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ABSTRACT

The ultimate goal of cognitive neuroscience is to understand the mechanistic neural processes underlying the functional organization of the
brain. The key to this study is understanding the structure of both the structural and functional connectivity between anatomical regions. In
this paper, we use an information theoretic approach, which defines direct information flow in terms of causation entropy, to improve upon
the accuracy of the recovery of the true network structure over popularly used methods for this task such as correlation and least absolute
shrinkage and selection operator regression. The method outlined above is tested on synthetic data, which is produced by following previous
work in which a simple dynamical model of the brain is used, simulated on top of a real network of anatomical brain regions reconstructed
from diffusion tensor imaging. We demonstrate the effectiveness of the method of AlMomani et al. [Chaos 30, 013107 (2020)] when applied
to data simulated on the realistic diffusion tensor imaging network, as well as on randomly generated small-world and Erdös–Rényi networks.
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The field of cognitive neuroscience seeks to understand the func-
tion of the brain, as related to the physical brain structure.
Knowledge of the connectivity between functional regions is cen-
tral to this comprehension, spurring the emergence of network
neuroscience as a sub-field. However, these relationships are
unknown a priori. Much of the work in this area, often called
connectomics,9 assesses so-called functional connectivity using
well known methods for deduction from time series, including
correlation and Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression. Effective connectivity methods, such as
dynamic causal modeling or DCM,10,11 are also popular and iden-
tify causal links but the methods do not scale well to whole brain
analyses that are common in network neuroscience. Methods such
as LASSO can lead to the recovery of a majority of true, causal
connections with sufficient sample size. However, as we show,
LASSO also infers a large fraction of false connections, which do
not exist in the true network. To circumvent this issue, we uti-
lize our recently developed entropic regression. Entropic regres-
sion is an information theoretic technique that is especially well
suited for this problem, as it allows for optimal selection of basis
functions as related to the underlying information flow of the
dynamical system. We show that entropic regression yields a high

recovery of true edges, while simultaneously limiting the num-
ber of falsely inferred connections, thus associated with excellent
ROC (receiver operating characteristic curve) performance.

I. INTRODUCTION

Complex networks are all around us, from structural networks
such as roads and flights,1,2 to social networks such as Facebook
and Twitter3,4 to chemical networks, such as Belousov–Zhabotinsky
oscillators,5,6 biological systems,7,8 and network neuroscience,9,16,17

which we will be studying extensively here. We will consider a
description of the brain as partitioned into 83 anatomical regions,29

whose function of these interacting elements is to be described as a
complex network structure.

Knowledge of the structure of the complex networks helps us
to determine how they will respond to stresses, such as dynamical
perturbations,18,19 or to structural network perturbations.20,21 How-
ever, frequently, the underlying network structure of a system is
unknown. What may be available to us is time series data collected
at each node. In the case of functional magnetic imaging (fMRI)
data, time varying intensity is associated with each of the voxels, as
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a three-dimensional movie. The associated metabolism of an active
region of the brain becomes apparent by increased oxygen levels,
resulting in the blood oxygenation level dependent (BOLD) signal
that can be inferred by magnetic resonance.22 These perturbations
and interacting variations carry information about the underlying
network connectivity of the brain. However, the inverse problem of
inferring the underlying network connectivity from observations of
the state is inherently an ill-posed problem that is sometimes called
network tomography, and it remains a difficult problem today. This
is true particularly for connectomics studies that attempt to infer the
entire brain network using 100s or 1000s of network nodes.

In this work, we utilize a recently developed method named
entropic regression23 to recover the underlying network structure of
synthetic data that are generated from a network Kuramoto model
from three different types of networks from synthetic models to a
real structural brain network: an Erdös–Rényi26 (ER) network as a
classical random graph model, a small-world network following25

with designed structure, and the experimentally observed diffu-
sion tensor imaging (DTI) network by methods as discussed below.
Associated with Ref. 23, we soon thereafter made a general pur-
pose code that we have previously made available described in
Ref. 24 available as MATLAB .mlx style live-script self-explanatory
codes at Github, https://github.com/almomaa/ERFit-Package, and
also we produced a live-script specialized to producing our solu-
tions associated with this current manuscript, found at Github
https://github.com/almomaa/ERFit_Neurological_Applications.

On these network models of successive challenge and real-
ism, we will simulate a popular synthetic dynamic to challenge
the accuracy entropic regression. We simulate the first order net-
work Kuramoto model, which has popularly been used including
for the generation of synthetic fMRI data.25 With the simulated
data, we demonstrate that entropic regression accurately outper-
forms for network recovery as compared to other leading methods,
including correlation and LASSO regression utilizing the Bayesian
information criterion (BIC).

