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ABSTRACT

Network optimization strategies for the process of synchronization have generally focused on the re-wiring or re-weighting of links in order to
(1) expand the range of coupling strengths that achieve synchronization, (2) expand the basin of attraction for the synchronization manifold,
or (3) lower the average time to synchronization. A new optimization goal is proposed in seeking the minimum subset of the edge set of the
original network that enables the same essential ability to synchronize in that the synchronization manifolds have conjugate stability. We call
this type of minimal spanning subgraph an essential synchronization backbone of the original system, and we present two algorithms: one
is a strategy for an exhaustive search for a true solution, while the other is a method of approximation for this combinatorial problem. The
solution spaces that result from different choices of dynamical systems and coupling schemes vary with the level of a hierarchical structure
present and also the number of interwoven central cycles. Applications can include the important problem in civil engineering of power grid
hardening, where new link creation may be costly, and the defense of certain key links to the functional process may be prioritized.

Published by AIP Publishing. https://doi.org/10.1063/5.0065077

In many applications of dynamical processes, qualitative under-
standing of long term behavior is often sufficient, while the
details leading to that outcome are relatively unimportant. For
instance, if a power grid’s synchronization is disrupted by the
removal of a transmission line, it may be helpful to estimate the
time needed to return to synchronization, but more important is
the stability of synchronization under the new configuration. We
define an optimization problem associated with the core part of
the network necessary for synchronization of coupled oscillators,
which we call the essential synchronization backbone problem.
We seek an edge-minimal spanning subgraph of the original net-
work that preserves the stability of the synchronous states of
the original system. The average time to synchronization and
the actual basin of attraction may differ wildly; furthermore,
adjustment of the global coupling strength is likely required; how-
ever, we are satisfied if the new system can achieve the same
qualitative type of synchronization. We provide an exhaustive
algorithm for obtaining solutions for small systems and a greedy
algorithm for approximating solutions to larger systems. Struc-
tural trends of hierarchy and loopiness in the solution space
depend on the choice of oscillator type and coupling scheme.
We consider solutions in the context of linearly diffusive chaotic

oscillators because their information theoretic aspects provide
insight into the role of graph conductance and hierarchy in the
synchronization process.

I. INTRODUCTION

A common goal in network science is the optimization of a net-
work structure for a desired purpose. In the case of synchronization,
we do not normally wish to remove any of the dynamical systems
(nodes); therefore, we are left with the question of how to rearrange
links (edges) in the network. Optimal networks for synchronization
processes have been widely studied in different contexts, but the
strategies employed usually involve re-wiring or re-weighting the
edges of an often directed and/or weighted graph'~" and sometimes
imposing directionality upon the edges of an initially simple graph.®
Due to potential costs associated with link creation (or imposing
directionality for some applications), we instead consider a sim-
ple question for synchronization on an undirected and unweighted
graph: “Given a synchronizing network of oscillators, what is the
minimal collection of edges that must be retained from the original
network for the same type of synchronization to remain possible?”
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We call any such edge-minimal spanning subgraph of the original
network an essential synchronization backbone (ESB) of the sys-
tem. This concept may prove useful in the assessment of reliability
for processes coupled through undirected networks, e.g., the power
grid.”

For the sake of brevity, some general knowledge within the
field is assumed, but summaries of the chaotic attractors used and
the master stability function formalism are included as appendixes
for convenience. In general, the ESB of a system is not unique; fur-
thermore, it depends on the dynamical systems at the nodes as well
as the chosen coupling scheme, especially for multivariate oscilla-
tors. We consider the proposed problem on undirected networks,
while the problem is still well-defined for directed and/or weighted
networks. For simple (constant angular velocity) and harmonic
oscillator systems coupled through undirected and unweighted net-
work architectures, the essential synchronization backbone problem
is trivial to solve by the Master Stability Function (MSF) formalism;"’
namely, any spanning tree of the network will suffice. This is due
to an unbounded interval of values where the MSF is negative,
meaning that the global coupling strength can always be increased
enough to push the normalized spectra into this range. However,
this unbounded strength may not be practical in real-life systems.
Subsequent iterations of this work may seek to optimize further
among these simple solutions, but the present work focuses on
chaotic oscillator systems where we find a single bounded interval
for which the MSF is negative, indicating linear stability of the syn-
chronization manifold. Under these circumstances, the solutions are
not generally trees but tend to have common network features for a
given choice of system, such as levels of hierarchy and the amount
of interwoven central loops. This context was chosen due to impli-
cations for better understanding the synchronization process as a
process of information exchange and transfer.''~"

Since a picture is worth a thousand words, we begin with an
illustrative example on a small network, referencing the appendixes
as needed; this is followed by a clear definition of an essential syn-
chronization backbone. Then, the chosen context of linear diffusively
coupled chaotic oscillators is described in detail for which solving
the ESB problem is approached through two algorithms. The first is
an exhaustive search strategy that finds a true ESB of the system,
and the second is a greedy algorithm for approximating an ESB,
which enables the study of larger networks. The greedy approach
is successful in obtaining a good solution (in terms of a small vol-
ume spanning subgraph) with reasonable computational time but
falls short of finding a true ESB in most cases. As such, we will
refer to these approximate solutions as greedy essential synchroniza-
tion backbones (and denote them as GESBs) to clearly indicate the
approximation. The details of this discrepancy will be made clear
from the initial example.

