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ABSTRACT

In this work, we developed a nonlinear System Identi�cation (SID) method that we called Entropic Regression. Our method adopts an
information-theoretic measure for the data-driven discovery of the underlying dynamics. Our method shows robustness toward noise and
outliers, and it outperforms many of the current state-of-the-art methods. Moreover, the method of Entropic Regression overcomes many of
the major limitations of the current methods such as sloppy parameters, diverse scale, and SID in high-dimensional systems such as complex
networks. The use of information-theoretic measures in entropic regression has unique advantages, due to the Asymptotic Equipartition Prop-
erty of probability distributions, that outliers and other low-occurrence events are conveniently and intrinsically de-emphasized as not-typical,
by de�nition. We provide a numerical comparison with the current state-of-the-art methods in sparse regression, and we apply the methods
to di�erent chaotic systems such as the Lorenz System, the Kuramoto-Sivashinsky equations, and the Double-Well Potential.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5133386

System identi�cation (SID) is a central concept in science
and engineering applications whereby a general model form
is assumed, but active terms and parameters must be inferred
from observations. Most methods for SID rely on optimizing
some metric-based cost function that describes how a model
�ts observational data. A commonly used cost function employs
a Euclidean metric and leads to a least squares (LS) estimate,
whereas recently it has become popular to also account for model
sparsity such as in compressed sensing (CS) and Lasso. While
the e�ectiveness of these methods has been demonstrated in pre-
vious studies, including in cases where outliers exist in sparse
samples, SID remains particularly di�cult under more realis-
tic scenarios where each observation is subject to non-negligible
noise and is sometimes even contaminated by large noise out-
liers. Here we report that existing sparsity-focused methods such
as compressive sensing, when applied in such scenarios, can result
in “oversparse” solutions that are brittle to outliers. In fact,metric-
based methods are prone to outliers because outliers by nature

have a disproportionately large in�uence. To mitigate such issues
of large noise and outliers, we develop an entropic regression
approach for nonlinear SID, whereby true model structures are
identi�ed based on an information-theoretic criterion describing
relevance in terms of reducing information �ow uncertainty vs
not necessarily (just) sparsity. The use of information-theoretic
measures in entropic regression has unique advantages due to
the asymptotic equipartition property (AEP) of probability dis-
tributions, that outliers and other low-occurrence events are
conveniently and intrinsically de-emphasized as not-typical by
de�nition.

A basic and fundamental problem in science and engineering
is to collect data as observations from an experiment and then to
attempt to explain the experiment by summarizing data in terms of
a model. When dealing with a dynamical process, a common sce-
nario is to describe the underlying process as a dynamical system,
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which may be in the form of a di�erential equation (DE). Tradition-
ally, this means “understanding the underlying physics” in a manner
that allows one to write a DE from �rst principles, including those
terms that capture the delicate but important (physical) e�ects. The
validation of the model may come from comparing outputs from the
model to those from experiments, where outputs are typically rep-
resented as multivariate time series. Building a DE model based on
fundamental laws and principles requires strong assumptions, which
might be evaluated by how the model �ts data. Weigend and Ger-
shenfeld made a distinction between weak modeling (data rich and
theory poor) and strong modeling (data poor and theory rich), and
suggest that it is related to “. . . the distinction between memorization
and generalization. . . .”1

The problem of learning a (dynamical) system from observa-
tional data is known as system identi�cation (SID) and oftentimes
involves the underlying assumption that the structural form of the
DE is known (which kinds of terms to include in the functional
description of the equation), but only the underlying parameters
are not known. For example, suppose we observe the dynamics of
a simple dissipative linear spring, then we may express the model
as mẍ+ γ ẋ+ kx = 0 based on Hooke’s law. However, the param-
eters m, γ , and k might be unknown and need to be estimated in
order to completely specify the model for purposes such as predic-
tion and control. One may directly measure those parameters by
static testing (e.g., weighing the mass on a scale). Alternatively, here
we are interested in utilizing the observational data generated by
the system without having to design and perform additional experi-
ments to estimate the parameters corresponding to the model that
best �ts empirical observations, which is a standard viewpoint in
SID. In this thought experiment, the SID process is performed with
the underlying physics understood (the form of the Hooke spring
equation). In general, it can be applied in the scenario where very
little information was previously known about the system, in a black
box manner.

Suppose that observations {z(t)} come from a general (multidi-
mensional, coupled) DE, represented by

ż = F(z), (1)

where z = [z1, . . . , zN]
T ∈ R

N is the (multivariate) state variable of
the system and F = [F1, . . . , FN]

> : R
N → R

N is the vector �eld.
Each component function Fi(z) can be represented using a series
expansion (for example, a power series or a Fourier series), written
generally,

żi = Fi(z) =

∞
∑

k=0

aikφk(z), (2)

for a linear combination of basis functions {φk}
∞
k=0. The basis func-

tions do not need to be mutually orthogonal, and the series can even
include multiple bases, for example, to contain both a polynomial
basis and a Fourier basis.2 The coe�cients {aik} are to be deter-
mined by contrasting simulations to experimental measurements, in
an optimization process whose details of how error is measured dis-
tinguish the various methods we discuss here. This was the main
theme in previous approaches on nonlinear SID, with di�erentmeth-
ods di�ering mainly on how a model’s �t is quanti�ed. The dif-
ferent approaches include using standard squared error measures,3,4

sparsity-promoting methods,2,5–7 as well as using entropy-based cost
functions.8 Among those, sparsity-promoting methods have proven
particularly useful because they tend to avoid the issue of over�tting,
thus allowing a large number of basis functions to be included to
capture possibly rich dynamical behavior.2,5,6

