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Abstract10

In this work, we quantify the timescales and information flow as-11

sociated by multiscale energy transfer in a weakly turbulent system12

through a novel new interpretation of transfer entropy. Our goal is13

to provide a detailed understanding of the nature of complex energy14

transfer in nonlinear dispersive systems driven by wave mixing. Fur-15

ther, we present a modal decomposition method based on the empirical16

wavelet transform that produces a relatively small number of nearly17

decorrelated, scale separated modes. Using our method, we are able18

to track multiscale energy transfer using only scalar time series mea-19

surements of a weakly turbulent system. This points to our approach20

being of broader applicability in real-world data coming from chaotic21

or turbulent dynamical systems.22

1 Introduction23

The question of causality, or perhaps more broadly information flow and24

coupling, in time series is a central one. By addressing the question in lin-25

ear time series coming from econometric data, Clive Granger famously won a26

Nobel prize in 2003. Building off of this ground-breaking work, methods us-27

ing information theory to determine significant couplings between variables28

in nonlinear time series have been developed; see in particular [1] which29

introduced the metric of transfer entropy (also called conditional mutual30

information). Furthermore, we have shown that conditioning on tertiary31

effects by what we called causation entropy (CE) [2, 3, 4, 5], allows for an32

effective means of identifying causal chains across large numbers of measured33

variables, by an algorithm that we called optimal causation entropy (oCSE),34
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thereby accurately generating networks of information flow among multiple35

time series. Readily available and dedicated software libraries, such as IDTxl36

[6, 7], now make the generation of these networks increasingly straightfor-37

ward.38

However, the question of information flow in the physical sciences is still39

a relatively unexplored and immature topic. For example, very recent work40

in [8] shows how transfer entropy can provide a more sophisticated under-41

standing of the measurement of energy cascades of fluid turbulence. Like-42

wise, studies of information flow in chaotic and turbulent dynamical systems43

have appeared with regard to modeling error quantification and fluctuation-44

dissipation methods have appeared; see [9] and related work. Preliminary45

work exploring how information theory helps describe atmospheric and iono-46

spheric dynamics has appeared in [10, 11]. Nevertheless, motivated by this47

existing work, much remains to be explored in this area.48

Therefore in this work, we explore how information theory is able to49

track multiscale energy transfer in the Majda-Mclaughlin-Tabak (MMT)50

model [12]. This model is particularly interesting since despite its relative51

simplicity of being only a 1+1 dimensional nonlinear dispersive wave equa-52

tion, it is known to exhibit weak-wave turbulence (WWT) [12, 13]. For53

the MMT model, both forward and inverse cascades are present. Using54

then a modification of the measurements of energy transfer in [8], we track55

the most significant energy transfer across scales using the IDTxl library.56

This is a nontrivial task since recent results from [14, 15] have shown that57

while WWT can be characterized by a statistically stationary average energy58

distribution, energy is not moved in a directly cascading way but instead59

transported in a more intricate fashion via multi-wave mixing. Our results60

further illustrate this point, though they also detect a relatively clear di-61

chotomy in which forward energy transfer typically proceed at a markedly62

faster rate than inverse cascades. However, fast inverse transfers do occur,63

potentially illustrating the point of recent work exploring the complexity of64

multiscale energy transfer in wave-mixed systems [15].65

We also address in this work the question of how we might detect mul-66

tiscale energy transfer from limited measurements. This is a foundational67

question in the physical sciences where full multidimensional resolution of68

complex processes is rarely available outside controlled laboratory condi-69

tions. Our approach to answering this dilemma is to use an extension of70

the empirical wavelet transform (EWT) as developed by [16]. In our modi-71

fication, we use Otsu’s method [17] to find a pre-selected number of optimal72

separations of a signal in frequency space. This then produces a limited73

number, again chosen by the user, of nearly time decorrelated, scale sepa-74

rated modes. We call this tool the Otsu EWT (OEWT). With the OEWT in75

hand then, using the IDTxl library, we look at information transfer across the76

scale separated components which result from the OEWT method. While77

the couplings are not as intricate as when we have access to more sophis-78
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ticated measurements of MMT dynamics, we are nevertheless able to still79

