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We consider the effects of noise on a model of epidemic outbreaks, where the outbreaks appear randomly.

Using a constructive transition approach that predicts large outbreaks prior to their occurrence, we derive an

adaptive control scheme that prevents large outbreaks from occurring. The theory is applicable to a wide range

of stochastic processes with underlying deterministic structure.
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I. INTRODUCTION

Recently, there has been much research of steady state
epidemics in random populations [1] and their control [2].
Nonequilibrium diseases, in contrast, are those diseases ex-
hibiting outbreaks that fluctuate in time. Childhood [3,4] and
tropical diseases [5,6] are a few examples of outbreaks hav-
ing strong annual oscillations with random amplitude. In
modeling the annual incidence of infections, random compo-
nents from the environment and/or populations play a sig-
nificant role [7,8]. While excellent data from seasonally fluc-
tuating diseases illustrate strong annual oscillations with
random peak outbreaks in the infections [4,9], models and
data analysis reveal that outbreaks stem from stochastic per-
turbations in either population or epidemic parameters, mak-
ing deterministic prediction difficult.
Predictability of seasonally driven diseases that are sto-

chastic is necessary for the application of methods to sup-
press future outbreaks. Many vaccine schemes are available
for equilibrium diseases [3,10], but in the case of nonequi-
librium outbreaks, current methods may enhance outbreaks
or fail to achieve their goals [11,12]. (Similar problems arise
in the large fluctuation theory of stochastic dynamical sys-
tems [13].) Other methods pulse the population without sam-
pling for prediction [14], or they rely on reducing spread via
mean threshold reduction [3]. To address the problem of sup-
pressing outbreaks in stochastic epidemics, we apply a math-
ematical method [15] to a stochastic model to predict out-
breaks before they occur, and then adapt a vaccine strategy
which prevents the outbreak from occurring. The theory ex-
ploits a transition probability description from small ampli-
tude incidence to outbreak dynamics, and generates a region
of high probability transport of the most sensitive regions to
stochastic effects. Moreover, it allows us to monitor regions
of stochastic dynamics that have a high probability of pre-
ceding a large outbreak, which in turn leads to a design of a
vaccine control strategy to suppress outbreaks. We thus argue
a general simple, but effective, control technique that takes
advantage of complicated interactions of determinism and

noise. The techniques introduced here may also be applied to
general stochastic nonautonomous systems of the form

dx

dt
= G!x,t" + !!t" , !1"

where G!x , t"=G!x , t+1", and the noise is added periodically
with the period of drive, i.e.,

!!t" = !n"!t ! n",n = 1,2, . . . , !2"

" is the Dirac delta function, and !n is now a discrete ran-
dom variable. The form of Eq. (1) allows us to consider the
dynamics as a discrete-time constantly perturbed stochastic
dynamical system.

II. A STOCHASTIC EPIDEMIC MODEL

A standard system used to study and predict the stochastic
dynamics of disease epidemics is based on a simplified re-
duced version of the well-known SEIR (defined below) com-
partmental model [7,9,16], known as the modified SI model
[17]. In deterministic settings, the system has been exploited
to model single and coupled patch populations [18], as well
as testing vaccine strategies [14,19]. Assume that the popu-
lation is sufficiently large so that the various subgroups are
assumed to be continuous. The population dynamics is de-
scribed by susceptible S!t"; exposed, but not yet infectious,
E!t"; infective I!t". The recovered R!t" class in the model can
be derived from model results since S+E+ I+R=1 [17].
Seasonality is input into the model via the contact rate,

#!t", so we let #!t"=#0!1+$ cos 2%t", where 0&$'1.
Other parameters used to quantify the dynamics are a scep-
tible input rate ( (which includes the birth rate, as well as a
possible fixed vaccine control), the mean latent period, )–1,
and the infectious period, * !1. The full deterministic rate
equations are given by

dS!t"
dt

= (#1 + h!t"$ ! #!t"SI ! (S ,
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dE!t"
dt