We also provide preliminary analysis of the solution space as a
function of the type of dynamical system and coupling being consid-
ered through comparison of two contrasting representative systems.
The presence of a hierarchical structure and interlocking central
cycles lead us to make conjectures about the role of graph conduc-
tance (or an isoperimetric number) of the network in the process of
synchronization through information flow. Chaotic oscillators are
particularly interesting in this context since they can be imagined as
information generators through symbolic dynamics."”
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Il. THE ESSENTIAL SYNCHRONIZATION BACKBONE
PROBLEM

Given a network of coupled oscillators that achieve synchro-
nization, what is the edge-minimal spanning subgraph of this net-
work that has similar synchronization behavior? This question is
ambiguous in a few ways, and preliminary definitions are required
to provide an accurate and succinct problem statement; however, for
those familiar with the literature in the field, we first explore a sim-
ple example to illustrate the objective clearly and point out certain
nuances that are generally encountered.

A. An introductory example

Consider a system of N = 12 identical Rossler oscillators (with
parameters a = b = 0.2, ¢ = 9.0) that exhibit linear diffusive cou-
pling through the x-variables over an undirected and unweighted
network G = (V, E). Linear diffusive coupling was considered due
to the ease with which the Master Stability Function (MSF) formal-
ism can be applied;'” the definitions of some chaotic oscillators and a
review of the Master Stability Function are provided in Appendixes
A and B, respectively, for the reader’s convenience, and a more
detailed definition of a linear diffusively coupled chaotic oscillator
system is provided in Sec. III A.

For our immediate purposes, it was shown that the MSF for the
above system is negative on a single interval of coupling-normalized
eigenvalues'® (K € [Ky, Kg], where K, 2~ 0.186 and Kz = 4.614).
For example, we take G to be the graph whose embedding is shown
in Fig. 1(a), and we denote the ordered eigenvalues of the combina-
torial graph Laplacian associated with Gas0 = 41 < X, < --- < Ay
In this case, the synchronization manifold of the system is expo-
nentially asymptotically stable for an appropriately chosen global
coupling strength due to the eigenratio of R = Ay/A, = 9.15 for this
particular choice of G being less than the synchronizability ratio of
the system (Rysp = Kg/K, ~ 24.8).

Our goal centers on the question of whether we can remove an
edge from the network G to obtain a spanning subgraph G' = (V, E')
(where E' C E) such that R = A};/A; < Rysr as well, where the
prime indicates association with the subgraph G'. We are not inter-
ested in how the global coupling strength may need adjustment nor
the average time to synchronization, just whether synchronization
can occur. If such a spanning subgraph exists, then the invariant
manifolds of the two systems are considered conjugate, and this
motivates our use of the adjective essential, meaning “in essence.”

If one edge can be removed in this way, can another? This begs
the most obvious next question: What is the maximum number of
edges that can be removed from the network that results in a sys-
tem with similar synchronization behavior? While the incremental
approach outlined is not successful for achieving our aim in gen-
eral, it is the basis for our approximation method. Deciding which
edge(s) to remove is nontrivial, especially for large networks where
one may be able to remove almost any edge initially. One could
exhaustively check the impact on the eigenratio R’ for all possible
edge removals at each step in the process, removing the edge that
results in the lowest R’ value for that step (we refer to this strategy
as the hybrid approach since it is an exhaustive search for making
greedy decisions), but it is rather computationally expensive.
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FIG. 1. (a) The original graph G, together with (b) a true essential synchronization backbone (ESB), (c) the minimal eigenratio ESB, and (d) a greedy approximation of an
ESB (GESB) for the system of identical Rossler attractors using x — x coupling on the network G.

A useful observation was made in Hagberg and Schult* about
the impact of edge removals on the spectrum of the graph Laplacian:
considering the eigenvector corresponding to Ay, the edge with the
largest difference in valuation on its boundary is a good candidate
for removal for the goal of minimizing the eigenratio.” This heuristic
has been used for the goal of reducing redundant links, while main-
taining most of the original synchronization process’s properties."”
For our simpler goal of conjugate stability, the identified link is not
always optimal due to the added normalization requirement, but
making the optimal short term choice may already prohibit finding
the global solution; therefore, we let this guide a greedy algorith-
mic approach that is very computationally efficient and still obtains
good approximations for large networks. In this way, we can find
spanning subgraphs of very large graphs that also have exponentially
asymptotically stable synchronization manifolds, even if they are not
truly the minimal-edge case.

To illustrate, Fig. 1(b) shows a true Essential Synchronization
Backbone (ESB) for the system described above coupled through the
network shown in Fig. 1(a). The ESB shown in Fig. 1(c) is also a
true ESB of the system, but it is what might be referred to as a mini-
mal eigenratio ESB for the system. However, for our purposes, these
ESBs are just two of 1899 equivalent solutions for this networked
oscillator system. It is also informative to point out that there are
553521 other spanning subgraphs of G with the same number of
edges (spanning trees in this case) that are not ESB of this system,
having eigenratios larger than the system’s Rysr. As may be apparent
by the size of the search space for such a small network, the exhaus-
tive search of the power set of the edge set is not feasible for larger
networks, and therefore, alternative algorithms for approximating
the ESB are of interest.

Figure 1(d) shows the result of our greedy approximation
algorithm (which is available in Python at https://github.com/tyler
diggans/ESBP) for this system. This approximate solution has an
additional edge, meaning that it is not actually an ESB of the sys-
tem. We call this type of local minima for which no further single

edge can be removed, a Greedy-ESB or GESB, to differentiate it from
a true solution. However, it is worth pointing out that this approxi-
mation has a smaller synchronizability ratio than the minimal eigen-
ratio ESB, meaning that its structure is more easily synchronized
in general. This points to a limitation of our algorithmic approach
being focused on the minimization of the eigenratio at each step
since this property is non-monotonic with edge removals'® and is
not representative of our actual goal. In summary, this example aims
to convey the following:

 The ESB is not unique, e.g., Figs. 1(b) and 1(c) are both ESB of the
system on G [Fig. 1(a)].

