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Motivated by the practical consideration of the measurement of chaotic signals in experiments or the
transmission of these signals through a physical medium, we investigate the effect of filtering on
chaotic symbolic dynamics. We focus on the linear, time-invariant filters that are used frequently in
many applications, and on the two quantities characterizing chaotic symbolic dynamics: topological
entropy and bit-error rate. Theoretical consideration suggests that the topological entropy is
invariant under filtering. Since computation of this entropy requires that the generating partition for
defining the symbolic dynamics be known, in practical situations the computed entropy may change
as a filtering parameter is changed. We find, through numerical computations and experiments with
a chaaotic electronic circuit, that with reasonable care the computed or measured entropy values can
be preserved for a wide range of the filtering parameter2@®3 American Institute of Physics.
[DOI: 10.1063/1.1520090

Experimentally measured signals are either inevitably or
intentionally filtered, the former can be attributed to the
limitation of the measuring instruments while the latter is
due to the necessity to remove undesirable frequency

the estimated topological entropy can be preserved and
the bit-error rate can be maintained at low values for a
wide range of the filtering parameter.

components for signal processing. Another area where fil-
tering is relevant is transmission of chaotic signals
through a physical medium. For instance, in a communi-
cation application, a chaotic wave form is transmitted
through a channel. Because of the finite bandwidth of the
channel, the transmission is equivalent to a filtering pro-
cess. Most existing works on the effect of filtering on cha-
otic signals deal with how filtering changes the fractal
dimensions, with well-known results such as the dimen-
sion increase caused by filtering. The focus of our inves-
tigation is on the symbolic-dynamics aspect of chaotic sig-
nals. Suppose a dynamical system generates a chaotic
signal with a well-defined symbolic dynamics, and sup-
pose this signal is filtered. We ask, to what extent is the
chaotic symbolic dynamics affected by filtering. To be
concrete, we focus on the topological entropy and the bit-
error rate, two quantities characterizing the symbolic dy-
namics. Theoretical considerations indicate that the topo-
logical entropy is invariant under linear filtering, which
we have verified using numerical computations and ex-
periments with a chaotic electronic circuit. Our results
suggest that in practical situations, with reasonable care,
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I. INTRODUCTION

The effect of filtering on chaotic signals has been a topic
of interest since the pioneering work of Badii al,® who
observed that linear, infinite-impulse respor§®) filters
tend to increase the fractal dimension of the attractor recon-
structed from a filtered chaotic signal. In particular, let
dx/dt=F(x) be the original dynamical system generating a
chaotic attractor, wherge RN, and letx(t) be one of the
components ok which is to be filtered. The simplest, first-
order 1IR filter may be represented by the following linear
differential equation:

at — pz+X(t), @
wherez(t) is the filtered signal and€@ »<1 is the filtering
parameter. For such a filter, if an attractor is reconstructed
from the filtered signak(t), the fractal dimension of the
attractor can be higher than that of the original attratfor.
The argument for the dimension increase goes as
follows.}? Consider the Kaplan—Yorke formdlafor the

Lyapunov dimension,
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which is conjectured to be equal to the information dimen-signalx(t), to what degree will the sequence be altered after
sion of the attractor, where\;'s (i=1,...N) are the filtering, i.e., what is the bit-error ratER) caused by fil-
Lyapunov exponents ankl is the largest integer for which tering?

the sumE!(: 1 \j is positive. A linear, time-invariant filter, as Topological entropy is defined with respect to the sym-
represented by Ed1), gives an additional Lyapunov expo- bolic dynamics of the underlying chaotic system. Consider a
nent Inz»<<0 (for typical cases where©@7<1). If In y lies  dynamical system described hyM — M, which is defined

in between\,.; and \ such that=¥_ ; \;>0 but =¥_, \; on a compact se¥l. By partitioningM into a collection of

+In »<0, a situation that can be expected in low-subsetsP={P,,...,P,}, one can obtain a symbolic se-
dimensional chaotic systems, the Lyapunov dimension of thguence for a typical trajectory according to its order of visits
filtered signal is increased to to these subsets. Letf K P] denote the partition

