x)) =
∫ ∫

p1(x′, x) log
(

p1(x′|x)
p2(x′|x)

)
dx′dx (2.6)

Hence the definition of transfer entropy [6, 7, 43] is given by:

Ty→x = DKL(p(x′|x, y)||p(x′|x)). (2.7)
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and, it can be explained by conditional entropy as:

Ty→x =
∫ ∫ ∫

p(x, y, x′) log
(

p(x′|x, y)
p(x′|x)

)
dxdydx′ (2.8)

=
∫ ∫ ∫

p(x, y, x′) log p(x′|x, y)dxdydx′

−
∫ ∫

p(x, x′) log p(x′|x)dxdx′

= −h(X′|X, Y) + h(X′|X)

= h(X′|X)− h(X′|X, Y),

where h(X′|X) = −E[log p(X′|X)] and h(X′|X, Y) = −E[log p(X′|X, Y)].

The Kullback–Leibler divergence used here contrasts these two possible expla-

nations of the process generating x′. Since DKL may be written in terms of mutual

information, the units are as any entropy, bits per time step. Notice that we have

overloaded the notation writing p(x′|x) and p(x′|x, y). Our practice will be to rely

on the arguments to distinguish functions as otherwise different (likewise) distin-

guishing cases of f1(x) versus f1(x, y).

2.2 Transfer Entropy for Deterministic Systems

Considering the evolution of deterministic dynamical system x as a stochastic pro-

cess [6, 30], we may write a probability density function in terms of all those vari-

ables that may be relevant, p(x, y, x′). Contrasting the role of the various input

variables requires us to develop a new singular transfer operator between do-

mains that do not necessarily have the same number of variables. Notice that

the definition of transfer entropy (Equation (2.7)) seems to rely on the absolute

continuity of the joint probability density p(x, y, x′). However, that joint distribu-

tion of p(x, y, f (x, y)) is generally not absolutely continuous, noticing its support is
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{(x, y, f (x, y)) : (x, y) ∈ Ωx × Ωy ⊆ R2}, a measure 0 subset of R3. Therefore, the

expression h( f (X, Y)|X, Y) is not well defined as a differential entropy and hence

there is a problem with transfer entropy. We expand upon this important detail

in the upcoming subsection. To guarantee existence, we interpret these quantities

by convolution to smooth the problem. Adding an “artificial noise” with standard

deviation parameter ϵ allows definition of the conditional entropy at the singular

limit ϵ approaches to zero, and likewise the transfer entropy follows.

The probability density function of the sum of two continuous random vari-

ables (U, Z) can be obtained by convolution, PU+Z = PU ∗ PZ. Random noise (Z

with mean E(Z) = 0 and variance V(Z) = Cϵ2) added to the original observable

variables regularizes, and we are interested in the singular limit, ϵ → 0. We as-

sume that Z is independent of X, Y. In experimental data from practical problems,

we argue that some noise, perhaps even if small, is always present. Additionally,

noise is assumed to be uniform or normally distributed in practical applications.

Therefore, for simplicity of the discussion, we mostly focused on those two dis-

tributions. With this concept, Transfer Entropy can now be calculated by using

h(X′|X, Y) and h(X′|X) when

X′ = f (X, Y) + Z, (2.9)

where now we assume that X, Y, Z ∈ R are independent random variables and

we assume that f : Ωx × Ωy → R is a component-wise monotonic (we will con-

sider the monotonically increasing case for consistent explanations, but one can

use monotonically decreasing functions in similar manner) continuous function of

X, Y and Ωx, Ωy ⊆ R.
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2.2.1 Calculating Conditional differential Entropy

Calculation of transfer entropy depends on the conditional probability. Hence, we

will first focus on conditional probability. Since for any particular values x, y the

function value f (x, y) is fixed, we conclude that X′|x, y is just a linear function of

Z. We see that

pX′|X,Y(x′|x, y) = Pr(Z = x′ − f (x, y)) = pZ(x′ − f (x, y)), (2.10)

where pZ is the probability density function of Z.

Note that the random variable X′|x is a function of (Y, Z). To write U + Z,

let U = f (x, Y). Therefore, convolution of densities of U and Z gives the density

function for p(x′|x) (See Section 2.2.2 for examples). Notice that a given value of

the random variable, say X = α, is a parameter in U. Therefore, we will denote

U = f (Y; α). We will first focus on the probability density function of U, pU(u),

using the Frobenius–Perron operator,

pU(u) = ∑
y:u= f (y;α)

pY( f (y; α))

| f ′( f (y; α))| . (2.11)

In the multivariate setting, the formula is extended similarly interpreting the

derivative as the Jacobian matrix, and the absolute value is interpreted as the

absolute value of the determinant. Denote Y = (Y1, Y2, . . . , Yn), g(Y; α) =

(g1, g2, . . . , gn) and U = f (α, Y) := g1(Y; α); and the vector V = (V1, V2, . . . , Vn−1) ∈
Rn−1 such that Vi = gi+1(Y) := Yi+1 for i = 1, 2, . . . , n − 1. Then, the absolute

value of the determinate of the Jacobian matrix is given by: |Jg(y)| = | ∂g1(y;α)
∂y1

|. As

an aside, note that J is lower triangular with diagonal entries dii = 1 for i > 1. The
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probability density function of U is given by

pU(u) =
∫

S
pY(g−1(u, v; α))

∣∣∣∂g1

∂y1
(g−1(u, v; α))

∣∣∣−1
dv, (2.12)

where S is the support set of the random variable V.

Since the random variable X′|x can be written as a sum of U and Z, we find the

probability density function by convolution as follows:

pX′|x(x′|x) =
∫

pU(u)pZ(x′ − u)du. (2.13)

Now, the conditional differential entropy h(Z|X, Y) is in terms of these prob-

ability densities. It is useful that translation does not change the differential en-

tropy, hϵ( f (X, Y) + Z|X, Y) = h(Z|X, Y). In addition, Z is independent from X, Y,

h(Z|X, Y) = h(Z). Now, we define

h( f (X, Y)|X, Y) := lim
ϵ→0+

hϵ( f (X, Y) + Z|X, Y) (2.14)

if this limit exists.

We consider two scenarios: (1) Z is a uniform random variable or (2) Z is a

Gaussian random variable. If it is uniform in the interval [−ϵ/2, ϵ/2], then the dif-

ferential entropy is h(Z) = ln(ϵ). If specifically, Z is Gaussian with zero mean and

ϵ standard deviation, then h(Z) = 1
2 ln

(
2πeϵ2). Therefore, hϵ( f (X, Y) + Z|X, Y) →

−∞ as ϵ → 0+ in both cases. Therefore, h( f (X, Y)|X, Y)) is not finite in this defini-

tion (Equation (2.14)) as well. Thus, instead of calculating X′ = f (X, Y), we need
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to use a noisy version of data X′ = f (X, Y) + Z. For that case,

h(X′|X, Y) = h(Z) =


ln(ϵ); Z ∼ U(−ϵ/2, ϵ/2)

1
2 ln

(
2πeϵ2); Z ∼ N (0, ϵ2)

, (2.15)

where U(−ϵ/2, ϵ/2) is the uniform distribution in the interval [−ϵ/2, ϵ/2], and

N (0, ϵ2) is a Gaussian distribution with zero mean and ϵ standard deviation.

Now, we focus on h(X′|X). If X′ is just a function of X, then we can similarly

show that: if X′ = f (X), then

h( f (X) + Z|X) = h(Z) =


ln(ϵ); Z ∼ U(−ϵ/2, ϵ/2)

1
2 ln

(
2πeϵ2); Z ∼ N (0, ϵ2).

(2.16)

In addition, notice that, if X′ = f (X, Y), then h(X′|X) will exist, and most of

the cases will be finite. However, when we calculate Ty→x, we need to use the

noisy version to avoid the issues in calculating h(X′|X, Y). We will now consider

the interesting case X′ = f (X, Y) + Z and calculate h(X′|X). We require pX′|X

and Equation (2.13) can be used to calculate this probability. Let us denote I :=∫
pU(u)pZ(x′ − u)du; then,

hϵ(X′|X) =
∫ ∫

I pX(x) ln(I)dx′dx (2.17)

=
∫

pX(x)
∫

I ln(I)dx′dx

= EX(Q),

where Q =
∫

I ln(I)dx′. Notice that, if Q does not depend on x, then h(X′|X) =

Q
∫

pXdx = Q because
∫

pXdx = 1(since px is a probability density function).
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Therefore, we can calculate hϵ(X′|X) by four steps. First, we calculate the density

function for U = f (x, Y) (by using Equation (2.11) or (2.12)). Then, we calculate

I = pX′|X by using Equation (2.13). Next, we calculate the value of Q, and finally

we calculate the value of hϵ(X′|X).

Thus, the transfer entropy from y to x follows in terms of comparing conditional

entropies,

Ty→x = h(X′|X)− h(X′|X, Y). (2.18)

This quantity is not well defined when X′ = f (X, Y), and therefore we considered

the X′ = f (X, Y) + Z case. This interpretation of transfer entropy depends on the

parameter ϵ, as we define

Ty→x := lim
ϵ→0+

Ty→x(ϵ) = lim
ϵ→0+

hϵ(X′|X)− hϵ(X′|X, Y) (2.19)

if this limit exists.

Note that

Ty→x =


limϵ→0+ h(Z)− h(Z) = 0; X′ = f (X)

∞; X′ = f (X, Y) ̸= f (X).
(2.20)

Thus, we see that a finite quantity is ensured by the noise term. We can easily

find an upper bound for the transfer entropy when X′ = f (X, Y) + Z is a random

variable with finite support (with all the other assumptions mentioned earlier) and

suppose Z ∼ U(−ϵ/2, ϵ/2). First, notice that the uniform distribution maximizes

entropy amongst all distributions of continuous random variables with finite sup-

port. If f is component-wise monotonically increasing continuous function, then
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the support of X′|x is [ f (x, ymin)− ϵ/2, f (x, ymin) + ϵ/2] for all x ∈ Ωx. Here, ymin

and ymax are minimum and maximum values of Y. Then, it follows that

hϵ(X′|X) ≤ ln(| f (xmax, ymax)− f (xmax, ymin) + ϵ|), (2.21)

where xmax is the maximum x value. We see that an interesting upper bound for

transfer entropy follows:

Ty→x(ϵ) ≤ ln
(∣∣∣ f (xmax, ymax)− f (xmax, ymin)

ϵ
+ 1

∣∣∣). (2.22)

2.2.2 Numerical Demonstration of Boundedness Issue

In this section, we will focus on analytical results and numerical estimators for

conditional entropy and transfer entropy for specific examples (see Figure 2.1, 2.2

). As we discussed in previous sections starting with ??, computing the transfer

entropy for X′ = f (X, Y) has technical difficulties due to the singularity of the

quantity h(X′|X, Y). First, we will consider the calculation of h(X′|X) for X′ =

f (X, Y), and then we will discuss the calculation for noisy data. In the following

examples, we assumed that X, Y are random variables such that X, Y iid∼ U([1, 2]).

A summary of the calculations for a few examples are listed in Table 2.1.

