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Abstract

While the acquisition of time series has become increasingly more straight-
forward and sophisticated, developing dynamical models from time series
is still a challenging and ever evolving problem domain. Within the last
several years, to address this problem, there has been a merging of machine
learning tools with what is called the dynamic mode decomposition (DMD).
This general approach has been shown to be an especially promising avenue
for sophisticated and accurate model development. Building on this prior
body of work, we develop a deep learning DMD based method which makes
use of the fundamental insight of Takens’ Embedding Theorem to develop
an adaptive learning scheme that better captures higher dimensional and
chaotic dynamics. We call this method the Deep Learning Hankel DMD
(DLHDMD). We show that the DLHDMD is able to generate accurate dy-
namics for chaotic time series, and we likewise explore how our method learns
mappings which tend, after successful training, to significantly change the
mutual information between dimensions in the dynamics. This appears to
be a key feature in enhancing the DMD overall, and it should help provide
further insight for developing more sophisticated deep learning methods for
time series forecasting.

1 Introduction

The incorporation of modern machine learning methodology into dynami-
cal systems is creating an ever expanding array of techniques pushing the
boundaries of what is possible with regards to describing nonlinear multi-
dimensional time series. Longstanding problems such as finding optimal
Takens’ embeddings [1, 2] now have powerful and novel deep learning based
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algorithmic approaches [3] which would not have been feasible even ten years
ago. Likewise, the field of equation free modeling using Koopman operator
methods, broadly described by Dynamic Mode Decomposition (DMD), has
seen several innovative deep learning based methods emerge over the last
several years [4, 5, 6] which have been shown to greatly expand the accu-
racy and flexibility of DMD based approaches. There have also been related
and significant advances in model identification and solving nonlinear partial
differential equations via deep learning techniques [7, 8, 9, 10].

With this background in mind, in this work we focus on extending the
methods in [6] which were called Deep Learning DMD (DLDMD). In that
work, a relatively straightforward method merging auto-encoders with the
extended DMD (EDMD) was developed. This was done by using an encoder
to embed dynamics in a sufficiently high enough dimensional space which
then generated a sufficiently large enough space of observables for the EDMD
to generate accurate linear models of the embedded dynamics. Decoding
then returned the embedded time series to the original variables in such
a way as to guarantee the global stability of iterating the linear model to
generate both reconstructions and forecasts of the dynamics. The DLDMD
was shown to be very effective in finding equation-free models which were
able to both reconstruct and then forecast from data coming from planar
dynamical systems.

However, when chaotic time series from the Lorenz-63 system were ex-
amined, the performance of the DLDMD was found to degrade. While this
clearly makes the DLDMD approach limited in its scope, we note that the
successful use of DMD based approaches to accurately reconstruct or fore-
cast chaotic dynamics are not readily available. Other methods such as
HAVOK [11] or SINDy [12] are more focused on the analysis of chaotic time
series or the discovery of model equations which generate chaotic dynamics,
though of course if one has an accurate model, then one should be able to
generate accurate forecasts. In this vein, there are also methods using reser-
voir computing (RC) [13, 14], though again, nonlinear models are essentially
first learned and then used to generate forecasts. However, both SINDy and
RC rely on proposing libraries of terms to build models which are then fit
(or learned from) data.

While effective, such approaches do not allow for the spectral or modal
analysis which has proven to be such an attractive and useful feature of DMD
based methods. Likewise, they require a number of user decisions about how
to construct the analytic models used in later regressive fitting that amount
to a guess and check approach to generating accurate reconstructions and
forecasts. Therefore in this work, using insights coming from the Takens’
Embedding Theorem (TET) [15, 3], we expand the DLDMD framework so
as to make it accurate in both generating reconstructions and forecasts of
chaotic time series. This is done by first making the EDMD over embedded
coordinates global as opposed to the local approach of [6]; see also [4, 5]. Sec-
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ond, we develop an adaptive Hankel matrix based ordering of the embedded
coordinates which adds more expressive power for approximating dynamics
to the deep learning framework. To study our method, we use data gen-
erated by the Lorenz-63 and Rossler systems as well as twelve-dimensional
projections of data from the Kuramoto–Sivashinksky (KS) equation. In all
of these cases, we show that by combining our proposed modifications to the
DLDMD that we are able to generate far more accurate reconstructions for
chaotic systems than with DLDMD alone. Moreover, we have built a method
which still allows for the straightforward modal analysis which DMD affords
and keeps user choices to a handful of real-valued hyperparamters while still
producing results competitive with other approaches in the literature.

Further, motivated by the classic information theory (IT) studies of the
TET [1], as well as modern insights into the role that information plays in
deep learning [16, 17], we study how the fully trained encoder changes the
information content of the dynamics coming from the Lorenz-63 and Rossler
systems. For the Lorenz-63 system, the encoder tends to either slightly
decrease the mutual information or cause strong phase shifts which decrease
the coupling times across dimensions. However, the characteristic timescales
corresponding to lobe switching in the Lorenz ‘butterfly’ are clearly seen to
be preserved in the dynamics of the information for the Lorenz-63 system.
In contrast then, for the Rossler system, the slow/fast dichotomy in the
dynamics seen in the original coordinates is made more uniform so that
rapid transients in the information coupling are removed by the encoder.
Thus in either case, we see that the encoder generates significant differences
in the information content between dimensions in the latent coordinates
relative to the original ones, and that this strong change in information
content is a critical feature in successful training.