II. MATERIALS AND METHODS

A. Complex networks

For this work, we will use the terms graph and complex net-
work interchangeably. A graph G = (V , E ) is a set of nodes V and
edges E ⊆ V × V . In context here, where we will associate each
anatomical region of the brain as a node, the goal is to infer inter-
actions as information flow between these regions. The unweighted
structure of a graph of n nodes can be encoded by an n × n adjacency
as follows:

[A]ij =

{

1 if (i, j) ∈ E ∀(i %= j),

0 otherwise.
(1)

A weighted directed graph G = (V , E , W ) has a weight for
each edge, and it can be encoded by a weight matrix, [W]ij

= wijsign([A]ij), with weights wij. A simple adjacency matrix is
defined by a graph where no self-edges occur. A complete network is
defined by the presence of all possible edges. We will generally allow
for weighted directed graphs, which are well defined by a (possibly
asymmetric) weight matrix W, which will be our goal to find from
node-level observations only.

The degree distribution is often used to classify complex net-
works, even though it does not uniquely define its generative pro-
cess. Recall that the degree of a node di is defined by di =

∑n
j=1 [A]ij,

and the degree distribution is the discrete probability function of
di sampled across i. The Erdös–Rényi26 (ER) graph, for example, is
the classical random graph, wherein edges are assigned at random
with probability p. It has been shown27 in the ER graph, the degree
distribution is Poisson in the limit of a large number of nodes. It
became clear over time that real world networks tend to be highly
clustered and yet have a small shortest path distance between any
pair of nodes28 and this led to the development of the Watts–Strogatz
(WS) “community” graph. ER graphs do not exhibit the clustering
or short path length that the community graphs do.

B. Structural brain networks

Simulated time series data were generated using an actual struc-
tural brain network but a synthetic model; thus, we call the data
semi-synthetic, in addition to the synthetic complex networks with
synthetic model dynamics, which we call fully synthetic data. The
true brain networks were generated experimentally in previously
published work29 using diffusion tensor imaging (DTI) data. The
networks generated in this prior work are publicly available and
“Subject1” through “Subject20” were used in the current work.
Details of the image processing and network generation can be
found in that manuscript but are briefly described below. The Dif-
fusion Toolkit (FDT) in the FSL software package30 was utilized for
image preprocessing and for diffusion tensor estimation. The cere-
bral gray matter was parcellated into 83 regions of interest (ROIs)
based on the Lausanne anatomical atlas using Freesurfer software.31

There were 41 ROIs in each hemisphere and a single brainstem
region. The regions were warped to the native space of each study
participant based on the anatomical image and then transformed
to the DTI space using FSL. Deterministic tractography was per-
formed using the Diffusion Toolkit software. All white matter voxels
were seeded and resulting fibers were assessed to determine if they
connected two of the ROIs. The ROIs served as the nodes in the
adjacency matrix. An edge was present between two nodes if there
was at least one white matter fiber connecting the nodes. A weighted
adjacency matrix was generated by counting the number of fibers
connecting two nodes and normalizing this value using the length
of the fibers and the area of the ROIs as previously proposed.32

The absence of a fiber connecting two ROIs was indicated in the
adjacency matrix with a zero (0).

C. Correlation with thresholding

Among the oldest methods of network inference is correlation
with thresholding. This method is still widely used in many fields,
including in neuroscience.12–14 Though it has been known since at
least the time of Granger15 that correlation is inadequate for dis-
covery of causal relationships, we review it here due to its relative
popularity in the neuroscience field.

Let xi ∈ Rq represent length q time series and x̄i ∈ R represent
the arithmetic mean of xi. Then, the Pearson (linear) correlation
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between xi and xj is

corr(xi, xj) =

q
∑

k=1

(x(k)
i − x̄i)(x

(k)
j − x̄j)

[

q
∑

k=1

(x(k)
i − x̄i)

2

]
1
2
[

q
∑

k=1

(x(k)
j − x̄j)

2

]
1
2

. (2)

The corresponding correlation matrix C will be

Cij = corr(xi, xj). (3)

Network inference from the correlation matrix often proceeds by
choosing a threshold value τ and declaring a relationship between
the pair (i, j) to be causal if Cij > τ or if abs(Cij) > τ , where abs(·)
is the absolute value. We note that this formulation is incapable of
finding directional causal relationships between variables. Choice of
the threshold in the neurological context is discussed in Ref. 12.