capture multiscale energy transfer thereby showing our approach allows for80

the detection of cascade phenomena in otherwise limited, scalar measure-81

ments.82

The present work then provides a unique methodology for analyzing83

chaotic up to turbulent time series and gives insight into the complexity of84

stationary cascade formation in multi-wave mixing systems. We have shown85

both the utility of using transfer entropy to characterize multiscale coupling86

and information flow in a new context, and we have also developed a new87

and convenient multiscale decomposition method for tracking information88

flow from scalar time series. Natural next questions for this work are how it89

performs in more classically turbulent problems coming from fluid mechan-90

ics, and how it fares with noisy and incomplete real world measurement.91

These are both questions of active research by our group.92

The structure of the paper is as follows. In Section 2, we present an93

explanation of transfer entropy and the algorithm underlying the IDTxl94

library. We likewise look at a typical example of its use. We then present95

our first results on WWT in the MMT model. In Section 3, we present96

development of the OEWT method, and then show how it can be used to97

detect energy transfer in the MMT model using only a scalar time series.98

In Section 4, we provide summary discussion and suggest several further99

directions of research.100

2 Determining Information Flow through Trans-101

fer Entropy102

Given a multidimensional time series, {xj}NT
j=1, with xj ∈ Rm with vector103

components denoted as xk,j , it is a basic question to determine the extent104

to which a time series along one dimension causes, or more broadly informs,105

another. Motivated by the now celebrated Granger causality test, cf. [18],106

in linear time series, [1] introduced the notion of transfer entropy (TE) to107

determine the causal relationship between two time series. The TE from108

xl,j to xk,j , say Txl→xk
(j) is defined in [1] to be109

Txl→xk
= H (xk,j+1|xk,j)−H (xk,j+1|xk,j , xl,j) ≡ I(xk,j+1, xl,j |xk,j),

where H(Y |X) is the conditional entropy between two random variables X110

and Y defined as111

H(Y |X) =

∫
p(y, x) log p(y|x)dxdy.

Note, if xk,j+1 is independent of xl,j , thenH(xk,j+1|xk,j , xl,j) = H(xk,j+1|xk,j)112

so that Txl→xk
= 0.113
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This initial concept of transfer entropy has given rise to a host of mod-114

ifications and improvements, see in particular [19] and [2], which has ulti-115

mately lead to sophisticated software libraries being developed which can116

determine networks of interactions between time series that accurately ac-117

count for confounding variables and non-Markovian influences of past states.118

In this work, we use the library [6] given its wide modeling capabilities and119

relatively rigorous hypothesis testing features.120

The backbone of the method couples the power of non-uniform embed-121

dings of time series [20, 21, 19], with greedy-algorithm optimization routines122

which seek out those time series models which provide the most transfer en-123

tropy. The algorithm generates two models. One is for sources in which we124

find the maximum information flow to xk,j+1 from xk,ℓs , where ℓs represents125

an optimal choice of some u lags, say ℓs = (ℓ1, · · · , ℓu) so that126

xk,ℓs = (xk,ℓ1 , · · · , xk,ℓu).

The other model the method generates is for targets across all complimentary127

dimensions say xkc,ℓt where128

xkc,ℓt =
{
(xl,ℓl,1 , · · · , xl,ℓl,ul )

}
l ̸=k

.

The choice of target lags can vary from target dimension to target dimen-129

sion, and thus the algorithm is able to find sophisticated non-uniform time130

embeddings in order to determine information flow within multi-dimensional131

time series. Each model generation consists of two phases, the first being132

a BUILD phase, the second being a PRUNE phase. Throughout, we also133

track the transfer entropy for each chosen lag between dimensions say l and134

k, which for a given chosen lag ℓch we denote as Tl→k(ℓch). We then define135

ℓch,∗ so that136

ℓch,∗ = arg maxℓch∈ℓtTl→k(ℓch).

