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a b s t r a c t

We explore the approximation of attracting manifolds of complex systems using dimension reducing
methods. Complex systems having high-dimensional dynamics typically are initially analyzed by
exploring techniques to reduce the dimension. Linear techniques, such as Galerkin projection methods,
and nonlinear techniques, such as center manifold reduction are just some of the examples used to
approximate the manifolds on which the attractors lie. In general, if the manifold is not highly curved,
then both linear and nonlinearmethods approximate the surfacewell. However, if themanifold curvature
changes significantly with respect to parametric variations, then linear techniques may fail to give an
accurate model of the manifold. This may not be a surprise in itself, but it is a fact so often overlooked
or misunderstood when utilizing the popular KL method, that we offer this explicit study of the effects
and consequences. Here we show that certain dimensions defined by linear methods are highly sensitive
whenmodeled in situations where the attracting manifolds have large parametric curvature. Specifically,
we show how manifold curvature mediates the dimension when using a linear basis set as a model. We
punctuate our resultswith the definition ofwhatwe call, a ‘‘curvature inducedparameter,’’ dCI . Both finite-
and infinite-dimensional models are used to illustrate the theory.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

When considering a dynamical system with complex dynam-
ics, one of the central problems in its analysis is first attempting to
reduce the dimension of the attractor. For a givenmodelwith suffi-
cient dissipation, there exists constructive methods for dimension
reduction, such as a center manifold analysis and singular pertur-
bation theory. For problems consisting of data generated from ex-
perimental or physical experiments, the techniques are fewer but
still exist.

One very popular method adapted from the probability and
statistics communities is that of principal component analysis
(POD), which also goes by the name of Karhunen–Loeve (KL) anal-
ysis, among others. (See the very nice text [1] and the references
therein.) KL methods have been applied to construct optimal ba-
sis functions which minimize the error in an L2 norm, and also
minimize the entropy [2]. The technique has been valuable in ap-
proximating the dynamics and data from many fields such as tur-
bulence [3], sea surface temperatures and weather prediction [4],
the visual system [5], facial detection and classification [6], and
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even analyzing voting patterns of the supreme court [7]. Since KL
forms a complete orthonormal basis from the model or data, a
finite-dimensional projection of the dynamical system or data set
can be done with a truncated set of modes using a Galerkin type of
expansion [8]. For classifying complexity, the spectrum is a direct
measure of the variance of eachmode, and can be used to compute
the entropy of the system [2].

However, given the potential power of the KL technique for
dimension reduction, a fundamental problem with the use of KL
modes applied to dynamical systems [9–12] is that KL analysis,
often called POD analysis, is fundamentally a linear analysis.
Given a data set of high-dimensional randomly distributed data
points, principle component analysis gives the principle axis of
the time-averaged covariance matrix. That is, it treats data as an
ellipsoidal cloud, and yields the major and minor axes. Details
will be reviewed in Section 3. The aim of this paper is to remind
explicitly how this linear point of view may not be appropriate
for all of the many ways in which POD is applied to data collected
from the evolution of dynamical data toward an underlying global
attractor.

Since KL analysis is so widely used to reduce the dimension
of high-dimensional and complicated models of evolution laws
and dynamical systems, it is important to understand exactly
what functions such an analysis does well, and what are its
shortcomings. This paper is meant to understand better what KL
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analysis can do usefully with regard to dimension reduction, and
how its nonperformance sometimes leads to misleading results.
The problem is that the linear analysis is in some sense ill-
equipped to describe the nonlinear manifold embedding a global
attractor, but it can nonetheless be useful for approximating the
evolution of the dynamical system in the short run, by a low-
dimensional model. Specifically, we will show how the KL analysis
misleads the choice of dimension due to simple scaling of some
dynamical variables, in the case of a specific class of systems with
a well understood stable invariant manifold. We will show how
such systems can lead to errors of embedding dimension with
topological errors, as well as numerical estimation errors; a well
used modeling technique should be insensitive to such change
of variables. We will punctuate our results by introduction of a
definition which we call, a ‘‘curvature induced parameter’’, dCI .

We will display our points regarding curvature of the slow
manifold, and the corresponding KL dimension in terms of several
singularly perturbed systems of increasing complexity, including
a PDE system of a rod coupled to a pendulum. We wish to note
that these KL results are complementary but contrast with any
embedding results which may be derived by Takens’ embedding
theorem [13]. Takens’ embedding theorem also has relevant and
important implications regarding representation of a dynamical
system with as few coordinates as possible, and this is a goal of
any Galerkin method. The two goals sought may be: (1) to produce
minimal coordinates sufficient for good simulation/predictions of
the higher-dimensional system, or, (2) to faithfully (and even
more specifically—diffeomorphically) represent the dynamical
system in an alternative coordinate system for understanding
the topological nature and perhaps bifurcation structure of the
original system. Generally, here, we will be interested in the
former. Takens’ embedding theorem relies on time-delay sampling
of a measurable function of a single scalar time series from the
dynamical system, or combinations of several measurements in
various modern variations of the theorem. In its original form,
the theorem states that a delay vector of dimension 2d + 1
is a sufficient embedding of the dynamics on the underlying
manifold, the 2d+1 coming from theWhitney embedding theorem
from which Takens’ theorem is derived. In the case of a PDE,
for example, the scalar measurement could be the time varying
Fourier coefficient from some (dominant) mode in some general
basis. If the dimension d of this slow manifold is large, then the
embedding may be large. However, the goal of the embedding
analysis is of exact representation of the dynamics in terms of an
alternative coordinate system, the time-delay coordinates, where
the measurement is generally considered to be the same in terms
of diffeomorphism. This analysis is in contrast to the KL analysis,
which is a modal analysis whose goal is representation in terms
of quality of prediction generally, and the modes are defined in
terms of time-average optimal representation over a sampled time
period. For a large enough truncation, we should expect that the
two representations will become diffeomorphically equivalent,
although this does not normally enter into the discussion of KL
analysis, and it will not be explicitly described here.