Of course, the present work is ultimately preliminary, and there are a
number of important questions left to be resolved. First, while we are able
to easily display computed spectra, the affiliated global Koopman modes
we find are not as straightforward to show. We generate our results from
random initial conditions, so the most effective means of constructing the
global Koopman modes would be via radial-basis functions, but the imple-
mentation would be nontrivial due to the infamous ill-conditioning issues
which can plague the approach [18]. Second, there is a clear need for a com-
parison across SINDy, RC, and our DLHDMD methods. In particular, the
present work generates excellent reconstructions and thus modal decompo-
sitions, but learning a method which generates accurate longer time novel
predictions beyond the given data has proven too challenging thus far. How
well other methods address this issue relative to their reconstruction and
other diagnostic properties, and then how all of these methods compare in
these several different ways is as yet unclear. While acknowledging then
the limitations of the present work, we defer addressing the above issues till
later works where each of the above issues can be dealt with in the detail
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that is needed.
The structure of this paper is as follows. In Section 2, we provide an

introduction to the Extended DMD and then explain the extensions we
develop which are critical to the success of the present work. In Section 3,
we introduce the Hankel DMD and, incorporating the extensions introduced
in Section 2, we show how well it does and does not perform on several
examples. Then in Section 4 we introduce the Deep Learning Hankel DMD
and provide results on its performance as well as an analysis of how the
mutual information changes in the latent variables. Section 5 presents our
results on mutual information. Section 6 provides conclusion and discussion.

2 Extended Dynamic Mode Decomposition

To begin, we suppose that we have the data set {yj}NT+1
j=1 where

yj = ϕ(tj ; x), tj+1 = tj + δt, x ∈ RNs

where δt is the time step at which data is sampled and ϕ(t; x) is a flow map
such that ϕ(t1,x) = x. From the flow map, we define the affiliated Koopman
operator Kt such that for a given scalar observable g(x), one has

Ktg(x) = g(ϕ(t,x)),

so that the Koopman operator linearly tracks the evolution of the observable
along the flow. We likewise define the associated Hilbert space of observables,
say L2

(
RNs ,R, µ

)
, or more tersely as L2 (O), so that g ∈ L2 (O) if∫

RNs

|g(x)|2 dµ (x) <∞,

where µ is some appropriately chosen measure. This makes the infinite-
dimensional Koopman operator Kt a map such that Kt : L2 (O)→ L2 (O) .

Following [19, 20], given our time snapshots {yj}NT+1
j=1 , we suppose that

any observable g(x) of interest lives in a finite-dimensional subspace FD ⊂
L2 (O) described by a given basis of observables {ψl}Nob

l=1 so that

g(x) =

Nob∑
l=1

alψl (x) .

Given this ansatz, we then suppose that

Kδtg(x) =

Nob∑
l=1

alψl (ϕ (δt,x))

=

Nob∑
l=1

ψl(x)
(
KT
a a
)
l
+ r(x; Ka)
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where r(x; Ka) is the associated error which results from the introduction of
the finite-dimensional approximation of the Koopman operator represented
by Ka. We can then find Ka by solving the following minimization problem

Ka =arg minK |r(x; K)|2 (1)

=arg minK

NT∑
j=1

∣∣∣∣∣
Nob∑
l=1

(
alψl(yj+1)− ψl(yj)

(
KTa

)
l

)∣∣∣∣∣
2

=arg minK

NT∑
j=1

|〈Ψj+1 −KΨj ,a
∗〉|2 ,

where a = (a1 · · · aNob
)T , Ψj = (ψ1(yj) · · ·ψNob

(yj))
T , the inner product 〈, 〉

is the standard one over CNob , and the ∗ symbol denotes complex conjuga-
tion. It is straightforward to show that an equivalent and easier to solve
form of this optimization problem is given by

Ka = argmin
K

||Ψ+ −KΨ−||2F , (2)

where ||·||F is the Frobenius norm, and the Nob×NT matrices Ψ± are given
by

Ψ− = {Ψ1 Ψ2 · · · ΨNT
} , Ψ+ = {Ψ2 Ψ3 · · · ΨNT+1} .

In practice, we solve this equation using the Singular-Value Decomposi-
tion (SVD) of Ψ− so that

Ψ− = UΣW†.

This then gives us
Ka = Ψ+WΣ−1U†,

with the corresponding error in the Frobenius norm Er(Ka) where

Er(Ka) =
∣∣∣∣∣∣Ψ+

(
I −WW†

)∣∣∣∣∣∣
F
.

To complete the algorithm, after diagonalizing Ka so that

Ka = VLV−1, Lll = `l, (3)

then one can show that the Koopman eigenfunctions φl(yj) are found via
the equations

Φ± = V−1Ψ±. (4)

From here, one can, starting from the initial conditions, approximate the
dynamics via the reconstruction formula

y(t; x) ≈
Nob∑
l=1

kle
tλlφl(x), (5)
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where λl = ln(`l)/δt and the Koopman modes kl ∈ CNs solve the initial-value
problem

x =

Nob∑
l=1

klφl(x).