and TM
l→k(ℓch,∗) = Tl→k(ℓch,∗). All of these processes are summarized in137

Algorithm 1; for full details see [7].138

Note, while for brevity we only report the lag ℓch,∗ which gives the largest139

target to source transfer entropy, i.e. TM
l→k(ℓch,∗), there are still other lagged140

versions of the target which significantly contribute information to the source141

dynamics. In part, the difficulty of reporting results for this method is a142

reflection of the underlying greedy-algorithm. This means that we can only143

report results relative to their appearance in a particular run of the method.144

See [7] and [22] for further details on this point.145

To briefly explore the use of IDTxl and its related issues, we study a146

common problem from the affiliated literature, which is the coupled Lorenz–147
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Algorithm 1 IDTxl Algorithm

1: for Dimension k do
2: procedure Generate Source Model for xk,j

3: INITIALIZE: Set ℓ
(k)
s = {∅}, ℓr = {1 · · · d}.

4: procedure Build
5: while ℓr ̸= {∅} do
6: Given ℓs = {ℓ1 · · · ℓc} and ℓr = {1, · · · , d} \ℓs
7: ℓ∗ ← arg maxℓc+1∈ℓrI

(
xk,j+1, xk,ℓ(k)s ∪ℓc+1

∣∣∣x
k,ℓ

(k)
s

)
8: if ℓ∗ is statistically significant then

9: ℓ
(k)
s ← ℓ

(k)
s ∪ {ℓ∗}

10: end if
11: end while
12: end procedure
13: procedure Prune
14: INITIALIZE: Set S ≡ True
15: while S do
16: ℓ̃∗ ← arg min

lc∈ℓ(k)s
I
(
xk,j+1, xk,ℓ(k)s \ℓc

∣∣∣x
k,ℓ

(k)
s

)
17: if ℓ̃ is statistically insignificant then

18: ℓ
(k)
s ← ℓ

(k)
s \

{
ℓ̃∗

}
19: else
20: S ≡ False
21: end if
22: end while
23: RETURNS: ℓs
24: end procedure
25: end procedure
26: procedure Generate Target Model for xk,j
27: for Dimension l ̸= k do

28: INITIALIZE: Set ℓ
(l)
t = {∅}, ℓr = {1 · · · d}, Tl→k(ℓch) = 0.

29: procedure Build

30: Build (as above) ℓ
(l)
t from xl,j conditioned on ℓs.

31: Compute Tl→k(ℓch) for ℓch ∈ ℓ
(l)
t .

32: end procedure
33: procedure Prune

34: Prune (as above) ℓ
(l)
t conditioned on ℓ

(k)
s .

35: RETURNS: ℓ
(l)
t , TM

l→k(ℓch,∗)
36: end procedure
37: end for
38: end procedure

39: RETURNS: ℓ
(k)
s , ∪l ̸=kℓ

(l)
t ,
{
TM
l→k(ℓch,∗)

}
l ̸=k

40: end for
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Rössler system of the form148

ẋ0 =σ(x1 − x0)
ẋ1 =x0(ρ− x2)− x1 + Cx24

ẋ2 =x0x1 − βx2
ẋ3 =− 6(x4 + x5)

ẋ4 =6(x3 + αx4)

ẋ5 =6(γ + x5(x3 − δ))

Here we let σ = 10, ρ = 28, β = 8/3, α = .2, γ = .2, δ = 5.7. C can be149

varied so as to enhance the driving effect of the Rössler system on the Lorenz150

system, though the effect of this can be surprising, especially when looked at151

over the whole network; see Figure 1 for details. See Throughout our tests,152

we use trajectories found via a 4th-order Runge–Kutta scheme using a time153

step of δt = .01 run out to a total time of 150 units of non-dimensional154

time. The first 100 units of time are ignored so as to remove any transient155

phenomena from our data set.156

To compute the TE/CMI, we use nearest-neighbor estimators developed157

in [23], which we label the KSG estimator. While one of the most popular158

choices for estimators, we note that there are small pathological quirks that159

must be managed. In particular, each stage of the IDTxl method has an160

affiliated significance test and a corresponding p-value which is set to p = .05.161