2. Fast–slow systems as a model for stable invariant manifolds

In this section, we will briefly review the part of standard
singular perturbation theory [14,15] necessary for our discussion,
and then introduce our special restricted form andmodel problem.
A general system with two distinct time scales is the following
standard [14,15] fast–slow, or singularly perturbed system,

ẋ = F(x, y),
✏ẏ = G(x, y) (1)

where x 2 <m, y 2 <n, F : <m⇥<n ! <m, andG : <m⇥<n ! <n.
It is easy to see that for 0 < ✏ ⌧ 1, the y(t)-equation runs fast,
relative to the slow dynamics of the first equation for evolution of
x(t). Such systems are called singularly perturbed, since if ✏ = 0
we get a differential–algebraic equation

ẋ = F(x, y),
G(x, y) = 0. (2)

The second ODE becomes an algebraic constraint.
Under sufficient smoothness assumptions on the functions F

and G so that the implicit function theorem can be applied in
form of the Tikhonov theorem, [16], there is a function, or ✏ slow
manifold,

y = h✏(x), (3)

such that,

G(x, h✏(x)) = 0, (4)

for a local neighborhood about ✏ = 0. The singular perturbation
theory concerns itself with continuation and persistence of
stability of this manifold h✏(x) within O(✏) of h✏(x)|✏=0, for 0 <
✏ ⌧ 1 and possibly even for larger ✏.

To motivate our problem, we will concern ourselves with a
special case of fast–slow systems with one way coupling in the
special form,

ẋ = f (x),
✏ẏ = y � ↵g(x). (5)

For reasons of studyingmanifoldswith relevant curvature,we shall
assume that g(x) is o(|x|). Given an equation of this form, it is
immediate thatwe canwrite the ✏ = 0 slowmanifold in the closed
form,

h(x)|✏=0 = ↵g(x). (6)

Eq. (6) gives us freedom to use this system to deliberately design
a slow manifold with curvature properties which we use for
comparisons between the nonlinear nature of curvature to the
linear properties selected by POD. Note that our inclusion of the
↵-parameter is an explicit control over curvature of the slow
manifold.

As an explicit example, consider a Duffing oscillator evolving
in the x-variables, contracting transversally onto a slow manifold
specified as a paraboloid in the y-variables, graphed over the slow
variables,

ẋ1 = x2,
ẋ2 = sin(x3) � ax2 � x31 + x1,
ẋ3 = 1,

✏ẏ = y � ↵(x21 + x22). (7)

If we choose, a = 0.02, b = 3,↵ = 1, and ✏ = 0.001, we get the
chaotic data set shown projected onto a paraboloid, as in Fig. 1.

As an example application of KL analysis to expose its strengths
and shortcomings, we take the data from Eq. (7),

z(ti) = hx1(ti), x2(ti), y(ti)i, (8)

which is a 3⇥nmatrix, shown in Fig. 1, as a parameterized curve in
<3. Also shown on the plane y = 0, in red is the Duffing oscillator
data of the x-component.

Examination of the singular value spectrum, and large spectral
splitting thereof, of the time-averaged covariance matrix is the
usual basis for deciding a KL projection dimension [9–12]. More
precisely, the KL dimension may be defined as the minimum of
KL modes which approximates the dynamic variance to within a
prescribed threshold, usually 95%. We show in Fig. 2 how the 3
eigenvalues of this simple example change with respect to ↵. We
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Fig. 1. A fast–slow Duffing oscillator on a paraboloid attracting submanifold, according to the singularly perturbed Eqs. (7). On the left a typical trajectory and its projection
onto x � y, which is the familiar Duffing oscillator is shown. Right is a uniform sampling of the flow, which yields the dots on the paraboloid, which would be a typical data
set to be processed by a KL method for learning the dimension reduction.

will review the calculation in the next section, but for now, note
that the key point is the possible presence of a spectral gap, which
we define to be,

n : �d+1 � �d

�d
> p (9)

for some large criterion p. In practice, what is often used instead
is a criterion that d is the first value such that the first n-modes
capture 100q% of the variance, stated,

d :

dP
i=1
�i

NP
i=1
�i

> q, but

dP
i=1
�i

NP
i=1
�i

< q, d  N. (10)

As shown in Fig. 2, we see that there are three regions in which
we would interpret that d = 1, 2, or 3. In other words, all possible
values could be validly concluded, depending on how ↵ is chosen.
It is easy to see that ↵ can be controlled by scaling the variable y as
follows. Let,

Y = sy, (11)

then by substitution, it follows that Eqs. (5) become, as exemplified
by Eqs. (7)

ẋ = f (x),

✏Ẏ = Y � ↵sg(x), (12)

written in terms of the new spacial dimension Y .
Emphasizing a major point of this work, we consider it to be

an undesirable property, for many applications, for the value of
the dimension of reduction to depend on the particular choice of
units on the y-variable, say in cm if it were length, versus Y say in
m. Therefore, given the wide-spread acceptance and use of the KL
method in dynamical systems, we hope the we can offer a better
understanding of this issue. It is our goal in the rest of this paper to
better understand the effect of such dimension reductions, when
they are appropriate, and when they are not. We will give analytic
bounds, and also several applications to indicate the generality of
the situation. We will argue that Eq. (5) represents a typical form
for such behavior.