D. Regression and regularization

Suppose a parametric model y = xβ is assumed for scalar real
variable y ∈ R and x ∈ Rn. Then, q samples may be stated by

Y = Xβ + ε, (4)

with data matrices X ∈ Rq×n, Y ∈ Rq and here noise is assumed to be
normal ε ∼ N (0, η), gives β ∈ Rn unknown regressors. We assume
enough samples so that the problem is over-determined, q > n. The
goal in ordinary least squares (OLS) is to find the closest parametric
fit to the data in the sense of square norm residual, so the minimizer
of the loss function,33,34

min
β∈Rn

||Xβ − Y||2. (5)

A flaw of OLS, however, as noted in Ref. 35 is that while the OLS
estimator has a low bias, it typically has a large variance.35 It tends to
suffer from over-fitting if model complexity is not well chosen.

Tikhonov regularization is a strategy to mitigate overfitting of
OLS. The regularization term introduces a penalty term to Eq. (5).
Let

min
β∈Rn

||Xβ − Y||22 + R(β), (6)

where R(β) is a regularization term on β . OLS paired with common
types of regularization are often referred to as ridge regression and
Least Absolute Shrinkage and Selection Operator (LASSO). In ridge
regression, we choose

R(β) = λ||β||2, (7)

emphasizing reduced variance. In LASSO regression, we have

R(β) = λ||β||1, (8)

which emphasizes sparsity. Tikhonov regularization, in general,
defines the selection of a favored solution among infinitely many ill-
posed problems. In the ridge regression scenario, this can be thought
of as filtering noise that is related to the small but nonzero singular
values of the data matrix.48

The choice of the value of regularity parameter λ is an impor-
tant practical aspect of regularization, as a poor choice for this value

can lead to poor estimation results. There exist several methods for
its choice, but here we choose the Bayesian information criterion
(BIC),49 which is one of the popular choices for selecting the value
of λ. The BIC solution is considered to be similar to the maximum
likelihood method for asserting the dimension of a model. The BIC
estimation relies on the optimizing,50

BIC(β , λ|X) = κ ln(q) − 2 ln(L (β , λ|X)), (9)

where κ is the number of nonzero model parameters and L is the
maximum likelihood solution of the given model with respect to the
parameters β for a given fixed value of the parameter λ and given
the data X. Then, the optimal value (λopt) can be found by minimiz-
ing the BIC with respect to λ for each β , that is,

λopt = min
(β ,λ)

BIC(β , λ). (10)

This formulation introduces a penalty term on making the dimen-
sion of the model too large as well as a penalty for having a model
with too many parameters, which generally provides popularly
pleasing estimates of the parameter λopt when using LASSO.35,49,50

E. Entropic regression

Causal network inference from time series is an important and
challenging task. Numerous methods exist for this problem, includ-
ing Granger causality, convergent cross mapping, and information
theoretic methods such as partial mutual information from mixed
embedding.36–38 We note that the performance of the best informa-
tion theoretic methods have been shown to be comparable.38 For this
section, we will focus on entropic regression,23 a method that has
been adapted from optimal causation entropy.43 It will be shown that
entropic regression is capable of outperforming causation entropy
on the task of network inference as will be shown below.

Here, we review entropic regression as developed in Ref. 23
specializing in the network discovery algorithm of optimal causa-
tion entropy,42,43 which is an efficient and accurate method to infer a
parametrically defined model, as a system identification problem but
based on an information theoretic criterion. In entropic regression,23

we use the conditional mutual information of time delayed measure-
ments of the time series as to how they interact with basis functions,
for an information theoretic criterion to iteratively select relevant
basis functions. This approach is based on our prior work in cau-
sation entropy,42,43 which is an information flow estimator that is
capable of distinguishing direct vs indirect influence and in this way,
it is a generalization of the concept of transfer entropy44 that is meant
only for component dynamics. The system identification problem
can be stated in matrix form,

Ż = '(Z)(, (11)

where Z ∈ Rq×n as before and is the measured state variables of the
n-dimensional system with q observations, Ż is the vector field esti-
mated from Z, ' : Rq×n (→ Rt×K is a function that maps the state
variables Z, to the expanded set of candidate functions (not neces-
sarily linear), and ( ∈ RK×n is the parameters matrix. Given a basis
set of functions ' = {φi(Z)}K

i=1, where a row vector 'j is given by
'j = {φ1(Zj), φ2(Zj), . . . , φK(Zj)}, and φi(Zj) : Rn (→ R, is a candi-
date function on the n-dimensional observation Zj, that has a high
flexibility of choice.