In the PRUNE phase, the smallest values of I are typically of the order of162

10−3, and the use of the KSG estimator often leads to negative values of163

conditional mutual information. This should be theoretically impossible,164

and thus it is a consequence of the estimation technique. What to do with165

these very small but negative values is not entirely clear, but we have found166

that automatically rejecting them as significant leads to the best results by167

minimizing false-positive links.168

Setting the coupling C = 1, letting the maximum lag in time be d =169

4, and normalizing the data to have zero average and unit variance, we170

get the result in Figure 2. As we can see, the flow of information largely171

moves as we would expect. There is a false positive link from x4 to x2,172

albeit lagged behind the correct link between x4 and x1. Thus, the method173

struggles to not confound links across different time lags, though we note174

that TM
41 (1) = .3058 while TM

42 (2) = .02332, so that the transfer entropy175

corresponding to the coupling link between the systems is ten times larger176

than the false positive. We also then could stand to have a more stringent177

hypothesis test in place, though the computational overhead that results is178

significant. Nevertheless, we see our results are very good, with the method179

even capturing the more multi-scale nature of the Rössler system by way of180

the greater difference in lag values throughout dimensions x3, x4, and x5.181
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Figure 1: Plot of Lorenz–Rössler system. Top Figures: Lorenz dynamics for
C = 1 and C = 10. Bottom Figure: Rössler dynamics.

2.1 Tracking Multiscale Energy Transfer in a Weakly Tur-182

bulent System via Information Theory183

We now explore using the IDTxl library on data coming from the Majda-184

McLaughlin-Tabak (MMT) model [12]. The particular MMT model we185

study is of the form186

i∂tψ = |∂x|1/2 ψ − |ψ|2 ψ + iϵ2

(
f −

( |∂x|
k+

)d+

−
(
k−
|∂x|

)d−
)
ψ,
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Figure 2: Left Figure: Maximum lag coupling between dimensions in the
coupled Lorenz–Rössler system with C = 1. Right Figure: Time corre-
sponding to the optimal lags for the maximum transfer entropy between
dimensions in the coupled Lorenz–Rössler system. The hypothesis testing
threshold is p = .05.

where the forcing f is defined so that187

f̂ψ(k, t) =

 n∑
j=1

δ̂(k − kj)

 ψ̂(k, t), kl ≤ kj ≤ kh,

where δ̂(k) = 1 for k = 0 and is zero otherwise. The range of wave numbers188

between kl and kh define the forcing regime. Likewise, we damp long waves189

for |k| < k− and short waves for |k| > k+. Those wave numbers that are190

sufficiently greater than kh but smaller than k+ define the inertial range.191

Our interest then in this model comes from the fact that it is a weakly192

turbulent system, which means that it generates spatio-temporally chaotic193

dynamics which, in a properly identified inertial range, can be described by194

a mean energy cascade profile. This means that by defining195

n(k, t) =

〈∣∣∣ψ̂(k, t)∣∣∣2〉 ,
one can show [13] in the long time limit that n(k, t) → C|k|−1. Within196

this equilibrium distribution, we should anticipate both inverse and forward197

cascades by looking at the particle number and energy, given respectively by198

the sums199 ∑
k

n(k, t),
∑
k

|k|1/2n(k, t).
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Both are otherwise conserved quantities in the unforced and undamped case,200

and so within the inertial range, they explain the limiting tendency towards201

a statistically steady state.202

However, as explored in [15] and [14], the process by which statistically203

stationary conditions is achieved is intricate. One can see this by ignoring204

forcing and damping, which is appropriate within the inertial regime, and205

then passing to a Fourier representation of the MMT model written as206

i∂tψ̂(k, t) = |k|1/2ψ̂(k, t) +
∑

k1,k2,k3

ψ̂1(t)ψ̂2(t)ψ̂
∗
3(t)δ(k1 + k2 − k3 − k),

where ψ̂j(t) = ψ̂(kj , t). Defining ωj = |kj |1/2 and using the substitution207

ϕ̂j(t) = ψ̂j(t)e
iωjt, we get the equivalent system208

i∂tϕ̂(k, t) =
∑

k1,k2,k3

ϕ̂1(t)ϕ̂2(t)ϕ̂
∗
3(t)δ(k1 + k2 − k3 − k)e−i(ω1+ω2−ω3−ω)t.