Regardless of the particular method or system, most previ-
ous work on nonlinear SID focused on the low-noise regime and
demonstrated success only when there is a su�cient amount of clean
observational data. In practice, an observation process can be sub-
ject to external disturbances in unpredictable ways. Consequently,
the e�ective noise can be quite large and even with frequently occur-
ring “outliers” both of which may contaminate the otherwise per-
fect data. Can SID still work under the presence of large noise and
outliers? At a glance, the answer should be yes, given that several
recent SID methods for nonlinear systems are readily deployable in
the presence of noise. For example, compressive sensing can han-
dle noise by relaxing the constraint set, whereas least squares and
Lasso can be applied o� the shelf—the important question, how-
ever, is whether the quality of solution is compromised or not, and
to what extent. Recently, Tran and Ward considered the nonlin-
ear SID problem under the presence of outliers in observational
data and showed that so long as the outliers are “sparse” leav-
ing su�cient amount of “clean” data available, existing techniques
such as Sparse Identi�cation of Nonlinear Dynamics (SINDy) can
be extended to reconstruct the exact form of a system with high
probability.9 In the current work, we are interested in the more real-
istic scenario where e�ective noise is present everywhere and thus all
data points are contaminated by non-negligible noise and sometimes
outliers. These features e�ectively create a “high noise and low data
amount” regime, where we found that existing nonlinear SID meth-
ods including recent ones that specialize in promoting sparsity fall
short.

In this work, we depart from most standard approaches for
nonlinear SID. We identify the error quanti�cation via metric-based
cost functions as a root cause of existing methods to fail under
large noise and outliers because outliers tend to deviate from the
rest of sample data as measured by metric distance; thus trying to
“�t” the outliers almost inevitably causes the model to put (much)
less weights on the “good” data points. To resolve this important
issue, we propose to infer the (sparsity) structure of a general model
together with its parameters using a novel information-theoretic
regression approach that we call Entropic Regression (ER). As we
will show, while standard metric-based methods emphasize the
data in ways as designed by the chosen metric, the proposed ER
approach is robust with regard to the presence of noise and out-
liers in the data. Instead of searching for the sparsest model and
thus risk forcing a wrong sparse model, ER is emphasizing “infor-
mation relevance” according to a model-free, entropic criterion.
Basis terms will be included in the model only because they are
relevant and not (necessarily) because they together make up the
sparsest model. We demonstrate the e�ectiveness of ER in several
examples, including chaotic Lorenz systems, Kuramoto-Sivashinsky
(KS) equations, and a double-well potential, where in each case,
the observed data contain relatively large noise and outliers. We
also remark on the computational complexity and convergence in
small-data regime, as well as discuss open problems and future
directions.
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RESULTS

Nonlinear system identification: Problem statement

and formulation

Following the standard routine in nonlinear SID,10 the starting
point is to recast the nonlinear SID problem into a computational
inverse problem, by considering an appropriate set of basis functions
that span the space of functions including the system of interest.3,7 A
common choice is the standard polynomial basis

φ = [φ0(z),φ1(z),φ2(z), . . . ]

= [1, z1, z2, . . . , zN , z1z2, z1z3, . . . , zN−1zN , . . . ], (3)

where each term is amonomial. Using a set of basis functions, one can
represent the individual component functions ofF as a series as in (2).
The speci�cation of the location of nonzero parameters is referred to
as the structure of the model.

Consider time series data {z(t) = [z1(t), . . . , zm(t)]>}t=t0 ,...,t`
and corresponding {F(z(t)}t=t0 ,...,t` generated from a nonlinear, high-
dimensional dynamical system (1), possibly subject to observational
noise. From z(t), one can estimate the derivatives by any of the
standard Newton-Cotes methods, explicit Euler’s method of course

being the simplest, giving Fi(z(tk)) =
zi(tk+1)−zi(tk)

τk
+O((tk+1 − tk))

or central di�erence which has improved accuracy: Fi(z(tk))

=
zi(tk+1)−zi(tk−1)

tk+1−tk−1
+O((tk+1 − tk−1)

2). The problem of nonlinear sys-

tem identi�cation is to reconstruct the functional form as well as
parameters of the underlying system, that is, to infer the nonlinear
function F.

Under the basis representation (2), the identi�cation of F
becomes equivalent to estimating all the parameters {aik}. In prac-
tice, the empirically observed state variable is subject to noise: ẑ(t) =

z(t)+ η(t) with η(t) representing the (multivariate) noise and F̂i
denoting the approximated value of Fi. For noisy observations ẑ(t),

the di�erence between F̂i(ẑ(t)) and Fi(ẑ(t)) originates from several
sources: the in�nite series is truncated and the derivatives are esti-
mated numerically and by using approximate states. Nevertheless, we
can represent the aggregated error as an e�ective noise ξ(t) term and
express the forward model as

F̂i(ẑ(t)) =

K
∑

k=0

aikφk(ẑ(t))+ ξi(t) (t = t0, . . . , t`; i = 1, . . . ,N).

(4)

Note that because of the combined and accumulated e�ects of obser-
vational noise, approximation error, and truncation, even if the
observational noise of the states ηi(t) is iid, this is not necessarily true
for the e�ective noise ξi(t). Inmatrix form, forwardmodel (4) has the
approximate expression





| | |
ż1(ti) . . . żN(ti)
| | |



 ≈





| | | |
φ0(ti) φ1(ti) . . . φK(ti)
| | | |





×







a00 a01 . . . a0N
...

...
. . .

...
aK0 aK1 . . . aKN






. (5)

Figure 1 shows the structure of the Lorenz system under standard
polynomial basis up to quadratic terms.

