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Numerical and experimental investigation of the effect of filtering
on chaotic symbolic dynamics
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Motivated by the practical consideration of the measurement of chaotic signals in experiments or the
transmission of these signals through a physical medium, we investigate the effect of filtering on
chaotic symbolic dynamics. We focus on the linear, time-invariant filters that are used frequently in
many applications, and on the two quantities characterizing chaotic symbolic dynamics: topological
entropy and bit-error rate. Theoretical consideration suggests that the topological entropy is
invariant under filtering. Since computation of this entropy requires that the generating partition for
defining the symbolic dynamics be known, in practical situations the computed entropy may change
as a filtering parameter is changed. We find, through numerical computations and experiments with
a chaotic electronic circuit, that with reasonable care the computed or measured entropy values can
be preserved for a wide range of the filtering parameter. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1520090#
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Experimentally measured signals are either inevitably or
intentionally filtered, the former can be attributed to the
limitation of the measuring instruments while the latter is
due to the necessity to remove undesirable frequenc
components for signal processing. Another area where fil-
tering is relevant is transmission of chaotic signals
through a physical medium. For instance, in a communi-
cation application, a chaotic wave form is transmitted
through a channel. Because of the finite bandwidth of the
channel, the transmission is equivalent to a filtering pro-
cess. Most existing works on the effect of filtering on cha-
otic signals deal with how filtering changes the fractal
dimensions, with well-known results such as the dimen-
sion increase caused by filtering. The focus of our inves
tigation is on the symbolic-dynamics aspect of chaotic sig
nals. Suppose a dynamical system generates a chaot
signal with a well-defined symbolic dynamics, and sup-
pose this signal is filtered. We ask, to what extent is the
chaotic symbolic dynamics affected by filtering. To be
concrete, we focus on the topological entropy and the bit-
error rate, two quantities characterizing the symbolic dy-
namics. Theoretical considerations indicate that the topo-
logical entropy is invariant under linear filtering, which
we have verified using numerical computations and ex-
periments with a chaotic electronic circuit. Our results
suggest that in practical situations, with reasonable care,
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the estimated topological entropy can be preserved and
the bit-error rate can be maintained at low values for a
wide range of the filtering parameter.

I. INTRODUCTION

The effect of filtering on chaotic signals has been a to
of interest since the pioneering work of Badiiet al.,1 who
observed that linear, infinite-impulse response~IIR! filters
tend to increase the fractal dimension of the attractor rec
structed from a filtered chaotic signal. In particular,
dx/dt5F(x) be the original dynamical system generating
chaotic attractor, wherexPR N, and letx(t) be one of the
components ofx which is to be filtered. The simplest, firs
order IIR filter may be represented by the following line
differential equation:

dz

dt
52hz1x~ t !, ~1!

wherez(t) is the filtered signal and 0,h,1 is the filtering
parameter. For such a filter, if an attractor is reconstruc
from the filtered signalz(t), the fractal dimension of the
attractor can be higher than that of the original attractor.1,2

The argument for the dimension increase goes
follows.1,2 Consider the Kaplan–Yorke formula3 for the
Lyapunov dimension,

DL5k1
1
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k
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which is conjectured to be equal to the information dime
sion of the attractor, wherel i ’s ( i 51,...,N) are the
Lyapunov exponents andk is the largest integer for which
the sum( i 51

k l i is positive. A linear, time-invariant filter, a
represented by Eq.~1!, gives an additional Lyapunov expo
nent lnh,0 ~for typical cases where 0,h,1). If ln h lies
in betweenlk11 and lk such that( i 51

k l i.0 but ( i 51
k l i

1 ln h,0, a situation that can be expected in low
dimensional chaotic systems, the Lyapunov dimension of
filtered signal is increased to

DL
fil5k1

1

u ln hu (i 51

k

l i.DL .