Thus, in the long time limit, a stationary phase argument shows us that209

those wave numbers that lead to, or nearly to, 4-wave mixing, i.e.210

k1 + k2 − k3 − k = 0, ω1 + ω2 − ω3 − ω = 0,

drive the process of convergence and maintenance of a statistically steady211

state. Therefore, we can have significant multiscale energy transfer across212

otherwise widely separated scales. This greatly complicates the question213

of tracking information flow, and having some quantitative sketch of this214

process is of interest.215

Throughout the remainder of this work, we always choose the initial216

condition217

ψ̂(k, 0) =
ϵ

|k| ẑk, ẑk,r/i ∼ N (0, 1)

and parameters218

kl = 6, kh = 9, d− = d+ = 8, k− = 5, k+ = 1000, ϵ = .5.

We take the inertial range to be 50 < k < 500. We fix the space domain to be219

[0, 2π]. Following the analysis in [12], per our choice of ϵ, the nonlinearity220

acts over time scales on the order of 1/ϵ2 = 4 non-dimensional units of221

time. Using a pseudo-spectral in space and 4th order Runge–Kutta in time222

discretization scheme, we generate data up to tf = 4k+/ϵ
2, thereby allowing223

for nonlinearity to induce several turnovers of energy within the inertial224

range; see Figure 3 for a plot of |ψ(x, t)| for 2k+/ϵ2 < t < 2k+/ϵ
2+160. We225

keep the last tkp = 2k+/ϵ
2 length of data, sampled at a rate of δs = .2 units226

of non-dimensional time.227

Averaging over tkp, we generate the following approximation of n(k) seen228

in Figure 4 Thus we see that we are generating dynamics consistent with229

the time and length scale requirements in WWT theory.230
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Figure 4: Plot of n(k) for 50 < k < 500 that we see is approximated by a
fit of n(k) ≈ .1/|k|.

To characterize the transfer of information across scales, similar to the231

choices made in [8], we separate the inertial range into four overlapping232

intervals, say ∆j(k), with ∆j(k) = [50, 50 + j(500 − 50)/4], j = 0, 1, 2, 3.233

As in [24], we can separate the MMT dynamics into mean and fluctuation234

components, say235

ψ = ψ̄j + ψ
′
j
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where236

ψ̄j(x, t) =
∑

k∈∆j(k)

[
ψ̂k(t)

]
eikx,

and237 [
ψ̂k(t)

]
=

1

W

∫ t+W

t
ψ̂(k, τ)dτ.

Given that δs = .2, we choose the window of time averaging, W , so that238

we smooth over a time scale of 1/2ϵ2, which is half the length over which239

nonlinear effects are significant. Thus we are avoiding aliasing in the time240

series of the mechanism of multi-scale energy transfer.241

One can then show, using the quasi-Gaussian closure approximation that242 ∣∣∣ψ′
j

∣∣∣2 ψ′
j ≈ 0, that we can separate the energy across ∆j(k) so that243

d

dt

∫ 2π

0
|∂x|1/2

∣∣ψ̄j

∣∣2 dx = Fj(t),

where244

Fj(t) = Im

{∫ 2π

0
|∂x|1/2

(
ψ̄∗
j

)2 (
ψ

′
j

)2
dx

}
.

Given the nesting of the intervals ∆j(k), i.e. ∆0(k) ⊂ ∆1(k) etc..., we see245

each fluctuation ψ
′
j represents higher wave numbers than the corresponding246

average so that the average energy transfer function Fj(t) tracks the mean247

coupling between longer and shorter wavelengths, thereby allowing us to248

characterize energy cascade phenomena.249

To compute the lagged transfer of information across the multiscale en-250

ergy transfer functions Fj(t), starting from the raw data sets {Fj(tk)}Ntot

k=1 ,251

where tk+1− tk = .2, we deprecate the data further by a factor of 20 making252

the defacto sampling rate δs = 4. Finally, we apply a low-pass filter to each253

term Fj(t) so as to isolate the most meaningful portions of the signal which254

is quantified through autocorrelation. We see the results of this in Figure255

5. In particular, we see that deprecation of the time series and the use of256

the low-pass filter brings out correlations on time scales that are feasible to257