Again, in matrix/vector notation, keeping in mind that x ∈ RNs and that
in general Ns 6= Nob, we have

x = KM

 φ1(x)
...

φNob
(x)


where KM is the Ns ×Nob matrix whose columns are the Koopman modes
kj . As can be seen then, generically, one can only find the Koopman modes
through least-squares solutions of the non-square problem. In this regard,
one would do well to have information from as many initial conditions as
possible to over-determine the problem.

2.1 Extensions to EDMD

To wit, if we had a collection of initial conditions {xk}NC
k=1 with correspond-

ing path data {yj,k}NT+1,NC

j,k=1 , we can extend the optimization problem in

Equation (1) to be

Ka = arg minK

NC∑
k=1

|r(xk; K)|2 ,

so that now the problem of finding Ka is no longer strictly localized to a
particular path labeled by the initial condition x. Following the same logic
above leads one to simply concatenate across observables column wise when
generating the Ψ± matrices so that

Ψ− = {Ψ1,1 Ψ2,1 · · · ΨNT ,1 · · ·Ψ1,NC
Ψ2,,NC

· · · ΨNT ,NC
}

where
Ψj,k = (ψ1(ϕ(tj ; xk)) · · ·ψNob

(ϕ(tj ; xk)))
T

The matrix Ψ+ is defined similarly. Using then the EDMD algorithm out-
lined above, we arrive at the following matrix problem for determining KM

X = KMΦ0

where

X = (x1 · · ·xNC
) , Φ0 =


φ1(x1) · · · φ1(xNC

)
φ2(x1) · · · φ2(xNC

)
...

...
...

φNob
(x1) · · · φNob

(xNC
).
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Likewise, given that Equation (4) gives us time series of the Koopman
eigenfunctions, which necessarily must satisfy, assuming sufficient accuracy
of the approximation implied by Equation (3), the identity

φl (ϕ(tj ; xk)) = Kjφl(xk) = `jlφl (xk) ,

we can generalize Equation (5) via the model

YNst ≈ KMLNstΦ−, Nst ∈ N ∪ {0} , (6)

where

YNst ≈ {yNst,1 · · ·yNst+NT ,1 · · · yNst,NC
· · ·yNst+NT ,NC

} ,

which generates a reconstruction of the data for time steps Nst ≤ j ≤ NT +1
and a forecast for steps with index NT + 1 ≤ j ≤ NT + Nst. Using this
formula allows for far greater flexibility in employing the EDMD since we can
control how many times steps for which we wish to generate reconstructions,
which is relatively easy. This is in contrast to generating forecasts through
the iteration of the diagonal matrix L, which is a process that is generally
sensitive to small variations in the position of the eigenvalues `l, especially
for those near the unit circle in the complex plane. We will make great use
of this generalization in the later sections of this paper.

3 Hankel DMD

When implementing EDMD, the most natural observables are the projec-
tions along the canonical Cartesian axes, i.e.

ψl(x) = xl, l = 1, · · · , Ns.

If we stick to this space of observables, the EDMD method reduces to the
standard DMD method. Thus the idea with EDMD is to include more
nonlinear observables to hopefully represent a richer subspace of dynamics
and thereby make the approximation of corresponding Koopman operator
more accurate and sophisticated.

With this in mind, [15] built upon the classic idea of Takens embed-
dings [21] and explored using affiliated Hankel matrices to generate natural
spaces of observables for EDMD, and approach we describe as Hankel DMD
(HDMD). Also of note in this direction is the HAVOK method developed in
[11], though in some ways HAVOK is more akin to the embedology methods
explored in such classic works as [22, 2].

HDMD thus begins with an affiliated scalar measurement of our time
series, say {g(yj)}NT+1

j=1 . From this, by introducing a window size Nw one
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builds the affiliated Hankel matrix H̃g (x) where

H̃g (x) =


g(y1) · · · g(yNw)
g(y2) · · · g(yNw+1)

...
...

...
g(yNob

) · · · g(yNT+1)

 .

where the number of observables Nob = NT + 1− (Nw − 1).
What one sees then is that each row of H̃f (x) is some iteration of the

Koopman operator Kδt. From here then, each row of Nw time steps is
defined to be its own separate observable ψl(x), i.e.

ψl(x) = Klδtg(x), l = 1, · · · , Nob.

One then proceeds as above with the EDMD algorithm, where we emphasize
that NT is replaced by Nw − 1. This is an interesting feature, or arguably
limitation, of the HDMD method in which we generate matrices Φ± (see
Equation (4)) up to the time index Nw−1 ≤ NT . Thus later times are used
to build approximations at prior times. This makes the issue of forecasting
data more difficult since one must iterate the EDMD results, as is done via
Equation (6), from time index Nw − 1 up to NT to reconstruct the original
data that was used in the first place. Throughout the remainder of the
paper then, we take care to distinguish between iterated reconstructions and
actual forecasts which make novel predictions beyond the given data.

Finishing our explanation of HDMD, if one has data along multiple initial
conditions, say {xk}NC

k=1, we can extend the above algorithm by concatenat-

ing Hankel matrices so that we perform EDMD on the combined matrix H̃C

so that
H̃C =

(
H̃g (x1) · · · H̃g (xNC

)
)

The inclusion of other observables can be done in a similar fashion.