 Optimization with respect to other objectives is possible within
the (nontrivial) set of ESB.

« Our goal is minimization of |E'| such that R" < Ry, but R’ itself

need not be minimal.

The greedy approach often results in local minima due to over-

optimizing on R'.

While the above example seems to indicate that the GESB is not
representative of the general structure of the ESB, this is an artifact of
our intentional choice to illustrate where this approximation breaks
down. While all ESBs for this small network are spanning trees, this
is due to the small number of nodes. The general trends in the struc-
ture of ESB vary greatly depending on the type of dynamical systems
being synchronized and the choice of coupling (e.g., see Fig. 2 for
an example). Though for systems where the MSF is negative on an
unbounded half-open interval, i.e., [K, 00), the ESBs for undirected
networks are always spanning trees if there is no restriction placed
on the coupling strength. This is the case for simple (constant angu-
lar velocity) and harmonic oscillators, as well as some choices of
coupling for chaotic oscillators. Alternatively, when the MSF is only
negative on a closed interval or if a restriction on the global coupling
strength prevents the utilization of the unbounded interval, we find
more interesting structure that seems related to the required infor-
mation flow to maintain synchronization for such oscillators with
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positive topological entropy,'” where predictable oscillations are not
present. We will explore these details toward the end of this paper
and in future work. For now, we take this space to carefully define
the essential synchronization backbone.

B. An optimization problem

We begin with a constructive definition that establishes the
meaning of the term essential within this context.

Definition1 Let A and B be two networked dynamical systems
sharing a domain Q C RM,

(a) The invariant manifolds of systems A and B are essentially equiv-
alent if there exist two sets U,V C Q such that A|y and B|y are
conjugate.

(b) Furthermore, if the invariant manifolds of systems A and B are
stable, we say they have essentially equivalent stability.

& &
A R

scitation.org/journal/cha

—> [forni=

(d)
Greedy-ESB

FIG. 2. An example showing the vari-
ation in ESB and GESB for different
choices of dynamics and coupling on the
graph DR(12,4), which is a d-regular
graph with N = 12 vertices and d = 4.
Synchronizable for both Rdssler-x and
modified Lorenz-z systems, each column
shows the backbone in black on the orig-
inal graph with the removed edges as
thin red lines, followed by the backbone
itself, and finally an alternate embed-
ding that showcases the backbones struc-
ture; (a) and (b) show the ESB and
GESB, respectively, for the Réssler-x sys-
tem, and (c) and (d) show the ESB and
GESB, respectively, for the Lorenz-z sys-
tem. Note that both algorithms find the
same ESB in the case of the Lorenz-z sys-
tem, although this is not true in general.

\J

& &

Recall the definition of a spanning subgraph of a connected
simple graph:"’

Definition 2 The network H = (V, F) with vertex set V and
edge set F is called a spanning subgraph of the simple network
G = (V,E) if (1) H is connected and (2) F C E , i.e., H is obtained
from G by edge removals.

Given the above definitions, we now define an Essen-
tial Synchronization Backbone (ESB) of a networked oscillator
system:

Definition 3 Let A and B be two systems, each consisting of
N networked oscillators that share a particular choice of uncoupled
dynamics f and coupling scheme but interact through the networks
G and G, respectively. Given system A has a stable synchronization
manifold, system B is called an essential synchronization backbone
(ESB) of system A if G' is a minimal-edge spanning subgraph of G such
that systems A and B have essentially equivalent stability.
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11l. BACKGROUND

The study of synchronizing oscillators often focuses on simple
or harmonic oscillators with complexity being introduced through
nonlinear coupling, e.g., the Kuramoto model. However, the study
of chaotic oscillators adds an alternate type of complexity that is
of particular interest to the study of information flow. As such, we
have explored the ESB problem within the context of linearly dif-
fusive coupling of identical chaotic oscillators over unweighted and
undirected networks for which exponential asymptotic stability of
the synchronization manifold is fully characterized by the MSF."" In
the more general context of directed networks, recent work has sug-
gested that the MSF may not fully characterize the stability of the
synchronous states,”’~*” but this point is contentious; regardless, we
restrict our discussion to the undirected case. The present choice of
dynamics was made in order to focus attention on the interesting
results that arise in this context, but the general definitions above
apply equally to synchronization processes with simple, harmonic,
or nonidentical oscillators (where Lyapunov stability would be the
relevant type™).

A. Networked chaotic oscillators

We consider a collection of N identical oscillators, which in iso-
lation would follow the differential equation, x = f(x), referred to as
the uncoupled dynamics. Linear coupling is a good local approxi-
mation to nonlinear schemes through Taylor’s approximation, e.g.,
x & sin(x); tllerefore, we choose to study linear diffusive coupling.

We let X = [x1,X,...,Xn] € R be the set of dynamical vari-
ables of the system consisting of N identical dynamical oscillators,
each of dimension d; i.e., M = Nd. These dynamical systems are
connected by an unweighted and undirected network G = (V,E).
The component variables are governed by the uncoupled dynam-
ics x = f(x), together with linear diffusive coupling through both
a linear coupling function, H(f() =[H x,H x5...,H-xy] with
H € R%4, and the network topology, represented by the combinato-
rial graph Laplacian associated with G, which we denote by L. Then,
for a specified global coupling strength o, the composite variable X
follows the dynamics

X=FX — oL ® HX), 1)

where F()?) = [f(x1),f(x2),...,f(xy)] represents the uncoupled
dynamics.