examine via IDTXL.258

Having sufficiently processed the data, we now examine via the IDTXL259

library how the energy transfer functions Fj(t) do or do not exhibit causative260

relationships, thereby illustrating how energy moves to maintain the statis-261

tically stationary cascade distribution. Using a maximum lag length of 50262

deprecated times steps, thus corresponding to a maximum lag time of 200263

units of non-dimensional time which is the characteristic time scale for non-264

linearity to have a significant effect on wavenumbers at the left of our chosen265

inertial range, we produce the results of Figure 6. Computational limitations266

prevent us from exploring larger lag choices. We plot the lag between scales267

which corresponds to the maximum transfer entropy, and we plot results268
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Figure 5: In the top figure, a plot of F0(t) (dashed) and the result of applying
a low pass filter to F0(t) (solid). In the bottom figure, the autocorrelation
of each low pass filtered function Fj(t) is plotted.

with hypothesis testing done at p = .025 and p = .05. We note that be-269

cause of the greed optimization strategy of IDTXL, the lags at p = .025 are270

not necessarily subsets of those at p = .05. We denote the relative transfer271

entropy contributed by a target Fj(t) relative to source Fi(t) with lag d as272

TM
j→i(d).273

As can be seen, both levels of hypothesis testing find a great deal of274

coupling across scales. In particular, we see a dichotomy in the time scales275
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The left figure is computed with p = .025 while the right figure is computed
with p = .05.

between forward and inverse cascades. For example,for p = .025, we find276

that TM
03 (2) = .00195 while TM

30 (27) = .00197, showing a relative equivalence277

in importance between forward and inverse energy transfer while being dis-278

tinguished in time scales with the forward cascade progressing much faster279

than the inverse. Likewise, for p = .025, we find that TM
02 (8) = .00133 while280

TM
32 (37) = .00177. The argument we are making is complicated somewhat281

by the transfer from F2 to F1, though we find that TM
21 (1) = .0008, making282

the connection markedly more tenuous than the others. A higher hypoth-283

esis testing threshold, or more samples in the hypothesis testing would be284

expected to eliminate the selection of this link. Moreover, as we know from285

[15], the wave mixing driving energy transfer prevents the formation of as286

straightforward cascades of information as seen for example in [8]. Further287

testing would need to be done to determine if this is in fact accurate.288

3 Empirical Wavelet Transforms289

We now look at developing a method which generates efficient multiscale290

representations of scalar time series. This is done with an eye towards ul-291

timately detecting energy transfer across said scales using transfer entropy,292

thereby allowing for the detection of potential cascades from limited mea-293

surements.294

Our method starts from the empirical wavelet transform of [16]. Given295

real-valued time signal x(t), we define its Fourier-transform to be x̂(ω) and296
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corresponding inverse x∨(t) to be297

x̂(ω) =

∫ ∞

−∞
x(t)e−iωtdt, x(t) = x̂∨(t) =

1

2π

∫ ∞

−∞
x̂(ω)eiωtdω.

Throughout, we suppose that x̂(ω) has support in the interval [−ωM , ωM ],298

and given that x(t) is assumed real, we then immediately have the symmetry299

x̂(−ω) = x̂∗(ω), where ∗ denotes complex conjugation. Thus we need only300

study the positive interval [0, ωM ]. In [16], a powerful method for generat-301

ing a decomposition of s(t) was developed which identifies break points in302

[0, ωM ], say ωj , so that if we identify NB breaks then we have303

[0, ωM ] =

NB⋃
j=0

[ωj , ωj+1], ω0 = 0, ωN+1 = ωM ,

and then, for j = 1, · · · , N constructs wavelet functions ψj(ω) with support304

on [ωj − τj , ωj+1 + τj+1] and approximation function ϕ0(ω with support on305

[0, ω1 + τ1] (see [16] for details on how to choose τj) so that306

x(t) =

|ϕ0(ω)|2 x̂(ω) + NB∑
j=1

|ψj(ω)|2 x̂(ω)