Chaos 31, 113105 (2021); doi: 10.1063/5.0039333 31, 113105-3

Published under an exclusive license by AIP Publishing



Chaos ARTICLE scitation.org/journal/cha

We illustrate the idea of entropic regression using a simple
example. The most relevant (basis) functions of the observable vari-
ables, where most relevant refers to the most informative variable,
of a most informative variable, which is measured by a mutual
information objective and is discovered via a greedy search. For
example, in this form, we can write Lorenz’s equations, with its
three-dimensional state vector Z = (z1, z2, z3), as

ż1 = η(z2 − z1), ż2 = z1(ρ − z3) − z2, ż3 = z1z2 − bz1. (12)

Even though the Lorenz equation is nonlinear, it is a linear
combination of nonlinear functions. Therefore, using the second-
order power polynomial functions, we can see that

'(Z = (z1, z2, z3)) = {1, z1, z2, z3, z
2
1, z1z2, z1z3, z

2
2, z2z3, z

2
3}, (13)

and we have ten candidate functions that contain linear and non-
linear terms (functions). However, the underlying dynamics of the
Lorenz system is a linear combination of these candidate functions,
and we see, for example, that ż1 in the Lorenz system can be found
as

ż1 = '(Z)[0, −η, η, 0, 0, 0, 0, 0, 0, 0]T. (14)

A key idea of system identification as stated through Eq. (11) is that
linear combinations of basis functions may well define even a non-
linear system. The idea of entropic regression is to infer the exact
interaction between the state variables Z, as measured through the
basis functions, φi to the rates of change Ż and this is associated
with information flow that we define in Sec. III by a mutual infor-
mation optimization process. The same applies for ż2 and ż3. This
kind of linearization is generally known as Carleman linearization.57

The reconstructed vector field using the least squares solution may
be written as

V(Ż, ') = ''†Ż

= 'L(Ż, '), (15)

where '† is the pseudoinverse of the matrix '. The problem of
regression for differential equation models ( has recently become
especially relevant for data-driven science58–60 and recently popular-
ized by sparse methods such as61 optimization by LASSO regression,
and by information theoretic methods.23,42,43 For simplicity, we will
write '(Z) as ' in the following discussion. Our entropic regression
has proved competitive23 in comparison with other methods.

a. Entropic regression algorithm. The entropic regression
involves an optimization method to associate data to a most infor-
mative and sparse set of basis functions as illustrated in Fig. 1.
Most informative is interpreted in the sense of mutual informa-
tion between projected basis function in the least squares fit sense
[Eq. (15)] and the measured data. For simplicity, we will refer to the
projected basis function in the least squares fit sense as PBFs (Pro-
jected Basis Functions). The underlying optimization proceeds in
two stages: forward greedy search (selection) and (backward) pos-
sible elimination of PBF, and these are based on the conditional
mutual information amongst competing observations through the
selected PBF. In the forward stage, our objective is to select the sub-
set s ⊂ S = {1, 2, . . . , K}, which represent strong candidate func-
tions. Starting from empty set s0 = ∅, the forward selection stage
can be written as

uk = arg max
i∈S ,i/∈sk−1

I(Ż; V(Ż, 'i)|V(Ż, 'sk−1
)),

sk = sk−1 ∪ uk,

(16)

where k = 1, . . . is the iteration index, uk is the index with the max-
imum objective function value. Note that s0 = ∅ =⇒ V(Ż, 's0)
= ∅, which reduces the conditional I(·; ·|·) to the mutual infor-
mation I(·; ·). During the forward stage, at each iteration k and
given the information (V(Ż, 'sk−1

)) we already have from the set

FIG. 1. The goal of entropic regression is to deduce which basis functions of the observational variables interact with the observed rates of changes of the variables. In
the case of the Lorenz systems equation (12), the basis set Eq. (12) implies an interaction structure equation (14), which can be reconstructed equation (15). To find these
generally sparse interactions, we developed a maximal mutual information principle stated in Eq. (16) but shown in summary here by the solid arrows between the rates
ż1, ż2, ż3, and the maximally informative functions. As it turns out in this example, this reconstructed set is in keeping with the true Lorenz equations.
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sk−1, we are looking for the function that maximally adds extra
information to the model. The process terminates when either all
PBF are exhausted (with maximum number of iterations equal K), or
the reward function I(Ż; V(Ż, 'i)|V(Ż, 'sk−1

)) = 0 (or thresholded
to ≤ ε), indicating that none of the remaining PBF are relevant, in an
information theoretic sense. In other words, the process terminates
when the strongest candidate has no further information beyond
what we already have. Note that entropy, mutual information, and
conditional mutual information can be estimated using any valid
estimator. We choose the K-nearest neighbors estimator39–41 for its
accuracy, especially with relatively small sample sizes.