To contrast the results given for the Rdssler oscillators
described above, which we will refer to going forward as a Rossler-x
system, we also consider Lorenz oscillators coupled through their z
components (Lorenz-z). Both oscillators are defined in Appendix A,
and the MSF for both system choices is included in Appendix B.
The Lorenz-z system technically results in an MSF of the third
type, meaning that it has both a finite and an infinite interval of
coupling-normalized eigenvalues where the MSF is negative.'® Since
this would indicate that all ESBs would be spanning trees, we have
decided to impose a large but finite restriction on the global coupling
strength. The infinite interval is sufficiently far from the finite one
that this effectively restricts the MSF to being negative only on the
finite interval [1.422, 6.035], implying Rysr & 4.24 for this modified
Lorenz-z system. This type of restriction is reasonable in physical
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systems, so not altogether artificial, especially when interested in
avoiding the scenario referred to as dominance of neighbors,”* where
the coupling influence dominates the internal dynamics. This modi-
fication enables the consideration of familiar oscillators with simple
coupling; additionally, the particular solution space to the ESBP for
this smaller Ry value is instructive for comparison. Limiting our
discussion to these two three-dimensional chaotic oscillators, we
only require two choices of the matrix H, and therefore, we define
them explicitly as

1
H,= |0 and H, =
0

[ el ]
oS O O
S O O
[ e ]

0
0f, )
1

meaning that Rossler-x systems use H,, while Lorenz-z systems use
H,. While we focus on these two particular choices of dynamical
system and coupling, they are representative of any coupled sys-
tem choices with comparable MSF structures. Since, in these cases,
the Rysr value completely determines the spectral properties of all
networks that will synchronize, any two systems with sufficiently
different Rysr values will lead to such contrasting results for the ESB
problem.

Again, the general concept of an ESB may be interesting in
other contexts, e.g., heterogeneous dynamical systems, where the
synchronization manifold may only be Lyapunov stable, but for the
case of identical oscillators, due to the form of L, the synchronous
states take the form X = [x*,...,x*], where x* is a solution to the
uncoupled dynamics x = f(x). The set of all such states makes up the
synchronization manifold, and the type of associated stability in this
case is exponentially asymptotic stability, which can be determined
in the case of undirected networks using the MSF (see Appendix B
for details).

B. Optimal synchronizability

Over the years, some general trends and heuristics have been
identified for enhancing synchronizability over undirected net-
works, but these observations have usually led to common miscon-
ceptions such as

« Minimizing average path lengths is important to synchronization.
This is true to some extent and is assumed to be related to the
efficiency of information flow, but this trend is not universal as
was shown for scale-free networks” where heterogeneity in the
connectivity led to the destruction of synchronization while also
leading to shorter path lengths.

« The bottleneck to synchronization may be the hub nodes and/or
links with the largest load,” but this is highly dependent on the
type of dynamics and behavior of synchronization for star graphs.

o Also, synchronization can be destroyed by a single well-placed
link,”* meaning that it may really be the weakest link that is the
major concern (we recall Braess’ paradox’”*")

These properties accurately describe many features of small
world networks, and this class has been explicitly considered in the
literature.”””* While these may not be true in every case, they still
provide valuable insight into common properties of good networks
for synchronization. Overall, what is generally sought is a network
with a relatively small average path length, hubs that are not too
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overloaded, and avoidance of any catastrophic edges. Quantifying
all of these properties simultaneously is challenging, and we see the
concept of synchronization as information exchange and transfer"’
as the proper framework to search for answers.

Given the system (1) and the MSF formalism for determining
stability of the synchronization manifold, the problem of finding
an essential synchronization backbone of a network G = (V,E)
for which R < Rysr (given a choice of dynamics and coupling)
becomes the question of finding a minimal-edge spanning subgraph
G = (V,E') such that R = A};/A;, < Rygr as well, where again, we
have used the prime notation to indicate variables and spectra asso-
ciated with the subgraphs. Thus, we are most interested in how edge
removals will affect the two particular eigenvalues of A, and Ay for
the Laplacian of the original network due to their role in the MSF
analysis.

It is known that edge removals will not increase A, due to
interlacing eigenvalues; and in fact, by Weyl’s inequality for the
spanning subgraph, we know that A, — 2 < A, < X, when one edge
is removed from E. More generally at any stage in the sparsifica-
tion, we know that ), > 5, where D represents the diameter of the
spanning subgraph.’’ Therefore, while the more relevant eigenvalue
in relation to the effects of edge removal is Ay, these lower bounds
on A, are relevant to understanding the patterns of cycles present in
ESB.

The main results on the impact of edge removals from Restrepo
et al.' (formulated for directed networks) also apply to undirected
graphs; however, that treatment relies on ignoring second order
perturbations, which may not remain relevant as the perturbations
become large with respect to the size of the network.

Alternatively, we look to Hagberg and Schult’ for guidance on
algorithm development based on incremental edge removal, where
it was noted that the largest eigenvalue is characterized by

=Y (v — (),

i~j

where ZVN(i)Z =1,

3)

where vy is the eigenvector associated with Ay. Thus, in order
to reduce Ay, one seeks to remove the edge that contributes the
largest amount to the constrained sum (3). While the normaliza-
tion requirement makes this term nontrivial to identify, generally,
removing the edge with the largest difference in vy reduces Ay.” We
now present two methods for solving the ESBP, the second of which
relies heavily upon this heuristic.

IV. SOLVING THE ESBP

Solving the ESBP is an NP-hard problem due to the combina-
torial search over the edge set of the original network. Furthermore,
for each choice of edge removal, an O(N°) algorithm is required
to test the MSF eigenratio of each solution, meaning brute force
approaches to solving this problem are only reasonable for very
small and/or sparse networks (N ~ 10). Regardless, a parallelized
algorithm can explore all potential ESB graphs in an organized man-
ner for small graphs, though considerable resources are required for
even sizes of N ~ 10. We present this brute force approach, followed
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by an efficient algorithm for obtaining greedy approximations of
solutions (GESB) for larger complex networks.