FIG. 1. (Left) Lorenz system as a dynamical system and its standard graph representation. (Right) Linear combination of nonlinear basis functions, with coupling coefficients
{aik} forming the structure of the system (bottom right). Here, each directed edges represent the presence of basis terms on the individual variables of the system.
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In vector form, under a choice of basis and truncation, the non-
linear system identi�cation problem can be recast into the form of a
linear inverse problem,

f (i) = 8a(i) + ξ (i), (6)

where f (i) = [F̂i(ẑ(t1)), . . . , F̂i(ẑ(t`))]
>
∈ R

`×1 represents the ith
component of the estimated vector �eld from the observational data,
8 = [φ(1), . . . ,φ(K)] ∈ R

`×K [with φ(k) = [φk(ẑ(t1)), . . . ,φk(ẑ(t`))]
∈ R

`×1] represent sampled data for the basis functions,
ξ (i) = [ξi(t1), . . . , ξi(t`)]

> ∈ R
`×1 represents noise, and a(i)

= [ai1, . . . , aiK]
> ∈ R

K×1 is the vector of parameters, which is to be
determined. Note that the form of Eq. (6) is the same for each i, and
solving each a(i) can be done separately and independently for each
i. In what follows, we omit the index when discussing the general
methodology and consider the following linear inverse problem:

f = 8a+ ξ , (7)

where f ∈ R
`×1 and 8 ∈ R

`×K are given, with the goal to estimate
a ∈ R

K×1. This general problem is in the form of an inverse prob-
lem and is typically solved under various assumptions of noise by
methods such as least squares, orthogonal least squares (OLS), lasso,
and compressed sensing, to name a few. Each of these methods, in
addition to the recent approach of SINDy and its generalization,
is mentioned in the Results section and reviewed in the Methods
section. In what follows we develop a unique information-theoretic
approach called entropic regression, which we demonstrate has sig-
ni�cant advantages.

Entropic regression

To overcome the competing challenges of potential over�tting,
e�ciency when limited data points are given, and robustness with
respect to noise and, in particular, outliers in observations, we pro-
pose a novel framework that combines the advantage of information-
theoreticmeasures and iterative regressionmethods. The framework,
which we term entropic regression (ER), is model-free, noise-resilient,
and e�cient in discovering a “minimally su�cient” model to rep-
resent data. The key idea is that, for given set of basis functions, a
model should be considered minimally su�cient if no basis func-
tion that is not already included in the model can help increase the
information relevance between themodel outputs and observed data.
In other words, the residual between the model �t and observa-
tional data is statistically independent from any basis function that
is not included in the model—because otherwise the dependence
can be harvested to reduce the discrepancy by including such a basis
function in the model. We emphasize that, although the idea seems
related to classical model selection principles such as Akaike infor-
mation criterion (AIC),11 ours combines model construction with
selection. In addition, even though it is not uncommon for entropy
measures to be adopted in system identi�cation,8,12 the proposed
method is unique as it fuses entropy optimization with regression in
a principled manner that enables scalable computation and e�cient
estimation in reconstruction nonlinear dynamics under noisy data.
As we shall see below, the proposed ER method is applicable even
in the small-sampling regime (by adopting appropriately de�ned
entropy measures and e�cient estimators) and naturally allows for
a computationally e�cient procedure to build up a model from

scratch. In particular, we use (conditional) mutual information as
an information-theoretic criterion and iteratively select relevant basis
functions, analogous to the optimal causation entropy algorithm pre-
viously developed for causal network inference13,14 but here including
an additional regression component in each step. Thus, ER can be
thought of as an information-theoretic extension of the orthogo-
nal least squares regression or as a regression version of optimal
causation entropy.

We now present the details of ER. The ER method contains two
stages (also see Algorithm 1 for the pseudocode): forward ER and
backward ER. In both stages, selection and elimination are based on
an entropy criterion and parameters are updated in each iteration
using a standard regression (e.g., least squares). Consider the inverse
problem (7). For an index set S ⊂ N ∪ {0}, the estimated parameters
can be thought of as amapping from the joint space of8, f , and S to a
vector denoted as â = R(8, f , S). For instance, under a least squares

criterion, themapping is given by R(8, f , S)S = 8
†
S f (8S denotes the

columns of matrix 8 indexed by S) and R(8, f , S)i = 0 for all i /∈ S.
Using the estimated parameters, the recovered signal can be com-
puted as8R(8, f , S). In the ER algorithm,we start by selecting a basis
function φk1

that maximizes its mutual information with f , compute
the corresponding parameter ak1 using the least squares method, and
obtain the corresponding regression model output z1 according to











k1 = argmaxkI(8R(8, f , {k}); f ),

â = R(8, f , k1),

z1 = 8R(8, f , k1).

(8)

Here, I(x; y) denotes mutual information between x and y, which is
a model-free measure of the statistical dependence between two dis-
tributions (that is, x and y are independent if and only if their mutual
information equals zero; however, in practice, due to �nite samples
and statistical estimation, we wish to distinguish that Mutual Infor-
mation (MI) is statistically insigni�cantly indistinguishable from
zero and noting that it is never negative as well).15 Next, in each iter-
ation of the forward stage, we perform the following computations
and updates for i = 2, 3, . . .:











ki = argmaxk/∈{k1 ,...,ki−1}
I(8R(8, f , {k}); f |zi−1),

â = R(8, f , {k1, . . . , ki}),

zi = 8R(8, f , {k1, . . . , ki}).

(9)

The process terminates when maxk I(8R(8, f , k); f |zi−1) ≈ 0 (or
when all basis functions are exhausted), indicating that none of the
remaining basis function is relevant given the current model, in an
information-theoretic sense. The result of the forward ER is a set of
indices S = {k1, . . . , km} together with the corresponding parameters
ak1 , . . . , akm (aj = 0 for j /∈ S) and model f ≈ ak1φk1

+ · · · + akiφki
.