3.1 Results for HDMD

The ultimate promise of the HDMD is that it should facilitate an adaptable
implementation of the EDMD framework which allows for the number of
observables to simply be adjusted by the window size. To see this, in all of
the following results we let tf = 20, dt = .05, and we use NC = 128 random
initial conditions which are then stacked together. For HDMD, observables
along each dimension of the dynamical system are used. Reconstructions
and forecasts are generated using Equation (6) for Nst = 20, which for a
time step of dt = .05, means forecasts are produced up to a unit of non-
dimensional time. We note though that the choice of Nob defines the variable
Nw = NT + 1 − (Nob − 1), so that instead of using EDMD on data from
0 ≤ t ≤ tf , we now use data from 0 ≤ t ≤ tf,w where tf,w = Nwδt.
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If we then take data from the standard harmonic oscillator, where for
y(t) = (y1(t), y2(t))

T we have

ẏ1 = y2, ẏ2 = − sin(y1), y(0) = x,

then HDMD produces the results seen in Figure 1. Using Nob = 10, excellent
iterated reconstructions and forecasts (note Nob < Nst) are obtained for
the entire field of initial conditions examined. The computed eigenvalues
are largely localized along the complex unit circle. We emphasize that the
HDMD method does this without any added guidance or control on the part
of the user.

(a) (b)

Figure 1: HDMD results for the harmonic oscillator with Nob = 10, so
tf,w = 19.5, and Nst = 20, so that the reconstruction is generated for times
1 ≤ t ≤ tf,w and iterated reconstruction and forecasting is done for times
tf,w ≤ t ≤ tf,w + 1. The computed eigenvalues using Nob = 10 are shown in
(a) and the trajectory reconstructions and forecasts are shown in (b).

Moving on to the more complicated case of the Van der Pol oscillator,
where

ẏ1 = y2, ẏ2 = −y1 + µ(1− y21)y2, µ = 1.5,

we find, as seen in Figure 2, that Nob = 10 does not produce as accurate of
reconstructions and forecasts as we readily got for the harmonic oscillator.
By increasing Nob to 20 though, we are able to generate far more accurate
results, though at the cost of being able to forecast beyond the given time
series. We further note that by fixing Nob = 20 and letting Nst = 30, we
get essentially the same degree of degradation in the forecast as when we
chose Nob = 10 and Nst = 20. This limitation aside, we see in call cases that
the eigenvalues generated in this method naturally fall on or inside the unit
circle, thereby generating very stable, even if inaccurate, dynamics.

In contrast to these results, we find that the Lorenz Equations

ẏ1 =σ(y2 − y1),
ẏ2 =ρy1 − y2 − y1y3,
ẏ3 =− by3 + y1y2, (7)
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(a) Nob = 10 (b) Nob = 20

(c) Nob = 10 (d) Nob = 20

Figure 2: HDMD results for the Van der Pol equation with Nst = 20 and
Nobs = 10 and Nobs = 20, so that the reconstruction is generated for 1 ≤ t ≤
tf,w and iterated reconstruction and forecasting is done for times tf,w ≤ t ≤
tf,w + 1 where tf,w = 19.5 for Nobs = 10 and tf,w = 19 for Nobs = 20. We
note the enhanced accuracy for Nob = 20 comes at the expense of generating
novel forecasts of the time series. Along the top row are the eigenvalue plots,
while reconstructions are presented along the bottom row. As can be seen,
relative to the choice of Nst, doubling the number of observables greatly
enhances the accuracy of the reconstructions and forecast.

where

σ = 10, ρ = 28, b =
8

3
,

provide a case in which the HDMD is not able to adequately capture the
dynamics for any reasonable choices of Nob. This is not necessarily surprising
given that for the parameter choices made, we know that the dynamics traces
out the famous Butterfly strange attractor as seen in Figure 3. Given that
we are trying to approximate dynamics on a strange attractor, we would
reasonably anticipate the HDMD to struggle. However, as seen in Figure 4,
we see the method essentially fails completely for parameter choices identical
to those used above. Arguably, by comparing Figures 4 (e) and (f) to one
another, we see that doubling the number of observables gives one a better
approximation of the (y1, y2) projection of the Butterfly, but that is a coarse
metric at best. That all said, the position of the computed spectra seen in
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(a) (b)

Figure 3: The Lorenz Butterfly in (a) with its projection along the (y1, y2)
plane in (b).

Figures 4 (a) and (b) is still relatively ideal, so further adaptation of the
HDMD method might produce more desirable results. We will see how to
realize this through the use of neural networks in the following section.

4 Deep Learning HDMD

To improve the HDMD such that it is able to deal with chaotic systems
such as the Lorenz equation, we now turn to and adapt the framework of
the deep learning DMD (DLDMD) developed in [6]. Our deep learning
enhanced HDMD begins with an autoencoder composed of neural networks
E (the encoder) and D (the decoder) such that

E : RNs → RNs , D : RNs → RNs ,

and such that our auto-encoder is a near identity, i.e.

ỹ = E (y) , D (ỹ) ≈ y.

Note, we call the encoded coordinates latent variables or latent dimensions
in line with the larger literature on machine learning.