A. The exhaustive ESB algorithm

Since the spanning subgraph must be connected in order to
synchronize, we begin an exhaustive search by considering all sets
E' C E, such that |E'| = N — 1, selected from the edge set of the
original graph G = (V, E). Many of these subsets will not result in
a connected graph and are discarded; those that result in a con-
nected subgraph are by definition spanning trees. Comparing the
eigenratio R" = A},/A) for the Laplacian of these spanning subgraphs
G = (V,E') with Rysr = Kg/K, from the MSF, it is quickly deter-
mined whether the synchronization manifolds of any of these span-
ning subgraphs and the original network have essentially equivalent
stability; i.e., both R and R’ are less than Rysr (again, in the case of
Ky = 00, any spanning tree has R < Rysr and, therefore, is an ESB).
If all such subsets of size N — 1 edges have been considered without
finding any that pass this MSF comparison, we increment the num-
ber of selected edges and repeat the process until such a graph is
found with R’ < RMSF~

Due to the order in which the spanning subgraphs are con-
sidered, as soon as any G’ satisfies the condition, that graph is
guaranteed to be an ESB of the network, though there is no expec-
tation that the ESB should be unique. In order for all ESBs of the
system to be found, one must complete comparisons for all sub-
graphs with the same number of edges as E’, and if interested in
further optimization, one might compare the eigenratios of these
equivalent volume solutions to obtain a minimal eigenratio ESB.
In the worst case, we find that E' = E is the first subset for which
R’ < Rysp, and our network G is its own backbone for the system in
question.

This basic algorithm (available at https://github.com/tyler
diggans/ESBP) is not practical for most networks, and its perfor-
mance varies greatly with the system considered due to the higher
expected number of edges in an ESB for systems with smaller Rysr
values. However, it provides a reasonable method of obtaining the
true ESB in order to validate less expensive approximation algo-
rithms. Utilizing parallel computation and efficient approximations
of A, and A}, by power methods can help speed up the process,
but limitations are encountered quickly for graphs with N > 10
nodes.

B. Greedy-ESB algorithm

Since most applications of interest would have hundreds of
nodes, if not more, the exhaustive search is infeasible for sys-
tems on such large complex networks, meaning that we are inter-
ested in approximating solutions with what we call Greedy-ESB
or GESB. For this purpose, we utilize the results from Hagberg
et al. to guide an iterative greedy choice of edge removals (code
for implementation in Python is available at https://github.com/
tylerdiggans/ESBP). The process is as follows:

A network is initiated as a copy of the original graph, namely,
G = (V,E’), with E' = E. Then, at each step in the sparsification
process, the eigenvector associated with the largest eigenvalue of the
current G’ is computed and the remaining edges in E’ are ordered
with respect to their contributions to the sum that defines Ay,
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System Type | Original Network ESB New GESB New
Network Name Embedding Embedding
Rossler-x
= =%
K2
[E|=11 [E|=12
Lorenz-z
= —
Ky ‘
|E|=10 [E|=11
Rossler-x
— =%
BA(15,2)
[E|=14 |E|=16
|E|=15
Lorenz-z ;
— e
ER(10,0.5)
|E|=15
Rossler-x
= —
ER(16,0.25)
|E[=16 |E[=17
Rossler-x
_)
F3 ( 1 » 2)
[E|=15

FIG. 3. Representative networks considered for verification of the greedy algorithm performance, together with their true ESB and greedy-ESB obtained from the brute force
and greedy algorithms, respectively. Note that the greedy algorithm often results in local minima having at least one extra edge, though not always. K,, represents the complete
graph on n vertices; BA(N, m) represents a Barabasi-Albert graph® with N vertices and growth parameter m; ER(N, p) represents an Erdds-Renyi graph on N vertices
with parameter p; and F, (u, v) represents the nth generation of a (u, v)-flower graph.**
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Original
Network
ER(50,0.3)
System
Method Edge New
Volume Removals GESB Embedding

(a) Rossler-x
GESB

E'| =70

(b) Rossler-x
Hybrid

IE'| = 61

(c) Lorenz-z
GESB

|E'| = 142

(d) Lorenz-z

Hybrid

IE'| =130

FIG. 4. An Erdos—Renyi graph [ER(50, 0.3)] having |E| = 345 that is synchronizable for both choices of dynamics; (a)—(d) provide a collection of Greedy-ESB (GESB),
obtained by two different algorithmic approaches for the two chosen systems: (a) and (b) are GESB for the Rdssler-x system obtained using the basic greedy algorithm and
the hybrid approach (described in Sec. |\/ B), respectively, while (c) and (d) are for the Lorenz-z system. Although the hybrid approach usually finds smaller volume spanning
subgraphs (better approximations), the basic greedy approach is more computationally efficient and both procedures result in GESB having a similar structure for a given
type of oscillator system.