Analysis also indicates that the increase can be du
the fact that a chaotic attractor typically resides on a fra
surface that is continuous but not differentiable.4,5 The work
of Broomheadet al. reveals that the time extent of a filter
important and can have nontrivial effects on chaotic signa6

Specifically, finite-impulse-response~FIR! filters tend to in-
duce a diffeomorphism between the original and the filte
attractors and, hence, generally they preserve the dimen
An important recent result in this area is the developmen
statistical measures for testing continuity and differentiabi
by Pecora and Carroll,7 which can be powerful for studying
the effect of filtering on chaotic signals and other rela
problems such as generalized synchronization5,8 as well.

The problem of filtering is important because, in expe
mental or applied situations, measurements of chaotic sig
involve a hierarchy of physical instruments, each affect
the amplitude and frequency characteristics of the signal a
hence, each can be regarded as a filter. Another examp
the in-principle exploration of the idea of communicatin
with chaos by utilizing synchronous chaos9 or chaotic sym-
bolic dynamics.10–12 In the first approach, a message
mixed with a chaotic signal through a modulation process
the transmitter, and the receiver extracts the message by
tracting off the chaotic signal, provided that a synchrono
copy of the signal is available from a replica of the chao
system that generates the original chaotic signal. In the
ond approach, a message is encoded into a chaotic sign
making use of the symbolic dynamics of the underlying d
namical invariant set. In both cases, a chaotic wave fo
carrying information is to be transmitted through a physi
channel. The channel is, of course, imperfect and posse
practical limitations ranging from finite bandwidth to diss
pation.

A chaotic signal is characterized by a variety of dynam
cal and topological invariants such as the fractal dimens
spectrum, the Lyapunov exponent spectrum, the topolog
and metric entropies. Most previous works focus on the
mension aspect of the filtering problem. In this paper,
study the effect of filtering on the symbolic dynamics
chaotic signals.13 In particular, we consider a general d
namical system that involves the original dynamical syst
dx/dt5F(x) and an IIR filter, and ask the following ques
tions: ~1! to what extent is the topological entropyhT of the
original chaotic attractor affected by filtering?~2! Suppose a
sequence of symbols is embedded in the original cha
Downloaded 04 Mar 2003 to 128.153.23.231. Redistribution subject to AI
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signalx(t), to what degree will the sequence be altered a
filtering, i.e., what is the bit-error rate~BER! caused by fil-
tering?

Topological entropy is defined with respect to the sy
bolic dynamics of the underlying chaotic system. Conside
dynamical system described byf :M→M , which is defined
on a compact setM . By partitioningM into a collection of
subsetsP5$P1 , . . . ,Pp%, one can obtain a symbolic se
quence for a typical trajectory according to its order of vis
to these subsets. Letf 2k@P# denote the partition
$ f 2k(P1),...,f 2k(Pp)% and P(n) be the partition
$Pù f 21@P#ù¯ù f 2n11@P#%. The topological entropy of
M with respect to partitionP is14

hT~M ,P!5 lim
n→`

1

n
logN~P,n!, ~2!

whereN(P,n) is the smallest number of sets inP(n) that still
coversM , or the total number of all possible symbolic s
quences with lengthn. In general, the value of the topolog
cal entropy depends on the partitionP. To have a unique
entropy associated with the symbolic dynamics, one utili
the generating partition P* 15 that generates a one-to-on
correspondence between the phase space and the ab
symbolic space and yields the largest entropy value am
those from all possible partitions

hT~M !5sup
P

hT~M ,P!5hT~M ,P* !. ~3!

In one dimension, the generating partition is the set of cr
cal points of the map. In high dimensions, it is genera
difficult to find the generating partition.16,17 For this reason,
in this paper we choose as working examples chaotic s
tems that are equivalent to one-dimensional maps on a P
carésurfaces of section.

To argue for the invariance of the topological entro
under filtering, we consider the Kolmogorov–Sinai~KS! en-
tropy hKS(m), which gives the rate of information creatio
with respect to an ergodic invariant measurem. The topologi-
cal entropy can be related to the KS entropy as18

hT~M !5sup
m

hKS~m!. ~4!