The encoded coordinates should represent a set of observables which
should enhance the overall accuracy of HDMD approximations of the dy-
namics. To train for this, after making reasonable choices for how to initial-
ize the weights of the auto-encoder, and fixing a choice for Nst, given the

training data, say {yj,k}NT+1,NC

j,k=1 , and the validation data
{

y
(vl)
j,k

}NT+1,N
(vl)
C

j,k=1
,

we use the following loss function

Ltot = Lrecon + Lpred + Ldmd + αLreg

11



(a) Nob = 10 (b) Nob = 20

(c) Nob = 10 (d) Nob = 20

Figure 4: HDMD results for the Lorenz system with Nst = 20, so that the
reconstruction is generated for times 1 ≤ t ≤ tf,w and iterated reconstruction
and forecasting is done for times tf,w ≤ t ≤ tf,w + 1 where tf,w = 19.5 for
Nob = 10 and tf,w = 19 for Nob = 20. In the top row are eigenvalue plots,
while reconstructions are presented along the bottom row. As can be seen,
doubling the number of observables does little to enhance the accuracy of
the reconstructions.

where

Lrecon =

 1

NT + 1

NT+1∑
j=1

||yj,· −D ◦ E (yj,·)||22


NB

,

Ldmd =

 1

Nlg

Nlg−1∑
p=0

1

∆p

Nw−1∑
j=Nst−p

∣∣∣∣∣∣∣∣ỹj,· − (ỸNst−p

)
j−(Nst−p)+1,·

∣∣∣∣∣∣∣∣2
2


NB

,

Lpred =

 1

Nlg

Nlg−1∑
p=0

1

∆p

Nw−1∑
j=Nst−p

∣∣∣∣∣∣∣∣yj,· −D((ỸNst−p

)
j−(Nst−p)+1,·

)∣∣∣∣∣∣∣∣2
2


NB

,

with [·]NB
denoting averaging over a given batch, ∆p = Nw −Nst + p, and

where we have modified Equation (6) so that

ỸNst−p = KMLNst−pΦ−, p = 0, · · · , Nlg − 1.
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The number of lags Nlg we introduce can be adjusted so as to reinforce
learning dynamics by iterating the eigenvalues which come from EDMD.
See [6] for a more complete motivation and discussion of this loss function.
We collect the details of our learning method in Algorithm 1, which we call
the Deep Learning HDMD (DLHDMD). Note, we perform the update of

Algorithm 1: The DLHDMD Algorithm

Data: Choose parameters NC , NB, α, Emax, Nst, Nlg

Data: Choose initial value of Nob

input : NC trajectories shuffled into batches of size NB

1 for l← 1 to Emax do
2 for k ← 1 to NB do
3 ỹj,k ← E(yj,k)

4 Apply the HDMD to {ỹj,k}Nw,NB

j,k=1 to generate ỸNst ;

5 Ltot ← Lrecon + Lpred + Ldmd + αLreg;
6 Find E and D so as to minimize Ltot;
7 if 0 ≡ l mod Eup then
8 Find minimum of Ldmd for number of observables

Nob − 1, Nob, Nob + 1 over the validation data;

Nob over the validation data since we typically have N
(vl)
C � NC , thereby

keeping this step relatively economical in terms of computational cost. Also,
Lreg is a standard 2-norm regularization of the weights of the auto-encoder.

4.1 Results for DLHDMD

We now show how the DLHDMD performs on several dynamical systems.
We take as our training set 10000 randomly chosen initial conditions with
their affiliated trajectories, 3000 randomly chosen validation set initial con-
ditions, and 2000 randomly chosen initial conditions for testing purposes.
Aside form our results for the KS equation, the training is done over Emax =
100 epochs using an ADAM optimizer with learning rate γ = 10−4. The en-
coder and decoder each consist of five layers consisting of 128 neurons each,
and all weights are initially drawn from truncated Gaussian distributions
of zero mean and σ = .1. The batch size NB = 256, and the regulariza-
tion hyperparamter α = 10−14. For the Lorenz-63 and Rossler sytems, we
choose the initial number of observables to be Nob = 10, and we update ev-
ery Eup = 5 epochs. For the KS system, we initially choose Nob = 5 and let
Eup = 10. In all cases, we choose Nlg = 1, which was found to be sufficient
for efficient training.

13



4.1.1 DLHDMD for the Lorenz-63 System

The results of running the DLHDMD for the Lorenz-63 system are found
in Figure 5. The maximum positive Lyupanov exponent, say λL, for this
version of the Lorenz-63 system can be numerically computed, and we find
that λL ≈ .8875. In this case then, our prediction window is only slightly
less than 1/λL ≈ 1.127, so that we are making predictions up to the point
where the strange attractor would tend to induce significant separations in
what were initially nearby trajectories. Moreover, as can be seen, the overall
reconstruction and forecast, plotted for times t such that 1 ≤ t ≤ tf,w + 1,
shows excellent agreement with the plot of the Lorenz Butterfly in Figure
3. This degree of accuracy is quantified by the graph of Lpred, which shows
a relative accuracy of about 1% by the 100th epoch.

Figure 5: Results of the DLHDMD on the Lorenz-63 system after 100 epochs
of training. In the top row, moving from left to right, we see the recon-
structed, iterated reconstructed, and forecast data generated by the DL-
HDMD data, the affiliated spectra from the HDMD, and the plot of Nob over
epochs. In the bottom row, moving from left to right, we plot Lrecon, Lpred,
and Ldmd. Again, the reconstruction is generated for times 1 ≤ t ≤ tf,w
and forecasting is done for times tf,w ≤ t ≤ tf,w + 1. Error plots are over
validation data.