3. Review of KL analysis as a model reduction technique

Karhunen–Loeve (KL) modes [9,10], also known as empirical
mode reduction and also principal component analysis (PCA), as
well as proper orthogonal decomposition (POD), was first applied
to spatiotemporal analysis by Lorenz [17] for weather prediction.
Later Lumley [18] brought the technique to the study of fluid
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Fig. 2. Singular spectrum of time-averaged covariance matrix from the Duffing
oscillator on paraboloid data from Eq. (7). ↵ (horizontal) versus �1 > �2 > �3,
singular eigenvalues. As ↵ is varied, corresponding to a change of scale of the y-
variable, as described by Eqs. (11)–(12), the embedding manifold’s curvature is
varied: the embedding paraboloid evolves from short and flat to tall and skinny,
and thus according to the theory in Section 4, eigenvalues vary through three-
dimensional regimes. In Region 1, when ↵ < 20, �1 � �2, �3, and the KL analysis
concludes that the system is n = 1 dimensional. In Region 2, when 30 < ↵ < 40,
�1 ⇠ �2, �3 andwe conclude a reducedmodel of dimensionm+n = 3. In Region 3,
when ↵ > 50, �2, �3 > �1, and we conclude a reduced model of dimensionm = 2.

turbulence, as described in book [11]. The idea is that empirical
modes form the basis which minimizes the L2 error at any finite
truncation. That is, we wish to maximize variance and minimize
covariance at each finite truncation, which is a well known
property of PCA [19].

The procedure requires a spatiotemporal pattern, such as a PDE
solution, u(x, t), sampled on a spatial grid in x, and in time t:
{un(x)} = {u(x, tn)}n=1,M , from which the spatial mean has been
subtracted. Then the KL modes are the eigenfunctions  n(x) of the
time-averaged covariance matrix,

K(x, x0) = hu(x, tn)u(x0, tn)i, (13)
which may be arrived at by a singular value decomposition [19].
Then u may be expanded in the resulting orthogonal basis,

u(x, t) =
X

n
an(t) n(x), (14)

and this is the optimal basis in the sense of time-averaged projec-
tion:

max
 2L2(D)

h|(u, )|i
k k , (15)
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[11], where h.i denotes time average. These functions are orthogo-
nal in time, meaning in terms of time averaging,

han(t)am(t)i = �n�nm, (16)

in terms of eigenvalues of,

K : �n = ( n, K n)

k nk . (17)

Thus, the time varying Fourier coefficients an(t) are decorre-
lated in time average. A computationally important approach [12]
to solve this eigenvalue problem involves successive computation
to maximize mean square variance. Formal substitution of a fi-
nite expansion of empirical modes u(x, t) = P

n an(t) n(x) into
the PDE, and then projection onto each basis element  m(x) pro-
duces an ODEwhich is expected to be amaximal variancemodel of
the PDE. We give a continuum structure model of this behavior in
Section 7.

In the next section, we discuss how the statistical geometry
of the data samples justifies the dimension reductions which fall
possibly into three distinct regimes depending upon the curvature
of the slow manifold. This is an often overlooked truth of KL
analysis which we highlight in this paper.

4. Statistical geometry justifying dimension reduction

The data set, [u(xi, tj)]i=1,...,N,j=1,...,M represents (treated as if
random) M sample points in an N-dimensional space. In this
interpretation,wehave adata cloud. The time-averaged covariance
matrix, Eq. (13), K(x, x0) = hu(x, tn)u(x0, tn)i has eigenvalues
which can be interpreted as follows. If the data were distributed
as an ellipsoid, with long major axis, and small minor axis, then
the eigenvalues of K represent relative lengths of the eigenvectors
of orthogonal (decorrelated) directions. This is standard within
the POD theory, and it is straightforward to see that the spectral
decomposition of the matrix K into a linear combination of rank-
one operators n⌦ n follows the spectral decomposition theorem
in the case K is of finite rank [19], and Mercer’s theorem [11,20] in
the case of infinite rank, since it is straightforward to show that
such covariancematrices are positive semidefinite and symmetric.

Wewill now compare explicitly these statements motivated by
the POD theory to the reality of what we observed in the simple
dynamical systems with the stable nonlinear invariant manifold,
of Section 2.

In general, a zero-mean vector random variable Z has a covari-
ance,

cov(Z) = E[ZZ0], (18)

and we require a diagonalizing orthogonal similarity transforma-
tion P , such that,

Y = P 0
Z, (19)

and Y has a diagonal covariance matrix,

cov(Y) = E[YY0] = E[P 0
ZZ

0P]
= P 0E[ZZ0]P = P 0cov[Z]P
= diag[⇢1, . . . , ⇢N ]. (20)

Consider the following model example:

Example 1 (Exact POD of a Bounding Box). Let,

Z = U(B), (21)

a uniform random variable over B, where B is a two-dimensional
rectangle of sides H ⇥ L. Thus, wemay proceed to perform the POD
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Fig. 3. Eigenvalues of the uniform bounding box closelymatch those of the Duffing
oscillator on paraboloid data, according to Eq. (27).

in closed form for this simple example. In general, let [z]i be the ith
component of z. Then the demeaned covariance matrix is,

Ci,j =
Z

<2
([z]i � [z]i)([z]j � [z]j)�B(z)dz, (22)

where �B(z) = 1 if z 2 B, and 0 otherwise, is an indicator func-
tion representing the uniform random variable. In the case that
1  i, j  2,

Ci,j =
Z H

2

� H
2

Z L
2

� L
2

([z]i � [z]i)([z]j � [z]j)d[z]id[z]j, (23)

where [z]i = R
<2 zi�B(z)dz is the ith mean, from which we com-

pute the eigenvalues,

⇢1,2 =
⇢
H2

12
,
L2

12

�
. (24)

Hence, the ratio of eigenvalues is simply,

r = H2

L2
. (25)

Likewise, it is straightforward and similar to show that the eigen-
values of the covariance matrix of a uniform random variable over
an L ⇥ H ⇥ W three-dimensional box are,

⇢1,2,3 =
⇢
H2

12
,
L2

12
,
W 2

12

�
. (26)