= #!t"SI ! )E ! (E ,

!3"
dI!t"
dt

= )E ! *I ! (I ,

R!t" = 1 ! #S!t" + E!t" + I!t"$ ,

where h!t" is a small perturbation used for vaccination. That
is, when h!t" is negative, the input of susceptibles into the
system is reduced. Since it will be designed to be adaptive
stochastic control, h!t" will also depend on the state vari-
ables.
For realistic childhood disease parameters chosen here,

theoretical [20] and numerical analysis [17] show that for
almost all cases, the infective and exposed population follow
each other in time to first order, leading to a reduction which
describes a modified SI model (MSI), given by

dS!t"
dt

= (#1 + h!t"$ ! (S!t" ! #!t"I!t"S!t" ,

!4"
dI!t"
dt

= % )

( + *
&#!t"I!t"S!t" ! !( + )"I!t" .

The parameters used for measles data [20] are given by (
=0.02, )=1/0.0279, *=1/0.01, #0=1575, and $=0.095, and
are fixed throughout the paper. Here, the parameter h!t" is a
time-dependent vaccine control whose value we will calcu-
late adaptively, and depends on the phase space location of
(S!t" , I!t").
Following the discretized stochastic model in Eq. (1), we

strobe the system with period-1 to create a Poincaré map.
Without loss of generality, we define a discrete stochastic
model for the purposes of this paper [21]. Using a discrete
stochastic map approach will allow us to make careful and
accurate interpretations in terms of the (S!t" , I!t") variables,
as well as to examine the interaction of the dynamics and
control with the underlying topology of the system. We con-
sider the uncontrolled stochastic system !h=0" as a two-
dimensional map F of a region D into itself

!S,I"!t + 1" = F#!S,I"!t"$ + !!t" , !5"

where ! is a two-dimensional random variable having a nor-
mal distribution given by v!x"=e!!xT+!1x"/2 / !2%'+'1/2", with
+=diag !,2", and we choose the standard deviation to be ,
=0.035. Since the two-dimensional deterministic system has
an attractor with unequally-sized components, the noise am-
plitude is scaled so that it is defined on the unit square.
Because the standard deviation is based on the rescaled co-
ordinates, it is small compared to the attractor size and is
smaller than the modulation component of the contact rate in
Eq. (4). A typical time series of the I component is shown in
Fig. 1. Notice the frequent aperiodic bursts, which for the
chosen parameters of the deterministic part of the model, Eq.
(4), would not occur were it not for the random perturbations
in Eq. (5); the deterministic and stochastic parts interact in a
fundamental way to create complicated oscillations that ei-

ther phenomenon could not create on their own.
Notice that in the absence of any stochastic fluctuations

#!!t"(0$, the system will settle down to one of two periodic
solutions. The two stable solutions are plotted in the Fig. 1
inset. The period 2 cycle has a small amplitude (SA) while
the period 3 cycle is of large amplitude (LA). However, as
seen from the time series in the figure, outbreaks, which
occur due to stochastic fluctuations, may have enhanced am-
plitudes by almost an order of magnitude over the period 3
cycle.
Although the system is stochastic, its dynamics may be

quantified in terms of Lyapunov exponents by spatial inte-
gration against the invariant density [22]. For the parameters
used to generate the time series in Fig. 1, we compute the
Lyapunov exponents, and find them to be -1=0.1638 and
-2=!0.4853. These values, together with the evidence of
nearly intersecting stable and unstable manifolds [23], indi-
cate a completed horseshoe dynamics under the influence of
the noise, described as stochastic chaos [8,15]. However, the
completed horseshoe dynamics, indicative of chaos in deter-
ministic systems, is a geometric way of thinking about the
interaction of noise and the underlying manifold structure of
the deterministic part. The chaotic-looking dynamics are the
result of mixing two stable attractors, while sampling un-
stable dynamics between them. The positive Lyapunov expo-
nent is therefore a way of measuring contributions to the
stochastic attractor of dynamics tracking near unstable mani-
folds. The fraction of time spent near the unstable manifolds,
as well as the transition probabilities of the dynamics switch-
ing from small to large amplitude behavior may be explained
by taking a dynamic probabilistic approach, which we sketch
briefly. A full mathematical description is given in [15].