To achieve this, we see that the DLHDMD progressively raises the value
of Nob, thereby adding observables and concomitantly eigenvalues. As seen
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in Figure 5, this process continues until about the 50th epoch, at which
point Nob = Nst and a saturation effect kicks in whereby Ldmd collapses for
the given choice of observables. That this is also the point at which we no
longer have novel forecasts points to this effect being a kind of overfitting.
We note though that if one initially chooses Nob = Nst, then the training is
generally not successful. Thus the model still needs to train to the point at
which Nob = Nst, and it cannot happen too quickly without compromising
the success of the training of the machine.

As we increase Nst for Nlg = 1, we see that this same effect occurs
when Nob = Nst. Experiments with Nlg = 5 showed this collapse in Ldmd
continues when Nob = Nst, though the overall training was stabilized and
larger values of Nst were able to be used in training. Again, we believe that
further exploring the choice of lags through the Nlg parameter should help
improve this situation, but this will be a subject of future research. Further
experiments showed that by setting Eup = 10, one just delays the epoch at
which Nob = Nst, and until this point is reached, the machine is not able to
produce accurate reconstructions, let alone forecasts.

We now look at a typical trajectory both in the original and latent vari-
ables to get a better sense of the action of the encoder. As seen in Figure
6, the encoder rescales the data to be more uniform in magnitude across
dimensions. However, we also see that the time scale of oscillations are es-
sentially unchanged in the latent relative to the original coordinates. Thus,
we see that the HDMD encourages better scaling of the incoming data than
necessarily causing any significant changes in the rates of dynamics for the
Lorenz-63 system.

4.1.2 DLHDMD for the Rossler System

We now study the Rossler system given by

ẏ1 =− y2 − y3,
ẏ2 =y1 + ay2,

ẏ3 =b+ y3 (y1 − c) ,

where
a = .1, b = .1, c = 14.

Aside from the dynamics coalescing onto a strange attractor, the disparity in
parameter values gives rise to multiscale phenomena so that there are slow
and fast regimes of the dynamics, with the slow portions being approximated
by harmonic motion in the (y1, y2) plane with fast departures along the y3
coordinate. This strong disparity in time scales also appears by way of
λL ≈ 1.989, which is more than double the maximal Lyupanov exponent for
the Lorenz-63 system. Thus dynamics separate along the strange attractor
twice as fast.
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Figure 6: Comparison of original and latent variables for the Lorenz-63
system for a typical test trajectory.

Using then the same parameter choices described above, we get the fol-
lowing results for the training and validation of DLHDMD on the RS; see
Figure 7. The performance of DLHDMD is essentially identical to that seen
for the Lorenz-63 system. We likewise see the same plummet in the Ldmd
term around the 50th epoch mark when Nob = Nst, though we do see some
dynamics in Nob as it seeks to optimize the performance of Lpred. Thus we
see that our method is able to address slow/fast dynamics with no particu-
lar modifications of the algorithm needed. We do note though that a visual
inspection of trajectories shows that the error in our model is most apparent
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when one is trying to capture the fast transients affiliated with the multiscale
dynamics of the Rossler system. Overall though, our iterated reconstruction
window is almost twice the length of time over which trajectories separate
on the attractor, so the results appear quite good in light of this fact.

Figure 7: Results of the DLHDMD on the Rossler system after 100 epochs of
training. In the top row, moving from left to right, we see the reconstructed,
iterated reconstructed, and forecast data generated by the DLHDMD data,
the affiliated spectra from the HDMD, and the plot of Nob over epochs. In
the bottom row, moving from left to right, we plot Lrecon, Lpred, and Ldmd.
Again, the reconstruction is generated for times 1 ≤ t ≤ tf,w and forecasting
is done for times tf,w ≤ t ≤ tf,w + 1. Error plots are over validation data.

Again, we look at a typical trajectory both in the original and latent
variables to get a better sense of the action of the encoder. As seen in
Figure 8, the encoder, similar to its effect for the Lorenz-63 system, rescales
the data so that it is more uniform across dimensions. However, we also
see that fast transients along y3 are completely removed so that ỹ3 is now a
more uniform oscillator. Taking this information together with the Lorenz-
63 results, we see the HDMD algorithm guides the learning process to push
data to be both more regular in amplitude and the rate of dynamics. Given
the linear nature of DMD based algorithms, with their particular focus on
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iterating eigenvalues to produce dynamics, makes the latent variable results
unsurprising.

Figure 8: Comparison of original and latent variables for the Rossler system
for a typical test trajectory.

4.1.3 DLHDMD for the KS Equation

To see the edges of our method, we now examine spatio-temporal chaos
generated by the KS equation with periodic-boundary conditions in the form

ut + uxx + uxxxx + uux = 0, u(x+ 2L, t) = u(x, t).
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Note, given the vast size of the literature around the KS equation, we refer
the reader to [23] for an extensive bibliography with regards to details and
pertinent proofs of facts used in this section. Introducing the rescalings

t̃ =
t

T
, x̃ =

π

L
x, u = Aũ,

and taking the balances

A =
L

πT
, T =

(
L

π

)2

,

we get the equivalent KS equation (dropping tildes for ease of reading)

ut + uxx + νuxxxx + uux = 0, ν =
(π
L

)2
.