The KS entropy, in turn, can be related to the Lyapun
spectrum associated with the measurem,

hKS~m!<Sl i.0l i , ~5!

where the equality holds for Hamiltonian systems for whi
the measure of interest is the volume fraction of the relev
chaotic ergodic region,19 and for Axiom-A systems as well.18

Since linear filtering does not change thepositiveLyapunov
exponents of the system, Eqs.~4! and~5! imply that both the
KS and the topological entropies are invariant under lin
filtering.

A complication is that the attractor of the filtered syste
resides on a compact setM 8 which in general is different
from the compact setM of the original attractor. Because o
the change in the geometry and topology of the attractor~as
reflected, e.g., by a possible increase in the fractal dim
sion!, the generating partition of the filtered attractor will b
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



er
n
ly
ra

st
o

th
c

ct
w
e
t-
ts
m
f
a

ly,
-
d
ri-
x-

th
r

na

s

er
g

rr
th
o

io
re
re

. I
h

f t
te
pl
ot
ur
is

n

l
ng.
di-

rent
in-

of
cuit
roll,

the
er-
ig.

-

n
al

412 Chaos, Vol. 13, No. 1, 2003 Zhu et al.
altered. We find, through numerical computations and exp
mental measurements, that it is usually more difficult to fi
the generating partition if the degree of filtering is relative
severe. The topological entropy with respect to the gene
ing partition of the unfiltered attractor is thus still of intere
For a given filtering parameter, we will then consider tw
entropies:hT(P* 0) and hT(P* ), the topological entropies
computed with respect to the generating partition of
original, unfiltered attractor and to that of the filtered attra
tor, respectively. We expecthT(P* 0) to decrease as filtering
becomes severe buthT(P* ) to remain invariant, unless in
cases where the generating partition of the filtered attra
cannot be found. A similar consideration applies to BER:
expect it to increase under filtering with respect to the fix
partition P* 0 but to remain low with respect to the genera
ing partition of the filtered attractor. To verify these resul
we focus on a typical class of low-pass IIR filters and co
pute howhT(P* 0), hT(P* ) and BER change as functions o
the cutoff frequency of the filter, by using both numeric
and actual experiments. In our study, these entropies are
timated directly according to their definitions. Specifical
for hT(P* 0), we countN(P,n), the number of distinct sym
bolic sequences of lengthn, defined with respect to the fixe
partition P* 0, for n up to a value determined by the nume
cal limitation ~20 for numerical computations and 13 for e
perimental data!. The slope of the linear fit between lnN(P,n)
andn gives an approximate value ofhT(P* 0). For hT(P* ),
we perform the same computation but with respect to
generating partitionP* . While there are other methods fo
computing the topological entropies of one-dimensio
maps such as the Markov approach20 and the kneading-
sequence approach,21 we find that our direct approach i
more suitable, particularly for experimental data.

The principal results of this paper are:~1! the topological
entropy for chaotic flow is verified to be invariant und
linear filtering; ~2! in the practical situation, by exercisin
reasonable care~to be detailed in the following!, the esti-
mated topological entropy can be preserved and the bit-e
rate can be maintained at low values for a wide range of
filtering parameter. The implication is that measurements
chaotic signals by physical instruments or the transmiss
of chaotic signals through a physical medium can be
garded as a process that mostly preserves the symbolic
resentation of the signal.