After the forward entropic regression, we have the set s that has
the indices of the strong candidate functions. Eventually, s may have
a few non-relevant functions that are selected due to a high degree
of uncertainty and the rounding error at the end of forward entropic
regression. Since we have reduced set (|s| / K), it will be compu-
tationally inexpensive to validate the accuracy of the model. This
backward stage is an elimination stage, where the functions indexed
by s are re-examined for their information theoretic relevance so that
redundancy may be removed. In particular, we label the set s as ini-
tial set s0 = s for the backward stage, and we perform the following
computations and updates:

uk = arg min
i∈sk−1

I(Ż; V (Ż, 'i)|V(Ż, '{sk−1−i})),

sk = sk−1/uk.

(17)

In particular, note the differences of this stage regarding the
index set, which is different between Eqs. (16) and (17). The
backward stage includes a loss function, where at each itera-
tion k, we examine what information will be lost if we remove
the index i from the set sk−1 and the process terminates
when I(Ż; V(Ż, 'i)|V(Ż, '{sk−1−i})) > 0. The result of the backward
entropic regression is a set of indices s. We emphasize a practical
strength that the forward entropic regression stage can substan-
tially reduce the computational complexity of the backward stage,
by limiting the elimination search space to a few candidate func-
tions. However, the backward elimination is key in that in the special
case of a low-dimension system, or we have efficient computational
resources, we can plausibly skip the forward stage, to rely only on the
backward stage directly, with initial set s = {1, 2, . . . , K}. Parameters
β ∈ RK can be found by updating the vector of zeros β = 0K such
that

β s = L (Ẋ, 's), (18)

where β s are the entries of β indexed by the elements of s. Thus,
‖β‖0 = |s|. The primary role of entropic regression is to find the
minimally optimal informative set of PBF. Once that set is identified,
the parameter values themselves are easily found, for example, by
ordinary least squares (OLS).

In general statistical estimators for information theoretic quan-
tities must be dealt with to make a practical method. In theory,
mutual information I(x; y|z) is always non-negative and I(x; y|z) = 0
if and only if x and y are statistically independent given z. In prac-
tice, however, due to finite sample size and estimation inaccuracies,
the estimated mutual information may be nonzero even when x and
y are independent, and even worse, some otherwise useful favorite

estimators may yield negative numbers.40,45 We require a way to
deduce with statistical confidence that they differ from zero to con-
fidently decide whether x and y should be deemed to be independent
given the estimated value of I(x; y|z). In 46 and 43, a shuffle test
with a “confidence” parameter α ∈ [0, 1] for tolerance estimation
was developed. The shuffle test involves random shuffling of one of
the variables, repeating ns times, to build a test statistic. In particular,
for the ith random shuffle, a random permutation π (i) : [T] → [T]
is generated to shuffle one of the variables, say y, which produces
a new variable (ỹ(i)) where ỹ(i) = yπ (i) ; x and z are kept the same.
Then, we estimate the mutual information I(x; ỹ(i)|z) using the (par-
tially) permuted variable (x, ỹ(i), z), for each i = 1, . . . , ns. For given
α, we then compute a threshold value Iα(x; y|z) as the α-percentile
from the values of I(x; ỹ(i)|z). If I(x; y|z) > Iα(x; y|z), we determine
x and y as dependent given z, otherwise independent. This thresh-
old (tolerance) of mutual independence is adopted in the forward
and backward stages as the termination condition. Hence, the tol-
erance describes the minimum effective quantity of information. In
this sense, in forward entropic regression, we are selecting the func-
tions, which add a significant quantity of information to the model,
while in backward entropic regression, we are discarding functions
which are determined to be negligible.