Example 2 (Comparison Between POD of Bounding Box and Singu-
larly Perturbed Duffing System). The KL dimensions of uniform den-
sities in boxes which trap the data from the family of singularly
perturbed Duffing oscillators from system Eq. (7) shown in Fig. 1,
are approximately,

W = X1 ⌘ sup
Duffing

x1 ⇡ 2.84,

L = X2 ⌘ sup
Duffing

x2 ⇡ 4.48,

H = Y1 ⌘ sup
Duffing

y1 = ↵(X2
1 + X2

2 ) ⇡ ↵28.12, (27)

estimating the extreme X1, X2, and Y1 values through simulation.
We can see in Fig. 3 that the analytically computed eigenvalues

of a uniform distribution in a tight bounding box closely match
those of time-averaged covariance matrix of data generated by
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the singularly perturbed Duffing systems Eq. (7) with paraboloid
slow manifolds. Thus, the curvature of the slow manifold dictates
the dimensions of the bounding box, and the dimensions of the
bounding box approximates the KL dimension.

Example 3 (KL Dimension of a Delta Function Uniformly Distributed
on a Paraboloid). For a better approximation of the time-averaged
covariance of Duffing data on the paraboloid, we compute the
covariance of data uniformly distributed on the same paraboloid.
Note the difference between this computation and that of the
singularly perturbed Duffing system. While we will use a delta
function in the z-direction to restrict to the paraboloid, we use a
uniform measure for the x and y directions. The true system does
not use a uniform measure in the x and y directions, but instead
there is a true, and not exactly computable, invariant measure
of the Duffing system. So, we offer the uniform measure for its
computability, and the fact that we believe that it gets to the heart
of our point at hand.

We let,

x2 = h(x1) = 4H
x22
L2

� H
2

, (28)

giving a parabola whose corners are at the corners of an H ⇥
L rectangle, and whose minimum is at the bottom of (0, H

2 ).
Therefore, the mathematical means of the uniform distribution on
the parabola are computed,

A =
Z H

2

� H
2

Z L
2

�L
2

�(x2 � h(x1))dx1dx2

= L(�p
H � L + p

H + L)p
2

p
H

,

Mx1 =
Z H

2

� H
2

Z L
2

�L
2

x1�(x2 � h(x1))dx1dx2 = 0,

Mx2 =
Z H

2

� H
2

Z L
2

�L
2

x2�(x2 � h(x1))dx1dx2

= L(2H(
p
H � L � p

H + L) + L(
p
H � L + p

H + L))
6

p
2

p
H

, (29)

in terms of the Dirac-delta function. Then, similarly to Eq. (30), but
now using the Dirac density,

Ci,j = 1
A

Z H
2

� H
2

Z L
2

�L
2

(xi � Mi)(xj � Mj)�(x2 � h(x1))dx1dx2, (30)

from which it follows that

Cxx = L2(H(�p
H � L + p

H + L) + L(
p
H � L + p

H + L))
24H(�p

H � L + p
H + L)

Cyy = [�80H
7
2 L + 60H

3
2 L3

� 8
p
2H3(3 + 5 L2)(

p
H � L � p

H + L) + · · ·
+ p

2H L2(�9 + 20 L2)(
p
H � L � p

H + L) � · · ·
� 4

p
2H2 L(3 + 5 L2)(

p
H � L + p

H + L) + · · ·
+ 5(�4 L3

p
H3 � H L2 + 16 L

p
H7 � H5 L2

+ p
2 L5(

p
H � L + p

H + L))]/ . . .

/[180p
2H(�p

H � L + p
H + L)]

Cxy = Cyx = 0. (31)

We see that the eigenvalues are the diagonal elements, �1,2 =
{Cxx, Cyy}. Fig. 4 shows that the eigenvalues of this uniform in x,
delta function model closely match in character those of the data
on paraboloid from the singularly perturbed Duffing system, as

8
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5

10 12 14 16 18 20

Fig. 4. Eigenvalues of the covariance matrix from a uniform distribution on a
parabolic-delta function according to Eq. (31) and its precursors.

shown in Fig. 2. For specificity of the picture, we choose L = 7,
and the horizontal axis is H . That the above is a two-dimensional
calculation is not an important failure in comparison to the Duffing
system, since the paraboloid-delta function version trapped in a
L ⇥ H ⇥ W box could also be easily computed, albeit with a more
extensive and tedious algebraic solution. The major difference
is the fact that we compute integrals against Lebesgue uniform
density. However, the Duffing singularly perturbed system would
call for integration against the Duffing x � y invariant measure,
to which we do not have analytic access, as this is generally not
possible for realistic chaotic dynamical systems. If we were to
resort to numerical approximation of the invariant measure, then
that would bemore or less equivalent to the eigenvalue covariance
computation from data as we already performed leading to Fig. 2.

The point here is summarized by the following observations:
1. The spectrum of singular values, corresponding to the square

root of eigenvalues of the time-averaged covariance matrix of
the dynamical data, Eq. (13), is approximated by the lengths of
the sides of a tight bounding box.

2. The dimension of an embedding manifold of the attractor may
be quite different from that of a tight bounding box.

3. If singular vectors are used to decidewhat should be the embed-
ding dimension, based on the usual KL method, then a change
of variables, such as the dilation in Eq. (11), can easily change
that concluded dimension dramatically.

The dimension of a reduced model should not be so easily depen-
dent upon an implicitly chosen dilation (choice of units), as it is for
thewidely popular KL analysis. But since it is aswe have shown,we
suggest that at least this implication should be better and widely
understood.