Table 2.1: Conditional entropy h(X′|X) for X′ = f (X, Y), for specific parametric

examples listed, under the assumption that X, Y iid∼ U([1, 2]).

f (X, Y) h(X′|X)

g(X) + bY ln(b)
g(X) + bY2 ln(8b)− 5/2

g(X) + b ln(Y) ln
(

b e
4

)

We will discuss the transfer entropy with noisy data because making h(X′|X, Y)
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well defined requires absolute continuity of the probability density function p(x, y, x′).

Consider, for example, the problem form X′ = g(X) + bY + C, where X, Y are uni-

formly distributed independent random variables over the interval [1, 2] (the same

analysis can be extend to any finite interval) with b being a constant, and g a func-

tion of random variable X. We will also consider C to be a random variable, which

is distributed uniformly on [−ϵ/2, ϵ/2]. Note that it follows that h(X′|X, Y) = ln ϵ.

To calculate the h(X′|X), we need to find the conditional probability p(X′|x) and

observe that X′|x = U + C, where U = g(x) + bY. Therefore,

pU(u) =


1
b ; g1(x) + b ≤ X′ ≤ g1(x) + 2b

0 ; otherwise.
(2.23)

and

pX′|X(X′|x) =



x′+ϵ/2−g(x)
bϵ ; g(x)− ϵ/2 ≤ X′ ≤ g(x) + ϵ/2

1
b ; g(x) + ϵ/2 ≤ X′ ≤ b + g(x)− ϵ/2

−x′+ϵ/2+g(x)+b
bϵ ; b + g(x)− ϵ/2 ≤ X′ ≤ b + g(x) + ϵ/2

0 ; otherwise

. (2.24)

By the definition of transfer entropy, we can show that

h(X′|X) = ln b +
ϵ

2b
(2.25)
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and hence transfer entropy of this data are given by

Ty→x(ϵ; b) =


ln b

ϵ +
ϵ

2b ; b ̸= 0

0; b = 0.
(2.26)

Therefore, when b = 0, the transfer entropy Ty→x = ln ϵ − ln ϵ = 0. In addition,

notice that Ty→x(ϵ; b) → ∞ as ϵ → 0. Therefore, convergence of the numerical

estimates is slow when ϵ > 0 is small (see Figure 2.2).
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(a) Examples for X′ = g(X) + bY. The left figure shows results for g(X) = X and the right
shows results for g(X) = X2.
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(b) Examples for X′ = g(X) + bY2. The left figure shows results for g(X) = X and the
right shows results for g(X) = ex.

Figure 2.1: Conditional entropy h(X′|X). Note that these numerical estimates for
the conditional entropy by the KSG method [28], converge (as N → ∞) to the
analytic solutions (see Table 2.1).
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(c) ϵ = 10−6

Figure 2.2: Numerical results and analytical results for transfer entropy Ty→x(ϵ; b)
to the problem X′ = X + bY + ϵ . Transfer entropy vs. ϵ shows in (a) for fixed b
value. (b) and (c) show the behavior of the transfer entropy for b values with fixed
ϵ values. Notice that convergence of numerical solution is slow when epsilon is
small.

Boundedness issue noticed in this section motivate us to finding a alternative

description of the information flow in dynamical systems. As we discussed in the

introduction section geometry is perhaps a natural place to describe the dynamics.
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Chapter 3

Relating Geometric Measures to

Causal Inference

Now, we focus on the geometric interpretation of the information flow. As we

seen in the section 2.1, causality question can be stated as equation (2.3). Transfer

entropy anser this question indirectly by conditional probabilities (eq. 2.4). Our

aim is to define the causality question more directly using the geometric measures.

Furthermore, we can relate the geometric measures with probabilities and even

transfer entropy. This chapter will relate the probability and transfer entropy with

the geometric measures.

3.1 Geometric Interpretation of Causal Inference

Consider that the coupling structure between variables may be characterized by

the directed graph illustrated in Figure 3.1.

38



3.1. GEOMETRIC INTERPRETATION OF CAUSAL INFERENCE 39

yx

(2)Tx→y > 0 ⇔ ∂f2
∂x 6= 0

(1)Ty→x > 0 ⇔ ∂f1
∂y 6= 0

Figure 3.1: A directed graph presentation of the coupling stucture questions corre-
sponding to Equations (2.1) and (2.2).

In one time step, without loss of generality, we may decide on equation (2.3),

the role of y on x′, based on Ty→x > 0, exclusively in terms of the details of the

argument structure of f1. This is separate from the reverse question of f2 as to

whether Tx→y > 0. In geometric terms, assuming f1 ∈ C1(Ω1), it is clear that,

unless the partial derivative ∂ f1
∂y is zero everywhere, then the y argument in f1(x, y)

is relevant. This is not a necessary condition for Ty→x > 0, which is a probabilistic

statement, and almost everywhere is sufficient.

For further analysis, consider a manifold of points (x, y, x′) ∈ X × Y × X′

as the graph over Ω1, which we label M2. In the following, we assume f1 ∈
C1(Ω1), Ω1 ⊂ X × Y. Our primary assertion here is that the geometric aspects of

the set (x, y, x′) projected into (x, x′) distinguishes the information flow structure.

Refer to Figure 3.2 for notation. Let the level set for a given fixed y be defined,

Ly := {(x, x′) : x′ = f (x, y), y = constant} ∈ Ω2 = X × X′ (3.1)
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Ω1

Ω2

Ω3

M2

y = c

Ly

x

y

x′

(a)

Ω1

Ω2

Ω3

M2

y = c

Ly

x

y

x′

(b)

Figure 3.2: Ω2 = X × X′ manifold and Ly level set for (a) x′ = f1(x) = −0.005x2 +

100, (b) x′ = f1(x, y) = −0.005x2 + 0.01y2 + 50. The dimension of the projected
set of (x, x′) depends on the causality as just described. Compare to Figure 3.3 and
Equation (3.8).

.

When these level sets are distinct, then the question of the relevance of y to the

outcome of x′ is clear:

• If ∂ f1
∂y = 0 for all (x, y) ∈ Ω1, then Ly = Lỹ for all y, ỹ.

Notice that, if the y argument is not relevant as described above, then x′ = f1(x)

better describes the associations, but if we nonetheless insist to write x′ = f1(x, y),

then ∂ f1
∂y = 0 for all (x, y) ∈ Ω1. The converse is interesting to state explicitly,

• If Ly ̸= Lỹ for some y, ỹ, then ∂ f1
∂y ̸= 0 for some (x, y) ∈ Ω1, and then x′ =

f1(x) is not a sufficient description of what should really be written x′ =

f1(x, y). We have assumed f1 ∈ C1(Ω1) throughout.
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3.2 Relating Transfer Entropy to a Geometric Bound

Noting that transfer entropy and other variations of the G-causality concept are

expressed in terms of conditional probabilities, we recall that

p(x′|x, y)p(x, y) = p(x, y, x′). (3.2)

Again, we continue to overload the notation on the functions p, the details of the

arguments distinguishing to which of these functions we refer.

Now, consider the change of random variable formulas that map between prob-

ability density functions by smooth transformations. In the case that x′ = f1(x) (in

the special case that f1 is one-one), then

p(x′) =
p(x)

| d f1
dx (x)|

=
p( f−1

1 (x′))

| d f1
dx ( f−1

1 (x′))|
. (3.3)

In the more general case, not assuming one-one-ness, we get the usual Frobenius–

Perron operator,

p(x′) = ∑
x:x′= f1(x)

p(x, x′) = ∑
x:x′= f1(x)

p(x)

| d f1
dx (x)|

, (3.4)

in terms of a summation over all pre-images of x′. Notice also that the middle form

is written as a marginalization across x of all those x that lead to x′. This Frobenius–

Perron operator, as usual, maps densities of ensembles of initial conditions under

the action of the map f1.

Comparing to the expression

p(x, x′) = p(x′|x)p(x), (3.5)
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we assert the interpretation that

p(x′|x) :=
1

| d f1
dx (x)|

δ(x′ − f1(x)), (3.6)

where δ is the Dirac delta function. In the language of Bayesian uncertainty prop-

agation, p(x′|x) describes the likelihood function, if interpreting the future state

x′ as data, and the past state x as parameters, in a standard Bayes description,

p(data|parameter)× p(parameter). As usual for any likelihood function, while it

is a probability distribution over the data argument, it may not necessarily be so

with respect to the parameter argument.

Now, consider the case where x′ is indeed nontrivially a function with respect

to not just x, but also with respect to y. Then, we require the following asymmet-

ric space transfer operator, which we name here an asymmetric Frobenius–Perron

operator for smooth transformations between spaces of dissimilar dimensionality:

Theorem 3.2.1 (Asymmetric Space Transfer Operator). If x′ = f1(x, y), for f1 :

Ω1 → Υ, given bounded open domain (x, y) ∈ Ω1 ⊂ R2d, and range x′ ∈ Υ ⊂ Rd,

and f1 ∈ C1(Ω1), and the Jacobian matrices, ∂ f1
∂x (x, y), and ∂ f1

∂y (x, y) are not both rank

deficient at the same time, then taking the initial density p(x, y) ∈ L1(Ω1), the following

serves as a transfer operator mapping asymmetrically defined densities P : L1(Ω1) →
L1(Υ)

p(x′) = ∑
(x,y):x′= f1(x,y)

p(x, y, x′) = ∑
(x,y):x′= f1(x,y)

p(x, y)

| ∂ f1
∂x (x, y)|+ | ∂ f1

∂y (x, y)|
. (3.7)

The proof of this is in Appendix A. Note also that, by similar argumentation,

one can formulate the asymmetric Frobenius–Perron type operator between sets of

dissimilar dimensionality in an integral form.
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Corollary 3.2.1.1 (Asymmetric Transfer Operator, Kernel Integral Form). Under the

same hypothesis as Theorem 3.2.1, we may alternatively write the integral kernel form of

the expression,

P : L2(R2) → L2(R) (3.8)

p(x, y) 7→ p′(x′) = P[p](x, y)]

=

=
∫

Lx′
p(x, y, x′)dxdy =

∫
Lx′

p(x′|x, y)p(x, y)dxdy

=
∫

Lx′

1

| ∂ f1
∂x (x, y)|+ | ∂ f1

∂y (x, y)|
p(x, y)dxdy. (3.9)

This is in terms of a line integration along the level set, Lx′ . See Figure 3.3:

Lx′ = {(x, y) ∈ Ω1 : f (x, y) = x′ a chosen constant.} (3.10)

In Figure 3.3, we have shown a typical scenario where a level set is a curve

(or it may well be a union of disjoint curves), whereas, in a typical FP-operator

between sets of the same dimensionality, generally the integration is between pre-

images that are usually either singletons, or unions of such points, p′(x′) =
∫

δ(s−
f (x))p(s)ds = ∑x: f (x)=x′

p(x)
|D f (x)| .
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x′ = c

Lx′

x

y

x′

Figure 3.3: The asymmetric transfer operator, Equation (3.8), is written in terms of
intefration over the level set, Lx′ of x′ = f1(x, y) associated with a fixed value x′,
Equation (3.10).

