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Abstract. Invariants of topological spaces of dimension three play a major
role in many areas, in particular . . .

Introduction by the Organisers

The workshop Invariants of topological spaces of dimension three, organised by
Max Muster (München) and Bill E. Xample (New York) was well attended with
over 30 participants with broad geographic representation from all continents. This
workshop was a nice blend of researchers with various backgrounds . . .
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Abstracts

Finite Time Curvature and a Differential Geometry Perspective of
Shape Coherence by Nonhyperbolic Splitting

Erik M. Bollt, Tian ma

1. Introduction

Recently the notion of coherence has been pushed toward a more rigorous foot-
ing, and particularly within the recent advances of finite-time studies of nonau-
tonomous dynamical systems. Here we recall shape coherent sets proved to corre-
spond to slowly evolving curvature, for which tangency of finite time stable and
unstable foliations serve a central role. Zero-angle curves, meaning non-hyperbolic
splitting, describe boundaries of shape coherent sets. We show a Finite-Time
Curvature evolution field (FTC) is particularly useful in identifying curves that
correspond to persistent shape coherence.

2. Shape Coherence

We recently introduced a definition concerning coherence called shape coherent
sets, motivated by an intuitive idea of sets that “hold together” through finite-time.

Definition 2.1. [1] Finite Time Shape Coherence The shape coherence factor
α between two measurable nonempty sets A and B under a flow Φt after a finite
time epoch t ∈ 0 : T is,

(2.1) α(A,B, T ) := sup
S(B)

m(S(B) ∩ ΦT (A))

m(B)
,

where S(B) is a group of transformations of rigid body motions of B.

We proved that angle of the finite-time stable and unstable foliations as defined,

(2.2) θ(z, t) := arccos
〈f ts(z), f tu(z)〉
‖f ts(z)‖‖f tu(z)‖

,

corresponds to level curves, and the zero level curves correspond to slowly evolving
curvature. Furthermore, such curves can be proved to exist and constructed by the
implicit function theorem. Finally considering a Finite-Time Curvature evolution
field (FTC), by,

(2.3) lε,v(x) = {x̂ = x+ εsv,−1 < s < 1},
then curvature growth at a point x over a time epoch is defined,

(2.4) cT (x) = lim
ε→0

sup
‖v‖=1

κ(φT [lε,v(x)]).

Level curves of this function corresponding a given low threshold can be shown
to correspond to a given significant shape coherence, by use of theorem in [1].
See example of FTC in Fig. 1 and corresponding lowest values corresponding to
outlining shape coherent sets of a Rossby wave.
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Figure 1. The FTC field of Rossby wave and a low threshold.
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