Our canonical form Eq. (5) is sufficiently general to any system
Eq. (1) in variables z = hx, yit such that there is coordinate trans-
formation,

Z = H(z), (32)

where H is a diffeomorphism, H : <m+n ! <m+n, Z = hX, Y it ,
and,

H � G = Z � ↵g(X). (33)

In other words, the example form is sufficient if there is a coordi-
nate transformation (such as a rotation) where the invariant slow
manifold is a Lipschitz graph over X . In such a case, the KL analy-
sis will automatically tend to find a proper coordinate axis aligned
with this axis when the linear part of g is zero. If this graph g(X)
has a bounded second derivative,

sup
x2!(x)

|D2g(x)| = M, (34)
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Fig. 5. (Left) The four eigenvalues of the time-averaged covariancematrix, with respect to varying↵ in Eqs. (37), much aswas seen for the Duffing oscillator in Fig. 2. (Middle)
Total variance as a function of the top i eigenvalues. In order are the curves, c1 (blue), c2 (green), c3 (red), and c4 ⌘ 1, from Eq. (39). Thus by considering the percentage of
variance captured due to truncation, we would conclude that for ↵ < 15, d = 1, for 15 < ↵ < 25, d = 4, and for ↵ > 25, d = 3. (Right) A bar plot showing the 4 eigenvalues
for each of these 3 regions, according to Eq. (35), of fixed ↵ shows the spectra which leads to the conclusions of d = 1, 4, and 3, respectively, in order from top to bottom.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

then,

1. smaller ↵ results in KL dimension n,
2. intermediate ↵ results in KL dimensionm + n,
3. larger ↵ results in KL dimensionm. (35)

This motivates us to summarize this relationship with the fol-
lowing definition of a closure parameter.

Definition. Given a KL dimension dKL according to Eqs. (9)–(10),
and dM which is the standard manifold dimension in terms of
charts, atlases, and homeomorphisms to Euclidean space [21], of an
embedding manifold, then let the curvature induced parameter,
dCI , be defined by the equation,

dKL ⌘ dM + dCI . (36)

Note that following (35), dCI can assume any sign, and therefore
while itmakes a convenient closure parameter, it may be awkward
to interpret as a dimension.

5. An example ofmodeling by KL, subject to highly curved slow

manifolds

As an example of how embedding problems lead to modeling
problems,wewill choose the following explicit quadratic example,
from which to carry forward the full modeling parameter
estimation program we specified in [22] to reconstruct equations
of motion which approximately reproduce the data. The question
we address is how well can we model by parameter estimation
the dynamical system which produced the data, using dimension
reduction methods in the three major ↵ regimes discussed in the
previous section.

Consider a four-dimensional systemofODEs, consisting of three
Lorenz equations and a parabolic slow manifold,

ẋ1 = � (x2 � x1),
ẋ2 = rx1 � x2 � x1x3,
ẋ3 = x1x2 � bx3,

✏ẏ = ↵(x21 + x22 + x23) � y, (37)

with the usual, � = 10, b = 8/3, r = 28, and we choose ✏ = 0.05
for the simulations shown. See Fig. 5, showing results of the KL
method, based on the usual method to truncate at 100q% of total
variance (for the sake of argument 100q% = 95% is chosen here),
as already mentioned in Eq. (10). We choose the smallest d so that,

1 � cd > q > 0, (38)

where,

ck =

kP
i=1
�i

NP
i=1
�i

. (39)

For spectral analysis, we arrange a 4 ⇥ N data matrix X ,

Z

(i) ⌘ Z(:, i) = hx1(ti), x2(ti), x3(ti), y(ti)iT ,
i = 0, 1, . . . ,N � 2. (40)

We highlight three different choices of the curvature of the slow
manifold controlling parameter ↵ which leads to the three differ-
ent parameter regimes in Eq. (35), ofwhat should be the dimension
of the reduced model.

Recently, some of us [22] have studied the numerical analysis
of nonlinear parameter estimation to fit differential equations from
data Z, which aremeant to reproduce (predict) Z. If we have reason
to suspect that themodelwhich reproduces Z is quadratic, thenwe
could write the general quadratic ODE of appropriate dimension d,

Ż = A1Z + A2Q + A0 = [A0|A1|A2]
"
1

Z

Q

#

(41)

whereQ is theN(N�1)/2⇥1matrix of all quadratic terms of data
Z, which for system Eq. (37) may be arranged,

Q =

2

666664

x21
x1x2
. . .
yx2
yx3
y2

3

777775
, (42)

and 1 is a 1 ⇥ M matrix of ones, the same size as Z(:, i), acting
as a place holder for the affine shift part of the general quadratic
equation. The goal in this paper is to discuss the consequences
of different choices of d. In our recent paper, [22], we discuss
convergence and stability issues of parameter estimation of the
coefficients matrix,

A = [A0|A1| . . . |Ad], (43)

for general qth ordered polynomial models, by a least squares
solution for the unknown parameters A in the undetermined
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Fig. 6. The spectral analysis shown in Fig. 5 can mislead when it comes to modeling the data from Eqs. (37) by dimension reduction using the usual KL analysis dimension
reduction methods. Data from parameter fitting techniques leads to a reduced model of dimension d = 1 (left) which is seen to poorly reproduce the data, d = 4 (middle)
which well reproduces the data here (but overfitting can lead to numerical problems for higher-dimensional problems), while d = 3 (right) fits well. The values of ↵
correspond to each of the three regions discussed in Fig. 5.

differential equation (41), of a generally overdetermined set of
equations,

[Z(1) � Z

(0), Z(2) � Z

(1), . . . , Z(N) � Z

(N�1)]

= h · A
2

4
1

Z

Q

(0)

,
1

Z

Q

(1)

, . . . ,
1

Z

Q

(N�1)3

5 , (44)

here written for a general quadratic model. General cubic and
higher qth ordered models are straightforward to pose, for which
we refer [22].