Contrasting standard and the asymmetric forms of transfer operators as de-

scribed above, in the next section, we will compute and bound estimates for the

transfer entropy. However, it should already be apparent that, if ∂ f1
∂y = 0 in proba-

bility with respect to p(x, y), then Ty→x = 0.

Comparison to other statistical divergences reveals geometric relevance: In-

formation flow is quite naturally defined by the KL-divergence, in that it comes

in the units of entropy, e.g., bits per second. However, the well-known Pinsker’s

inequality [36] allows us to more easily relate the transfer entropy to a quantity

that has a geometric relevance using the total variation, even if this is only by an

inequality estimate.

Recall that Pinsker’s inequality [36] relates random variables with probability

distributions p1 and p2 over the same support to the total variation and the KL-

divergence as follows:

0 ≤ 1
2

TV(P1, P2) ≤
√

DKL(P1||P2), (3.11)
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written as probability measures P1, P2. The total variation distance between prob-

ability measures is a maximal absolute difference of possible events,

TV(P1, P2) = sup
A

|P1(A)− P2(A)|, (3.12)

but it is well known to be related to 1/2 of the L1-distance in the case of a common

dominating measure, p1(x)dµ = dP1, p2(x)dµ = dP2. In this work, we only need

absolute continuity with respect to Lebesgue measure, p1(x) = dP1(x), p2(x) =

dP2(x); then,

TV(P1, P2) =
1
2

∫
|p1(x)− p2(x)|dx =

1
2
∥p1 − p2∥L1 , (3.13)

here with respect to Lebesgue measure. In addition, we write DKL(P1||P2) =∫
p1(x) log p1(x)

p2(x)dx; therefore,

1
2
∥p1 − p2∥2

L1 ≤
∫

p1(x) log
p1(x)
p2(x)

dx. (3.14)

Thus, with the Pinsker inequality, we can bound the transfer entropy from be-

low by inserting the definition Equation (2.7) into the above:

0 ≤ 1
2
∥p(x′|x, y)− p(x′|x)∥2

L1 ≤ Ty→x. (3.15)

The assumption that the two distributions correspond to a common dominating

measure requires that we interpret p(x′|x) as a distribution averaged across the

same p(x, y) as p(x′|x, y). (Recall by definition [11] that λ is a common dominating

measure of P and Q if p(x) = dP/dλ and q(x) = dQ/dλ describe corresponding

densities). For the sake of simplification, we interpret transfer entropy relative to
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a uniform initial density, p(x, y), for both entropies of Equation (2.18). With this

assumption, we interpret

0 ≤ 1
2
∥ 1

| ∂ f1
∂x (x, y)|+ | ∂ f1

∂y (x, y)|
− 1

| d f1
dx (x)|

∥2
L1(Ω1,p(x,y)) ≤ Ty→x. (3.16)

In the special case that there is very little information flow, we would expect that

| ∂ f1
∂y | < b << 1, and b << | ∂ f1

∂x |, almost every x, y; then, a power series expansion

in small b gives

1
2
∥ 1

| ∂ f1
∂x (x, y)|+ | ∂ f1

∂y (x, y)|
− 1

| d f1
dx (x)|

∥2
L1(Ω1,p(x,y)) ≈

Vol(Ω1)

2

< | ∂ f1
∂y | >2

< | ∂ f1
∂x | >4

, (3.17)

which serves approximately as the TV-lower bound for transfer entropy where

have used the notation < · > to denote an average across the domain. Notice

that, therefore, δ(p(x′|x, y), p(x′|x)) ↓ as | ∂ f1
∂y | ↓. While Pinsker’s inequality cannot

guarantee that Ty→x ↓, since TV is only an upper bound, it is clearly suggestive. In

summary, comparing inequality Equation (3.16) to the approximation (3.17) sug-

gests that, for | ∂ f1
∂y | << b << | ∂ f1

∂x |, for b > 0, for a.e. x, y, then Ty→x ↓ as b ↓.

Now, we change to a more computational direction of this story of interpreting

information flow in geometric terms. With the strong connection described in the

following section, we bring to the problem of information flow between geomet-

ric concepts to information flow concepts, such as entropy, it is natural to turn to

studying the dimensionality of the outcome spaces, as we will now develop.
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Chapter 4

Geometry of Information Flow

Now, we will explore numerical estimation aspects of transfer entropy for causa-

tion inference in relationship to geometry as described theoretically in the previous

chapter, and we will compare this numerical approach to geometric aspects.

As theory suggests, there is a strong relationship between the information flow

(causality as measured by transfer entropy) and the geometry, encoded for exam-

ple in the estimates leading to Equation (3.17). The effective dimensionality of the

underlying manifold as projected into the outcome space is a key factor to identify

the causal inference between chosen variables. Indeed, any question of causality

is in fact observer dependent. To this point, suppose x′ only depends on x, y and

x′ = f (x, y), where f ∈ C1(Ω1). We noticed that (Section ??) Ty→x = 0 ⇐⇒ ∂ f
∂y =

0, ∀(x, y) ∈ Ω1. Now, notice that ∂ f
∂y = 0, ∀(x, y) ∈ Ω1 ⇐⇒ x′ = f (x, y) = f (x).

Therefore, in the case that Ω1 is two-dimensional, then (x, x′) would be a one-

dimensional, manifold if and only if ∂ f
∂y = 0, ∀(x, y) ∈ Ω1. See Figure 3.2. With

these assumptions,

Ty→x = 0 ⇐⇒ (x, x′) data lie on a1D manifold.
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Likewise, for more general dimensionality of the initial Ω1, the story of the in-

formation flow between variables is in part a story of how the image manifold is

projected. Therefore, our discussion will focus on estimating the dimensionality

in order to identify the nature of the underlying manifold. Then, we will focus on

identifying causality by estimating the dimension of the manifold, or even more

generally of the resulting set if it is not a manifold but perhaps even a fractal.

Finally, this naturally leads us to introduce a new geometric measure for charac-

terizing the causation, which we will identify as Geoy→x.

4.1 Relating the Information Flow as Geometric Ori-

entation of Data

For a given time series x := xn ∈ Rd1 , y := yn ∈ Rd2 , consider the x′ := xn+1

and contrast the dimensionalities of (x, y, x′) versus (x, x′), in order to identify that

x′ = f (x) or x′ = f (x, y). Thus, in mimicking the premise of Granger causality, or

likewise of Transfer entropy, contrasting these two versions of the explanations of

x′, in terms of either (x, y) or x, we decide the causal inference, but this time, by

using only the geometric interpretation. First, we recall how fractal dimensionality

evolves under transformations, [42].

Theorem 4.1.1 ([42]). Let A be a bounded Borel subset of Rd1 . Consider the function

F : A → Rd1 × Rd1 such that F(x) = (x, x′) for some x′ ∈ Rd1 . The correlation

dimension D2(F(A)) ≤ d1, if and only if there exists a function f : A → Rd1 such that

x′ = f (x) with f ∈ C1(A).

The idea of the arguments in the complete proof found in Sauer et. al., [42], are

as follows. Let A be bounded Borel subset of Rd1 and f : A → Rd1 with f ∈ C1(A).
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Then, D2( f (A)) = D2(A), where D2 is the correlation dimension [41]. Note that

D2(A) ≤ d1. Therefore, D2(F(A)) = D2(A) ≤ d1, with F : A → Rd1 × Rd1 if and

only if F(x) = (x, f (x)).

Now, we can describe this dimensional statement in terms of our information

flow causality discussion, to develop an alternative measure of inference between

variables. Let (x, x′) ∈ Ω2 ⊂ R2d1 and (x, y, x′) ∈ Ω3 ⊂ R2d1+d2 . We assert that

there is a causal inference from y to x, if dim(Ω2) > d1 and d1 < dim(Ω3) ≤ d1 + d2,

(Theorem 4.1.1). In this paper, we focus on time series xn ∈ R which might also

depend on time series yn ∈ R, and we will consider the geometric causation from

y to x, for (x, y) ∈ A × B = Ω1 ⊂ R2. We will denote geometric causation by

GeoCy→x and assume that A, B are Borel subsets of R. Correlation dimension

is used to estimate the dimensionality. First, we identify the causality using the

dimensionality of on (x, x′) and (x, y, x′). Say, for example, that (x, x′) ∈ Ω2 ⊂
R2 and (x, y, x′) ∈ Ω3 ⊂ R3; then, clearly we would enumerate a correlation

dimension causal inference from y to x, if dim(Ω2) > 1 and 1 < dim(Ω3) ≤ 2

(Theorem 1).

4.1.1 Measure Causality by Correlation Dimension

As we have been discussing, the information flow of a dynamical system can be

described geometrically by studying the sets (perhaps they are manifolds) X × X′

and X × Y × X′. As we noticed in the last section, comparing the dimension of

these sets can be interpreted as descriptive of information flow. Whether dimen-

sionality be estimated from data or by a convenient fractal measure such as the

correlation dimension (D2(.)), there is an interpretation of information flow when

contrasting X × X′ versus X × Y × X′, in a spirit reminiscent of what is done with

transfer entropy. However, these details are geometrically more to the point.
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Here, we define GeoCy→x (geometric information flow) by GeoC(.|.) as condi-

tional correlation dimension.

Definition 4.1.1 (Conditional Correlation Dimensional Geometric Information Flow).

Let M be the manifold of data set (X1, X2, . . . , Xn, X′) and let Ω1 be the data set

(X1, X2, . . . , Xn). Suppose that the M, Ω1 are bounded Borel sets. The quantity

GeoC(X′|X1, . . . , Xn) := D2(M)− D2(Ω1) (4.1)

is defined as “Conditional Correlation Dimensional Geometric Information Flow”. Here,

D2(.) is the usual correlation dimension of the given set, [16–18].

Definition 4.1.2 (Correlation Dimensional Geometric Information Flow). Let x :=

xn, y = yn ∈ R be two time series. The correlation dimensional geometric information

flow from y to x as measured by the correlation dimension and denoted by GeoCy→x is

given by

GeoCy→x := GeoC(X′|X)− GeoC(X′|X, Y). (4.2)

A key observation is to notice that, if X′ is a function of (X1, X2, . . . , Xn), then

D2(M) = D2(Ω1); otherwise, D2(M) > D2(Ω1) (Theorem 1). If X is not influ-

enced by y, then GeoC(X′|X) = 0, GeoC(X′|X, Y) = 0 and therefore GeoCy→x =

0. In addition, notice that GeoCy→x ≤ D2(X), where X = {xn|n = 1, 2, . . . }.

For example, if xn ∈ R, then GeoCy→x ≤ 1. Since we assume that influence

of any time series zn ̸= xn, yn to xn is relatively small, we can conclude that

GeoCy→x ≥ 0, and, if x′ = f (x, y), then GeoC(X′|X, Y) = 0. Additionally, the

dimension (GeoC(X′|X)) in the (X, X′) data scores how much additional (other

than X) information is needed to describe the X′ variable. Similarly, the dimen-
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sion GeoC(X′|X, Y) in the (X, Y, X′) data describes how much additional (other

than X, Y) information is needed to define X′. However, when the number of data

points N → ∞, the value GeoCy→x is not negative (equal to the dimension of X

data). Thus, theoretically, GeoC identifies a causality in the geometric sense we

have been describing.