Finally, we turn to the backward stage, where the terms that had
previously been included are re-examined for their information-
theoretic relevance and those that are redundant will be removed. In
particular, we sequentially check for each j = ki ∈ S to determine if
the basis term φj is redundant by computing

{

â = R(8, f , {k1, . . . , ki}/{ki}),

z̄j = 8R(8, f , {k1, . . . , ki}/{ki}),
(10)

Chaos 30, 013107 (2020); doi: 10.1063/1.5133386 30, 013107-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

and updating S→ S/{j} (that is, remove j from the set S) if
I(8R(8, f , S); f |z̄j) ≈ 0. The result of the backward ER is the reduced
set of indices S = {`1, . . . , `n} with n ≤ m, together with the cor-
responding parameters a`1 , . . . , a`n (aj = 0 for j 6∈ S) computed as
a = R(8, f , S), and accordingly the recovered model f ≈ φ

a = φSaS = a`1φ`1
+ · · · + a`nφ`n

. In practice, mutual information
and conditional mutual information need to be estimated from data,
and whether or not the estimated values should be regarded as zero
is typically done via (approximate) signi�cance testing, the details
of which are provided in Methods section (also see Supplementary
Materials).

Algorithm 1. Entropic regression

1: procedure Initialization: (f ,8)
2: Tolerance (tol) Estimation.

3: For a set of index S, de�ne the function R(8, f , S) = 8
†
Sf

4: end procedure
5: procedure Forward ER: (f ,8, tol)
6: Sf = ∅, p = ∅, v = ∞, z = ∅
7: While v > tol do
8: Sf ← p
9: Iestj := I(8R(8, f , {Sf , j}); f |z). for all j /∈ Sf
10: v, p := maxj I

est
j

11: â := R(8, f , {Sf , p}))
12: z := 8â
13: end while
14: return Sf
15: end procedure
16: procedure BACKWARD ER:(f ,8, tol, Sf )
17: Sb = Sf , p = ∅, v = −∞
18: while v < tol do
19: Sb := {Sb} − {p}
20: for all j ∈ Sb do
21: â := R(8, f , {Sb} − {j}))
22: z := 8â
23: Iestj := I(8R(8, f , Sb); f |z),

24: end for
25: v, p := minj(I

est
j )

26: end while
27: return Sb
28: end procedure
29: return S = Sb.

Numerical experiments: Outliers, expansion order,

and the paradox of sparsity

To demonstrate the utility of ER for nonlinear system identi-
�cation under noisy observations, we benchmark its performance
against existing methods including least squares (LS), orthogonal
least squares (OLS), Lasso, as well as SINDy and its extension by Tran
andWard (TW). The details of the existing approaches are described
in theMethods section. The examples we consider represent di�erent
types of systems and scenarios, including both Ordinary Di�eren-
tial Equations (ODEs) and Partial Di�erential Equations (PDEs).

FIG. 2. Lorenz system. We perform 100 runs for the comparison, no outliers,
0.0005 step size, and we considered the median result out of 100 runs. The figure
shows the error in the parameter estimation for a Lorenz system but subject to
noisy measurements by Gaussian noise, with ε = 10−4, and using a 5th-order
polynomial expansion. We see that ER and OLS have an overall superior perfor-
mance compared to other standard methods. We see that SINDy and TW are less
successful (under a large span of tuning parameters, see Fig. 3) at this number
of measurements even with low noise levels.

In addition, we consider di�erent noise models and especially the
presence of outliers in order to evaluate the robustness of the respec-
tive methods.

For each example system, we sample the state of each vari-
able at a uniform rate of 1t to obtain a multivariate time series
{z(ti)}k=1,...,N;i=1,...,`, where z = [z1, . . . , zd]

> ∈ R
d; then, we add noise

to each state variable and obtain the noisy empirical time series

FIG. 3. Contour plot of the error in recovered solution of the Lorenz system (Fig. 2)
by the TW method for a grid of µ and λ values and using 2000 measurements,
5th order polynomial expansion, low noise with ε1 = 10−5, and no corrupted data.
The color bar indicates the value of log10(error) in the recovered solution, and it
shows large error at all levels of tuning parameters.
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FIG. 4. SID for the Lorenz system when the observations are corrupted by outliers. Contrast to Fig. 2. As before, we specify a level of persistent Gaussian observation
noise, η ∼ N (0, ε1)(1− Ber(p)), but now furthermore we allow for an “outlier noise,” as “occasional” bursts of much larger perturbations, η ∼ N (0, ε1 + ε2)Ber(p),
where Ber(p) is the standard Bernoulli random variable (0 or 1 with probability ratio p, and 0 ≤ p ≤ 1). (Middle) Error in estimated parameters for the Lorenz system given
in Eq. (12) with noise, ε1 = 10−5, ε2 = 0.2, 5th-order polynomial expansion, and p = 0.2. The Lorenz system dynamics is shown in the upper right corner. We see that ER
has fast convergence at a low number of measurements, followed by TW which required twice the number of measurements. Different from TW, in our ER method, we focus
on detecting the true sparse structure with the presence of outliers, without any attempts to neglect outliers based on some weight function to achieve higher accuracy, which
is the case in the TW method. This point clearly appears in Fig. 5 where we see that although TW achieved higher accuracy, it has a low exact recovery probability, while
ER reached exact recovery probability more than 90%. A detailed statistics over the 100 runs is discussed in the supplementary material. (Side panels) Typical trajectories
generated by the reconstructed dynamical systems, where for each method, we show results using the “median” solution, that is, the recovered system whose corresponding
parameter estimation error is at the median over a large number of independent simulation runs. In each such simulation, 1500 samples are used. Comparing with the true
Lorenz attractor (upper right corner in the main panel), we see that the only reasonable reconstruction in this case was produced by ER.

denoted by {ẑ(ti)}, where

ẑk(ti) = zk(ti)+ ηki, (11)

with ηki representing state observational noise. The vector �eld F is
estimated using the central di�erence on the noisy time series {ẑ(t)}.