Eq. (3). Beginning with the edge having the largest contribution and pass this condition is removed from the edge set permanently, i.e.,
moving down the list one at a time, the eigenratio R’ is computed for E' = E' — ¢, and the process is repeated until no such edge can be
the network that would result from the removal of that edge until a found. This new eigenratio need not satisfy R' < R, as we are only
spanning subgraph is found such that R" < Rysr. The first edge e to interested in essentially equivalent stability.
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Unfortunately, the incremental edge removal process is known
to be non-monotonic in terms of the spectrum spread;'* thus, it is
likely that this process will reach a local minimum. Additionally,
using the eigenvector to guide our choice is not always optimal as
the normalization process must be considered to better order the
edges for consideration. Although there are lower bounds for 4,,
it is also possible that edge removals may lead to A}, < A,, which
may increase R'. As stated previously, it is possible to check the
eigenratio for each edge in each step, choosing the locally optimal
edge to remove, but due to the non-monotonicity, such a hybrid
approach only performs marginally better than our greedy approach
and at a steep cost in computational time (e.g., approximately 50 x
for N = 50). It has also been suggested to use simulated anneal-
ing with such approaches to avoid local minima,’” but it has been
found that this only marginally improves results, again, at a com-
putational cost. Since we are not actually finding the true ESB in
any of these cases, we chose to present the most basic, yet most effi-
cient, algorithm here for brevity and show that these GESBs are still
informative of a general structure.

C. Verification of a greedy algorithm

Having presented an efficient method of approximation, we
wish to verify that the GESB obtained is in fact “good” approxima-
tions. Due to the high computational complexity of the exhaustive
approach, this comparison can only be carried out for relatively
small order networks, meaning that any verification provided in
this domain may not generalize well to more complex networks.
Regardless, from this initial comparison, it should be assumed that
all GESBs are not true ESB, but that they are still reflective of general
trends in hierarchical structures and loopiness.

We begin by considering a d-regular graph of N = 12 vertices
with d = 4, which we denote by DR(12,4). This network provides
a stable synchronization manifold for both Réssler-x and modified
Lorenz-z type systems, and therefore, it illustrates the impact of
the chosen dynamics and coupling on the overall results. For each
choice of dynamics and an algorithmic solution, a series of plots is
provided in Fig. 2, which in a descending order are as follows: the
original graph with the removed edges highlighted in red, the back-
bone in the original graph embedding, and the backbone shown in a
new embedding to showcase the structural trends for each solution.
Figures 2(a) and 2(b) show the sequence of plots for a true solu-
tion for the Rdssler-x system and our greedy search, respectively.
Figures 2(c) and 2(d) show the sequence of plots for a true solution
to the Lorenz-z system and our greedy search, respectively.

To show general trends more clearly, a gallery of plots for our
two choices of system interacting on various networks is provided
as Fig. 3. Here, in each case, we provide the original network, and
both a true ESB of the system and the associated GESB obtained by
our greedy algorithm, where we include the solutions in the original
embedding with removed edges highlighted in red, followed by an
updated embedding that highlights the structure.

It is also instructive to consider the GESB obtained for larger
graphs, although the exhaustive search is infeasible; for comparison,
we provide the resulting GESB from the greedy algorithm with the
GESB obtained by the hybrid approach described in Sec. IV B. While
it is difficult to find large networks for which the modified Lorenz-z
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system synchronizes at all, an Erdos-Renyi graph on N = 50 ver-
tices using parameter p = 0.3 (resulting in 345 edges) was found that
synchronizes for both the Rossler-x and modified Lorenz-z systems.
Greedy-ESBs were approximated for the two systems and are shown
in Figs. 4(a) and 4(c), along with the volume of their edgesets, and for
comparison, the hybrid approach was used to obtain a more optimal
GESB, which is shown in Figs. 4(b) and 4(d).

From Fig. 4(a), the Rossler-x GESB had |E'| = 70 edges, while
the hybrid approximation (b) was able to obtain a GESB with
|E'| =61 edges; (c) the basic GESB for the Lorenz-z system was
found to have |[E'| = 142 edges; yet, the hybrid approach (d) found a
GESB with |E'| = 130 edges. This indicates that some of our heuris-
tic edge choices were not optimal. We do not expect these hybrid
GESBs to be true ESB in either case and instead point out the sim-
ilarity in large-scale features (e.g., the presence of pendant vertices
for Rossler-x systems) as indicative of success.

V. ANALYSIS

The general result is that while the greedy algorithm finds sub-
stantially low volume spanning subgraphs, it is common for the
GESB to not be a true ESB of the network. However, as can be seen
in the general trends for different choices of dynamical systems, the
apparent concern from our original example should be allayed. We
find that true ESB for networks that are too large to allow spanning
trees results in similar structures to the GESB of our original exam-
ple. Small spanning trees may be permitted in certain cases such as
Rossler-x systems, but star networks, which have the optimal eigen-
ratio for any tree, were shown to have size limits on synchronization
for such systems.'’ Since A, > %, as the number of nodes increases,
the growing diameter of spanning trees eventually places pressure on
the formation of cycles to alleviate the rising eigenratio. First, loops
appear in the ESB, which may enable feedback to bolster synchro-
nization (also reducing the diameter, which places a tighter lower
bound on 1, thereby preventing the eigenratio from growing too
large).

This trend is followed by the formation of larger small world
networks consisting of multiple loops that intersect. We better quan-
tify this trend through analysis of common graph structures such as
star and cycle graphs for which general trends can be immediately
identified based on the type of oscillators used. This indicates that
the amount of information required to synchronize different sys-
tems may play an important role in determining a required isoperi-
metric number for synchronization associated with the number (and
interaction) of loops in the ESB.

Although identifying general trends provides some intuition
and can guide experiments, we also need to identify clear limitations
of the role that various common network structures and motifs may
play in forming a backbone of a more complex network. From the
beginning of this work, we have known that there will be limits to
spanning trees being ESB of systems of chaotic attractors. In particu-
lar, it has been shown that for Rossler attractors coupled through a,
the star topology will not synchronize for more than N = 45 nodes;"’
related to this is the upper bound of Ay < 2A, where A is the maxi-
mum degree of the network. Similar arguments can be made related
to the limitations of spanning trees in general and the bounds for 1,.
Such trends indicate that for any choice of minimal topology, there
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will be a limit to synchronization. We now consider a few relevant
basic graph topologies to explore these trends further.