The rest of the paper is organized as follows. In Sec
we present a numerical example with a continuous-time c
otic flow to illustrate the effect of filtering. In Sec. III, we
suggest theoretical models to understand the behavior o
topological entropy as a function of the filtering parame
and to explain why the entropy can be preserved in princi
In Sec. IV, we present experimental results from a cha
electronic circuit with filtering, which are consistent with o
numerical and theoretical analysis. In Sec. V, we briefly d
cuss the relevance of our work to signal processing i
biomedical application.
Downloaded 04 Mar 2003 to 128.153.23.231. Redistribution subject to AI
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II. A NUMERICAL EXAMPLE

We use Chua’s circuit22 as our paradigmatic numerica
and experimental system to investigate the effect of filteri
The differential equations that describe the circuit, in a
mensionless form, are

dx

dt
5a1~y2x!2b1f ~x!,

dy

dt
5a2~x2y!1b2z, ~6!

dz

dt
52gy,

where the dynamical variablesx, y, andz are proportional to
the voltage drops across the two capacitors, and the cur
through the inductor in the circuit, respectively. The nonl
earity comes from the piecewise linear function:f (x)5Bx
1(A2B)@ ux1Eu2ux2Eu#/2, whereA, B, andE are con-
stants. An advantage of Chua’s circuit is that a variety
chaotic behaviors can be generated by changing the cir
parameters. For instance, one can obtain both double-sc
Lorenz-type23 and single-scroll, Ro¨ssler-type24 chaotic at-
tractors. To facilitate analysis, in this paper we focus on
single-scroll family, as the corresponding return-maps gen
ally resemble a quadratic map. An example is shown in F
1~a!, where the parameters are:a155.94, b159.0, a2

50.66, b251.0, g57.0, A520.5, B520.8, andE51.0.
To obtain a return map, we locatexn (n50,1,...), thesuc-
cessive local minima of the dynamical variablex(t), and
plot xn11 vs xn , as shown in Fig. 1~b!. The return map
defined byxn115F(xn) is apparently approximately one
dimensional with a quadratic minimum. Figure 1~c! shows
the power spectrum ofx(t). The bandwidth of the spectrum
is about 0.66.

FIG. 1. ~a! A single-scroll chaotic attractor from Chua’s circuit projected o
the (x,y) plane. ~b! The return map constructed by recording the loc
minima xn of time seriesx(t). ~c! Fourier power spectrum ofx(t). The
bandwidth ofx(t) is about 0.66.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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In applications, Butterworth filters, which are IIR filter
are most frequently used. Annth-order Butterworth lowpass
filter is described by a frequency response function@the Fou-
rier transform of filter’s impulse-response functionb(t)]
with magnitude given by25

uB~v!u25
1

11~v/vc!
2n , ~7!

wherevc is the cutoff frequency. The corresponding Lapla
transformB(s) of b(t) containsn poles, typically chosen to
be those in the left-half plane of the complexs-plane. Ifu(t)
and v(t) denote the input and output of the filter, respe
tively, then in the time domain, thenth order Butterworth
lowpass filter is described by the followingnth order linear
differential equation:

dnv~ t !

dtn
1An21~vc!

dn21v~ t !

dtn21 1¯1A1~vc!
dv~ t !

dt

1vc
nv~ t !5vc

nu~ t !, ~8!

where the coefficientsA1(vc),...,An21(vc) depend on the
cutoff frequency.

To numerically investigate the effect of filtering, we ut
lize a fifth-order Butterworth low-pass filter with cutoff fre
quency ranging from 0.2 to 0.6 and pass one of the dyna
cal variables through the filter. In order to mimic a
experimental situation, we digitally sample the signalx(t)
before filtering at a frequency about 30 times higher than
Nyquist frequency of the signal. Letxf(t) be the signal after
filtering. Figures 2~a!–2~d! show the return maps constructe
from xf(t) for cutoff frequency atf cut50.4, 0.3, 0.25, and
0.2, respectively. Comparing with the return map fromx(t)
@before filtering, Fig. 1~b!# which roughly contains one
branch and is therefore approximately one-dimensional,
see that severe filtering induces a multibranch structure in
return map, indicating an increase in the fractal dimension
the filtered signal. The smaller the cutoff frequency, the m
apparent the high-dimensional structure@Figs. 2~c! and 2~d!#.
We also note that, even in the cases of high cutoff frequ
cies @Figs. 2~a! and 2~b!# where the return maps are st
approximately one-dimensional, the locations of the criti