{f%Py),...- %Py} and P™ Dpe the parttion

il 1 X {PNf YPIN---Nf """ P]}. The topological entropy of
DL=k+ W; Ai>Dy. M with respect to partitiorP is'*
1
Analysis also indicates that the increase can be due to hr(M,P)= lim —logN(P,n), 2
the fact that a chaotic attractor typically resides on a fractal n—e

surface that is continuous but not differentiabfeThe work  whereN(P,n) is the smallest number of setsRi™ that still

of Broomheackt al. reveals that the time extent of a filter is coversM, or the total number of all possible symbolic se-
important and can have nontrivial effects on chaotic sigfﬁals.quences with length. In general, the value of the topologi-
Specifically, finite-impulse-responsgIR) filters tend to in-  cal entropy depends on the partitiéh To have a unique
duce a diffeomorphism between the original and the filterecentropy associated with the symbolic dynamics, one utilizes
attractors and, hence, generally they preserve the dimensiofhe generating partition P15 that generates a one-to-one

An important recent result in this area is the development otorrespondence between the phase space and the abstract

statistical measures for testing continuity and differentiabilitysymbolic space and yields the largest entropy value among
by Pecora and Carroflwhich can be powerful for studying those from all possible partitions

the effect of filtering on chaotic signals and other related
problems such as generalized synchronizafias well.

The problem of filtering is important because, in experi-
mental or applied situations, measurements of chaotic signals one dimension, the generating partition is the set of criti-
involve a hierarchy of physical instruments, each affectingcal points of the map. In high dimensions, it is generally
the amplitude and frequency characteristics of the signal andlifficult to find the generating partitiotf:1’ For this reason,
hence, each can be regarded as a filter. Another example i3 this paper we choose as working examples chaotic sys-
the in-principle exploration of the idea of communicating tems that are equivalent to one-dimensional maps on a Poin-
with chaos by utilizing synchronous chdas chaotic sym-  caresurfaces of section.
bolic dynamicst®*? In the first approach, a message is  To argue for the invariance of the topological entropy
mixed with a chaotic signal through a modulation process atinder filtering, we consider the Kolmogorov—SirKiS) en-
the transmitter, and the receiver extracts the message by sutvopy hxs(w), which gives the rate of information creation
tracting off the chaotic signal, provided that a synchronousvith respect to an ergodic invariant measyrel he topologi-
copy of the signal is available from a replica of the chaoticcal entropy can be related to the KS entrop}fas
system that generates the original chaotic signal. In the sec- _
ond approach, a message is encoded into a chaotic signal by hT(M)_S:jthS(’“)' @
making use of the symbolic dynamics of the underlying dy-
namical invariant set. In both cases, a chaotic wave formfhe KS entropy, in turn, can be related to the Lyapunov
carrying information is to be transmitted through a physicalSPectrum associated with the measpre

hr(M)=suph7(M,P)=h(M,P*). ©)
=]

chan_nel. Thg channel is, of course, _|mperfect.and POSSeSSes h (u)<3, o\, (5)
practical limitations ranging from finite bandwidth to dissi- '
pation. where the equality holds for Hamiltonian systems for which