F. Kuramoto oscillators

The Kuromoto model is a popular model of network cou-
pled phase oscillators.51 While in the standard Kuromoto model the
network is assumed to be a complete network,51 but this is easily
generalized by47,51

θ̇i = ωi + η

n
∑

j=1

aijsin(θj − θi), i = 1, . . . n, (19)

where θi(T) represents the phase angle of the ith oscillator at time
q, and ωi represents the natural frequency and aij ∈ A. The ωi are
drawn from some distribution g(ω) that is usually assumed to be
unimodal and symmetric about the mean value ω̄.51 Let θ (i)(Tj)

= (θi(T1), θi(T2), . . . , θi(Tq))
T, with (i = 1, . . . , n), and time Tj for

(j = 1, . . . , q) equally spaced times. The resulting trajectories data
Z = (θ 1, θ 2, . . . , θn) is a q × n, matrix of vector states as columns.
The first order Kuramoto model will eventually result in a syn-
chronous state almost certainly47 if the value of coupling strength η
is large enough. So, if η > ηc, the result will most likely synchronize
for any initial condition. In Fig. 2, we show three different scenarios
around the critical coupling strength (ηc). As η → ∞,47 the sys-
tem tends to synchronize faster making the system indistinguishable
sooner.

III. RESULTS

To demonstrate the effectiveness of entropic regression, we
perform analysis on synthetic and semi-synthetic time series data.
We know the ground truth for the underlying structural networks,
so we can compare the effectiveness of entropic regression to other
standard leaders based on the correlation method and LASSO
regression.
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FIG. 2. The angular frequency θ̇ vs time from a Kuramoto network model coupled with the DTI adjacency matrix shown in Fig. 3(c). For values of the coupling strength ηc

that are below the critical value ηc as in (a), the natural frequencies of the oscillators ω that are drawn from a normal distribution N (0, 1) have more variance than the
mean field of the model. This results in loosely interacting individual oscillators. If the coupling η is greater than the critical value ηc, then the oscillators quickly fall into a
periodic stable state. (b) shows the coupling that was chosen for our model. In this mode, the oscillators can be shown to be just inside the basin of attraction for the stable
synchronous state, which is shown in (c); however, in practice, even without the re-sampling, this transient state is long lived when η is chosen to be ηc. Note that when
η > ηc, the oscillators are rapidly attracted to the synchronous basin.

A. Synthetic data

For the testing purposes, we simulate data according to the first
order network Kuramoto model as described in Eq. (19). We simu-
late the Kuramoto model different types of networks with approxi-
mately 80 nodes (the DTI network is 83 nodes, the other two types
are set to 80 to be close to the same number of nodes), including the
directed ER network, a special type of the community network and
the DTI network, examples of which are shown in Fig. 3. The com-
munity network is a simple representation of the brain as seen in
Ref. 25 and the DTI network as a realistic representation. We note

that all methods perform poorly if the coupling coefficient η is set
too high as a result of near immediate synchronization, thus ren-
dering the nodes indistinguishable. Thus, the coupling strength is
chosen to be nearby to its critical value, that is, η ≈ ηc.

We ran 50 trials for each of the randomly generated types of
adjacency matrix. The parameters of the Kuramoto model where
held fixed throughout all trials. The critical coupling of the system

is defined as ηc = 2
πg(0)

1
λ1

N.51 For all trials, we set η = ηc, calcu-

lated at runtime. The function g(ω) denotes the pdf of ω across
the network of oscillators, and λ1 is the largest eigenvalue of the
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FIG. 3. We show an example spy plot of the adjacency matrices of (a) an Erdös–Rényi network, (b) a community network, and (c) a DTI network. The blue dots represent
nonzero values of the matrix. As can be seen, the ER networks have edges assigned in a random manner, whereas community networks are highly structured. The DTI
network exists somewhere in between these two network types.
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corresponding adjacency matrix A.47 The initial conditions θ1 are
randomly drawn from U [0, 2π], and the natural frequencies ω are
drawn from N (0, 1). Each sample was integrated by an adaptive
stepsize for target precision RK45 numerical solver, and solutions
at 1001 equally spaced time steps were computed in the time range
0 ≤ t ≤ 1001. Finally, θ is returned as modulated such that 0 ≤ θ
< 2π . The derivative θ̇i is estimated by finite differences, yielding
1000 estimated differences. For the Erdös–Rényi graph26 [Fig. 3(a)],
the sparsity was chosen such that it was as close as possible to
the DTI graph (0.2363). These, along with choosing a coupling
coefficient based upon the resultant structure, are experimental con-
trols available to eliminate sparsity as a contributing factor in the
outcome of the estimation. The community graph [Fig. 3(b)] is
created with by adding edges randomly with equal weight as well;
however, groups are chosen such that each node has a commu-
nity. We chose 80 nodes with 5 communities of 16 nodes each.
Each node has some number of intra-community connections and
inter-community connections. We chose 13 intra-community con-
nections and 5 inter-community connections. 13 and 5 were chosen
so that the community graph has a maximum sparsity of 0.225 as
close as possible to the DTI graph. The community graph is undi-
rected, which increases the odds of not finding a configuration with
the maximum number of edges, and as such, they tend to be sparser
than the Erdös–Rényi graphs.