FIG. 2. ~a!–~d! Return maps obtained from the filtered signal ofx(t) for
cutoff frequencyf cut50.4, 0.3, 0.25, and 0.2, respectively.
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point appear to have shifted, as compared with the loca
of the original map@Fig. 1~b!#. Since the location of the
critical point defines the generating partition, the observat
is then that, when the degree of filtering is weak, i.e., wh
the cutoff frequency of the lowpass filter is high, the effect
filtering is simply a shift in the location of the generatin
partition for defining the symbolic dynamics.

We first examine the topological entropyhT(P* 0) as a
function of the cutoff frequency of the lowpass filter, whe
the partitionP* 0 is located at the critical point of the unfil
tered return map. Iff cut is about the bandwidthD f of the
chaotic signals, the resulting return map remains appro
mately the same as that from the original signal, in bo
shape and location. This leads to almost identical values
the topological entropyhT(P* 0), as shown in Fig. 3~the
lower trace forf cut.0.4). Whenf cut is decreased from the
value ofD f , thehT(P* 0)-vs-f cut function appears to exhibi
a nonmonotone behavior, as shown in Fig. 3~the lower trace
for 0.28& f cut,0.4). In this range of the cutoff frequency, th
return map from the filtered signal is still approximate
single-branched. The intriguing behavior in the topologic
entropy thus comes almost purely from the change in
location of the critical point of the return map.26,27 If f cut is
several times smaller thanD f , then the reconstructed retur
map will contain multiple branches at various locations,
dicating an increase in the underlying dimensionality of t
filtered signalxf(t), which results in the large fluctuations i
hT(P* 0).

We next study the behavior ofhT(P* ) as a function of
f cut, whereP* is the generating partition of the filtered re
turn map, which depends onf cut. If f cut,D f , it is straight-
forward to find P* because the filtered return map is st
approximately one-dimensional so that its critical point d
fines P* . If f cut!D f , the filtered return map appears n
longer one-dimensional. In this case, identifying the gene
ing partition is difficult.16,17 We thus use the following
simple practical procedure: we place the symbolic partit
at a series of systematically chosen locations in the rang
the return map, compute the topological entropy for ea

FIG. 3. Computed topological entropy vs cutoff frequency. The lower tr
is with respect to the original partition and the upper trace is with respec
the optimal partitions. See the text for details.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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414 Chaos, Vol. 13, No. 1, 2003 Zhu et al.
location, and determine the one that yields the maxim
value of the entropy. Although the partition so chosen
optimal in the sense described~we call it optimal partition!,
it will not be generating, as the true partition can be qu
complicated because of the high dimensionality underly
the filtered signal. The resulting entropy function is shown
Fig. 3 ~the upper trace!. We see that the entropy so obtain
has approximately the same value as that from the origi
unfiltered system.

The approximately constant behavior of the topologi
entropy~upper trace in Fig. 3! does not directly support th
conjecture thathT for filtered chaotic flowf is invariant. It
only suggests thathT for a Poincare´ map is invariant under
filtering. The KS entropy of the flow can be related to that
the Poincare´ map by Abramov’s formula,18

hKS
flow5

hKS
map

^t&
, ~9!

where t is the average first-return time. Assuming that
similar relation holds for the topological entropy, we see t
the entropy should be invariant under filtering for flow on
if ^t& is approximately unchanged under filtering. For o
numerical example, the behavior of^t& vs f cut is shown in
Fig. 4. Apparently,̂ t& is invariant if f cut.0.25, where the
filtered return map is still approximately one-dimension
@Figs. 2~a!–2~c!#. Figures 3 and 4 suggest that the topolo
cal entropy of the flow is invariant if filtering is not sever
For f cut,0.25, the average first-return time increases asf cut

is decreased, indicating that on average, the topological
tropy of the flow should be decreased. These considerat
are heuristic of course. If there exists a probability meas
with respect to whicĥt& remains invariant under filtering
then the topological entropy of the chaotic flow defined w
respect to this measure can be invariant under filtering.
are not aware of any procedure for finding such a measu