Looking at the linearized dispersion relationship ω(k) = k2 − νk4, we see
that the ν parameter acts as a viscous damping term. Thus, as the sys-
tem size L is increased, the effective viscosity is decreased, thereby allowing
for more complex dynamics to emerge. As is now well known, for L suffi-
ciently large, a fractional-finite- dimensional-strange attractor forms which
both produces intricate spatio-temporal dynamics while also allowing for a
far simpler representation of said dynamics. It is has been shown in many
different works (see for example [24]) that L = 11 generates a strange at-
tractor with dimension between eight and nine, and that this is about the
smallest value of L which is guaranteed to generate chaotic dynamics. We
therefore set L = 11 throughout the remainder of this section.

To study the DLDHMD on the KS equation, we use KS data numeri-
cally generated by a pseudo-spectral in space and fourth-order exponential-
differencing Runge-Kutta in time method [25] of lines approach. For the
pseudo-spectral method, K=128 total modes are used giving an effective
spatial mesh width of 2L/K = .172, while the time step for the Runge-
Kutta scheme is set to δt = .25. These particular choices were made with
regards to practical memory and simulation time length constraints. After
a burn in time of tb = (L/π)4 = 150.3, which is the time scale affiliated
with the fourth-order spatial derivative for the chosen value of L, 15000
trajectories of total simulation time length tf = (L/π)4 were used with
gaps of L/π in between to allow for nonlinear effects to make each sam-
ple significantly different from its neighbors. Each of the 15000 space/time
trajectories was then separated via a POD into space and time modes; see
[26]. Taking Ns = 12 modes captured between 97.8% and 99.4% of the total
energy. The choice of the total time scale tf also ensured that the ratio of
the largest and smallest singular values affiliated with the POD was between
10−1.1 and 10−1.9 so that the relative importance of each of the modes was
roughly the same across all samples. We take this as an indication that each
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12-dimensional affiliated time series is accurately tracing dynamics along a
common finite-dimensional strange attractor as expected in the KS equa-
tion. Using the methods of [27], we can find across batches that typically
the largest positive Lyupanov exponent λL ≈ .3930, so that 1/λL ≈ 2.545
is the time after which we anticipate the strange attractor starting to fully
pull trajectories apart.

With regards to the details of the DLHDMD, we again use 10000 samples
for training, 3000 for validation, and 2000 for testing. The best results
with regards to window size were found when we initially set Nob = 5 and
Eup = 10. The iterated reconstruction/forecast horizon determined by the
choice of Nst was chosen so that Nst = (L/π)/δt ≈ 14, corresponding to
the time scale over which nonlinear advection acts. Thus, reconstruction is
done on each sample for values of t such that L/π ≤ t ≤ tf,w, and iterated
reconstruction/forecasting is done for t such that tf,w ≤ t ≤ tf,w + L/π.
Note, for our initial choice of Nw, we have that initially tf,w = (Lπ)4 −
1.25. The results of DLHDMD training on the Ns = 12 dimensional POD
reduction of the KS dynamics is shown in Figures 9 and 10. Likewise,
our prediction window is longer than the timescale set by λL, so we argue
our forecasts are over time scales for which chaotic effects are significant.

We see that while the reconstruction and predictions appear accurate;
see in particular the comparisons in Figure 10. The collapse of the DMD
approximation seen in the previous examples above is now absent, though
we see that Nob has just reached Nst in our simulations. Thus, by using
a window update that is half the rate used in the prior systems, we avoid
the affiliated overfitting seen in the prior cases, though we should anticipate
that it would probably occur with a few more training epochs.

5 Mutual Information for Characterizing Embed-
dings

Given the success of the DLHDMD in reconstructing and forecasting dy-
namics along a strange attractor, especially when compared to the relative
failure of trying to do the same using just the HDMD alone, it is of fur-
ther interest to try to assess exactly what role the auto-encoder plays in
improving the outcome of the HDMD. While we can certainly point to the
performance of the components of the loss function Ltot to explain the im-
pact of the encoder, this does not provide us with any more explanatory
power. In [6], it was empirically shown that the role of the encoder was to
generally transform time series to nearly monochromatic periodic signals,
which is to say, the effect of encoding was to generate far more localized
Fourier spectral representations of the original time series. This does not
turn out to be the case though for the DLHDMD. Instead, inspired both
by the evolving understanding of how mutual information better explains
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Figure 9: Results of the DLHDMD on the KS system after 100 epochs of
training. In the top row, moving from left to right, we see the reconstructed,
iterated reconstructed, and forecast data generated by the DLHDMD data,
the affiliated spectra from the HDMD, and the plot of Nob over epochs.
In the bottom row, moving from left to right, we plot Lrecon, Lpred, and
Ldmd. Again, the reconstruction is generated for times L/π ≤ t ≤ tf,w
and forecasting is done for times tf,w ≤ t ≤ tf,w + L/π. tf,w is initially
(Lπ)4 − 1.25. Error plots are over validation data.

results in dynamical systems [1, 28] and machine learning [16, 17], we assess
the impact of the encoder on the DLHDMD by tracking how the information
across dimensions and time lags changes in the original and latent variables.