In Fig. 4, we show receiver operator characteristic (ROC)
curves for a single realization of the network coupled dynamics
discussed above, in which true positive and false positive rates are
displayed together. It is desirable in an ROC curve for a method to
come as close as possible to the upper left hand corner, representing
almost no false positives and almost all true positives. In the three
examples, networks from the Erdös–Rényi example, the community
example shown in Fig. 3, and the DTI derived example, we compare
the accuracy of standard methods such as correlation and LASSO

to that of our entropic regression for these three scenarios. For

the purposes of entropic regression, we let Y(i) = θ (i)(Tk) and X(i)
kj

= sin[θ (j)(Tk) − θ (i)(Tk)] (∀j %= i), yielding different input data Z(i)

= [Y(i), X(i)] ∈ Rq×n, for each variable i = 1, . . . , n. All methods
were tested on the same input data for each i. For entropic regres-
sion, we used the non-parametric KNN method to estimate condi-
tional mutual information with K = 1. Clearly, the entropic regres-
sion outperforms correlation method. For both Gaussian and K-
nearest neighbors (KNN) versions of oCSE we chose α = 0.01,
and for the KNN version of oCSE, k = 10 was chosen as this
gave favorable performance over other tested values of k in the set
{1, 2, . . . , 20}. In the case of LASSO, the ROC curves are calculated
across of a range of values of the regularization parameter λ. We see
that for some λ that entropic regression clearly outperforms LASSO
but for some λ, it is close to a tie, with Lasso slightly outperforming
entropic regression at least for the Erdös–Rényi example. However,
without a method of model selection, or otherwise knowing the
answer a priori, it is not possible to know what is the better λ, the two
leading methods being based on either cross validation or a Aikake
information criterion (AIC)/BIC formalism already described, and
we choose BIC optimum value λopt as discussed above by Eqs. (9)
and (10). Assuming errors are Gaussian and i.i.d.; therefore, the term
ln(L (β , λ|X)) can be approximated as

ln(L (β , λ|X)) = −
q

2
ln(2qπMSE), (20)

where MSE denotes the mean squared error. We arrive at this
approximation by noting that in the Gaussian case, we have

MSE = σ 2

q
.52 We combine this with the well known Gaussian log-

likelihood53 in the i.i.d. case and ignoring a constant term that does
not affect the optimization of BIC. This yields

BIC = κ ln(q) + q ln(2qπMSE). (21)
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FIG. 4. Here, we show the ROC curves comparing the performance of LASSO, correlation, and entropic regression on (a) an Erdös–Rényi networks, (b) a community
network, and (c) a DTI network. The solid lines represent the ROC curves and the star represents the parameter chosen for the entropic regression method, and the triangle
represents the parameter λ chosen by the BIC method for LASSO. In all three types of network including the community network as discussed in Ref. 25, it is clear that
entropic regression outperforms both correlation and LASSO. Furthermore, both entropic regression and LASSO offer significant performance benefits over correlation. As
a result, the performance of entropic regression is much better than that of both LASSO and correlation.
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FIG. 5. Twenty runs on a different network for each run are shown above. In (a), there are 20 different random Erdös–Rényi networks with Kuramoto dynamics. The true
positive rates and false positive rates are shown for entropic regression and LASSO choosing the appropriate value of λ either with BIC or using 1 standard error. (b) Random
community networks; here, we additionally compare performance with two versions of oCSE as well, the Gaussian version and a non-parametric KNN version. As can be
seen, neither version of oCSE outperforms either entropic regression or LASSO in this setting, KNN because it requires unrealistic amounts of data and the Gaussian version
because the data are clearly not normally distributed. (c) DTI networks are used in the place of ER networks from (a). The DTI networks are reconstructed from 20 different
patients in this case. It is clear that entropic regression clusters closest to the upper left hand corner, showing its improved performance over the other methods. These results
are summarized in Table I.
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FIG. 6. Network estimation using a polynomial basis. As can be seen, all of the
methods perform poorly for network estimation when using a polynomial basis,
rather than choosing the appropriate basis of the coupling. In this figure, we show
only a polynomial basis of a single term, as we found that including higher order
terms led to an even larger FPR and TPR, as all models discovered more edges.

Estimates of the MSE follow a LASSO solution and using tenfold
cross validation and optimization estimated for Eq. (21).