While the topological entropy characterizes how ‘‘ra
dom’’ a chaotic signal is, it does not quantify the ‘‘correc
ness’’ of the transmitted symbolic sequence. In the contex
communication where a chaotic system is employed to
code information, this entropy in fact quantifies the ‘‘chann
capacity’’ of the chaotic system.10 The appropriate quantity
to characterize how correct the symbolic dynamics can

FIG. 4. The average first-return timêt& vs the cutoff frequency of the
lowpass filter.
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extracted after transmission is BER. If the degree of filter
is severe, we expect a high BER. To compute the BER,
choose a chaotic signal corresponding to an informat
string of 104 symbols, pass the signal through a lowpa
filter, and then calculate the fraction of converted symb
~the wrongly extracted ones!. If the partition is fixed and
chosen as the one from the original, unfiltered chaotic sig
we expect a high value of BER when the cutoff frequency
the filter is such that the return map is either shifted and
multibranched. However, if we use optimal partitions, w
expect to be able to reduce the BER significantly, at leas
the range of cutoff frequency where the return maps from
filtered signal remain single-branched. These results
shown in Fig. 5, where the upper trace is BER vsf cut for a
fixed partition, and the lower trace is that for optimal par
tions. We see that if the cutoff frequency is high (f cut

.0.4), the BER is low. However, for 0.28& f cut,0.4, the
BERs are quite high if a fixed partition is chosen but th
can be reduced significantly if optimal partitions are chos
for different cutoff frequencies, insofar as the return m
remains approximately single-branched. Forf cut,0.28, the
BER is appreciable even with the use of optimal partitio
The heuristic reason is, of course, that the return maps
generally multibranched, and the optimal partitions are
even approximations of the corresponding generating pa
tions, leading to severe confusion in the specification of sy
bols. Thus, we see that, from the standpoint of deliver
information correctly, the cutoff frequency of the lowpa
filter should be higher than a critical value, below which t
dynamics of the unfiltered and filtered chaotic signals
topologically different. If there is an apparent increase in
dimensionality of the filtered signal, the information carrie
by the signal can be destroyed by the physical medi
through which a chaotic signal is transmitted.

III. HEURISTIC ANALYSIS OF THE ENTROPY
FUNCTION

To better understand how linear filtering affects the
pology of a chaotic system and to gain intuition about t

FIG. 5. The bit-error-rate~BER! vs the cutoff frequency of the lowpas
filter. The upper trace is with respect to the original partition and the low
trace is with respect to optimal partitions.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



n
la

l,
ss

o

un

.

to
p

o
n
ap
ar

wo
on-

hes
-

hus
an

f
tic
he
sult

is
nt,
ped
in-
the
rn
by

8.

cted

415Chaos, Vol. 13, No. 1, 2003 Filtering on chaotic symbolic dynamics
invariance of the topological entropy under filtering, we co
sider a simple analyzable model, the one-dimensional U
map,28 which reads

xn5F~xn21!5cxn21~12xn21!~12bxn21!, ~10!

where b and c are parameters. Choosingb50.6 and c
517.4, the critical point of the map is located atxc'0.4 and
the map generates a chaotic attractor in the unit interva
shown in Fig. 6. Consider the following first-order lowpa
IIR filter:

yn5eyn211~12e!xn , ~11!

wheree[exp(2h) andh is the the cutoff frequency of the
filter. The new system can be represented by a tw
dimensional map,

xn5cxn21~12xn21!~12bxn21!,
~12!

yn5eyn211~12e!xn .

Sincex can be considered as a random variable in the
interval, we obtain

yn5~12e!xn1eyn21

5~12e!xn1e~~12e!xn211eyn22!

5~12e!xn1e~~12e!xn21

1e~~12e!xn221eyn23!!)5¯ . ~13!