4.2 Results and Discussion

Now, we present specific examples to contrast the transfer entropy with our pro-

posed geometric measure to further highlight the role of geometry in such ques-

tions. Table 4.1 provides a summary of our numerical results. We use synthetic

examples with known underlining dynamics to understand the accuracy of our

model. Calculating transfer entropy has theoretical and numerical issues (see chap-

ter. 2) for those chosen examples while our geometric approach accurately identi-

fies the causation. We use the correlation dimension of the data because data might

be fractals. Using a Hénon map example, we demonstrate that fractal data will not

affect our calculations. Furthermore, we use a real-world application that has a

positive transfer entropy to explain our data-driven geometric method. Details of

these examples can be found in the following subsections.
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Table 4.1: Summary of the results. Here, we experiment our new approach by
synthetics and real world application data.

Data Transfer Entropy (Sec-
tion 2.2.2)

Geometric Ap-
proach

Synthetic: f(x,y)=aX +
bY + C, a, b, c ∈ R

Theoretical issues can be
noticed. Numerical es-
timation have bounded-
ness issues when b <<
1.

Successfully
identify the cau-
sation for all the
cases (100%).

Synthetic: f(x,y)=ag1(X) +
bg2(Y) + C, a, b, c ∈ R

Theoretical issues can be
noticed. Numerical es-
timation have bounded-
ness issues when b <<
1.

Successfully
identify the cau-
sation for all the
cases (100%).

Hénon map: use data set
invariant under the map.

special case of
aX2 + bY + C with
a = −1.4, b = c = 1. Es-
timated transfer entropy
is positive.

Successfully
identify the cau-
sation.

Application: heart rate vs.
breathing rate

Positive transfer en-
tropy.

Identify positive
causation. It also
provides more
details about the
data.

4.2.1 Synthetic Data: X′ = g(X) + bY + C

Now, we focus on quantifying the geometric information flow by comparing di-

mensionalities of the outcomes’ spaces. We will contrast this to the transfer en-

tropy computations for a few examples of the form X′ = g(X) + bY + C.

To illustrate the idea of geometric information flow, let us first consider a simple

example, x′ = ax + by + c. If b = 0, we have x′ = f (x) and, when b ̸= 0, we have

the x′ = f (x, y) case. Therefore, dimensionality of the data set (x′, x) will change

with parameter b (see Figure 4.2). When the number of data points N → ∞ and

b ̸= 0, then GeoCy→x → 1. Generally, this measure of causality depends on the
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value of b, but also the initial density of initial conditions.

In this example, we contrast theoretical solutions with the numerically esti-

mated solutions (Figure 4.1). Theoretically, we expect

Ty→x =


0 ; b = 0

∞ ; b ̸= 0
as N → ∞.

In addition, the transfer entropy for noisy data can be calculated by Equation (2.26).
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Figure 4.1: Geometric information flow vs. Transfer entropy for X′ = bY data.
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Figure 4.2: Manifold of the data (x′, x) with x′ = by and y is uniformly distributed
in the interval [0, 1]. Notice that, when (a) b = 0, we have a 1D manifold, (b) b ̸= 0
we have 2D manifold, in the (x′, x) plane.
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4.2.2 Synthetic Data: X′ = aX + bY with a ̸= 0

The role of the initial density of points in the domain plays an important role in

how the specific information flow values are computed depending on the measure

used. To illustrate this point, consider the example of a unit square, [0, 1]2, that is

uniformly sampled, and mapped by

X′ = aX + bY, with a ̸= 0. (4.3)

This fits our basic premise that (x, y, x′) data embeds in a 2D manifold, by

ansatz of Equations (2.1) and (4.3), assuming for this example that each of x, y and

x′ are scalar. As the number of data point grows, N → ∞, we can see that

GeoCy→x =


0 ; b = 0

1 ; b ̸= 0
,

because (X, X′) data are on 2D manifold iff b ̸= 0 (numerical estimation can be

seen in Figure 4.3b). On the other hand, the conditional entropy h(X′|X, Y) is

not defined, becoming unbounded when defined by noisy data. Thus, it follows

that transfer entropy shares this same property. In other words, boundedness of

transfer entropy depends highly on the X′|X, Y conditional data structure, while,

instead, our geometric information flow measure highly depends on X′|X condi-

tional data structure. Figure 4.3c demonstrates this observation with estimated

transfer entropy and analytically computed values for noisy data. The slow con-

vergence can be observed, Equation (2.26), Figure 2.2.
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Figure 4.3: (a) shows the geometric information flow and (b) represents the Trans-
fer entropy for x′ = x + by data. The figures show the changes with parameter
b. We can notice that the transfer entropy has similar behavior to the geometric
information flow of the data.

4.2.3 Synthetic Data: Nonlinear Cases

Now, consider the Hénon map,

x′ = 1 − 1.4x2 + y (4.4)

y′ = x

as a special case of a general quadratic relationship, x′ = ax + by2 + c, for dis-

cussing how x′ may depend on (x, y) ∈ Ω1. Again, we do not worry here if y′

may or may not depend on x and or y when deciding dependencies for x′. We

will discuss two cases, depending on how the (x, y) ∈ Ω1 data are distributed.

For the first case, assume (x, y) is uniformly distributed in the square, [−1.5, 1.5]2.

The second and dynamically more realistic case will assume that (x, y) lies on the

invariant set (the strange attractor) of the Hénon map. The geometric information

flow is shown for both cases in Figure 4.4. We numerically estimate the transfer

entropy for both cases, which gives Ty→x = 2.4116 and 0.7942, respectively. (How-

ever, recall that the first case for transfer entropy might not be finite analytically,
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and there is slow numerical estimation—see Table 4.2).

Table 4.2: Hénon Map Results. Contrasting geometric information flow versus
transfer entropy in two different cases, 1st relative to uniform distribution of ini-
tial conditions (reset each time) and 2nd relative to the natural invariant measure
(more realistic).

Domain GeoC Ty→x

[−1.5, 1.5]2 0.90 2.4116
Invariant Set 0.2712 0.7942

(a) (x, y, x′) data for Hénon Map.

0 0.5 1 1.5 2

N ×10
4

0.894

0.896

0.898

0.9

0.902

0.904

0.906

G
eo
C

y
→
x

(b) (x, y) ∼ U([−1.5, 1.5]2)

0 0.5 1 1.5 2

N ×10
4

0.264

0.266

0.268

0.27

0.272

G
eo
C

y
→
x

(c) (x, y) is in invariant set of Hénon
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Figure 4.4: Consider the Hénon map, Equation (4.4), within the domain [−1.5, 1.5]2

and the invariant set of Hénon map. (a) the uniform distribution case (green)
as well as the natural invariant measure of the attractor (blue) are shown re-
garding the (x, y, x′) data for both cases; (b) when (x, y) ∈ [−1.5, 1.5]2, notice
that GeoCy→x = 0.9, and (c) if (x, y) is in an invariant set of Hénon map, then
GeoCy→x = 0.2712.
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4.2.4 Application Data

Moving beyond bench-marking with synthetic data, we will contrast two mea-

sures of information flow in a real world experimental data set. Consider heart

rate (xn) vs. breathing rate (yn) data (Figure 4.5) as published in [22, 37], con-

sisting of 5000 samples. Correlation dimension of the data X is D2(X) = 1.00,

and D2(X, X′) = 1.8319 > D2(X). Therefore, X′ = Xn+1 depends not only

on x, but also on an extra variable (Theorem 4.1.1). In addition, correlation di-

mension of the data (X, Y) and (X, Y, X′) is computed D2(X, Y) = 1.9801 and

D2(X, Y, X′) = 2.7693 > D2(X, Y), respectively. We conclude that X′ depends on

extra variable(s) other that (x, y) (Theorem 4.1.1) and the correlation dimension

geometric information flow, GeoCy→x = 0.0427, is computed by Equations (4.2)

and (4.1). Therefore, this suggests the conclusion that there is a causal inference

from breathing rate to heart rate. Since breathing rate and heart rate share the

same units, the quantity measured by geometric information flow can be described

without normalizing. Transfer entropy as estimated by the KSG method ([28]) with

parameter k = 30 is Ty→x = 0.0485, interestingly relatively close to the GeoC value.

In summary, both measures for causality (GeoC, T) are either zero or positive to-

gether. It follows that there exists a causal inference.

Table 4.3: Heart rate vs. breathing rate data—contrasting geometric information
flow versus transfer entropy in breath rate to heart rate.

GeoCy→x Ty→x

0.0427 0.0485
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Figure 4.5: Result for heart rate(xn) (a,c) vs. breathing rate(yn) data (b,d) . The top
row is the scatter plot of the data, and the second row represents the dimension of
the data.
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Kutz. “Data-driven modeling and learning in science and engineering”. In:
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Chapter 5

Dynamic Mode Decomposition on

Projected Space

This chapter and the next are focusing on the understanding the global dynamics

by observable time series data. To this purpose, we will study the numerical es-

timator DMD for Koopman operator. Furthermore we will generalize the current

DMD algorithm as a operator on projected observable space. That generalization

will lead to introduce the random projection methods into this field and we will

develop a computationally efficient randomized DMD algorithm.

In this chapter we will discuss the background theory of DMD operator. Then

we will focus on estimating the spectrum of the Koopman operator by DMD. Fi-

nally we will generalize the current DMD algorithm which compute the Koopman

spectrum on projected observable space.

75



5.1. KOOPMAN OPERATOR 76

5.1 Koopman Operator

Since DMD approximate the eigenpairs of the Koopman operator, we will first

review the underlining Koopman operator theory. Consider a discrete-time dy-

namical system

xn+1 = S(xn), (5.1)

where S : M → M and M is a finite dimensional manifold. (If we have a dif-

ferential equation or continuous time dynamical system, the flow map can be con-

sidered.) The variable x is often recognized as a state variable and M as phase

space. The associated Koopman operator is described as the evaluation of observ-

able functions (Figure 5.1) ψ : M → R in function space F . Instead of analyzing

the individual trajectories in phase space, the Koopman operator operates on the

observations [10, 26, 38, 50].
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Figure 5.1: This figure shows the behavior of the Koopman operator K in observ-
able space F associated with a dynamical system S. The Koopman operator eval-
uates the observable ψ at downstream or future x′ = xn+1 = s(xn).

Definition 5.1.1 (Koopman operator [26]). The Koopman operator K for a map S is

defined as the following composition,

K : F → F

ψ 7→ K[ψ] = ψ ◦ S (5.2)

on the function space F .

It is straightforward, to prove [26],

K[aψ1 + bψ2] = a(ψ1 ◦ S) + b(ψ2 ◦ S) = aK[ψ1] + bK[ψ2] (5.3)
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for ψ1, ψ2 ∈ F and a, b ∈ C and, therefore, the Koopman operator is linear on

F . This is an interesting and important property of the operator because the as-

sociated map S most probably will be non-linear. Even though the operator is

associated with a map that evolves in a finite dimensional space, F the function

space in which the operator acts on could possibly be an infinite dimensional. This

is the trade-off between costs for the linearity [10].