Example 1. Chaotic Lorenz system. Our �rst detailed exam-
ple data set was generated by noisy observations from a chaotic
Lorenz system, which is represented by a three-dimensional ODE
that is a prototype system as aminimalmodel for thermal convection
obtained by a low-ordered modal truncation of the Saltzman PDE16

and for many parameter combinations exhibits chaotic behavior.17 In
our standard notation, we have z = [z1, z2, z3]

> and










ż1 = F1(z) = σ(z2 − z1),

ż2 = F2(z) = z1(ρ − z3)− z2,

ż3 = F3(z) = z1z2 − βz3,

with default parameter values σ = 10, ρ = 28, and β = 8/3 unless
otherwise speci�ed. We consider a standard polynomial basis as in
Eq. (3). Over recent years, the Lorenz system has become a favorable

and standard example for testing SIDmethods and typically requires
tens of thousands of measurements for accurate reconstruction.2,9

First, we compare several nonlinear SID methods in recon-
structing the Lorenz system when the state observational noise is
drawn independently from a Gaussian distribution, η ∼ N (0, ε2).
As we discussed before, this translates into e�ective noise that is not
necessarily Gaussian or even independent. Figure 2 shows the error
in the estimated parameters, where error = ‖atrue − aestimated‖2. As
shown in Fig. 2, even with observational noise as low as ε = 10−4,
ER and OLS outperform all other methods. In this low-noise regime,
SINDy required more measurements (around 4 times) to reach simi-
lar accuracy as ER. In comparison, as noted in Refs. 9 and 2 and in the
implementation provided by the authors, for SINDy and TW meth-
ods to yield accurate reconstruction, the number of measurements is
at the order of 104. See Fig. 3 for the results of the TW method with
a large span of tuning parameters.

Next, to explore the performance of SID methods under the
presence of outliers, we conduct additional numerical experiments.
The extent to which outliers present is controlled by a single param-
eter p: each observation is subject to an added noise η, where
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FIG. 5. Probability of exact recovery for the Lorenz system. For the same results
shown in Fig. 4, Pexact here represents the number of runs in which a method
recovered the exact sparse structure over the total number of runs. We see that
although TW reached high accuracy at a high number of measurements, its exact
recovery probability remains low.

η ∼ N (0, ε21) with probability 1− p and η ∼ N (0, ε21 + ε22) with
probability p. Here, we use ε1 = 10−5, ε2 = 0.2, and p = 0.2. The
results of SID are shown in Figs. 4 and 5. Compared to Fig. 2, we
see that with p > 0, OLS performance drops due to the increasing

occurrence of large noise and outliers, whereas ER retains its capac-
ity of accurately identifying the underlying system. As an exam-
ple, in each of the side panels of Fig. 4, we show the trajectory of
the identi�ed dynamics using the median solution of each method.
It is clear that under such noisy chaotic dynamics and at a rel-
atively undersampled regime, the ER method successfully recov-
ers the system dynamic. As an ample amount of data becomes
available, we note that the TW method starts to produce excellent
reconstruction, which is consistent with recent �ndings reported in
Ref. 9.

Given that a major theme of modern SID is to seek for
sparse representations and the Lorenz system under standard poly-
nomial basis is indeed sparse, it is worth asking: what are the
respective structures identi�ed by the di�erent methods? In Fig. 6,
we compare the structure of the identi�ed model using di�er-
ent methods across a range of parameter values for ρ. In this
case, under the presence of large noise and outliers (p = 0.2),
none of the methods examined here, including recently proposed
sparsity-promoting (CS, SINDy) and outlier-resilient (TW) meth-
ods, is able to identify the correct structure. The proposed ER
method, however, does identify the correct structure. It is worth
pointing out that, often times when expressed in the right basis,
a model will appear to be sparse, the converse is not true: just
because a method return a sparse solution does not suggest (at all)
the such a solution gives a reasonable approximation of the true
model structure. Interestingly, as we discuss in the supplementary
material, for the same system and data, as more basis functions
are used—that is, when the true dynamics becomes sparser—the

FIG. 6. Sparse representation of the
solution found by solvers using 1500mea-
surements, and p = 0.2 on Fig. 4. The
upper left corner shows the true solution
of the Lorenz system. The bottom col-
umn shows the bifurcation diagram on z
dimension of the Lorenz system with ρ ∈
[5, 30] as the bifurcation parameter, cre-
ated using 5000 initial conditions evolved
according the recovered solution.
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FIG. 7. The first three modes of the ODE equation (15) solution. We show the modes a1, a2, and a3 for the selected number of modes. For a clear view, we fixed the axis
limits to be a1 ∈ [−1.21, 1.06], a2 ∈ [−0.75, 0.98], and a3 ∈ [−1.1, 1.12] for all plots. We found that there was no significant addition to the dynamic with 16 < Nm (meaning
that Nm = 16 was enough to describe the system).

reconstructed dynamics using existing methods (such as CS) can
become worse.

Example 2. (Kuramoto-Sivashinsky equations). To further
demonstrate the power of ER, we consider a nonlinear PDE, namely,
the Kuramoto-Sivashinsky (KS) equation,18–22 which arises as a
description of �ame front �utter of gas burning in a cylindrically
symmetric burner. It has become a popular example of a PDE that
exhibits chaotic behavior, in particular, spatiotemporal chaos.23,24

We will consider the Kuramoto-Sivashinsky system in the following
form:

ut = −νuxxxx − uxx + 2uux, (t, x) ∈ [0,∞)× (0, L) (12)

in periodic domain,u(t, x) = u(t, x+ L), andwe restrict our solution
to the subspace of odd solutions u(t,−x) = −u(t, x). The viscosity
parameter ν controls the suppression of solutions with fast spatial
variations and is set to ν = 0.029910 under which the system exhibits
chaotic behavior.23

Since a PDE corresponds to an in�nite-dimensional dynamical
system, in practice, we focus on an approximate �nite-dimensional
representation of the system, for example, by Galerkin projection
onto basis functions as in�nitely many ODEs in the corresponding
Banach space.

To develop the Galerkin projection, we follow the procedure as
presented in Ref. 25, to expand a periodic solution u(x, t) using a
discrete spatial Fourier series,

u(x, t) =

∞
∑

−∞

bk(t)e
ikqx, (13)

where q = 2π
L
.