When considering synchronization of Réssler-x systems, we
find on the cycle graph on N vertices, Cy, that the system’s ESB is
a path graph, Py, for N < 8, but for 8 < N < 15, Cy is its own back-
bone, meaning it is already the minimal-edge subgraph. For N > 15,
the original graph no longer synchronizes for this system, which is
indicative that we will likely not find such large cycles forming the
basis of ESB in larger graphs for this choice of dynamical system and
coupling. As can be seen in the GESB in Fig. 4(b), while there are
many interconnected cycles, no element of a cycle basis has more
than 15 nodes included.

Furthermore, the synchronization of Lorenz-z attractors in
cycles is more restricted as well. We find that only C; has an ESB
of P;, which may explain why we do not find pendant vertices in the
ESB of larger networks for these systems, whereas Cy is its own back-
bone for 4 < N < 6 and then Cy no longer synchronizes for N > 6.
Thus it further evident that different dynamical systems require
different amounts of information flow to support synchronization,
which will be explored in depth in future work.

These limits in cycles are represented in our results; e.g., for
networks of Lorenz attractors, we find backbones consisting of many
intersecting small cycles, but none of the basic cyclic paths is much
larger than six edges. A flaw in our greedy approach is illustrated
by computing a cycle basis for each GESB in Fig. 4 for which his-
tograms of the cycle lengths are provided in Fig. 5. As expected,
the Lorenz-z GESB has many more edges than the Rossler-x sys-
tem and thus had many more cycles, though they tended toward
smaller cycle lengths (I) with the most common cycle length of | = 6
for the more optimal GESB (obtained by the hybrid approach). This
is in contrast to the most common cycle length of I =9 for the
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Rossler system. These lengths are consistent with the analysis of Cy
above. While additional cycles are found with longer lengths than
the restrictions found in Cy, it is reasonable to expect that these
smaller cycles are enabling the longer ones to synchronize through
feedback. Considering the cycle histograms for the GESB obtained
by our greedy algorithm indicates a problem: the prevalence of clus-
tering (cycles of length | = 3). By comparing the cycle lengths, we
can see that the more optimal GESB has zero clustering in both
cases, and it makes sense that if cycles are present, in order to reap
the rewards of the additional edge, one would want to maximize
the length of these cycles within the bounds of synchronization.
Future work may seek to remedy this by penalizing clustering in
some way.

We have also noted that the minimal eigenratio ESB, though
not specifically preferred by our definition, does show indications
that are relevant to forming intuition. We find that out of all small
order ESB, those with minimal eigenratios are the ones with higher
degrees of symmetry,” e.g., see the ESB of F5(1, 2) provided in Fig. 3.
This is likely due to the degeneracy that forms in the eigenspace,
which has been explored through the nullity of the adjacency matrix
A% This is indicative of the multiplicity of mid-range eigenvalues
in L.

However, it is nontrivial to measure symmetry meaningfully
with respect to the process of synchronization due to the competing
roles of path lengths, high degree nodes, and cycles. For example,
the size of the automorphism group of a graph structure, a com-
mon measure of symmetry, may include a large number of trivial
symmetries with respect to path length, e.g., twin pendant swaps.
Alternatively, path lengths can be increased without harming the
synchronizability if it is the cycle lengths that are increased, within
reason.

Lorenz-z

Greedy Cycle Basis

Cycle Length (/)

Hybrid Cycle Basis

FIG. 5. Cycle length histograms for the
GESB obtained using the greedy (a) and
(b) and hybrid (c) and (d) approaches on
the ER(50, 0.3) graph (see Fig. 4), indi-
cating that the limitations of synchronizing
C, are relevant to a larger network (the
most abundant cycle lengths being / = 9
(b) and | = 6 for the Réssler-x and Lorenz-z
systems, respectively). Both algorithms
produce similar statistics based on the
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AnlAz = 22.59

|[Aut(Q)| = 10
(a) (b)

[Aut(Q)[ = 6
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© )

[Aut(Q)[ =2

FIG. 6. A collection of true ESB for the 3rd generation of the (1, 2)-flower graph, i.e., F3(1,2). If we quantify the “amount of symmetry” by the size of the automorphism
group of the network quotient graph,* then (a), being a minimal eigenratio ESB, has the highest degree of symmetry with |Aut(Q)| = 10 with an eigenratio of R = 21.79;
(b) shows a more quasi-symmetric ESB with R = 22.59, where the action of using the network quotient vastly reduces the measure of symmetry |Aut(Q)| = 6; (c) the
ESB resulting from our greedy search (true ESB in this case) has R = 23.6, and finally (d) (obtained from an exhaustive search for the ESB with the largest eigenratio) has

R = 24.71, nearing the limiting value of Ryse ~ 24.8.

Thus, we choose to measure “large-scale” symmetry of the
graph by the order of the automorphism group of the network
quotient graph as described in Xiao et al.,”” where redundant struc-
tures such as multiple pendants are consolidated. Figure 6 shows
(a) the minimal ESB along with (b)-(d) three additional (non-
minimal) ESBs of the F5(1,2) graph. Due to the simple structure,
the quotient networks associated with these graphs simply collapse
all pendant vertices that share a vertex to a single pendant to reduce
the associated combinatorial number of symmetries these add to
the automorphism group. This approach is not ideal for general
use though as any number of pendants can be consolidated in the
quotient graph, which does not take into consideration the effect of
dominance of neighbors on synchronization.”* Although the general
trend shows that the eigenratio R = Ay/A, is decreasing as the size of
the automorphism group of the network quotient, denoted here by
|Aut(Q)|, increases, this trend does not (and is not expected to) fully
characterize the process of synchronization due to the competing
influences described above, but it indicates the trend.