∨

,

=x0(t) +

NB∑
j=1

xj(t),

with the further restriction that307

|ϕ0(ω)|2 +
NB∑
j=1

|ψj(ω)|2 = 1,

so that no energy is lost in the decomposition. This method allows for308

the identification of multi-scale features without any a-priori assumption309

of a wavelet basis. Likewise, the method produces far more interpretable310

results than equivalent approaches such as the Empirical-Mode Decompo-311

sition [25]. Finally, the choices for τj we use in this work minimize the312

degree of correlation between scales, making the EWT approach similar313

to principal-component analysis in so far as the generated modes are only314

weakly correlated and thus represent nearly orthogonal directions of multi-315

scale dynamics.316

However, in [16], the breaks are discovered through a peak detection al-317

gorithm which selects those peaks which persist through a sequential process318

of convolutional smoothing. While helping to mitigate the effects of noise,319

this can also unintentionally erase features. Moreover, the user has no con-320

trol over the number of resulting modes. Thus while a promising approach,321
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we found that the method did not reliably provide us with meaningful modal322

decompositions that allowed for ready interpretation within our information323

theoretic computations.324

To address these issues, we instead adapt Otsu’s partition method [17],325

so that we specify the number of modes that we want and then use an326

optimization routine to determine where best to put the break points in the327

signal spectrum. We call this method the Otsu EWT (OEWT) method. We328

begin our method by supposing that we are given a scalar data set {x̂j}Ns

j=1329

where x̂j ∼ Pu is sampled from an absolutely continuous distribution Pu with330

affiliated density pu(x)dx. We further imagine that the data is well described331

as a collection of (Nc+1)-segments with affiliated thresholds {ωl}Nc+1
l=0 with332

ω0 = −∞ and ωNc+1 =∞ such that the lth segment has Nc,l members which333

satisfy one of the inequality:334

ωl < x̂j < ωl+1.

To determine how best to choose the thresholds {ω1}Nc
l=1, following [17], we335

define the segment probabilities pl where336

pl =

∫ ωl+1

ωl

pu(x)dx, l = 0, · · · , Nc

and the conditional averages µl such that337

µl =
1

pl

∫ ωl+1

ωl

xpu(x)dx.

We then have the identities/constraints338

Nc∑
l=0

pl = 1,

Nc∑
l=0

µlpl = µu, µu =

∫
R
xpu(x)dx.

Likewise, we can define the conditional variances σ2l so that339

σ2l =
1

pl

∫ ωl+1

ωl

(x− µl)2 pu(x)dx,

which has the corresponding constraint that340

Nc∑
l=0

pl
(
σ2l + µ2l

)
= σ2u + µ2u, σ

2
u =

∫
R
(x− µu)2pu(x)dx.

We then seek to maximize the between-group variance σ2B defined as341

σ2B =

Nc∑
l=0

pl (µl − µu)2

=σ2u − σ2W ,
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where the in-group variance σ2W is defined to be342

σ2W =

Nc∑
l=0

plσ
2
l .

Thus we can see the optimization problem as either one in which we want343

each segment’s average maximally separated from the total distribution av-344

erage, or we want to minimize the conditionally weighted segment variances,345

thereby generating well defined clusters or segments.346

To find the critical points of σ2W with respect to ωm, we need to solve347

the equation348

∂ωm

(∫ ωm

ωm−1

(x− µm−1)
2 pu(x)dx+

∫ ωm+1

ωm

(x− µm)2 pu(x)dx

)
= 0.

We find that, assuming that pu(ωm) ̸= 0 and that µm ̸= µm−1 that we have349

critical points when350

Gm(ωm−1, ωm, ωm+1)− ωm = 0,

where351

Gm(ωm−1, ωm, ωm+1) =
1

2

(∫ ωm

ωm−1
xpu(x)dx∫ ωm

ωm−1
pu(x)dx

+

∫ ωm+1

ωm
xpu(x)dx∫ ωm+1

ωm
pu(x)dx

)
.