Notice that we have written this Fourier series of basis elements
eikqx in terms of time varying combinations of basis elements. For
simplicity, consider L = 2π , then q = 1 for the following analysis.
This is typical26 with the representation of a PDE as in�nitely many
ODEs in the Banach space, where orbits of these coe�cients, there-
fore, become time varying patterns by Eq. (13). Substituting Eq. (13)
into Eq. (12), we produce the in�nitely many evolution equations for
the Fourier coe�cients,

ḃk = (k2 − νk4)bk + ik

∞
∑

m=−∞

bmbk−m. (14)

In general, the coe�cients bk are complex functions of time t.
However, by symmetry, we can reduce to a subspace by considering
the special symmetry case that bk is purely imaginary, bk = iak and
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FIG. 8. In analogy to Fig. 6, sparse rep-
resentation of the KSE solution by differ-
ent methods. CS and LASSO have been
excluded for their high computation com-
plexity.

ak ∈ R. Then,

ȧk = (k2 − νk4)ak − k

∞
∑

m=−∞

amak−m, (15)

where k = 1, . . . ,Nm. However, the assumption that there is a slow
manifold (slow modes as an inertial manifold26–29) suggests the
practical matter that a �nite truncation of the series Eq. (13), and
correspondingly the reduction to �nitely many ODEs will su�ce.
Therefore, we choose a su�ciently large number of modesNm. Then,
we solve the resultingNm-dimensional ODE (15) to produce the esti-
mated solution of u(x, t) by (13), and use such data for the purpose of
SID, so as to estimate the structure and parameters of theODEmodel
(15).

Figure 7 shows the �rst three dimensions plot under di�er-
ent number of modes. We see that using just a few number of
modes (Nm = 8, . . . , 11) is insu�cient to capture the true dynam-
ical behavior of the system, whereas too large a number of modes
(Nm = 20, 24) may be unnecessary. In this example, an adequate but
not excessive number of modes seems to be around Nm = 16, as no
signi�cant information is gained by increasing Nm.

Figure 8 shows the sparse structure of the recovered solution by
di�erent methods. Here, we mention that the true nonzero param-
eters of Kuramoto-Sivashinsky equations (KSE) using Nm = 16 are
200 parameters that vary in the magnitude from 0.9701 to 1705.
With the second order expansion, our basis matrix will have 153

candidate functions, and it will be nearly singular with condition
number 4× 107. Likely due to such high condition number, neither
TW nor SINDy gives reasonable reconstruction. In particular, we
note that the solution of SINDy is already optimized by selecting the
threshold value λ that is slightly above λ∗, where λ∗ ≈ 0.1731 is the
smallest magnitude of the true nonzero parameter of the full least
squares solution. A larger value of λ only worsens the reconstruction,
as we found numerically.

The OLS method overcomes the disadvantage of LS by itera-
tively �nding the most relevant “feature” variables, where relevance
is measured in terms of (squared)model error, but it comes at a price:
similar to LS, the OLS is sensitive to outliers in the data and such sen-
sitivity seems to be evenmore ampli�ed due to the smaller number of
terms typically included in OLS as compared to LS, which cause the
high false negative rate in theOLS solution. Although the ER solution
has a few false negatives, it was completely able to recover the overall
dynamic of the system as shown in Fig. 9, while all other solutions
diverges and failed to recover u(x, t).

Example 3. (Double-Well Potential). Finally, in order to gain
further insights into why standard methods fail under the presence
of outliers, we consider a relatively simple double-well system, with

f (x) = x4 − x2. (16)

Suppose that we measure x and f , can we identify the function f (x)?
We sample 61 equally spaced measurements for x ∈ [−1.2, 1.2], and
we construct 8 using the 10th order polynomial expansion with

FIG. 9. u(x, t) constructed by the true
solution (left) and the ER solution (right)
using Eq. (13). OLS and TW were not
able to reproduce the dynamic and they
diverge after a few iterations. We see
that the reconstructed dynamic using ER
solution is identical to the true solution
with a minor difference in the transient
time, although there was a false nega-
tive in the ER solution. ER detected the
stiff parameters that dominate the over-
all dynamic. Sloppiness of some KSE
parameters makes their influence practi-
cally negligible to the overall dynamic.
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FIG. 10. Double-well potential given by Eq. (16) data fitting using ER and CS. CS solution found as the solution with minimum residual from 100 log-spaced values of
ε ∈ [10−9, 102].

K = 11 being the number of candidate functions. Then, we consider
a single �xed value corrupted measurement to be f (0.6) = 0.2.

Figure 10 shows the results the double-well SID under a single
outlier in the observation. We see the robustness of ER solution to
the outliers while CS failed in detecting the system sparse structure.
For the sake of clearness, Fig. 10 shows the results for CS and ER. The
results for each solver and details are provided in the supplementary
material.

DISCUSSION

The main theme of the paper is on nonlinear system identi�ca-
tion (SID) under noisy observations, which is to learn the functional
form and parameters of a nonlinear system based on observations
of its states under the presence of noise and outliers. We recast the
problem into the form of an inverse problem using a basis expansion
of the nonlinear functions. Such basis expansion, however, renders
the resulting problem inherently high dimensional even for low-
dimensional systems. In practice, the need for �nite-order truncation
as well as the presence of noise causes additional challenges. For
instance, even under iid Gaussian observational noise for the state
variables, the e�ective noise in the inverse problem is not necessar-
ily so. As we demonstrate using several example systems, including
the chaotic Lorenz system and the Kuramoto-Sivashinsky equations,
existing SID methods are prone to noise and can be quite sensitive
to the presence of outliers. We identify the root cause of such nonro-
bustness to themetric nature of the existingmethods, as they quantify
error based onmetric distance, and thus a handful of data points that

are “corrupted” by large noise can dominate the model �t. Each of
the existingmethods we considered has this property, which includes
the least squares, compressive sensing, and Lasso. From amathemat-
ical point of view, each method can be interpreted as a functional
that maps input data to a model, through some optimization process.
In a noisy setting, the output model should ideally change smoothly
with respect to the input data, not just continuously. Our results sug-
gest that these popular methods in fact do su�er from a sensitive
dependence on outliers, as a few corrupted data can already produce
very poormodel estimates. Alarmingly, the now-popular CSmethod,
which is based on sparse regression, can force to select a completely
wrong sparse model under noisy input data, and this occurs even
when there is just a single outlier. This is by no means contradict-
ing previous �ndings of the success of CS in SID, as in such work,
noise is typically very small, and here we are considering a perhaps
more realistic scenario with larger noise.