A chaotic signal is characterized by a variety of dynami-the measure of interest is the volume fraction of the relevant
cal and topological invariants such as the fractal dimensiorhaotic ergodic regiof® and for Axiom-A systems as welf.
spectrum, the Lyapunov exponent spectrum, the topologicébince linear filtering does not change thesitive Lyapunov
and metric entropies. Most previous works focus on the diexponents of the system, Eq4) and(5) imply that both the
mension aspect of the filtering problem. In this paper, weKS and the topological entropies are invariant under linear
study the effect of filtering on the symbolic dynamics of filtering.
chaotic signalé?® In particular, we consider a general dy- A complication is that the attractor of the filtered system
namical system that involves the original dynamical systenresides on a compact sbt’ which in general is different
dx/dt=F(x) and an IIR filter, and ask the following ques- from the compact seé¥l of the original attractor. Because of
tions: (1) to what extent is the topological entropy of the  the change in the geometry and topology of the attra@sr
original chaotic attractor affected by filtering2) Suppose a reflected, e.g., by a possible increase in the fractal dimen-
sequence of symbols is embedded in the original chaotision), the generating partition of the filtered attractor will be
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altered. We find, through numerical computations and experi-
mental measurements, that it is usually more difficult to find
the generating partition if the degree of filtering is relatively
severe. The topological entropy with respect to the generat
ing partition of the unfiltered attractor is thus still of interest.
For a given filtering parameter, we will then consider two
entropies:ht(P*%) and h(P*), the topological entropies
computed with respect to the generating partition of the
original, unfiltered attractor and to that of the filtered attrac-
tor, respectively. We expeti:(P*°) to decrease as filtering
becomes severe bl (P*) to remain invariant, unless in
cases where the generating partition of the filtered attracto
cannot be found. A similar consideration applies to BER: we
expect it to increase under filtering with respect to the fixed
partition P*© but to remain low with respect to the generat-
ing partition of the filtered attractor. To verify these results,
we focus on a typical class of low-pass IIR filters and com-
pute howh(P*°), h+(P*) and BER change as functions of FIG. 1. (a) A single-scroll chaotic attractor from Chua’s circuit projected on
the cutoff frequency of the filter, by using both numerical ¢ :¥) plane.(b) The retum map constructed by recording the local
. ; minima x, of time seriesx(t). (c) Fourier power spectrum of(t). The
and actual experiments. In our study, these entropies are esandwidth ofx(t) is about 0.66.
timated directly according to their definitions. Specifically,
for ht(P*©), we countN(P,n), the number of distinct sym-
bolic sequences of length defined with respect to the fixed |, A NUMERICAL EXAMPLE
partition P*°, for n up to a value determined by the numeri-
cal limitation (20 for numerical computations and 13 for ex-

n+1

0.5

Power Spectrum
Magnitude (dB)

Frequency

We use Chua’s circufit as our paradigmatic numerical

. . : and experimental system to investigate the effect of filtering.
perimental data The slope of the linear fit betweenigP,n) The differential equations that describe the circuit, in a di-

P i *0 *
andn gives an approximate valug of (P ): Forh¢(P*), mensionless form, are
we perform the same computation but with respect to the
generating partitiorP*. While there are other methods for %_ o
: : : : . =ay(y—x) = B1f(x),
computing the topological entropies of one-dimensional  dt
maps such as the Markov approdtfand the kneading-

sequence approaéh,we find that our direct approach is d—)tlzaz(x—y)Jrﬂzz, (6)
more suitable, particularly for experimental data.
The principal results of this paper af&) the topological dz

entropy for chaotic flow is verified to be invariant under  dt Y’

linear filtering; (2) in the pr.actic-al situation, .by exercis.ing where the dynamical variables y, andz are proportional to
reasonable cargo be detailed in the following the esti-  yhe yoitage drops across the two capacitors, and the current
mated topological entropy can be preserved and the bit-errqp ough the inductor in the circuit, respectively. The nonlin-
rate can be maintained at low values for a wide range of thearity comes from the piecewise linear functidigx) = Bx
filtering parameter. The implication is that measurements ofi- (A—B)[|x+E|—|x—E|]/2, whereA, B, andE are con-
chaotic signals by physical instruments or the transmissiostants. An advantage of Chua’s circuit is that a variety of
of chaotic signals through a physical medium can be rechaotic behaviors can be generated by changing the circuit
garded as a process that mostly preserves the symbolic reparameters. For instance, one can obtain both double-scroll,
resentation of the signal. Lorenz-typé® and single-scroll, Rssler-typé* chaotic at-
The rest of the paper is organized as follows. In Sec. l1fractors. To facilitate analysis, in this paper we focus on the

we present a numerical example with a continuous-time chasngle-scroll family, as the corresponding return-maps gener-
otic flow to illustrate the effect of filtering. In Sec. lll, we ally resemble a quadratic map. An example is shown in Fig.

suggest theoretical models to understand the behavior of thl_e(a)’ Wherf the Earametgrs arez1=_5.94, B 1:9'2’ @2
. . o =0.66, B8,=1.0, y=7.0,A=-0.5,B=-0.8, andE=1.0.
topological entropy as a function of the filtering parameterT

q lain why th b din princiol o obtain a return map, we locaig (n=0,1,..), thesuc-
and to explain why the entropy can be preserved in prinCipi€eeggjve ocal minima of the dynamical variabtét), and