III. DISCRETE STOCHASTIC DYNAMICS AND

TRANSITION PROBABILITIES

If the noise is continuous, we can compute the evolution
of the probability density using a Fokker-Planck approach
[24]. However, since the approach is one of discrete noise as
in Eq. (1), we evolve the densities discretely as well. That is,

FIG. 1. This is an uncontrolled time series of the fraction of

infectives I for the MSI model under random forcing in Eqs. (4) and
(5). The parameters are given in the text. Inset: Note the small (SA)
period 2 and large (LA) period 3 amplitude oscillations of the un-
derlying bistable deterministic system. No chaos is present when

!!t"=0, and the system only exhibits periodic SA or LA

oscillations.
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since the solution to the periodically driven is computed ev-
ery period to form the discrete map, we do the same with the
density.
We assume the noise comes from a distribution, .!x". The

evolution of an initial probability density function (PDF),
/ :D!R2→R, is defined by the stochastic Frobenius-Perron
operator [15] PF :L1!R2"→L1!R2", given by

PF„/!x"… = )
D

.#x – F!y"$/!y"dy . !6"

The density is invariant if it is a fixed point of the operator.
This approach allows an approximation of the probabilistic
transitions of one part of phase space to another [15] as well
as the invariant density [25].
To compute the transition probabilities from one region of

phase space to another, we discretize the region D of phase
space. Specifically, we assume there exists a cover of the
region D by disjoint sets Bi,

D = "
i=1

N

Bi. !7"

Defining the set of characteristic basis functions,

0i!x" = 1Bi!x" ( *1, x ! Bi

0, x " Bi
!8"

allows one to generate finite dimensional projections of
transport by computing the N2N matrix entries of a transi-
tion probability matrix [8,15] given by the equation

Mi,j = )
D

PF„0i!x"…0 j!x"dx . !9"

Therefore, Eq. (9) yields the probability of transporting mass
from box Bi to Bj.
In considering the problem of predicting stochastic out-

breaks in the MSI model, we wish to compute the transition
from a small amplitude (SA) oscillation to a large amplitude
(LA) outbreak in a time series, such as the one generated in
Fig. 1. The inset shows the deterministic periodic orbits of
SA and LA, although noise may generate much larger out-
breaks than the deterministic LA orbit. Stochastic perturba-
tions of SA in the inset are approximately the same ampli-
tude, and therefore are used as a threshold to define large
outbreaks. The mass flux entries generated by Eq. (9) can be
combined with the invariant density to generate the condi-
tional probability of transition from set Bi to Bj, given Bi. A
representation of the transition probability is depicted in Fig.
2. Notice that the most active transport regions lie close to a
stable manifold of an LA orbit (period 3 saddle) in the un-
derlying deterministic system. This stable manifold is the
deterministic basin boundary which separates the SA (period
2) and LA (period 3) regular orbits of Eq. (4), and the col-
oring denotes the degree and location where this pseudobar-
rier is overcome due to noise. Notice that near each of the
basin boundary saddles of period 3, transition to an outbreak
is likely. However, the highest transition region is not near
any saddle. Rather, the probability of an outbreak in this

region is solely due to the interaction of the noise and the
global topology of the underlying deterministic dynamics.

IV. ACTIVE CONTROL OF STOCHASTIC

OUTBREAKS

For deterministic systems, normal methods of vaccine
control will reduce the input rate of susceptibles. The value
of h is usually computed so that at equilibrium (no seasonal
forcing, or $=0), the net rate of production of infectives in
one infectious period is less than unity. Under these condi-
tions, the disease will die out. However, control of small
amplitude oscillations in the periodically driven case can be
done, but the disease will persist [26].
In the stochastic case in the presence of periodic drives,

constant controls may make the problem worse. In Fig. 3, we
see a direct comparison of constant vaccine control and no
control. Notice that although the mean level of outbreaks
appear to be reduced, the large fluctuations are greater than
without control. Therefore, constant vaccine control, al-
though sometimes the only guide, may increase the size of
large outbreaks. Therefore, it is natural to try to sample and
control discretelywhen considering stochastic outbreaks.
Vaccine activation using a variable h depends on finding