To more quantitatively explore this angle, it may be benefi-
cial to consider the connectivity being defined by the random walk
Laplacian L,,, = Iy — DA instead of the combinatorial Laplacian
(as is the general approach). Using a normalized Laplacian (though
maintaining the rows summing to zero) may have interesting appli-
cations as well, where each node has a limited ability to adapt to
external stimulus, meaning that their response is based on the aver-
age stimulus and not the volume of the stimulus. In this case, the
research with respect to the nullity of A would correspond directly
to the multiplicity of A = 1 in L,,,, which would effectively contract
the spectrum toward the center of the interval of values ([0, 2]).

VI. CONCLUSIONS

We have introduced a new concept associated with the struc-
ture interacting with dynamics on networks called the essential

synchronization backbone problem (ESBP). The idea is that a core
part of the graph, a subgraph, supports the synchrony and its associ-
ated information flow. We have explored solutions to this problem
for two types of linear diffusively coupled chaotic oscillator systems,
providing a greedy algorithm for finding approximate solutions,
which we call greedy essential synchronization backbones (GESBs).
A true ESB can be found for small and sparse enough graphs; how-
ever, due to computational complexity issues, this approach is not
tenable for general complex networks. The initial exploration of the
solution space to this problem opens many directions of related
research, including optimal information transfer and the role of
hierarchy and graph conductance (or isoperimetric number) in the
synchronization of oscillators.
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APPENDIX A: CHAOTIC ATTRACTORS

We introduce two chaotic attractors, which are used as the
uncoupled dynamics of the network oscillator systems.
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(a)

1. The Lorenz attractor

Initially introduced as a simplified model for convection
in weather patterns, the Lorenz system is a three-dimensional
dynamical system that can be described by a first order nonlinear
system of differential equations. This simple model, having only two
nonlinear (quadratic) terms, results in quite an array of interest-
ing phenomena. The state variables x = [x, y, z] are governed by the
equations of motion

x=o0(—x),
y=x(p—2) —y
z=uxy— Bz,

where o, p, and B are parameters, most commonly taken to be
o =10, p = 28,and B = 8/3 to induce chaos. A trajectory near the
attractor is shown in Fig. 7(a)

2. The Réssler attractor

The Rossler system provides a more permissive contrast to
assess the effects of network topology with changing dynamics. This
system has a single nonlinear term in its equations of motion, and
when projected into the z = 0 plane, the Rossler system follows a
linear differential equation. It is only through the introduction of the
z direction that chaos emerges. The same state variables x = [x, y, z]
are governed by

X=-y—g3
y=x+ay,
z=b+z(x — o),

where a, b, and ¢ are parameters. We will use a =b =0.2 and
¢ = 9.0 throughout. A trajectory near the attractor is shown in
Fig. 7(b).

APPENDIX B: MASTER STABILITY FUNCTION

The stability of the synchronization manifold for a large class
of coupled dynamical systems was addressed by the introduction of
the Master Stability Function'’ (MSF) for analysis of systems of the
form

X=F®X — oL ®HX)

as either the dynamical equations themselves or as the local
linearization of nonlinearly coupled systems. In either case, it

scitation.org/journal/cha

FIG. 7. An example trajectory of (a) the Lorenz attractor and
(b) the Rossler attractor.

(b)

enabled the separation of the influence of the network topology
from that of the oscillator dynamics and coupling on the stability
of the synchronous state. This stability is in reference to infinites-
imal perturbations about the synchronous state, and care should
be taken when generalizing to larger finite perturbations, especially
in systems coupled through directed and weighted networks with
high degrees of non-normality. In such cases, initial conditions near
the synchronization manifold may suffer large transients that can
expel trajectories from the expected basin of stability,”’~** but such
concerns are not relevant to the present work.
The MSF is formed by considering the variational equation

£ = [1y® Df — oL ® DHJ¢, (B1)

where the ith component of £ represents the variation of the vari-
ables at node i. Utilizing the eigen-decomposition of the connectivity
matrix, L, we obtain a block diagonal form for Eq. (B1). Given a
particular choice of f and H as described in Sec. 111 A, the MSF is
defined to be a function ¥ : R — R, whose output is the maximum
Lyapunov (or Floquet) exponent of the generic variational equation

¢ = [Df— KH]Z. (B2)

The independent variable in Eq. (B2), K, plays the role of a coupling-
normalized eigenvalue, e.g., K = oA, where A is an eigenvalue of
the graph Laplacian. The smallest eigenvalue of L for a synchro-
nizable system is A; =0, and it relates to the trajectory of the
synchronous state in systems of identical oscillators since the cou-
pling terms go to zero. Since W(K) is defined to be the largest
Lyapunov exponent, whenever W(K) < 0, we are assured that all
transverse directions are stable, meaning that small perturbations in
any of these directions will return to the synchronization manifold.
Thus, for a specific global coupling constant o, if W(ocAx) < 0 for
k=2,...,N, then we have an exponentially asymptotically stable
synchronization manifold.

A comprehensive study of most well-known chaotic systems
has been carried out,'® and we provide the relevant plots of W in
Fig. 8, which were recreated for the two choices considered in this
paper: Réssler oscillators using H, and Lorenz oscillators using H..

A common measure of synchronizability for a network has
been quantified by the eigenratio R = Ay/A, through direct com-
parison to the synchronizability ratio Rysr = Kg/Ky, where Kg may
be infinite. If R < Ry, then there exists a global coupling strength
o such that (1) has a linearly stable synchronization manifold; fur-
thermore, the smaller the R, the larger the range of global coupling
strengths that enable such synchronization.
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