In Sec. IV, we present experimental results from a chaoticpk)t X1 VS X,, as shown in Fig. (b). The return map
electronic circuit with filtering, which are consistent with our gefined byx, ., ,=F(x,) is apparently approximately one-
numerical and theoretical analysis. In Sec. V, we briefly disdimensional with a quadratic minimum. Figurécil shows
cuss the relevance of our work to signal processing in ahe power spectrum of(t). The bandwidth of the spectrum
biomedical application. is about 0.66.
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FIG. 2. (a)—(d) Return maps obtained from the filtered signalx¢f) for

cutoff frequencyf = 0.4, 0.3, 0.25, and 0.2, respectively. FIG. 3. Computed topological entropy vs cutoff frequency. The lower trace

is with respect to the original partition and the upper trace is with respect to
the optimal partitions. See the text for details.

In applications, Butterworth filters, which are IIR filters,
are most frequently used. Amth-order Butterworth lowpass
filter is described by a frequency response funcfibbe Fou-  point appear to have shifted, as compared with the location
rier transform of filter's impulse-response functidi{t)] of the original map[Fig. 1(b)]. Since the location of the

with magnitude given k& critical point defines the generating partition, the observation
1 is then that, when the degree of filtering is weak, i.e., when
IB(w)|2=————m, 7) the cutoff frequency of the lowpass filter is high, the effect of
1+ (0l w) filtering is simply a shift in the location of the generating
wherew, is the cutoff frequency. The corresponding LaplacePartition for defining the symbolic dynamics.
transformB(s) of b(t) containsn poles, typically chosen to We first examine the topological entropy(P*°) as a

be those in the left-half plane of the complexplane. Ifu(t) function of the cutoff frequency of the lowpass filter, where
andv(t) denote the input and output of the filter, respec-the partitionP*? is located at the critical point of the unfil-
tively, then in the time domain, theth order Butterworth tered return map. If ., is about the bandwidtiAf of the

lowpass filter is described by the followingh order linear ~chaotic signals, the resulting return map remains approxi-
differential equation: mately the same as that from the original signal, in both

. I shape and location. This leads to almost identical values for
d"(t) YA (o )d v(t) bt Ao )w the topological entropyh+(P*°), as shown in Fig. Jthe

dt" T Bl dt lower trace forf.,>0.4). Whenf., is decreased from the
value ofAf, theh(P*9)-vs-f, function appears to exhibit
a nonmonotone behavior, as shown in Fidtt8 lower trace
where the coefficienté&\;(w.),...,A,_1(w.) depend on the for 0.28<f.,<0.4). In this range of the cutoff frequency, the
cutoff frequency. return map from the filtered signal is still approximately

To numerically investigate the effect of filtering, we uti- single-branched. The intriguing behavior in the topological

lize a fifth-order Butterworth low-pass filter with cutoff fre- entropy thus comes almost purely from the change in the
quency ranging from 0.2 to 0.6 and pass one of the dynamiocation of the critical point of the return map?’ If f, is
cal variables through the filter. In order to mimic an several times smaller thakf, then the reconstructed return
experimental situation, we digitally sample the sigré) map will contain multiple branches at various locations, in-
before filtering at a frequency about 30 times higher than thelicating an increase in the underlying dimensionality of the
Nyquist frequency of the signal. Let(t) be the signal after filtered signalx;(t), which results in the large fluctuations in
filtering. Figures 2a)—2(d) show the return maps constructed h(P*9).
from x;(t) for cutoff frequency aff.,~=0.4, 0.3, 0.25, and We next study the behavior ¢ir(P*) as a function of
0.2, respectively. Comparing with the return map fr&(n) feut» WhereP* is the generating partition of the filtered re-
[before filtering, Fig. )] which roughly contains one turn map, which depends diy. If fo<Af, it is straight-
branch and is therefore approximately one-dimensional, wéorward to find P* because the filtered return map is still
see that severe filtering induces a multibranch structure in thapproximately one-dimensional so that its critical point de-
return map, indicating an increase in the fractal dimension ofines P*. If f ,<Af, the filtered return map appears no
the filtered signal. The smaller the cutoff frequency, the mordonger one-dimensional. In this case, identifying the generat-
apparent the high-dimensional struct{ifégs. Zc) and 2d)].  ing partition is difficult!®*?” We thus use the following
We also note that, even in the cases of high cutoff frequensimple practical procedure: we place the symbolic partition
cies [Figs. 4a) and 2b)] where the return maps are still at a series of systematically chosen locations in the range of
approximately one-dimensional, the locations of the criticalthe return map, compute the topological entropy for each