From this, we see that Jacobian is necessarily a tri-diagonal matrix with,352

for 1 ≤ m ≤ Nc, the entries353

∂ωm−1Gm =
pu(ωm−1)

2pm−1
(µm−1 − ωm−1) ,

∂ωmGm =
pu(ωm)

2

(
ωm − µm−1

pm−1
+
µm − ωm

pm

)
− 1,

and354

∂ωm+1Gm =
pu(ωm+1)

2pm
(ωm+1 − µm) ,

where we keep in mind that ω0 = −∞ and kNc+1 =∞. Numerical quadra-355

ture schemes and root-finding routines found in standard numerical libraries356

can now be used to solve for the relevant fixed points.357

3.1 Using OEWT and Information Theory to Detect Multi-358

scale Cascades359

Having established a baseline understanding of how energy is moved across360

scales in the MMT equation, we now look at using OEWT to find multiscale361
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transfer using only a scalar time series measurement. Specifically, we use362

a subset of samples from {|ψ(0, tk)|}Ntot
k=1 and then perform OEWT on this363

subset of our original time series. Note, measuring at x = 0 is arbitrary and364

has no bearing on the final results. We plot |ψ(0, t)| and its autocorrelation365

in Figure 7. As can be seen, the time series appears to be all but white noise,366

akin to the results seen in Figure 5. Any longer-time- correlative structure367

is relatively buried, so as we will see, the OEWT method at a minimum368

helps discover meaningful substructure in quickly varying time series.369

To generate our results, the original time series is deprecated so that the370

final sampling rate is δs = 8 units of non-dimensional time. As can be seen,371

it would generally be recognized as a chaotic, perhaps even noisy, signal,372

and any structure within it is not readily apparent.373

Using initial break choices ωb = {.15, .6, 1.2} so that we get NB = 4, us-374

ing our OEWT algorithm produces the following decomposition of our time375

series as seen in Figure 8. Likewise, we see the autocorrelation of the sep-376

arated components sj(t) in 9. Similar to what we saw in the prior section,377

aside from the OEWT helping to identify otherwise difficult to detect sub-378

structure in the data, the presence of longer time correlations is indicative379

of potential scale coupling and information transfer.380

To wit then, using the IDTXL library we find the lag corresponding381

to maximum transfer entropy among the separated scale functions sj(t).382

The maximum allowed lag is d = 100 corresponding to 800 units of non-383

dimensional time. Again, we denote the relative transfer entropy contributed384

by a target sj(t) relative to source si(t) with lag d as TM
j→i(d). As can be seen,385

we successfully find information flow across the scales represented by sj(t),386

though the picture of transfer is markedly simpler than what we found for387

the multiscale energy transfer functions Fj(t). Looking at the p = .025 case,388

the fast transfer from s1(t) to s0(t) is again somewhat surprising compared389

to the longer time transfer from s0(t) to s2(t). However, comparing actual390

transfer entropy values, we find the TE from s1(t) to s0(t) is TM
1→0(9) =391

.009 while TM
0→2(51) = .08, representing an order of magnitude difference.392

Therefore, we can say the dominant mechanism of information flow is from393

the slowest timescale to the second fastest, with a relatively weak inverse394

transfer from s1(t) to s0(t). Further, we also see, looking past the maximum395

entropy contribution, that there is a transfer TM
1→0(83) = .003, which, while a396

third of TM
1→0(9), is still on the same order of magnitude. Thus longer term397

contributions are also present and roughly of similar significance. Given398

the disappearance of linkage to s3(t) upon lowering p, we might argue that399

the fastest scale represents essentially noise in the system that is otherwise400

decoupled from the more meaningful dynamics encoded in |ψ(0, t)|.401
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Figure 7: Plot of |ψ(0, t)| and its autocorrelation.

4 Discussion and Future Work402

With our perspective on how spatial structures interact across disparate403

time scales, we are equipped with a new tool for data-driven analysis. We404

anticipate that this technique will enable us to uncover relationships between405

variables at different time scales, helping us analyze how systems evolve as406

parameters change. In particular, we expect that certain systems, including407

possibly the MMT, may undergo critical events—such as the onset of ex-408
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Figure 8: OEWT Decomposition of |ψ(0, t)|.

treme behavior—that exhibit observable precursors. These precursors may409

manifest as shifts in interaction time scales, either becoming critical or ob-410

structed. We hope that this approach will provide a bifurcation analysis of411

criticality across time scales, offering insights that can be connected to more412

traditional methods.413
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