Now we refer to Fig. 6 for conclusions of nonlinear parameter
estimation to reproduce the data X , for the dimension d chosen to
be the three different values d = 1, 4 and3, respectively, suggested
by ↵ curvature controller as in Fig. 5. There are at least two
different ways in which one might interpret differences between
a dimension reduced system, and the original full-dimensional
system.

5.1. Prediction and residual error

What is the error between data produced bymodeled equations
in the reduced dimension space as compared to the full model,
in terms of the embedding norm? This is a main issue in finite-
element analysis, and Galerkin’s method, where error must be
analytically controllable for (short) finite time.

We see in the first column of Fig. 6, that d = 1 results in poor
reproduction by a poor model; this should not be a surprise with

a priori knowledge of the original equations (37). However, with-
out a priori knowledge of dimension for guidance, the KL analy-
sis in Fig. 5 suggests that one dimension will be sufficient since
for ↵ < 15, most of the variance is captured. Thus we see that
indiscriminate use of KL analysis can lead to modeling a disaster,
which as we point out here is due to an overly curved slow man-
ifold. It should not be a surprise that for the next two columns of
Fig. 6, that parameter estimation in both d = 4 and d = 3 di-
mensions reproduces the data well. But it is not always advisable
to use the d = m + n dimensions of the full system, since Eqs.
(44) can lead to instability of the numerical least squares step as
the shear size of the system grows exponentially with m + n, the
dimension of the original system, and o, the polynomial order of
the model. These issues of order, convergence, and stability of the
model both for data residual, and well fitted parameters, are dis-
cussed in [22]. We could easily make an example system to accen-
tuate this problem by choosing many y-variables corresponding to
a higher-dimensional slow manifold, while maintaining a simple
three-dimensional slowdynamics. For example, 3 slow x-variables,
and 97 fast y-variables would result in such a high-dimensional
least squares system to solve. It is easy to see themerits of reducing
the order of the model as much as possible.

6. Nested reduced systems

So far, our examples have focused on the simplest case Eq. (5)
in which one control parameter leads to legitimate KL reduced
order models, sometimes giving significant errors. We now show a
scenario of nested singularly perturbed systems which can lead to
comparably legitimate multiple errors.
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Consider a multiply nested version of singularly perturbed
systems generalizing Eqs. (5), such as the two level nested system,
ẋ = f (x),
✏1ẏ = y � ↵1g1(x)
✏2ż = z � ↵2g2(x, y) (45)
which can be formulated to have now 5 possible KL model reduc-
tions, based on the values of (↵1,↵2). Any level of complexity ver-
sions of this nesting form are possible, by appropriate design of
nesting, leading to a complex degree of possible dimensions.

We have discussed at the end of the previous section that
a high-dimensional ambient dimension and low-dimensional re-
duced system is possible. In this section, we showed that multiple-
dimensional ‘‘confusions’’ are possible. In the next section, we will
discuss how all of this can be possible in a very high-dimensional
setting, spatiotemporal data from a partial differential equation.

Any spatiotemporal process which generates u(x, t) and which
is discretely sampled data in time,
ti = i1t, 1t = ti+1 � ti, i = 0, 1, . . . ,M � 2, (46)
and in space,
xj = j1x, 1x = xj+1 � xj, j = 0, 1, . . . ,N � 2, (47)
gives an M ⇥ N data matrix,
Uj,i = u(xj, ti), (48)
which is meant to be modeled by the matrix of the data in Eq. (40).
It is straightforward to index the spatial variable appropriately by
raster scanning ormultiscalemethods in the case ofmore than one
spatial dimension.

7. A singularly perturbed model in a continuum—oscillator

mechanical models as a fast–slow system

In this section we describe an infinite-dimensional model con-
sisting of multiple time scales which allows for a geometric dy-
namical splitting based on a singular perturbation parameter. In
the following section, we will show how this system also dis-
plays the same variation of KL dimension embeddings, as listed in
Eq. (35), as a natural parameter is varied.

The multiscale problems we consider here model linear con-
tinua coupled to nonlinear oscillators. Specifically, the problem
class modeled is that of linear PDEs which are coupled to one or
more nonlinear oscillators represented by ODEs, and are observed
to exhibit nonlinear vibrations in experiments [23] as well as more
complicated behavior in continuum systems with noise [24]. We
restrict ourselves to models of linear elastica in one spatial dimen-
sion, which include cantilevered beams and extensible rods. Let-
ting W (⇠ , t) denote a measure of displacement as a function of
space (⇠ ) and time (t), and let ~µ(⇠ , t) be a forcing function, then
the general equations of motion may be represented as:

LµW (⇠ , t) = ~µ(⇠ , t)
d2✓

dt2
+ [1 + G(W,tt)] sin ✓ + ⌘

d✓
dt

= 0
(49)

plus the appropriate boundary conditions. Here, Lµ is a linear dif-
ferential operator. In Eq. (49), ✓ denotes the angular position of an
attached pendulum at a free end of the elastica. Since there is an
external driving body force on the structure, the function G(W,tt)
will also contain a time varying source, which will in general de-
pend on another oscillator, such as amechanical shaker or periodic
electric potential.