+ 0lv(t)=wlu(t), 8
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FIG. 4. The average first-return time) vs the cutoff frequency of the ¢
lowpass filter. cut

FIG. 5. The bit-error-ratdBER) vs the cutoff frequency of the lowpass
filter. The upper trace is with respect to the original partition and the lower

. . . . trace is with respect to optimal partitions.
location, and determine the one that yields the maximum P P P

value of the entropy. Although the partition so chosen is

pptimal in the sense Qescribé\de call it opt?r'nal partition), _ extracted after transmission is BER. If the degree of filtering
it will not be generating, as the true partition can be quite,s severe. we expect a high BER. To compute the BER, we
complicated because of the high dimensionality underlying.,,ose a chaotic signal corresponding to an information
the filtered signal. The resulting entropy function is shown instring of 1 symbols, pass the signal through a lowpass
Fig. 3 (the upper trade We see that the entropy so obtainedjjiar " and then calculate the fraction of converted symbols
has approximately the same value as that from the ongmahhe wrongly extracted ongslf the partition is fixed and

unfiltered system. chosen as the one from the original, unfiltered chaotic signal,

The approximately constant behavior of the topological e expect a high value of BER when the cutoff frequency of
entropy (upper trace in Fig. Bdoes not directly support the e fiiter is such that the return map is either shifted and/or

conjecture thahy for filtered chaotic flowf is invariant. It \ibranched. However. if we use optimal partitions, we

qnly'suggests thaty for a Poincaremap is invariant under expect to be able to reduce the BER significantly, at least in
fllterlng. The KS entropy of the flow cangbe related to that of o range of cutoff frequency where the return maps from the
the Poincarenap by Abramov’s formuld; filtered signal remain single-branched. These results are
hpap shown in Fig. 5, where the upper trace is BERfyg for a
hﬂoswzmy (9)  fixed partition, and the lower trace is that for optimal parti-
tions. We see that if the cutoff frequency is higlf.t
where 7 is the average first-return time. Assuming that a>0.4), the BER is low. However, for 0.28f,,<0.4, the
similar relation holds for the topological entropy, we see thaBERs are quite high if a fixed partition is chosen but they
the entropy should be invariant under filtering for flow only can be reduced significantly if optimal partitions are chosen
if () is approximately unchanged under filtering. For ourfor different cutoff frequencies, insofar as the return map
numerical example, the behavior 6f) vs f., is shown in  remains approximately single-branched. Fgr<0.28, the
Fig. 4. Apparently(7) is invariant if f;,>0.25, where the BER is appreciable even with the use of optimal partitions.
filtered return map is still approximately one-dimensionalThe heuristic reason is, of course, that the return maps are
[Figs. 2a)-2(c)]. Figures 3 and 4 suggest that the topologi-generally multibranched, and the optimal partitions are not
cal entropy of the flow is invariant if filtering is not severe. even approximations of the corresponding generating parti-
For f,<0.25, the average first-return time increase$@s tions, leading to severe confusion in the specification of sym-
is decreased, indicating that on average, the topological emyols. Thus, we see that, from the standpoint of delivering
tropy of the flow should be decreased. These considerationgformation correctly, the cutoff frequency of the lowpass
are heuristic of course. If there exists a probability measureilter should be higher than a critical value, below which the
with respect to which(7) remains invariant under filtering, dynamics of the unfiltered and filtered chaotic signals are
then the topological entropy of the chaotic flow defined withtopologically different. If there is an apparent increase in the
respect to this measure can be invariant under filtering. Welimensionality of the filtered signal, the information carried
are not aware of any procedure for finding such a measurepy the signal can be destroyed by the physical medium
While the topological entropy characterizes how “ran- through which a chaotic signal is transmitted.
dom” a chaotic signal is, it does not quantify the “correct-
ness” of the transmitted symbolic sequence. In the context of
communication where a chaotic system is employed to engbﬁgﬁgﬁﬂc ANALYSIS OF THE ENTROPY
code information, this entropy in fact quantifies the “channel
capacity” of the chaotic systeM. The appropriate quantity To better understand how linear filtering affects the to-
to characterize how correct the symbolic dynamics can b@ology of a chaotic system and to gain intuition about the
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0 FIG. 7. The structure of filtered skew Ulam maps fore 2. (a), (b)
0 0.4 X 1 First-order approximations of the filtered attractor and the reconstructed
n attractor from the filtered signal, respectively(c), (d) The corresponding
second-order approximations.
FIG. 6. The skew Ulam maf(x)=cx(1—x)(1—bx), b=0.6, c=17.4.
There is a critical point ax,~0.4.
Yn=(1— €)X+ X1~ €Xn_ 11 €Xy_2, (15