To �ll the vacancy of SID methods that can overcome outliers,
we develop an information-theoretic regression technique, called
entropic regression (ER), that combines entropy measures with an
iterative optimization for nonlinear SID. We show that ER is robust
to noise and outliers, in the otherwise very challenging circumstances
of �nding a model that explains data from dynamical stochastic
processes. The key to ER’s success is its ability to recover the cor-
rect and true sparsity structure of a nonlinear system under basis
expansions, despite either relatively large noise or alternatively even
relatively many even larger outliers. In this sense, ER is superior to
any other method that we know of for such settings. Note that in the
ER algorithm, least squares is used to estimate the parameters of those
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basis functions that are deemed relevant where relevance is detected
using an information-theoretic measure that is insensitive to noise
and outliers. The choice of least squares in the regression step in ER
is not necessarily an optimal choice and can be potentially replaced
by more advanced methods (e.g., those developed in robust regres-
sion). In the current implementation of ER, we adopted least squares
mainly due to its computational advantage over alternative methods.
On a more fundamental level, ER’s robustness against outliers may
likely be attributed to an important principle in information theory
called the asymptotic equipartition property (AEP).15 The outcome
of this principle is that sampled data can be partitioned into “typical”
samples and “atypical” samples, with the rare atypical samples end-
ing up in�uencing the estimated entropy relatively weakly. Since ER
measures relevance by entropy instead of metric distance, a few out-
liers, nomatter how far away they are from the rest of the data points,
tend to have minimal impact on the model identi�cation process. So,
the general interpretation we make here is that outliers observations
are likely atypical, but not part of the core of data that carry themajor
estimation of the entropy. This foundational concept of information
theory is likely the major source of robustness of our ER method to
system identi�cation.

METHODS

Existing metric-based methods for system

identification

Recall (from the main text) that we recast the nonlinear system
identi�cation problem here. Given a truncated basis representation
of each component of the vector �eld F, expressed as

Fi(z) =

K
∑

k=0

aikφk(z), (17)

we consider sampled data ẑ and the estimated vector �eld F̂, from
which the coe�cients (parameters) {aik} are to be determined. In
general, we use subscript “t” to index the sampled data, and thus the
tth sample satis�es the equation

F̂i(ẑ(t)) =

K
∑

k=0

aikφk(ẑ(t))+ ξi(t) (t = 1, . . . ,T; i = 1, . . . , n).

(18)

Here, ξi(t) is the e�ective noise that represents the accumulative
impact of truncation error, state observational noise, as well as
approximation error in the estimation of derivatives. Consequently,
an iid Gaussian noise additive to the states zi(t) can translate into
correlated non-Gaussian e�ective noise for ξi(t).

A system identi�cation problem can be transformed into
parameters estimation problem (or inverse problem) in the form of

f (i) = 8a(i) + ξ (i), (19)

where f (i) = [F̂i(ẑ(1)), . . . , F̂i(ẑ(T))]
>
∈ R

T×1 represents the esti-
mated function Fi (i-th component of the vector �eld F),
8 = [φ(1), . . . ,φ(K)] ∈ R

T×K (with φ(k) = [φk(ẑ(1)), . . . ,φk(ẑ(T))]
∈ R

T×1) represent sampled data for the basis functions, ξ (i)

= [ξi(1), . . . , ξi(T)]> ∈ R
T×1 represents e�ective noise, and

a(i) = [ai1, . . . , aiK]
> ∈ R

K×1 is the vector of parameters, which is to
be determined. Since the form of the Eq. (19) is the same for each
i, we omit the index when discussing the general methodology, and
consider the following linear inverse problem:

f = 8a+ ξ , (20)

where f ∈ R
T×1 and 8 ∈ R

T×K are given, with the goal is to esti-
mate a ∈ R

K×1 when the e�ective noise is not necessarily from
independent multivariate Gaussian distribution.

Least squares (LS)

The most commonly used approach to estimate a in Eq. (20)
is to use the least squares criterion, which �nds a by solving the
following least squares minimization problem:

min
a∈RK
‖8a− f ‖2. (21)

The solution can be explicitly computed, giving

a(LS) = 8†f , (22)

where 8† denotes the pseudoinverse of the matrix 8.30 Note that
in the special case where the minimum is zero (which is unlikely
under the presence of noise), the minimizer is not unique and the
“least-squares” solution typically refers to a vector a that has the
minimal 2-norm and solves the equation 8a = f . The LS method
has several advantages: it is analytically traceable and easy to solve
computationally using standard linear algebra routines (e.g., Singu-
lar Value Decomposition [SVD]). However, a main disadvantage of
the LS approach in system identi�cation, as we discuss in the main
text, is that it generally produces a “dense” solution, where most (if
not all) components of a are nonzero, which is a severe over�tting
of the actual model. This (undesired) feature also makes the method
sensitive to noise, especially in the under-sampling regime.

Orthogonal least squares (OLS)

In orthogonal least squares (OLS),4,31,32 the idea is to itera-
tively select the columns of 8 that minimize the (2-norm) model
error, which corresponds to iterative assigning nonzero values to
the components of a. In particular, the �rst step is to select basis
φk1

and compute the corresponding parameter ak1 and residual r1
according to

{

(k1, ak1) = argmink,c‖f − cφk‖2,

r1 = f − φk1
ak1 .