7.1. Full PDE–ODE system

In formulating the dynamics of such a mutually coupled sys-
tem, we follow [25,26] in formulating in detail a system based on

θ

B

A

Lr

uB

xA

0

x+u x

Forcing

L
p

Mp

Fig. 7. Rod–pendulum configuration.

a viscoelastic rod. We consider a specific mechanical system con-
sisting of a vertically positioned viscoelastic linear rod of density
⇢r , with cross-section Ar and length Lr , with a simple pendulum
of mass Mp and arm length Lp coupled at the bottom of the rod
and where the rod is forced from the top harmonically with fre-
quency ⌦ and magnitude ↵ [26]. The rod obeys the Kelvin–Voigt
stress–strain relation [27] and Er and Cr denote the modulus of
elasticity and the viscosity coefficient. Cp is the coefficient of vis-
cosity (per unit length) of the pendulum and g is the gravitational
constant of acceleration. The pendulum is restricted to a plane, and
rotationalmotion is possible. The system ismodeled by the follow-
ing equations,

MpLp✓̈ + Mp[g � ẍA � üB] sin(✓) + CpLp✓̇ = 0
Ar⇢r ü(x, t) � ArEru00(x, t) � ArCr u̇00(x, t) � Ar⇢r(g � ẍA) = 0,

(50)

where˙⌘ @
@t , and

0 ⌘ @
@x , with boundary conditions

u(x = 0, t) = 0, ArEr
@u
@x

����
x=Lr

= ArEr
@uB

@x
= Tp cos(✓),

and where

Tp = MpLp✓̇2 + Mp(g � ẍA � üB) cos(✓)

denotes the tension acting along the rigid arm of the pendulum.
The variable u(x, t) denotes the displacement field of the uncou-
pled rod with respect to the undeformed configuration at equilib-
rium, relative to the point A, while uB denotes the relative position
of the coupling end B of the rod with respect to point A. See Fig. 7
for a schematic of the rod and pendulum system. Note that the cou-
pling in ✓ appears in the boundary conditions.

We further suppose that the drive at A, given by the function
xA(t) in Eq. (50), is such that it comes from another oscillator.
To keep the coupling bi-directional and general, we suppose that
the oscillator is weakly coupled to the pendulum through its
frequency. Specifically, we model the drive oscillator by

�̇1 = �1 +⌦(1 +⌃P(u̇(x, t)))�2 � �1(�
2
1 + �2

2 )

⌘ z1(�1,�2,⌃,⌦)

�̇2 = �⌦(1 +⌃P(u̇(x, t)))�1 + �2 � �2(�
2
1 + �2

2 )

⌘ z2(�1,�2,⌃,⌦),

(51)

where P is a projection onto a Fourier mode (see below), and |⌃ |
⌧ 1 is the coupling term that modulates the frequency. Note that
when⌃ = 0, the solution of Eq. (51) consists of sines and cosines
of frequency ! given the appropriate initial conditions. In terms of
the solutions to Eq. (51), note that xA(t) = �2(t,⌃).

The scaled PDE–ODE system is derived in the Appendix in
Eq. (55), and may be represented as a fast–slow system with a
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Fig. 8. The slow manifold of the viscoelastic rod system, Eq. (53), represented by Z1 as a function of ✓ and d✓/dt with parameter  = 31, 60, 130, left to right, respectively,
in the three different parameter regimes Eq. (35), accordingly as seen in the dimension parameter study plots, Fig. 9. Here, we show these data sets in the same vertical scale,
which would not be normally used for all three, but which lays bare the varying manifold curvature, leading to varying KL dimension, with the manifold curvature varying
parameter  in the rod system, Eq. (54). Note that the concluded KL in the three regimes of Eq. (35) switch roughly when  ⇠ 40 and 65.

parameter, µ, defined in Eq. (52), which is the ratio of the slow
pendulum frequency to the fast rod frequency. If µ is sufficiently
small, it is then a singular perturbation parameter. Using the
scaled equations and expansions in the Appendix, we let  =
[ 1, 2, 3, 4]T and Z = [Z1, Z2, . . . , Z2m�1, Z2m], for m =
1, 2, . . . ,N , denote the phase space for the pendulum and drive,
and the rod modes. Performing a similar analysis in [26], the
slow manifold approximation can be computed by expanding the
solution to the manifold equations to get:

Z = Hµ( ,N), (52)

whereHµ( ,N) = 
P1

j=0 µjHj( ,N). Here  is acting to amplify
the nonlinear geometry of the surface. That is, the local curvature
terms plus other terms of higher order will be controlled by the
parameter  . Since the leading order terms in  will be quadratic
in general for H0, we expect the curvature on the manifold to have
the largest increase as a function of .

For the examples we consider, we examine the slaved relation-
ship of the dynamics of the tip of the rod to that of the dynamics of
pendulum. The parameter µ = 0.025, is fixed throughout the ex-
ample.Weomit themanifold expansion details, since similar equa-
tions have already been presented in [26].

7.2. Continuum KL analysis of manifolds for different curvatures

Here again, this time in a continuummodel, the result is clearly
just as it was for the constructed lower-dimensional singularly
perturbedmodels of the previous sections.We see clearly in Figs. 8
and 9 the same scenario where the dimension concluded depends
inherently on the curvature parameter  which can be determined
by something as arbitrary as a choice of measurement units.

8. Conclusion

While the KL method is a highly popular method for analysis of
laboratory data, and empirical data, for producing reduced order
models from high-dimensional systems. We have demonstrated
a particular scenario, where a singularly perturbed system is
expected to have a lower-dimensional representation of the flow
data on a submanifold. When the KL method is applied to such
systems, it may be expected that we might properly recover an
appropriate dynamically relevant dimension either for modeling
functionality or for performing prediction. These are typical goals
when a model reduction program is undertaken.
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Fig. 9. (a) Log of eigenvalues of the time-averaged covariance as a function of
curvature parameter,  . (b). Top eigenvalues of panel (a) showing the crossover
effect leading to a change in KL dimension as a function of  .