Spectral analysis of the Koopman operator can be used to decompose the dy-

namics, which is the key success in the DMD. Assuming the spectrum of the Koop-

man operator K is given by

Kψi(x) = λiψi(x) i = 1, 2, 3, . . . (5.4)

then vector-valued observables ggg : M → RN(or CN) can be represented by

g(x)g(x)g(x) =
∞

∑
i=1

ψi(xxx)ϕiϕiϕi, (5.5)

where ϕiϕiϕi ∈ RN(or CN) are the vector coefficients of the expansion and called

“Koopman modes”(here we assumed that components of ggg lie within the span

of the eigenfunctions of K). Note that the observable value at time n + 1 is given

by

g(xn+1)g(xn+1)g(xn+1) =
∞

∑
i=1

λn
i ψi(x0x0x0)ϕiϕiϕi. (5.6)

This decomposition can be used to separate the spacial and time components of

the dynamical system and can be used to isolate the specific dynamics.
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5.2 Dynamic Mode Decomposition

The dynamic mode decomposition is a data-driven method to estimate the Koop-

man modes from numerical or experimental data [38]. Suppose dynamics are

governed by Equation (5.1) for any state xxx and vector valued measurements are

given by observable g(x)g(x)g(x) ∈ RN. For a given set of data

X = [g(x0)g(x0)g(x0) g(x1)g(x1)g(x1) . . . g(xM−1)g(xM−1)g(xM−1)],

Y = [ y0y0y0 y1y1y1 . . . yM−1yM−1yM−1]

where yiyiyi = g(s(xi))g(s(xi))g(s(xi)), the Koopman modes and eigenvalues of the Koopman oper-

ator can be estimated through solving the least-squares problem

K = arg min
K

||KX − Y||2F = arg min
K

M−1

∑
i=0

||Kg(xi)g(xi)g(xi)− yiyiyi||22 (5.7)

and K = YX† (here X† is the pseudo-inverse of X) is defined as the “Exact DMD”

operator [50]. The eigenvalue (λ̂) of K is an approximation of an eigenvalue (λ) of

K; the corresponding right eigenvector(ϕ̂) is called the DMD mode and approxi-

mates the Koopman mode (ϕ). Then the observable value ggg(xxx(ttt)) at time t can be

modeled as

ggg(xxx(ttt)) =
r

∑
i=1

ψi(x0x0x0)ϕ̂ϕϕiλ̂
t
i (5.8)

where r is the number of selected DMD modes and demonstrates the finite dimen-

sional approximation for vector-valued observable ggg under the Koopman operator.
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Based on this decomposition, data matrices can be expressed as

XN×M = ΦN×rTr×M (5.9)

YN×M = ΦN×rΛr×rTr×M

where Φ = [ψ1(x0)ϕϕϕ1 ψ2(x0)ϕϕϕ2 . . . ψr(x0)ϕϕϕr], T is a Vandermonde matrix with

Tij = λ
j−1
i for i = 1, 2, . . . r, j = 1, 2, . . . , M and Λ = diag{λ1, λ2, . . . , λr}. Note

that with the above decomposition K = YX† = ΦΛTT†Φ†. We will suppose

K has distinct eigenvalues λi, columns of X are linearly independent and r ≤
M. In practical applications, we are expected to fully understand the data set by

relatively few (r << M) modes. This can be considered one of the dimension

reduction steps of the algorithm. Additionally, the dimension of columns of the

data matrix need to be reduced.

In practice, the columns of data matrix X (and Y) are constructed by the snap-

shot matrices of spatial observable data. More often, those snapshots lie in a

high-dimensional space RN (N >> 1 and roughly O(1015) to O(1010)), but the

number of snapshots or time steps (M) are small and often it is O(103) to O(101)

[12]. Hence, computing the spectrum of matrix K by direct SVD is computation-

ally intensive, even though most of the eigenvalues will be zero. Method-of-

snapshot, parallel version of SVD, or randomized SVD can be used to attack this

difficulty [32, 34]. In this project, we use a more simple randomized method by

generalizing the DMD algorithm. We can project our data matrices X, Y into a

low-dimensional space RL with r ≤ L ≤ M << N; therefore, we need to estimate

the spectrum of K based on the computation on the projected space. Our proposed

randomized DMD method is focused on this dimension reduction step.
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5.2.1 DMD on Projected Space

Computational and storage costs of DMD can be reduced by projecting data into a

low-dimensional observable space. Let P ∈ RL×N be any rank L projection matrix,

then dimension of data matrices X, Y ∈ RN×M can be reduced to L × M by the

projection XL = PX, YL = PY. The DMD operator on the projected space (see

Figure 5.2) is given by,

K̂ = arg min
K∈RL×L

||KXL − YL||2F = arg min
K∈RL×L

||KPX − PY||2F (5.10)

and K̂ = PY(PX)†. Therefore

K̂ = PY(PX)† = PYX†P† = PKP† (5.11)

where K = YX† is the DMD operator on the original space.
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Figure 5.2: DMD operator on the projected space. This figure shows the relation-
ship between the DMD operator on original space and DMD on projected space.
The operator K̂ on the projected space is defined in Equation (5.10) and can be cal-
culated by Equation (5.10).

Proposition 5.2.0. Some eigenpairs (λ, ϕ) of K can be obtain by (λL, ϕL) of projected

DMD K̂ with λ = λL and ϕ = P†ϕL.

Proof. Let (λL, ϕL) be an eigenpair of K̂. Then K̂ϕL = λLϕL and by Equation (5.11),

PKP†ϕL = λLϕL. Now let P†ϕL = ϕ, then ϕL = Pϕ because PP† = I. Hence,

PKP†ϕL = PKϕ = λLPϕ and P(Kϕ − λLϕ) = 0. Since Kϕ − λLϕ = 0 is a solution

to the above equation, λL is an eigenvalue and the corresponding eigenvector is

ϕ = P†ϕL of K.

In other words, we can lift up the dimension of eigenvectors in a projected

space by P† to obtain an eigenvector in the original data space. However to avoid

the direct calculation of the pseudo-inverse of the projection matrix, we can cal-

culate the eigenvector in the output space YL of the DMD operator and lift up the
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vector into the original output space Y. We can easily show that ϕ̂ = Y(PX)†ϕL is

an eigenvector (see equation (5.12)) of K for corresponding non-zero eigenvalues.

Kϕ̂ = KY(PX)†ϕL = KYX†P†ϕL (5.12)

= KKP†ϕL

= KλP†ϕL

= λYX†P†ϕL

= λY(PX)†ϕL

= λϕ̂.

Moreover, notice, Pϕ̂ = PY(PX)†ϕL = K̂ϕL and, therefore, ϕ̂ estimates the

eigenvector on the output space Y. A detailed view of this lifting operator is shown

in Figure 5.3. It provides the relationship of the lifting operator with the DMD

operator acting on any general observable vector z = ggg(xxx(ttt)) ∈ RN.
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Figure 5.3: The figure shows the projecting operator P and DMD related lifting op-
erator Y(PX)† = KP†, which should be used in DMD algorithms. Instead of using
P† as the lifting operator, Y(PX)† can be used for efficient calculations. Moreover,
notice that ẑ′L := Pẑ′ = K̂zL.

Next, the focus moves to the spatial–temporal decomposition of the projected

data matrices by spectrum of the DMD operator. Note that the observable value

ggg(xxx(ttt)) at time t can be modeled as ggg(xxx(ttt)) = ∑r
i=1 ψi(x0x0x0)P†(ϕL)(ϕL)(ϕL)iλ̂

t
i and similar to

the Equation (5.9), data can be decomposed as

XN×M = P†
N×LΦ̃L×rTr×M (5.13)

YN×M = P†
N×LΦ̃L×rΛr×rTr×M.

This decomposition leads to K = YX† = P†Φ̃ΛTT†Φ̃†P and if r ≤ L all the non-

zero eigenvalues and corresponding eigenvectors of K can be constructed by the

projected DMD operator. Further, Equation (5.13) can be use to isolate the spatial

profile of interesting dynamical compotes, such as attractors, periodic behaviors,

etc.
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Based on the choice of the projection matrix, we have alternative ways to esti-

mate the spectrum of the DMD operator.

Remark 1 (Projection by SVD). A commonly used projection matrix is based on SVD of

the input matrix X = UΣV∗ and the projection matrix is chosen to be P = U∗, here, ∗

represents the conjugate transpose of a matrix. Using Equation (5.11) and SVD of X, the

operator on the projected space can be formulated as K̂ = U∗YVΣ−1.

Remark 2 (Standard DMD and Exact DMD). Let eigenpair of an SVD-based K̂ =

U∗YVΣ−1 be given by (λ, ϕL). In a standard DMD (Reference Schmid’s paper and Tu’s

paper) use the eigenvector P†ϕL = UϕL to estimate eigenvectors of K. On the other hand,

in the exact DMD (reference Tu’s paper) this eigenvector is estimated by Y(PX)†ϕL =

YVΣ−1ϕL.

Remark 3. One can also use QR decomposition-based projection methods. QR decompo-

sition of the input–output snapshot data matrix [X Y] is used in some existing methods

[50], and so our philosophy of random projection methods used here will greatly improve

efficiency, but, nonetheless, with quality that is controlled in an analytically rigorous way.

In this study, we propose a simple random projection-based method to estimate

the spectrum of the DMD operator.
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[27] Milan Korda and Igor Mezić. “On Convergence of Extended Dynamic Mode

Decomposition to the Koopman Operator”. In: Journal of Nonlinear Science

28.2 (Nov. 2017), pp. 687–710.
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Chapter 6

Randomized Projection Learning

Method for Dynamic Mode

Decomposition

In this chapter, we will discuss more details about the estimation of Koopman spec-

trum using a simple randomized DMD algorithm. Note that the current methods

are based on the singular value decomposition of the data matrix X to construct a

projection, and our proposed algorithm is based on the random projection method

to project data into a low-dimensional space.

6.1 Randomized Dynamic Mode Decomposition

Last chapter(7), we generalized currently used DMD algorithms as an operator

on projected input and output observable spaces. Now, we discuss the simplest

possible yet powerful projector namely random projection which can be used to

project data into a low-dimensional space.

94
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6.1.1 Random Projection

The random projection method is based on the Johnson–Lindenstrauss lemma,

which can be seen as a direct consequence of the consentration of measure phe-

nomenon [14]. Furthermore, this results is at the heart of many data science ap-

plications [23]. In this thesis, we use a random matrix R generated by a Gaussian

distribution, such that each element rij
iid∼ N (0, 1) with a normalize column is of

unit length.

Theorem 6.1.1 (Johnson–Lindenstrauss lemma [24]). For any 0 < ϵ < 1 and any

integer M > 1, let L be a positive integer, such that L ≥ L0 with L0 = C ln M
ϵ2 , where C is

a suitable constant (C ≈ 8 in practice,C = 2 is good enough). Then for any set X of M

data points in RN, there exists a map f : RN → RL such that for all x1, x2 ∈ X,

(1 − ϵ)||x1 − x2||2 ≤ || f (x1)− f (x2)||2 ≤ (1 + ϵ)||x1 − x2||2.