(23)

Then, one iteratively selects additional basis functions (until stopping
criterion is met) and compute the corresponding parameter value
and residual as

{

(k`+1, ak`+1) = argmink,c‖r` − cφk‖2,

r`+1 = r` − φk`+1
ak`+1 .

(24)

As for stopping criteria, there are several choices including AIC and
Bayesian information criterion (BIC). In this work, in the absence of
knowledge of the error distribution, we adopt a commonly used cri-
terion where the iterations terminate when the norm of the residual
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is below a prescribed threshold. To determine the threshold, we con-
sider 50 log-spaced candidate values in the interval [10−6, 100] and
select the best using the 5-fold cross validation.

Lasso

A principled way to impose sparsity on themodel structure is to
explicitly penalize solution vectors that are nonsparse, by formulating
a regularized optimization problem

min
a∈RK

(

‖8a− f ‖22 + λ‖a‖1
)

, (25)

where the parameter λ ≥ 0 controls the extent to which sparsity is
desired: as λ→∞, the second term dominates and the only solu-
tion is a vector of all zeros, whereas at the other extreme, λ = 0 and
the problem becomes identical to a least squares problem, which gen-
erally yields a full (nonsparse) solution. Values of λ in between then
balances the “model �t” quanti�ed by the 2-norm and the sparsity
of the solution characterized by the 1-norm. For a given problem,
the parameter λ needs to be tuned in order to specify a particular
solution. A common way to select λ is via cross validation.33 In our
numerical experiments, we choose λ span according to Ref. 33, with
the 5-fold cross validation and 10 values of λ span.We adopt the CVX
solver,34 and from all the solutions found for each λ, we select the
solution with minimum residual.

Compressed sensing (CS)

Originally developed in the signal processing literature,35–37 the
idea of compressed sensing (CS) has been adopted in several recent
works in the nonlinear system identi�cation.6,7 Under the CS frame-
work, one solves the following constrained optimization problem:

{

argmina‖a‖1,

subject to ‖8a− f ‖ ≤ ε,
(26)

where the parameter ε ≥ 0 is used to relax the otherwise strict
constraint 8a = f , to allow for the presence of noise in data. In
our numerical experiments, we choose 10 log-spaced values for
ε ∈ [10−6, 100], and the 5-fold cross validation. We adopt the CVX
solver,34 and from all the solutions found for each ε, we select the
solution with minimum residual.

SINDy

In their recent contribution, Brunton, Proctor, and Kutz intro-
duced SINDy (Sparse Identi�cation of Nonlinear Dynamics) as a way
to perform nonlinear system identi�cation.2 Their main idea is, after
formulating the inverse problem (20), to seek a sparse solution. In
particular, given that Lasso can be computationally costly, they pro-
posed to use sequential least squares with (hard) thresholding as an
alternative. For a (prechosen) threshold λ, the method starts from a
least squares solution and abandons all basis functions whose corre-
sponding parameter in the solution has absolute value smaller than
λ; then, the same is repeated for the data matrix associated with the
remaining basis functions, and so on and so forth, until no more
basis function (and the corresponding parameter) is removed. For
fairness of comparison, we present results of SINDy according to
the best threshold parameter λ manually chosen so that no active
basis function is removed in the very �rst step (see KSE example); for

the Lorenz system example, we choose λ = 0.02 as used in a similar
example as in Ref. 2.

Tran-Ward (TW)

In their recent paper,9 Tran andWard considered the SID prob-
lem, where certain fraction of data points are corrupted, and pro-
posed a method to simultaneously identify these corrupted data and
reconstruct the system assuming that the corrupted data occur in
sparse and isolated time intervals. In addition to an initial guess of
the solution and corresponding residual, which can be assigned using
standard least squares, the TWapproach requires a predetermination
of three additional parameters: a tolerance value to set the stopping
criterion, threshold value λ used in each iteration to set those param-
eters whose absolute values are below λ to be zero, and another
parameter µ to control the extent to which data points that do not
(approximately) satisfy the prescribed model are to be considered as
“corrupted data” and removed. For the Lorenz system example, we
used the same parameters as in Ref. 9, whereas for the KSE example,
we �x µ = 0.0125 (the same used in Ref. 9 and select λ similarly as
for the implementation of SINDy.

Implementation details of entropic regression (ER)

As described in the main text, and as shown in details in
Algorithm (1), a key quantity to compute in ER is the conditional
mutual information I(X;Y|Z) among three (possibly multivariate)
random variables X, Y , and Z via samples from these variables,
denoted by (xt , yt , zt)t=1,...,T . Since the distribution of the variables
and their dependences are generally unknown, we adopt a non-
parametric estimator for I(X;Y|Z), which is based on statistics of
k nearest neighbors.38 We �x k = 2 in all of the reported numerical
experiments; we have found that the results change quite minimally
when k is varied from this �xed value, suggesting relative robustness
of the method.

Another important issue in practice is the determination of
threshold under which the conditionalmutual information I(X;Y|Z)

should be regarded zero. In theory, I(X;Y|Z) is always non-negative
and equals zero if and only if X and Y are statistically independent
given Z, but such an absolute criterion needs to be softened in prac-
tice because the estimated value of I(X;Y|Z) is generally nonzero
even when X and Y are indeed independent given Z. A common way
to determine whether I(X;Y|Z) = 0 or I(X;Y|Z) > 0 is to compare
the estimated value of I(X;Y|Z) against some threshold. See Sec. (??)
for details of robust estimation of the threshold in the context of SID.

SUPPLEMENTARY MATERIAL

See the supplementary material for more details on informa-
tion theory measurements and additional numerical results for the
double-well potential, the Lorenz system, and a coupled network of
the logistic map.
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