invariance of the topological entropy under filtering, we con-

siderzéa simple analyzable model, the one-dimensional Ulanyherex, , can be obtained by iterating the inverse map two
map;° which reads times fromx,,. Consequently, the second-order attractor con-
Xn=F(Xn_1)=CXn_1(1—X,_1)(1—bX,_1), (10)  Sists of four branches, as shown in Figc)7 Each branch in

the first-order attractor is now separated into two branches

where b and ¢ are parameters. Choosirlg=0.6 andc  jth the distance proportional te? in the second-order ap-
=17.4, the critical point of the map is located@t=0.4 and  proximation.

the map generates a chaotic attractor in the unit interval, a8 The above-mentioned branch-doubling procedure thus

shown in Fig. 6. Consider the following first-order lowpassintroduces a self-similarity into the attractor, resulting in an

IR filter: increase of the fractal dimension, no matter how sraad.
Yn=€Yn_1+(1— €)Xy, (12) Of course, where is very small, i.e., the cutoff frequency of

. the fitler is much larger than the bandwidth of the chaotic
where e=exp(-7) and 7 is the the cutoff frequency of the gjgna| the increment of fractal dimension is negligible. The

filter. The new system can be represented by a tWozphoye-mentioned observations are consistent with the result

dimensional map, in Ref. 1.
Xn=CX_1(1—Xq_1)(1—bX,_1), For the filtered Ulam map, while the fractal dimension is
(12) increased under filtering, the topological entropy is invariant,
Yn= €Yn-1+(1—€)X,. because all branches of the filtered attractor can be mapped
Sincex can be considered as a random variable in the uniPack to the original one-dimensional one-hump map. In prin-
interval, we obtain ciple, topological entropy can be computed provided that the

critical point of each one-hump curve in the filtered return
Yn=(1=€)Xnte€yn-1 map can be located. For our model, this can be done by
=(1— €)Xyt e((1— €)Xy_1+ €Yp_n) locating the set of all critical points, as shown in Fig. 8.

=(1-e)Xyt+e((l—€e)X,_1

Te((1-€)Xn_2t€yn-_3)))=""". (13
In general,»>1 so that G<e<1. Thus, to first order Eq. 14
(13) becomes &
_ +
Yn=(1— €)X+ exp_1=(1—€)X,+€F 1(Xn)r (14 5;0.5‘

whereF ~1( ) is the inverse of the skew Ulam map. Due to
the fact that each point has two pre-images under the map, 0-
the attractor consists of two branches, as shown in K. 7
The distance between the two branches is proportional to 0.5
Figure 7b) shows the first-order approximation of the recon- y(n+1)
structed attractor from the_fllte_red S|gnal, or th? retum r_napFIG. 8. The reconstructed attractor from filtered siggain the three-
The second order approximation can be obtained similarlyjimensional space, wheffe}, the set of critical points of all one-hump
by omitting all theO(€®) terms, branches, is the generating partition.