Theorem 6.1.2 (Random Projection [13]). For any 0 < ϵ, δ < 1
2 and positive integer

N, there exists a random matrix R of size L × N such that for L ≥ L0 with L0 = C ln(1/δ)
ϵ2 .

and for any unit-length vector x ∈ RN

Pr{|||Rx||2 − 1| > ϵ} ≤ δ

or

Pr{|||Rx||2 − 1| > ϵ} ≤ e−CLϵ2

A low rank approximation for both X, Y can be found using the random projec-

tion method. Notice that both these matrices have M points from N dimensional

observable space and, therefore, we can use random projection matrix R of size
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L × N with the L ≥ C ln N
ϵ2 , which provides ϵ− isometry to RN. (See Figure 5.2 for

details).

6.1.2 Random Projection for DMD

Our suggested randomized dynamic mode decomposition(rDMD) is based on the

random projection applied to the theory of DMD on a projected space. We can

reduce the dimension of the data matrix X, Y in DMD by using a random projec-

tion matrix RL×N. In other words, we construct a projection matrix P discussed in

Section 5.2.1 as a random matrix R whose columns have unit lengths and entries

that are selected independently and identically from a probability distribution.

Therefore, the rDMD matrix on the projected space is given by K̂ = RY(RX)†,

and if an eigenpair of K̂ is given by (λ, ϕL), then the eigenpair of K is given

(λ, Y(RX)†ϕL). Algorithm 1 represents the major steps needed to estimate the

eigenvalues and corresponding eigenvectors of the DMD operator with the ran-

dom projection method.In addition, Figure 6.1 shows the details of the input–

output variables of the algorithm, spatiotemporal decomposition of the data, and

how to use the eigendecomposition of the Koopman operator to isolate and inter-

pret the spatial features of a dynamical system.

The calculation of the projection matrix of a standard or exact DMD algorithm

based on the SVD of the snapshot matrix X is needed to store a full high-resolution

data matrix, which leads to memory issues. Our proposed rDMD algorithm can

avoid these storage issues, because low-dimensional matrices XL, YL obtained by

matrix multiplications only need to store one row and one column of each matrix at

a time. Additionally, this algorithm reduces the computational cost, since we only

need to calculate the pseudo-inverse of comparatively lower dimensional matrix.

The choice of the distribution of R can further reduce the computational cost [1].
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Furthermore, one time step forecasting error for any given snapshot by using the

rDMD algorithm can be bounded by using the JL theory (see theorem 6.1.3 ).

Algorithm 1 Randomized DMD (rDMD). Figure 6.1 shows the details of
the input and output variable.

Data: X, Y ∈ RN×M

Input: ϵ
L0 = C ln M

ϵ2 ;
Choose L such that L ≥ L0;
Construct a random matrix R = 1√

L
(rij) ∈ RL×N such that rij ∼ N (0, 1);

Calculate XL := RX, YL := RY ;
Calculate K̂ = YLX†

L;
[Λ ΦL]=eigs(K̂);
Result: diag(Λ), YX†

LΦL

Computes eigendecomposition of K.

XL := RX, YL = RY

K̂ = YLX†
L

If K̂ϕLi = λiϕLi then DMD modes and
DMD frequencies:

ϕi = YX†
LϕLi , ωi =

1
∆t

log λi ∈ C

∆t id the step size of time.
Growth rate: σi = Re(ωi)

Frequency: fi =
Im(ωi)

2π

rDMD

zi = g(xi) contains all observables
of states at step i. Let snapshot ma-
trices

X =
[
z0 z1 . . . zM−1

]
Y =

[
z1 . . . zM−1 zM

]
Koopman operator acts as a time
shift on columns.

X K−→ Y

Input Data

At initial time, solve for coefficients b:

z0 =

DMD modes︷ ︸︸ ︷
...

...
ϕ1 · · · ϕN
...

...


 b1

...
bN


DMD model of data for r selected modes:

ẑt(x) ≈
r

∑
i=1

biΦieωit.

Error:

||zi+1 − ẑi+1|| ≤
||Rzi+1 − K̂Rzi||

1 − ϵ

Select special modes. Example: Explains
tidal constituents or special gyres.

Best-fit of modes

Figure 6.1: The figure summarize the rDMD algorithm, its input data, and the out-
put variables. This also explains how to use the eigendecomposition of the Koop-
man operator to isolate and interpret the spatial features of a dynamical system.
This figure is new from the previous manuscript.

Theorem 6.1.3 (Error Bound). Let z = ggg(xxx(ttt)), z′ = g(x(t + 1))g(x(t + 1))g(x(t + 1)) ∈ RN. Error bound

of estimating z′ by using the rDMD as ẑ′ = YX†R†Rz is given by

E(z′; L) := ||z′ − ẑ′|| ≤ ||Rz′ − K̂Rz||
1 − ϵ

:= UB (6.1)
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with at least the probability of O(1/M2) for any 0 < ϵ < 1 with L >
C log(M)

ϵ2 .

Proof. Since K̂ = RYX†R†, the rDMD acts on the projected vector, which can be

rearranged as K̂Rz = Rẑ′. Therefore,

||Rz′ − K̂Rz|| = ||Rz′ − Rẑ′||.

Now we can apply the JL theory to attain the desired error bound.

(1 − ϵ)||z′ − ẑ′|| ≤ ||Rz′ − Rẑ′|| = ||Rz′ − K̂Rz||.

Hence ||z′ − ẑ′|| ≤ ||Rz′−K̂Rz||
1−ϵ .

6.2 Results and Discussion

In this section, we demonstrate the theory of rDMD with a few examples. The

first two examples consider the computation for known dynamics and demon-

strate the error analysis. The final example demonstrates application in the field

of oceanography and isolates the interesting features by rDMD, compering the re-

sulting modes with the exact DMD results.

6.2.1 Logistic Map

We first consider a dataset of 300 snapshots from a logistic map,

xn+1 = axn(1 − xn)

with a = 3.56994. In this case, all initial conditions will converge to a period–

256 orbit. Therefore the rank of the snapshot matrix with relatively high samples
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should be 256. We forecasted the data by using the rDMD method and then ana-

lyzed the error of the prediction and compared it with the theoretical upper bound.

With N = 5000 initial conditions and M = 300 samples, the dimension L of the

projecting space can be chosen as L ≥ C ln(300)
ϵ2 ≈ 34.22

ϵ2 when C = 6. rDMD with

projection into a 50 dimensional space can accurately forecast the time series data.

(Figure 6.2 shows the original vs. predicted data for one trajectory.) Furthermore,

Figure 6.3 demonstrates the bound of the error of the forecast explained in Equa-

tion (6.1) and how the error relates to the distortion parameter ϵ (Figure 6.3a) and

the dimension of the projected space (Figure 6.3b). Since the rank of the snapshot

matrix is 256, any L ≥ 256 will perform very accurately. This example validates

the error bound we discussed in Equation (6.1) and the error of the prediction de-

pends on the error exhibited by the projected DMD operator and the distortion

parameter (ϵ or the projected dimension) from the JL theory.

(a) (b)

Figure 6.2: (a) Shows the predicted data using the rDMD algorithm with pro-
jected dimension L = 50 compared to the original data from logistic map xn+1 =
3.56994xn(1 − xn) for initial condition x(0) = 0.4967. Further, (b) shows the es-
timated error and theoretical upper bounds (Equation (6.1)) for some projected
dimension L, and this example validates the theoretical bound.
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(a) (b)

Figure 6.3: This shows the prediction error of the logistic map xn+1 =
3.56994xn(1 − xn) by rDMD and its theoretical upper bounds(Equation (6.1)). (a)
Represents the error with respect to the distortion ϵ and (b) shows the error with
the dimension of the projected space that will guarantee the bound for this exam-
ple.

6.2.2 Toy Example: Demonstrates the Variable Separation and Iso-

lating Dynamics

To demonstrate the variable separation and to isolate the spatial structures based

on the time dynamics, we consider a toy example (motivated by [29]) ,

z(x, t) =
20

∑
j=1

j sech(0.1x + j)eiγjt =
20

∑
j=1

Φj(x)Tj(t) (6.2)

where γj’s are constants, and let Φj(x) = j sech(0.1x + j) and Tj(t) = eiγjt.

Comparing this Equation (6.2) with decomposition Equation (5.8), the rDMD

algorithm is expected to isolate 20 periodic modes by rDMD algorithm. The data

set (snapshot matrix) for this problem is constructed by N = 20, 000 spatial grid

points and M = 5001 temporal grid points with γj = j (see Figure 6.4). As dis-

cussed in the previous section, if L ≥ 20 then those expected modes can be isolated
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and there exist eigenvalues λj of an rDMD operator, such that

ωj = ln
(
λj
)
= ji

for j = 1, 2, . . . , 20 (see Figure 6.5). Furthermore, we expect corresponding rDMD

modes equal to spatial variables of the model, such that

bj(x0)ϕj(x) = j sech(0.1x + j) = Φj(x).

(a) (b) (c)

Figure 6.4: [-20]Original dataset constructed by Equation (6.2). (a) shows the
Re(z(x, t)) plot for all x, t values at 20, 000 × 5000 grid points. (b) represents the
time series plot for two initial conditions. (c) provides the snapshots of few dif-
ferent time points. Our goal is separate and isolate spatial variables Φj(x) =

j sech(0.1x + j) and Tj(t) = eijt from the given data constructed by z(x, t).
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(a) (b)

Figure 6.5: (a) Shows the absolute error for estimated eigenvalues from rDMD
and the exact DMD when the dimension of the projected space L=20. (b) Shows
the absolute error for the estimated 10th DMD mode by rDMD and exact DMD
methods. In this case, both methods have very accurate results and error is less
than 10−10.

As expected, we noticed that the calculated modes have negligible error when

the dimension of projected space L ≥ r = 20. Figure 6.5 shows the absolute error

of eigenvalues and DMD modes. All modes behave similarly; here, we present

mode 10 for demonstration purposes by the SVD-based exact DMD method and

the random projection based rDMD method. Notice that errors of both methods

are less than 10−10 when L ≥ r = 20.

Further, we examine the case when the projected dimension L = 17 < r = 20

and compare the results of rDMD with the exact DMD. We notice that both meth-

ods demonstrate similar errors and rDMD is almost as good as the SVD projection-

based exact DMD (see Figures 6.6 and 6.7). When the number of actual modes(r) is

larger than the dimension of the projected space (L), the projected DMD operator

only estimates the L number of modes, leading to both truncation errors and errors

for eigenpair estimation based on the projected DMD operator. The L < r case can
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be modeled as,

z(x, t) =
L

∑
j=1

b̂jϕ̂j(x)eω̂jit + EL+1 (6.3)

where EL+1 = ∑m
L=j+1 bjϕj(x)eωjit is the truncated error that also affects the esti-

mation process of eigenpairs. Therefore, if L < r, then there exists an error in

eigenvalues and eigenvectors calculated by any method based on the projected

DMD. However, this example demonstrates that rDMD can provide the results as

good as the SVD projection-based method with very low computational costs (See

Table 6.1).

Method Projected by Computational Time(s)
Exact DMD SVD 521.09
rDMD Random Projection 2.35

Table 6.1: Computational costs for the SVD-based exact DMD and random
projection-based rDMD method for the data simulated by Equation (6.2). Compu-
tational costs of SVD for the high-dimensional snapshot matrix is relatively larger
than random projection.