the regions where an outbreak is most likely upon the next
iteration. These are points of the trajectory generated by Eq.
(5) in the SA basin that precede iterates in the LA basin.
Although we compute conditional outbreaks from the spatial
averages using the transition matrix, this is verified tempo-
rally. Using an uncontrolled stochastic time series of 50 000
iterates, and checking in which basin (SA or LA) each iterate
is located, we show in Fig. 4 the most likely preoutbreak
regions. In comparison to Fig. 2, the spatial average predicts
similar transport regions of high conditional probability of
the SA-LA transition.
We now define a bull’s eye (BE) region to be an open

connected neighborhood having high probability of transi-
tion from SA to LA outbreaks. The BE region, for a chosen
threshold, is clearly shown in red in Fig. 2. Distinguishing
the center point xc, the BE region includes a neighborhood of
radius 3 that has a probability greater than a given threshold.
Notice that this is not the only region in which transition
occurs. Monitoring the BE region alone, therefore, is not
sufficient for prediction of transitions [27]. However, it can
be used to determine other regions that are not obvious for
transition to an outbreak.
We can use the BE region as a first guess to monitor the

dynamics. Let x0!E be the current point of the observed
dynamics, and xL a desired target point in the transport space
close to the image of E, but in a region of lower transition
probability. The relationship between the current point in the
trajectory x0 and the center of the bull’s eye xc is x0=xc+y
for some y. To move the image of x0 closer to the target point
xL, we activate the control parameter h in Eq. (4). By Taylor
expansion about F!xc ,(" when h=0 and ignoring higher or-
der terms, we solve

h =
#xL ! F!xc,(" ! !xF!xc,("y$T!(F!xc,("

'!(F!xc,("'2
, !10"

assuming !(F!xc ,(""0. This control strategy is designed to
target a desired region of lower probability, given the iterates
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land in a region of high transition probability.
Now we apply control to suppress large amplitude out-

breaks. Focusing on points in a neighborhood of the BE re-
gion has the disadvantage that the values of I are already
fairly large. Therefore, we use the detection region of the
neighborhood around the (deterministic) preimage of the
bull’s eye, F !1!E ,(", shown as an ellipse in Fig. 4. Using
Eq. (10), the image of the ellipse, Ih, is found to be the figure
eight shown in Fig. 4. We targeted a region in Ih which is
close to the BE region but has a very low transition probabil-
ity. Our techniques successfully steer trajectories away from
the bull’s eye region towards SA behavior by using only
vaccine perturbations that control the flow of susceptibles
about some mean value.
One advantage of choosing the detection region to be the

preimage of BE is for relatively low values for the number of
infected individuals !I", a prediction can be made about the
future increase and steps can be taken to avert these dynam-
ics. The perturbations represent a vaccination program, tak-
ing the form of (new=(#1+h!t"$. If h is negative, then more
vaccinations are required to reduce the rate of susceptible
individuals being introduced into the population. An example

of the success of this algorithm is shown in Fig. 5. On aver-
age, perturbations are applied 25–30 % of the time. Notice
the maximum amplitude in comparison to the uncontrolled
dynamics of Fig. 1. For this example, the Lyapunov expo-
nents are -1=0.0794 and -2=!0.3764, where the maximum
exponent has been significantly decreased.

V. DISCUSSION

Stochastic bursting is present in many systems that are
based on population dynamic modeling. In general, when
such systems are subject to periodic forcing, there exist pa-
rameter regions in which multiple attractors coexist. Typi-
cally, one of these attractors arises from periodically forced
equilibrium, and therefore, is typically of small amplitude.
On the other hand, the other attractors bifurcate from saddle
node orbits, which tend to be of larger amplitude. Such
bistable systems can have a simple manifold structure, but
when considered in the presence of stochastic fluctuations,
they may exhibit complex mixing between the bistable at-
tractors, coupled with complicated looking transients be-
tween the basins.

FIG. 2. (Color) The GTM result of the conditional probability of transition from small amplitudes to large outbreaks using the same

parameters as in Fig. 1. The highest probability regions of transport (red) point to a bull’s eye monitoring region for control. Overlaid are the
stable and unstable manifolds corresponding to the underlying deterministic model.