Downloaded 04 Mar 2003 to 128.153.23.231. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



416 Chaos, Vol. 13, No. 1, 2003 Zhu et al.

R (a) FIR filter, the filtered map resembles the one filtered by an
IIR filter and the computation can lead to an increase in the
1.79K fractal dimension. The topological entropy is nevertheless
invariant with respect to FIR filters, for the same reason as
L 3 1 ey le, D Nonlinear for IIR filters.
18mH 5 T 1000F | 100 | | Diode
IV. EXPERIMENTAL VERIFICATION
We here provide experimental results that are consistent
T with the numerical and theoretical analysis in Secs. Il and III.
I OSSO UO TS SUUUUUOURUUON e e ettt en et eaen We utilize Chua’s CirCUit, as shown in Flg 9, where F(a)t
R I[ Output is the circuit itself with parameters set so that it generates a
% K — single scroll chaotic attractor and p&lo) is a lowpass filter-
C; MAX280 ing circuit. The differential equations that describe the ex-
MAX430 0 e T 17 | MAX430 perimental Chua’s circuit are
L] 2 7 dx 1
SV—3  §—+5V di- Ca[G(y x)—f(x)],
+5V—4 5—< Clock In
dy 1
® a1~ o lex—y)+z], (16)
FIG. 9. Schematic diagram of the experimental circ(a): Chua’s circuit, b
and (b) filtering circuit. In (b), two operational amplifiersMAX430) are dz 1
used as buffers, anB;, C;, and a third operational amplifi¢MAX280) a =- Ey'

constitute a fifth-order Butterworth lowpass filter with cutoff frequency de-
termined by the value of;=R;C; and the frequency of an external clock. The signalx(t), which is the voltage across the capacitor
C., is fed into the filterMAX280, MAXIM ). The MAX280
o ) N _ chip is itself a fourth-order, switched capacitor filter, but
Unfortunately, finding a generating partition for high-order yhen combined with th&C subcircuit consisting oR; and
filters and/or high-dimensional attractors is extremely diffi—cf, it becomes a fifth-order all-pole lowpass filter with no
cult. ] ) DC error. The cutoff frequency of on-chip filter is set by an
On the other hand, for amth-order FIR filter given by  external clock(33120A, Agilen, with the clock-to-cutoff-
m frequency ratio of 100:1. The elemerRg andC; also act as
Vo= @iXn_i, part of a feedback loop for the filter and contribute one pole
=0 in the complex-frequency response function of the filter. If
where a; are the filter coefficients, there are exactlff' 2 the value ofC; is selected first, then the value f is given
branches in the return map for one-hump maps, indicatin@y29
that in theory, FIR filters do not increase the dimension of the 1.62
return map. However, when we estimate the fractal dimen- Rf:W,
sion by using the measured signal filtered by a high-order Tileut
wheref ., is the cutoff frequency defined at the3 dB point
of the frequency response function, which can be changed

(17

0.4 ©) systematically in our experiments by varying the resistance
0.2 R;. The circuit is powered by a low-ripple and low-noise
= power supply(HPE3631, HP. The voltage signals are re-
E corded by using a 12 bit data acquisition bo&dPCI3110,
-0.2 Keithley) with sampling rate about 30 times the bandwidth
0.4 of the signals.
0 )?-4 0.8 Figure 1@Qa) shows, before filtering, projection on the
50 ‘ . " (x,y) plane of the single-scroll chaotic attractor obtained for
g%ﬁ © the set of parameter values specified in the circuit diagram
§; 0 (Fig. 9. The return map constructed from the local minima
%g of the signalx(t) is shown in Fig. 1(b). We notice a close
g § resemblance between this experimental return map and the
5= 50 one from numerical simulatiofFig. 1(b)]. The power spec-
0 05 1 15 2 25 3 trum of x(t) is shown in Fig. 1(), where we see that the