(a) (b)

Figure 6.6: (a) Compares the eigenvalues ωj = ln λj calculated from rDMD (ran-
dom projection(RP) with L = 17) and exact DMD (SVD projection with L = 17)
methods with the expected true values γj = ji. Here, L = 17 < 20 is the dimension
of the projected space. (b) Shows the absolute error for the estimated eigenvalues
from rDMD and exact DMD.
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(a) (b)

Figure 6.7: (a) Compares the modes b10ϕ10(x) calculated from rDMD (random pro-
jection(RP) with L = 17) and exact DMD (SVD projection with L = 17) methods with
the expected true values Φ10(x) = 10 sech(0.1x + 10). (b) Shows the absolute error
for estimated values from rDMD and exact DMD.

6.2.3 Gulf of Mexico

In this example, we consider the data from HYbrid Coordinate Ocean Model (HY-

COM) [21], which simulates the ocean data around the Gulf of Mexico. We used

hourly surface velocity component (u, v) with 1/250 spatial resolution (N = 541 × 347 grid points)

data for 10 days (240 h and M = 239). Understanding the dynamics from the

oceanographic data is an interesting application of DMD because those dynamics

can be decomposed by tidal constituents. Hence, we are expected to isolate the

dynamics associated with the tidal period; in other words, the final DMD mode

selection is based on the period Pi = 2π/ Im(ln(λi)) of the modes(see Table 6.2).

We constructed the snapshot matrix

X =

u

v

 (6.4)
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by stacking the snapshots of velocity components (u, v) in each column to perform

the DMD analysis.

Figure 6.8 shows that most of the eigenvalues calculated from the SVD-based

exact DMD and random projection-based rDMD are in agreement. Furthermore,

eigenvalues that isolated the specific dynamics are almost equal. Additionally,

Figures 6.9–6.11 show the spacial profile of those modes from the exact DMD

and rDMD methods. Moreover, each mode clearly isolate the interesting oceano-

graphic features (see Table 6.2) and both methods provide almost the same spacial

structures(see Figures 6.9–6.11) as expected.

Table 6.2: DMD modes for the Gulf of Mexico data set. Modes are selected based
on the association to the tidal periods.

Mode Period (h) Associated FeatureDMD rDMD

1 ∞ ∞ Gulf stream around the GOM (see Figure 6.9)
2 12.47 12.47 Semi-diurnal tidal constituents (see Figure 6.10)
3 23.85 24.56 Diurnal tidal constituents (see Figure 6.11)

4 6.08 6.07 Second harmonic to semi-diurnal tidal constituents (see
Figure 6.11)

5 4.16 4.17 Third harmonic to semi-diurnal tidal constituents (see
Figure 6.11)
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(a) (b)

Figure 6.8: Eigenvalues λi calculated from the exact DMD and rDMD methods. (a)
Full spectrum of the two methods with projected space dimension L = 239 and (b)
shows the first five modes. The mode selection is based on the comparison of the
tidal periods with period of the DMD modes.

(a) (b)

Figure 6.9: This figure compares the (a) DMD and (b) rDMD background mode
identified by data from the Gulf of Mexico (GOM). This background mode cap-
tures the ocean current passing through the GOM.



6.2. RESULTS AND DISCUSSION 107

(a) (b)

Figure 6.10: This figure compares the (a) DMD and (b) rDMD mode associated
with the M2 tidal frequency. This mode capture the “red tides”.

(a) (b) (c)

(d) (e) (f)

Figure 6.11: (a)–(c) represent the exact DMD modes 3, 4, and 5 and (d)–(e) show
the rDMD modes 3, 4, and 5. Mode 3 is a diurnal mode with period 23.85 h for the
exact DMD case and 24.56 h for the rDMD case. Modes 4 and 5 are associated with
the second and third harmonic of semi-diurnal tidal constituents, respectively.

Notice that the dimension of the snapshot matrix is 375, 454 × 239 and the SVD

calculation of this matrix is more costly for both computation and storage. On the
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other hand, random projection only performs by the matrix multiplication, which

could be done at a relatively low cost. Hence, we achieve almost the same results

by using the random projection method, at relatively lower computational and

storage costs.
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Chapter 7

Conclusion and Future Problems

In this thesis, I demonstrated the understanding global dynamics of the dynamical

system by using the time series data. This dissertation specialized in two folds,

namely identify the causation by geometric measures and reduce the computa-

tional cost of dynamic mode decomposition by using the random projection meth-

ods. In this chapter I will summarize the details of the each part and then I will

discuss the problems which I will attempt to solve in the future.

7.1 Geometric Causal Inference

We have developed here a geometric interpretation of information flow as a causal

inference as usually measured by a positive transfer entropy, Ty→x. Our interpre-

tation relates the dimensionality of an underlying manifold as projected into the

outcome space and summarizes the information flow. Furthermore, the analy-

sis behind our interpretation involves standard Pinsker’s inequality that estimates

entropy in terms of total variation, and, through this method, we can interpret the

production of information flow in terms of details of the derivatives describing
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relative orientation of the manifolds describing inputs and outputs (under certain

simple assumptions).

A geometric description of causality allows for new and efficient computa-

tional methods for causality inference. Furthermore, this geometric perspective

provides a different view of the problem and facilitates the richer understand-

ing that complements the probabilistic descriptions. Causal inference is weaved

strongly throughout many fields and the use of transfer entropy has been a popu-

lar black box tool for this endeavor. Our method can be used to reveal more details

of the underling geometry of the data-set and provide a clear view of the causal

inference. In addition, one can use the hybrid method of this geometric aspect and

existing other methods in their applications.

We provided a theoretical explanation (part I: Mathematical proof of the geo-

metric view of the problem) and numerical evidence (part 2: A data-driven ap-

proach for mathematical framework) of a geometric view for the causal inference.

Our experiments are based on synthetic (toy problems) and practical data. In the

case of synthetic data, the underlining dynamics of the data and the actual solu-

tion to the problem are known. For each of these toy problems, we consider a lot

of cases by setting a few parameters. Our newly designed geometric approach can

successfully capture these cases. One major problem may be if data describes a

chaotic attractor. We prove theoretically (Theorem 4.1.1) and experimentally (by

Hénon map example: in this toy problem, we also know actual causality) that cor-

relation dimension serves to overcome this issue. Furthermore, we present a prac-

tical example based on heart rate vs. breathing rate variability, which was already

shown to have positive transfer entropy, and here we relate this to show positive

geometric causality.

Furthermore, we have pointed out that transfer entropy has analytic conver-
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gence issues when future data (X′) are exactly a function of current input data

(X, Y) versus more generally (X, Y, X′). Therefore, referring to how the geometry

of the data can be used to identify the causation of the time series data, we develop

a new causality measurement based on a fractal measurement comparing inputs

and outputs. Specifically, the correlation dimension is a useful and efficient way to

define what we call correlation dimensional geometric information flow, GeoCy→x.

The GeoCy→x offers a strongly geometric interpretable result as a global picture

of the information flow. We demonstrate the natural benefits of GeoCy→x versus

Ty→x, in several synthetic examples where we can specifically control the geomet-

ric details, and then with a physiological example using heart and breathing data.

7.2 Randomized Dynamic Mode Decomposition

We also demonstrated that our rDMD can achieve very accurate results with low-

dimensional data embedded in a high-dimensional observable space. Recent ana-

lytic technology from the concepts of high-dimensional geometry of data, and con-

centration of measure, have shown—surprising, if not initially intuitively—that

even random projection methods can be quite powerful and capable. Here, in the

setting of DMD methods approximating and projecting the action of a Koopman

operator, we show that randomized projection can be developed and analyzed

rigorously by the Johnson-Lindenstrauss theorem formalism, showing a powerful

and simple approach.

We provided a theoretical framework and experimental results to address those

issues raised from SVD-based methods by introducing our new rDMD algorithm.

The theoretical framework is based on generalizing the SVD-based concept as a

projection of high-dimensional data into a low-dimensional space. We proved that
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eigenpairs of DMD in the original space can be estimated by using any rank L pro-

jection matrix P. Being able to estimate eigenpairs allowed us to use the powerful

and simple Johnson–Lindenstrauss lemma and the random projection method, al-

lowing us to project data with matrix multiplication. Therefore, our proposed ran-

dom projection-based DMD (rDMD) can estimate eigenpairs of the DMD operator

with low storage and computational costs. Further, the error of the estimation can

be controlled by choosing the dimension of the projected space; we demonstrated

this error bound through the “logistic map” example.

DMD promises the separation of the spatial and time variables from data. Hence,

we experimentally demonstrated how well the rDMD algorithm performed this

task by a toy example. Notice that the number of those isolated modes (m) are

relatively (i.e., to spatial and temporal resolution) low in practical applications.

If m << M, then the rank of the data matrix is much lower, and those eigen-

values and vectors of interest can be estimated accurately by projecting data into

the much lower dimensional space L ≥ m. The SVD projection-based exact DMD

method still needs to calculate the SVD of a high-dimensional (roughly 1010 × 103

) data matrix, while rDMD only requires multiplying the data matrix by a much

lower-dimensional projection matrix. Furthermore, we noticed that both exact and

random DMD methods experience similar errors. However random projection is

much faster and needs less space for the calculations. We also demonstrate that

practical applications provide similar results by using oceanographic data from

the Gulf of Mexico.

Since the size of the DMD matrix is enormous in those applications (this could

be roughly 1010 × 1010), the eigenpairs must be estimated by projecting data into

the low-dimensional space. Estimating eigenvalues and eigenvectors of a DMD

operator using a high-dimensional snapshot data matrix (in applications, this could
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be 1010 × 103) with existing SVD-based methods is expensive. The computational

efficiency of the rDMD led to a new path of the current Koopman analysis. It al-

lows using more observable variables in the data matrix without need for much

extra computational power. Hence, state variables and more non-linear terms can

be used in an analysis, with low costs, to improve the Koopman modes. The JL

theory can be adopted further into the field of numerical methods of the Koopman

theory. As a next step, we can use the random projection concept in the extended

DMD and kernel DMD methods.

7.3 Future Work

7.3.1 Causal inference with multiple time series

We would like to identify the causal variable simultaneously from the pool of time

series data by using geometric measures. The geometry of the data set will pro-

vide an easier calculation in the causality identification process and a better un-

derstanding of the causal variables. We consider the variable Xj as interested

observable which need to find the causal variables among the set of variables

V = {X1, X2, . . . , Xm}. The dynamical system Xj can be written as a discrete

time map

X′
j = f (X1, X2, . . . , Xm). (7.1)

However some of those variables might not be influence to the future state of Xj

and we need to identify the actual set of causal variables S = {Xj1 , . . . , Xjk} ⊆ V



7.3. FUTURE WORK 122

for Xj. Thus we need to identify the variables Xji such that

X′
j = f (Xj1 , . . . , Xjk) and k ≤ m. (7.2)

In this case we call Xji causes Xj and can be represented using Fig. (7.1). In this

Figure 7.1: Causal diagram or network representation of Xji causes Xj.

project, we will only going to find a causal variables but not the function f . In

other words we are showing there exits such a function. We will use the fractal

correlation dimension to measure causation and find the causal diagram among

the given set variables. All connections in an entire causal diagram with m variable

can be identified by m2 comparisons of correlation dimensions.