In general,h@1 so that 0,e!1. Thus, to first order Eq
~13! becomes

yn5~12e!xn1exn215~12e!xn1eF21~xn!, ~14!

whereF21( ) is the inverse of the skew Ulam map. Due
the fact that each pointx has two pre-images under the ma
the attractor consists of two branches, as shown in Fig. 7~a!.
The distance between the two branches is proportional te.
Figure 7~b! shows the first-order approximation of the reco
structed attractor from the filtered signal, or the return m
The second order approximation can be obtained simil
by omitting all theO(e3) terms,

FIG. 6. The skew Ulam mapf (x)5cx(12x)(12bx), b50.6, c517.4.
There is a critical point atxc'0.4.
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yn5~12e!xn1exn212e2xn211e2xn22 , ~15!

wherexn22 can be obtained by iterating the inverse map t
times fromxn . Consequently, the second-order attractor c
sists of four branches, as shown in Fig. 7~c!. Each branch in
the first-order attractor is now separated into two branc
with the distance proportional toe2 in the second-order ap
proximation.

The above-mentioned branch-doubling procedure t
introduces a self-similarity into the attractor, resulting in
increase of the fractal dimension, no matter how smalle is.
Of course, whene is very small, i.e., the cutoff frequency o
the fitler is much larger than the bandwidth of the chao
signal, the increment of fractal dimension is negligible. T
above-mentioned observations are consistent with the re
in Ref. 1.

For the filtered Ulam map, while the fractal dimension
increased under filtering, the topological entropy is invaria
because all branches of the filtered attractor can be map
back to the original one-dimensional one-hump map. In pr
ciple, topological entropy can be computed provided that
critical point of each one-hump curve in the filtered retu
map can be located. For our model, this can be done
locating the set of all critical points, as shown in Fig.

FIG. 7. The structure of filtered skew Ulam maps fore5e23. ~a!, ~b!
First-order approximations of the filtered attractor and the reconstru
attractor from the filtered signaly, respectively.~c!, ~d! The corresponding
second-order approximations.

FIG. 8. The reconstructed attractor from filtered signaly in the three-
dimensional space, where$xc%, the set of critical points of all one-hump
branches, is the generating partition.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Unfortunately, finding a generating partition for high-ord
filters and/or high-dimensional attractors is extremely di
cult.

On the other hand, for anmth-order FIR filter given by

yn5(
i 50

m

aixn2 i ,

where ai are the filter coefficients, there are exactly 2m

branches in the return map for one-hump maps, indica
that in theory, FIR filters do not increase the dimension of
return map. However, when we estimate the fractal dim
sion by using the measured signal filtered by a high-or

FIG. 9. Schematic diagram of the experimental circuit:~a! Chua’s circuit,
and ~b! filtering circuit. In ~b!, two operational amplifiers~MAX430! are
used as buffers, andRf , Cf , and a third operational amplifier~MAX280!
constitute a fifth-order Butterworth lowpass filter with cutoff frequency d
termined by the value oft f5RfCf and the frequency of an external clock

FIG. 10. ~a! A single-scroll chaotic attractor from the experimental Chu
circuit projected on the (x,y) plane. ~b! The return map constructed b
recording the local minimaxn of time seriesx(t). ~c! Fourier power spec-
trum of x(t). The bandwidth ofx(t) is about 2.5 kHz.
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FIR filter, the filtered map resembles the one filtered by
IIR filter and the computation can lead to an increase in
fractal dimension. The topological entropy is neverthele
invariant with respect to FIR filters, for the same reason
for IIR filters.

IV. EXPERIMENTAL VERIFICATION

We here provide experimental results that are consis
with the numerical and theoretical analysis in Secs. II and
We utilize Chua’s circuit, as shown in Fig. 9, where part~a!
is the circuit itself with parameters set so that it generate
single scroll chaotic attractor and part~b! is a lowpass filter-
ing circuit. The differential equations that describe the e
perimental Chua’s circuit are

dx

dt
5

1

Ca
@G~y2x!2 f ~x!#,

dy

dt
5

1

Cb
@G~x2y!1z#, ~16!

dz

dt
52

1

L
y.