Frequency x10* bandwidth of the signal, after subtracting off the50 dB

FIG. 10. (8) A sing I chaotic attractor from th - ental Chua’ noisy background, is about 25 kHz. Figures(a)+11(d)
. 10. (a) A single-scroll chaotic attractor from the experimental Chua’s . :
circuit projected on thex,y) plane.(b) The return map constructed by show the return maps constructed from the filtered signals

recording the local minima,, of time seriex(t). (c) Fourier power spec-  T0r the Value. of the cutoff frequency d,=5, 4, .3, and 2
trum of x(t). The bandwidth ok(t) is about 2.5 kHz. kHz, respectively. We observe that these experimentally ob-
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FIG. 11. From the experimental Chua’s circuit, return maps obtained from o
the filtered signal ok(t). (a)—(d) Cutoff frequencyf.,=5, 4, 3, and 2 kHz, T
respectively. om
. . . . 0 ==
tained return maps are, to a high degree, consistent with the 2 3 4
numerical onegFigs. Z2a)-2(d)]. In particular, the single- f (kHZ)
branched structure of the return map is maintained when the cut

cutoff frequency _IS n_Ot tOQ IO\M:IgS' 11a) and 1Ib)] When FIG. 12. From the experimental Chua’s circy#) The average first-return
the degree of filtering is severecorresponding to lower time (7) vs the cutoff frequency of the lowpass filtér,. (b) Topological
value of f ), a multibranched structure in the return map entropy vsf,,. (c) BER vsf,,. The traces with circles are obtained with
arises. Thus, the behaviors of the topological-entropyzys- optimal partitions and the traces with stars are obtained with the generating
function and BER-vs+,, function will be similar to that de- Partition P*® of the unfiltered signal,
picted in Figs. 3 and 5, although obtaining fine plots of these
functions is beyond our reach at present due to the extremely
stringent requirement of noise control and extremely longexample, forf. =4 kHz, the BER from the original parti-
time data recordings in order for the fine structure of thetion is about 2.6% and that from an optimal partition is about
function to be resolved. 1.5%, both are quite low. If, however, the cutoff frequency is
Figures 12a)—12(c) show the average first return time Vvery low, then the underlying dynamics for the filtered signal
(), the topological entropy, and the BER for four values ofis essentially high-dimensional and the return map is multi-
the cutoff frequency, respectively. For each fixed value oforanched. In this case, no partition can yield significantly
f.ut» We record the signads(t) after filtering, which contains lower values of BER than any others. When the cutoff fre-
at least 10 oscillations. The entropy is estimated by linear quency is neither too large nor too small, we observe a sig-
fitting to the plot of INN(n) vs n, wheren is up to 13. The nificant improvement in BER when utilizing an optimal par-
BER is obtained by monitoring the fraction of symbols, outtition. For instance, forf.,=2.5 kHz, the BER from the
of 10°, that are represented incorrectly with respect to thedriginal partition is about 31%, but that from an optimal
partition associated with the return map. In Fig. 12, the starartition is about 2.4%—an improvement of more than one
denote the entropies or BERs when no adjustment of therder of magnitude. The overall message is that if the effect
partition is mad€i.e., the symbolic partition from the origi- of filtering is not too severe, then the reliability of the trans-
nal, unfiltered signal is utilizad while the circles indicate mitted information can be guaranteed if the return map re-
the entropies or BERs when optimal partitions are chosen fofains single-branched and an optimal symbolic partition is
the filtered signals, as described in Sec. Il. We see that whedilized.
the value of cutoff frequency is not too low, e.dfey
>2.5 kHz, both(7) and h; with optimal partition are con-
stant, indicating the invariance of tliig of the chaotic flow.
As discussed in Sec. Il, at present, it appears difficult to  In summary, our investigation of the effect of filtering on
assess whethédr; is invariant or not for severe filtering. We symbolic dynamics of chaotic signals indicates that, if the
also see that for both high and low values of cutoff fre-degree of filtering is not severe, the symbolic dynamics can
guency, the improvement in BER is only incremental bybe easily recovered in the sense that the value of the topo-
choosing an optimal partition. The reason is, as we wish tdogical entropy is not reduced and the BER can be low. We
reiterate here, that if the cutoff frequency is high, then thegive intuitive arguments suggesting the invariance of the to-
effect of filtering is minimal so that the partition estimated pological entropy under filtering. We choose to study low-
from the unfiltered signal is almost a generating partition fordimensional chaotic systems because they are feasible mod-
the filtered signalin this case, the topological structure of els that allow the issues concerning the symbolic dynamics
the chaotic return map is hardly influenced by filtejingor ~ to be addressed. Our results complement the existing ones on

V. DISCUSSIONS
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