We also intend to bring another special data analysis manifold learning tool

“diffusion map” to investigate the causal relationship among the given time se-

ries data. This method will be able to use in non-fractal data sets and it can be

incorporate to find the exact causal relationship ( f ) between variables just using

the data.

7.3.2 Learning Transfer Operators by Kernel Density Estimation

To infer transfer operators from data is usually take as a classical problem that

hinges on the Ulam method. The usual description is in terms of projection onto

basis functions that are characteristic functions supported over a fine grid of rect-

angles, that we have previously called the Ulam-Galerkin method when taken in

terms of finite time. We describe that the same problem can be understood by

statistical density estimation formalism. In these terms, the usual Ulam-Galerkin
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approach is density estimation by the histogram method. This perspective allows

us other methods. However, this is not the only popular method of density esti-

mation, and we will point out inherent efficiencies available by the popular kernel

density estimation method, and this general phrasing of the problem allows for

analysis of bias and variance, toward a discussion of the mean square error for

example.

7.3.3 Estimating Koopman operator with Random Projection

We are investigating how to incorporate the random projection concept in the

“Extended DMD” (EDMD) and “kernel DMD” (KDMD) methods to estimate the

Koopman spectrum more efficiently. Approximation of an EDMD operator is based

on the choice of projected space (FN). While the data matrices in EDMD method

very large, the matrix computation in a high dimensional even infinite dimensional

observable space can be achieved indirectly and much more efficiently using a ker-

nel function. However, dimension of a given data set also depends on the number

of sampling points (M). Analytic EDMD can discussed(see [27]) as M → ∞, but in

practical applications M is finite.

Kernel trick can be use to lift up the dimension N (can be infinite ) of observable

space which could be grater than M, and we can project that data in to L << N

dimensional(L only depends on M) projected space FL using a dot product pre-

serving(https://doi.org/10.1016/j.patrec.2016.03.031) random projection. Hence

we can use two important tools, kernel methods and random projection methods

to improve the DMD algorithm with efficient calculations.

We will generalize the kernel method by choosing an empirical kernel and

which approximate the Koopman operator as a finite rank operator. Current ker-

nel method uses observables evaluated at a specific set of data points to construct
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the Gram matrices. If input space is a reproducing kernel Hilbert space then any

N data points can be used to reconstruct a N-dimensional Hilbert space by using

an experimental kernel, which allows the use of any N datapoint to construct the

Gram matrices and approximate the Koopman operator and it generalizes the cur-

rent kernel DMD algorithm. Further, we will show that any random r(<< N)

vectors can be used to approximate the N-dimensional space and hence the Koop-

man operator. This will reduce the computational complexity. Therefore, we are

planning to provide a method to reduce the dimension of space of observables

without losing much information and generalize the exciting extended and kernel

DMD methods.



Bibliography

[1] Dimitris Achlioptas. “Database-friendly random projections: Johnson-Lindenstrauss

with binary coins”. In: Journal of Computer and System Sciences 66.4 (2003).

Special Issue on PODS 2001, pp. 671–687.

[2] Abd AlRahman R AlMomani, Jie Sun, and Erik Bollt. “How Entropic Re-

gression Beats the Outliers Problem in Nonlinear System Identification”. In:

arXiv preprint arXiv:1905.08061 (2019).

[3] Hassan Arbabi. Introduction to koopman operator theory of dynamical systems.

Jan. 2020. URL: https://www.mit.edu/~arbabi/research/KoopmanIntro.

pdf.

[4] Lionel Barnett, Adam B. Barrett, and Anil K. Seth. “Granger Causality and

Transfer Entropy Are Equivalent for Gaussian Variables”. In: Phys. Rev. Lett.

103 (23 Dec. 2009), p. 238701. DOI: 10.1103/PhysRevLett.103.238701. URL:

https://link.aps.org/doi/10.1103/PhysRevLett.103.238701.

[5] Ella Bingham and Heikki Mannila. “Random Projection in Dimensionality

Reduction: Applications to Image and Text Data”. In: Proceedings of the Sev-

enth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. KDD ’01. San Francisco, California: Association for Computing Ma-

chinery, 2001, pp. 245–250.

125

https://www.mit.edu/~arbabi/research/KoopmanIntro.pdf
https://www.mit.edu/~arbabi/research/KoopmanIntro.pdf
https://doi.org/10.1103/PhysRevLett.103.238701
https://link.aps.org/doi/10.1103/PhysRevLett.103.238701


BIBLIOGRAPHY 126

[6] E. Bollt and N. Santitissadeekorn. Applied and Computational Measurable Dy-

namics. Philadelphia, PA: Society for Industrial and Applied Mathematics,

2013. DOI: 10.1137/1.9781611972641.

[7] E.M. Bollt. “Synchronization as a process of sharing and transferring infor-

mation”. In: International Journal of Bifurcation and Chaos 22 (Dec. 2012). DOI:

10.1142/S0218127412502616.

[8] Erik M Bollt, Jie Sun, and Jakob Runge. “Introduction to Focus Issue: Causa-

tion inference and information flow in dynamical systems: Theory and appli-

cations”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science 28.7 (2018),

p. 075201.

[9] Erik M. Bollt. “Open or closed? Information flow decided by transfer opera-

tors and forecastability quality metric”. In: Chaos: An Interdisciplinary Journal

of Nonlinear Science 28.7 (2018), p. 075309. DOI: 10.1063/1.5031109. eprint:

https://doi.org/10.1063/1.5031109. URL: https://doi.org/10.1063/1.

5031109.

[10] Erik M. Bollt. “Geometric considerations of a good dictionary for Koopman

analysis of dynamical systems: Cardinality, “primary eigenfunction,” and ef-

ficient representation”. In: Communications in Nonlinear Science and Numerical

Simulation 100 (2021), p. 105833.
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Appendix A

On the Asymmetric Spaces Transfer

Operators

In this section we prove Theorem 3.2.1 concerning a transfer operator for smooth

transformations between sets of perhaps dissimilar dimensionality. In general,

the marginal probability density can be found by integrating (or summation in the

case of a discrete random variable) to marginalize the joint probability densities.

When x′ = f (x, y), the joint density (x, y, x′) is non-zero only at points on x′ =

f (x, y). Therefore, ρ(x′) = ∑(x,y):x′= f (x,y) ρ(x, y, x′) and notice that ρ(x, y, x′) =

ρ(x′|x, y)ρ(x, y) (By Bayes theorem). Hence, ρ(x′) = ∑(x,y):x′= f (x,y) ρ(x′|x, y)ρ(x, y)

and we only need to show the following claims. We will discuss this by two cases.

First, we consider x′ = f (x) and then we consider more general case x = f (x, y). In

higher dimensions we can consider similar scenarios of input and output variables,

and correspondingly the trapezoidal bounding regions would need to be specified

in which we can analytically control the variables.

Proposition A.0.0. Let X ∈ R be a random variable with probability density function

ρ(x). Suppose ρ(x), ρ(.|x) are Radon–Nikodym derivatives (of induced measure with
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respect to some base measure µ) which is bounded above and bounded away from zero. In

addition, let x′ = f (x) for some function f ∈ C1(R). Then,

ρ(x′|X = x0) = lim
ϵ→0

dϵ(x′ − f (x0))

where dϵ(x′ − f (x0)) =


1

2ϵ| f ′(x0)| ; |x′ − f (x0)| < ϵ| f ′(x0)|

0 ; otherwise
.

Proof. Let 1 >> ϵ > 0 and x ∈ Iϵ = (x0 − ϵ, x0 + ϵ). Since ρ is a Radon–Nikodym

derivative with bounded above and bounded away from zero, ρ(Iϵ) =
∫

Iϵ

dρ
dµ dµ ≥

m
2ϵ where m is the infimum of the Radon–Nikodym derivative. Similarly ρ(Iϵ) ≤ M

2ϵ

where M is the supremum of the Radon–Nikodym derivative. In addition, |x′ −
f (x0)| ≈ | f ′(x0)||x − x0| for x ∈ Iϵ. Therefore, x′ ∈ ( f (x0) − ϵ| f ′(x0)|, f (x0) +

ϵ| f ′(x0)|) = I′ϵ when x ∈ Iϵ. Hence, ρ(x′|x ∈ Iϵ) = ρ(x′ ∈ I′ϵ) and m
2ϵ| f ′(x0)| ≤

ρ(x′|x ∈ Iϵ) ≤ M
2ϵ| f ′(x0)| . Therefore, ρ(x′|X = x0) = limϵ→0 dϵ(x′ − f (x0))

Proposition A.0.0. Let X, Y ∈ R be random variables with joint probability density

function ρ(x, y). Suppose ρ(x, y) and ρ(.|x, y) are Radon–Nikodym derivatives (of in-

duced measure with respect to some base measure µ) which is bounded above and bounded

away from zero. In addition, let x′ = f (x, y) ∈ R for some function f ∈ C1(R). Then,

ρ(x′|X = x0, Y = y0) = lim
ϵ→0

dϵ(x′ − f (x0, y0))

where dϵ(x′− f (x0, y0)) =


1

2ϵ(| fx(x0,y0)|+| fy(x0,y0)|) ; |x′ − f (x0, y0)| < ϵ(| fx(x0, y0)|+ | fy(x0, y0)|)

0 ; otherwise
.

Proof. Let 1 >> ϵ > 0 and Aϵ = {(x, y)|x ∈ (x0 − ϵ, x0 + ϵ), y ∈ (y0 − ϵ, y0 + ϵ) .

Since ρ is a Radon–Nikodym derivative with bounded above and bounded away
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from zero, ρ(Aϵ) =
∫

Aϵ

dρ
dµ dµ ≥ m

4ϵ2 where m is the infimum of the Radon–Nikodym

derivative. Similarly, ρ(Aϵ) ≤ M
4ϵ2 where M is the supremum of the Radon–Nikodym

derivative. In addition, |x′ − f (x0, y0)| ≈ | fx(x0, y0)||x − x0|+ | fy(x0, y0)||y − y0|
for (x, y) ∈ Aϵ . Therefore, x′ ∈ ( f (x0, y0)− ϵ(| fx(x0, y0)|+ | fy(x0, y0)|), f (x0, y0)+

ϵ(| fx(x0, y0)| + | fy(x0, y0)|)) = I′ϵ when (x, y) ∈ Aϵ. Hence, ρ(x′|(x, y) ∈ Aϵ) =

ρ(x′ ∈ I′ϵ) and m
2ϵ(| fx(x0,y0)|+| fy(x0,y0)|) ≤ ρ(x′|x ∈ Iϵ) ≤ M

2ϵ(| fx(x0,y0)|+| fy(x0,y0)|) . There-

fore, ρ(x′|X = x0, Y = y0) = limϵ→0 dϵ(x′ − f (x0, y0))

If f only depends on x, then the partial derivative of f with respect to y is equal

to zero and which leads to the same result as A.0.0.
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