We can see that entropic regression exceeds the performance of
the other methods as the method identifies parameters much closer
to the upper left hand corner of the ROC curve than the other meth-
ods. For LASSO, we show the BIC estimation of the parameter λopt,
which is marked by a triangle in Fig. 4. A common choice of confi-
dence level is α = 95%, which is the value we chose, and is marked
by a star. It is clear that entropic regression significantly outperforms
the other methods.

Figure 5 shows the true positive rate (TPR) and false positive
rate (FPR) over 20 runs on different networks of the types shown
in Fig. 4. 20 ER and community networks were generated at ran-
dom, while the DTI networks were reconstructed from 20 different
patients. Only the point chosen by α = 0.95 for entropic regres-
sion and λ chosen by BIC or one standard error (1SE) in LASSO
are shown, rather than the full ROC. Entropic regression in this
case clusters closest to the top left corner in all network types, mak-
ing it preferable to all of the other methods including LASSO and
oCSE. Across the 20 runs, the mean TPRs of LASSO (BIC) and
entropic regression are similar, slightly favoring LASSO. Entropic
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TABLE I. True and false positive rates (TPR and FPR) of entropic regression and LASSO averaged over 20 synthetic network realizations of either Erdös–Rényi or Community
Network types, and 20 DTI networks constructed from different patients. On average, both LASSO and entropic regression return similar TPR; however, entropic regression
returns a much lower FPR than LASSO. In the parenthesis, the standard deviation is reported.

ER network Community network DTI network

Mean TPR Ent. Reg. 0.8938 (0.1035) 0.8858 (0.0892) 0.7983 (0.0940)
Mean TPR LASSO (BIC) 0.9538 (0.0571) 0.9150 (0.086) 0.8994 (0.0743)
Mean FPR Ent. Reg. 0.0535 (0.0301) 0.0551 (0.0305) 0.0718 (0.0268)
Mean FPR LASSO (BIC) 0.2844 (0.0410) 0.1647 (0.0247) 0.2350 (0.0440)

regression significantly outperforms LASSO (BIC) in FPR, similar
to above.

In Fig. 6, we show the performance of the top three reviewed
algorithms assuming a polynomial basis. As can be seen, the perfor-
mance of all algorithms degrades in this scenario. However, we note
that the brain is often modeled in this context with a sinusoidal cou-
pling function17,25,54–56 as it captures some of the observable features
of the brain dynamics, which we believe justifies our choice of PBF
shown in Fig. 5.

As seen in Fig. 3, graphs produced by DTI of real brains lie
somewhere between ER and community in terms of ordered struc-
ture. For this reason, the synthetic brain activity data are more
likely to match the dynamics exhibited by the brain. In all 20 exam-
ples of simulated dynamics from different DTI networks, entropic
regression had a lower false positive rate than any of the networks
produced by LASSO. This allows for increased confidence in the
edges, which are inferred by entropic regression in the context of the
brain. This highlights the utility of our approach over other existing
methods in neurological applications.

LASSO in all cases averaged more than triple the FPR of
entropic regression over the 20 networks examined. This could
have severe implications for the network tomography. For example,
a future treatment relying on accurate knowledge of connectivity
between the ROIs would suffer greatly from having a significant
number of false inferred edges.

In Table I, we average across 20 sample simulations and for
each with a new sampled randomly generated network and ran-
domly selected initial condition. The average TPRs and FPRs as well
as the standard deviation of the two best methods are reported. As
can be seen, on average, entropic regression and LASSO perform
similarly in true positive rate (TPR); however, entropic regression
significantly outperforms, especially in terms of false positive rate
(FPR). Across the different k Overall, entropic regression is capable
of recovering the majority of the true networks while only generat-
ing very few false edges, whereas LASSO also recovers the majority
of the true network but introduces many more false edges.

IV. CONCLUSIONS

In this work, we have presented a simple model for brain
dynamics using Kuramoto oscillators running on synthetic ER and
DTI networks. Having access to accurate network structure is essen-
tial to understanding the dynamics of any network coupled sys-
tem. Unfortunately, in the brain, the ground truth of the network
structure is unknown and thus must be inferred. Commonly used

methods for inference of functional connectivity-based networks
from data include correlation and LASSO. We additionally compare
performance to a recently developed information based inference
method known as oCSE. We show that a new method, entropic
regression, offers improvement upon the above listed methods in
terms of accuracy. Specifically, entropic regression offers a similar
true positive rate with a much improved false negative rate over the
other methods.
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