For two random variables X and Y with joint density p(X,Y), the mu-
tual information (MI) between them I(X,Y) is defined to be

I(X,Y) =

∫
p(x,y) log

(
p(x,y)

p(x)p(y)

)
dxdy,

where p(X) and p(Y) are the affiliated marginals. One can readily show
that I(X,Y) ≥ 0 and I(X,Y) = 0 if and only if X and Y are independent.
Thus information gives us a stronger metric of statistical coupling between
random variables than more traditional tools in time series analysis such
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Figure 10: Comparison of DLHDMD results and original KS data.
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as correlation measurements. We also should note here that I(X,Y) =
I(Y,X), which is to say it is symmetric. We also note that MI is invariant
under the action of diffeomorphisms of the variables. Thus we cannot expect
to get much use from computing the multidimensional MI of the original
and latent variables, thereby allowing for meaningful differences to appear
between original and latent variable computations.

Instead, using the NC = 2000 trajectories in the test data, we define
the m-step averaged lagged self-information (ALSI) between the nth and vth

dimensions Inv(m) to be

Inv(m) =
1

NC

NC∑
k=1

I (yn,·,k, yv,·+m,k) .

We refer to the parameter m as a lag. In words then, after averaging over
the ensemble of initial conditions in the test data, we compute the degree
to which the signal becomes statistically independent from itself across all
of the dimensions along which the dynamics evolve. We emphasize that due
to the strong nonlinearities in our dynamics, we compute the lagged infor-
mation as opposed to the more traditional auto-correlation so as to get a
more accurate understanding of the degree of self-dependence across dimen-
sion in our dynamics. Further, by measuring the lagged MI across isolated
dimensions, we break the invariance of MI with respect to diffeomorphisms.

5.1 MI for the Lorenz-63 System

The results of computing the ALSI for the Lorenz-63 system are plotted in
Figure 11. As can be seen, the impact of the encoder is to either weakly
attenuate the dependency between dimensions; see I11 and I22. For I33, the
encoder leaves the ALSI essentially unchanged. Finaly, we also see signifi-
cant phase shifts in the lag count; see I13 and I23. In these phase shifts, we
see that the shift is always left towards shorter lags, so that the dependence
in the latent variables decays more rapidly than in the original variables. In
this sense then, the overall tendency of the encoder is to either reduce MI
or cause time series to become more independent more rapidly. Otherwise
though, the timescales of oscillation in the latent variables are essentially
identical to those seen in the latent variables, which is confirmed by com-
parisons of the original and latent variable dynamics presented in Figure 6.
In terms of the DLHDMD, we might then say that the encoder assists the
HDMD by generally making the rows of the affiliated Hankel matrices more
independent, especially over longer time scales, and therefore more mean-
ingful with regards to their generating more accurate approximations of the
underlying Koopman operator.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: For the Lorenz-63 system, plots of the ALSI Inv(m) for (n, v) =
(1, 1) (a), (n, v) = (2, 2) (b), (n, v) = (1, 2) (c), (n, v) = (3, 3) (d), (n, v) =
(1, 3) (e), and (n, v) = (2, 3) (f) for both the original and latent coordinates.
As can be seen, the encoder tends to reduce the ALSI along each physical
dimension aside from those involving the third physical dimension, for which
the ALSI is enhanced for shorter lags and decreased for longer ones.

5.2 MI for the Rossler System

When we examine the evolution over lags of the ALSI, we see in Figure 12
that the encoder is causing large and significant changes to the dynamics. In
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particular, as we might expect from looking at the comparisons in Figure ??,
when we look at the plots of I12 and I23, we see that the sharp transients in
the ALSI for the original coordinates is removed and the overall ALSI is rel-
atively flattened in the latent coordinates. This would seem to indicate that
the slow/fast dichotomy in the Rossler dynamics is removed and so made
more uniform. Also of note though is I13 which shows that the dependency
between the ỹ1 and ỹ3 axes is enhanced relative to the coupling between y1
and y3 and that said dependency increases with lags. This reflects the more
uniform coupling across dimensions in the latent variables which was seen
in Figure 8.

6 Conclusion and Discussion

In this work, we have developed a machine learning enhanced version of
the HDMD which we call the DLHDMD. We have shown that its perfor-
mance is significantly better than just the HDMD method alone, and when
comparing against existing results in [6] we see radical improvement over
the DLDMD method for the Lorenz-63 system. Likewise, we find that our
method is successful across several challenging chaotic dynamical systems
varying in dynamical features and size. Thus, we have a parallel approach
of similar accuracy fitting within the larger framework of Koopman opera-
tor based methods. Moreover, we have a method which computes Koopman
modes globally and naturally localizes spectra around the complex unit circle
without further control of the method. Finally, our analysis of the relative
information dynamics across physical dimensions in the original and latent
variables provides us a means of understanding the impact of the encoder
network on the dynamics in line with modern thinking in machine learn-
ing as well as better pointing towards an understanding that the HDMD is
enhanced by decreasing the relative statistical dependence across physical
dimensions.

As explained in detail in the Introduction, there are of course a number
of questions that remain to be addressed, and they will certainly be the
subject of future research.
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