However, while the KL method is so widely used, the degree
to which certain simple data scalings, such as a change of units
of one or some of the variables (such as a linear transformation
like changing from inch to meters), can dramatically effect the
curvature of the slowmanifoldmay be overlooked. The implication
to the KL analysis which we highlight here is that the concluded
KL dimension can be varied through three distinct regimes: it
is easy to accidentally choose m, n or m + n. This can cause
dramatic differences in results whether they be for good models,
or good predictions. We hope that this work will serve for a
better understanding of scale and unit issues in model reduction
techniques. We wish to point out here that an ‘‘energy-based’’
inner product was suggested in [28], where h(x1, y1), (x2, y2)i =
x1x2 + s2y1y2, with which it can be shown that scaling adjustments
such as in Eq. (11) can be defined in terms of adjustments of the
inner product weights, and so there is a connection to resolve
scaling issues discussedhere directly in the inner product; a change
of units is then inversely proportional to the parameter in the inner
product to form a scaling independent KL subspace.
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Appendix

Eqs. (50) and (51) are nondimensionalized by the following
variable re-scalings

⇠ = x
Lr

, ⌧ = !pt,

XA = xA
Lp

, U = u
Lp

, UB = uB

Lp
,

and parameter re-scalings

µ = !p

!1
, µm = !1

!m
= 1

2m � 1
, � = Mp

Ar⇢r Lr

⇣p = 1
2!p

Cp

Mp
, ⇣r = 1

2!1

⇡2Cr

4L2r⇢r
,

where

!p =
r

g
Lp

, !m = ⇡(2m � 1)
Lr

s
Er
⇢r

, m = 1, 2, . . . ,1,

are the natural frequency of the uncoupled pendulum and the
spectrum of natural frequencies of the uncoupled flexible rod,
respectively, while ⇣p and ⇣r denote their damping factors.

The stable and unstable static equilibrium configurations of
the coupled rod and pendulum system are given by (✓c, Û) and
(✓S± , Û), where

✓c = 0, ✓S± = ±⇡
Û = µ2⇡2

2
[2(1 + �)⇠ � ⇠ 2].

The normalized equations are thus

✓̈ + [1 � V̈B(⌧ ) � ẌA(⌧ )] sin(✓) + 2⇣p✓̇ = 0,
µ2⇡2V̈ (⇠ , ⌧ ) � V 00(⇠ , ⌧ ) � 8⇣rµV̇ 00(⇠ , ⌧ ) = �µ2⇡2ẌA(⌧ )

V (⇠ = 0, ⌧ ) = 0, V 0(⇠ = 1, ⌧ ) = �µ2�⇡2[1 � T cos(✓)],
(53)

where

V (⇠ , ⌧ ) = U(⇠ , ⌧ ) � Û(⇠), 0  ⇠  1, � 1 < ⌧ < +1,

and note that we redefine˙ ⌘ @
@⌧

and 0 = @
@⇠

for the remainder of
the paper.

A.1. Projection onto a finite model

In carrying out our analysis, we will consider a reduction of
the ODE/PDE system in Eq. (53). This reduction is obtained by
performing a modal expansion of the rod equation, where the
displacement V is expanded as V (⇠ , ⌧ ) = P1

m=1 ⌘m(⌧ )�m(⇠). This
results in an infinite system of coupled oscillators,

✓̈ = �
"

1 +
1X

j=1

(�1)j+1⌘̈j � ẌA(⌧ )

#

sin(✓) � 2⇣p✓̇

Lm(✓)⌘̈j = � ⌘m

4⌘2⌘2m
+ 2⇣r

⌘̇m

µµ2
m

� (�1)m+12�[✓̇2 cos(✓) � sin2(✓)]
�


4µm

⇡
+ (�1)m+12� cos2(✓)

�
ẌA(⌧ ), (54)

equivalent to Eq. (50), where Lm(✓) is the infinite linear operator

Lm(✓) ⌘
1X

j=1

[�mj + (�1)m+j2� cos2(✓)].

See [25] for the details of this transformation.

Finally, consider the finite set of ordinary differential equations
obtained from Eq. (54) by truncating to the first N rod modes
and applying the additional re-scalings { 1, 2} = {✓ , ✓̇} and
{µ2µ2

mZ2m�1, µµ2
mZ2m} = {⌘m, ⌘̇m}, obtaining

 ̇1 =  2

 ̇2 = �
"

1 �
NX

j=1

(�1)j+1fN( , Z) � ↵ 4

#

sin( 1) + 2⇣p 2

 ̇3 = z1( 3, 4,⌃,⌦) (55)
 ̇4 = z2( 3, 4,⌃,⌦)

µŻ2m�1 = Z2m
µµ2

mŻ2m = fN( , Z), m = 1, 2, . . . ,N,

where

fN( , Z) = L�1
m,N( 1)


�1

4
Z2m�1 + 2⇣r Z2m

� (�1)m+12�[ 2
2 cos( 1) � sin2( 1)]

�

4µm

⇡
+ (�1)m+12� cos2( 1)

�
↵ 4

�

and L�1
m,N(✓) is the inverse of theN⇥N truncation of operator Lm(✓).

z1 and z2 are given by the right-hand sides of Eq. (51). Note that
Eq. (55) is an autonomous system, and the cyclic variables,  3 and
 4 are introduced to account for the periodic forcing, which has
period ⌦ when the coupling parameter ⌃ = 0. For this example,
we will assume N = 32 modes.

The primary parameter governing the coupling between the rod
andpendulum is the ratio of the natural frequency of the pendulum
to the frequency of the first rod mode, µ ⌘ !p/!1. In the limit
!1 ! 1, the rod is perfectly rigid, µ ! 0, and the system
reduces to a forced and damped pendulum. For 0 < µ ⌧ 1
sufficiently small, global singular perturbation theory predicts that
system motion is constrained to a slow manifold, and the (fast)
linear rodmodes are slaved to the slow pendulummotion [14]. For
nonzero ↵ (the amplitude of the periodic forcing) and ⌃ = 0, the
slow manifold is a non-stationary (periodically oscillating) two-
dimensional surface.

Note that Eq. (55) is now in a form which reveals the slow and
fast components for a small parameter µ. One may now show
how the mode amplitudes of the rod, Zi are slaved to the slow
manifold by the use of the center manifold theorem. The details
of the construction of the manifold are carried out in [26].
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