SCHWARTZ, BILLINGS, AND BOLLT PHYSICAL REVIEW E 70, 046220 (2004)

046220-4



By using the PDF flux, we are able to distinguish regions
in the small amplitude basin that are quite sensitive to sto-
chastic effects. We use this information in a control algo-
rithm to prevent bursting dynamics (that is, to control sto-
chastic chaos). It monitors this sensitive region and adjusts
one physically relevant parameter to keep trajectories in the
SA basin. This idea of monitoring a loss region has been

used in other chaos control schemes that are deterministic
(i.e., [28,29]). To our knowledge, we are not aware of any
stochastic chaos control methods that account specifically for
the emergent effects of stochastic perturbations.

FIG. 3. (a) An uncontrolled time series of infective fraction as a function of time. (b) Constant vaccine control to reduce the rate of input
of susceptibles.

FIG. 4. Temporal average of those iterates leading to outbreaks

in the next iterate using the same parameters as in Fig. 1. Notice the

agreement with the spatial average in Fig. 3. The ellipse bounds the

detection region. The figure eight curve is the image of the ellipse

with controlled targeting.

FIG. 5. Stochastic control to suppress large outbreaks in the

MSI model. (a) Infectives with suppressed outbreaks due to control
in the influx of infectives. (b) Perturbations h to the susceptible
input rate ( in Eq. (4).
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One concern with a probabilistic detection scheme is that
it is dependent on the choice of the monitoring region used
for transition to an outbreak. Two issues with taking an ac-
tual time series and using the monitoring scheme above is
that it may miss an outbreak that is there (missed detection),
or it may predict an outbreak that does not occur. These
statistics depend heavily on the size of the monitoring one
uses. To see this in Fig. 6, we change the radius around of the
center of the bull’s eye and the radius around its preimage.
Each dot plotted in Fig. 6 is for a different radius. The small-
est radii are represented by the data points on the right. As
we increase the radii, the data points move along the curve to
the left. The false alarms are those outbreaks predicted by the
bull’s eye, but do not occur. The missed detection are the
bursts that occur but are not predicted by the maximum flux
hypothesis. It is the percentage not detected.
The choice we made for the detection region has solely

been guided by time series observations and PDF flux pre-
dictions. It has not been optimized for the minimum number
or size of perturbations. Because of the stochastic perturba-
tions added to the system, the control measures will not “trail
off” as in targeting unstable periodic orbits.
One very interesting aspect of the control perturbation is

that the value of h is sometimes positive. This counterintui-
tive result may be explained since an increase in S is used to

trigger an earlier, but smaller, outbreak. To understand this,
we consider the MSI model, but transformed and scaled, so
that the steady state equilibrium in the absence of forcing is
now at the origin, and we examine the conservative system
in the absence of damping as well [30],

x!!t" = ! .y ,

!11"
y!!t" = .x!1 + y" .

In Eq. (11), x is a scaled susceptible, y is a scaled infec-
tive, the equilibrium is at the origin, and the frequency . is a
function of the epidemiological parameters. Notice that since
the population is assumed to be constant, inthe absence of
any infectives [y=!1 in Eq. (11)], the fraction of suscep-
tibles slowly increases. In addition, all oscillatory solutions
must lie on level curves to the Lyapunov function: V!x ,y"
=x2+2y!2 ln !y+1".
Now suppose we have a small amount of infectives im-

posed by a strong level of vaccine. Then the infectives will
stay small for a long period of time, until enough suscep-
tibles grow to cause an outbreak of very large amplitudes by
coming in contact with a few infectives [31]. That is, an
outbreak will not occur unless the susceptibles reach a criti-
cal level in a long time scale while in the presence of a small
fraction of infectives. To be specific, suppose y=!1+c3,
where c40 is constant. Then y!=xc3. If x'0, then the in-
fectives decrease further, implying a much larger outbreak at
a later time. Therefore, if one increases the infectives, the
system fires sooner, with a smaller outbreak, since the infec-
tives are pushed further away from the invariant line y=!1.
When the control h is adjusted so that it is positive, the effect
is to cause an increase in the rate of infectives, thus reducing
the size of the outbreak.
Finally, although the vaccine control fluctuations do not

decrease the mean incidence levels of infection, the control
may be combined with tracking methods for epidemic con-
trol [26] to reduce the mean reproductive rate of infection
below threshold to kill off the disease without causing un-
wanted outbreaks during vaccination.
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