The signalx(t), which is the voltage across the capacit
Ca , is fed into the filter~MAX280, MAXIM !. The MAX280
chip is itself a fourth-order, switched capacitor filter, b
when combined with theRC subcircuit consisting ofRf and
Cf , it becomes a fifth-order all-pole lowpass filter with n
DC error. The cutoff frequency of on-chip filter is set by a
external clock~33120A, Agilent!, with the clock-to-cutoff-
frequency ratio of 100:1. The elementsRf andCf also act as
part of a feedback loop for the filter and contribute one p
in the complex-frequency response function of the filter.
the value ofCf is selected first, then the value ofRf is given
by29

Rf5
1.62

2pCf f cut
, ~17!

wheref cut is the cutoff frequency defined at the23 dB point
of the frequency response function, which can be chan
systematically in our experiments by varying the resista
Rf . The circuit is powered by a low-ripple and low-nois
power supply~HPE3631, HP!. The voltage signals are re
corded by using a 12 bit data acquisition board~KPCI3110,
Keithley! with sampling rate about 30 times the bandwid
of the signals.

Figure 10~a! shows, before filtering, projection on th
(x,y) plane of the single-scroll chaotic attractor obtained
the set of parameter values specified in the circuit diagr
~Fig. 9!. The return map constructed from the local minim
of the signalx(t) is shown in Fig. 10~b!. We notice a close
resemblance between this experimental return map and
one from numerical simulation@Fig. 1~b!#. The power spec-
trum of x(t) is shown in Fig. 10~c!, where we see that the
bandwidth of the signal, after subtracting off the250 dB
noisy background, is about 25 kHz. Figures 11~a!–11~d!
show the return maps constructed from the filtered sign
for the value of the cutoff frequency off cut55, 4, 3, and 2
kHz, respectively. We observe that these experimentally

-
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tained return maps are, to a high degree, consistent with
numerical ones@Figs. 2~a!–2~d!#. In particular, the single-
branched structure of the return map is maintained when
cutoff frequency is not too low@Figs. 11~a! and 11~b!#. When
the degree of filtering is severe~corresponding to lower
value of f cut), a multibranched structure in the return m
arises. Thus, the behaviors of the topological-entropy-vs-f cut

function and BER-vs-f cut function will be similar to that de-
picted in Figs. 3 and 5, although obtaining fine plots of the
functions is beyond our reach at present due to the extrem
stringent requirement of noise control and extremely lo
time data recordings in order for the fine structure of
function to be resolved.

Figures 12~a!–12~c! show the average first return tim
^t&, the topological entropy, and the BER for four values
the cutoff frequency, respectively. For each fixed value
f cut, we record the signalxf(t) after filtering, which contains
at least 105 oscillations. The entropy is estimated by line
fitting to the plot of lnN(n) vs n, wheren is up to 13. The
BER is obtained by monitoring the fraction of symbols, o
of 105, that are represented incorrectly with respect to
partition associated with the return map. In Fig. 12, the s
denote the entropies or BERs when no adjustment of
partition is made~i.e., the symbolic partition from the origi
nal, unfiltered signal is utilized!, while the circles indicate
the entropies or BERs when optimal partitions are chosen
the filtered signals, as described in Sec. II. We see that w
the value of cutoff frequency is not too low, e.g.,f cut

.2.5 kHz, both^t& and hT with optimal partition are con-
stant, indicating the invariance of thehT of the chaotic flow.
As discussed in Sec. II, at present, it appears difficult
assess whetherhT is invariant or not for severe filtering. W
also see that for both high and low values of cutoff fr
quency, the improvement in BER is only incremental
choosing an optimal partition. The reason is, as we wish
reiterate here, that if the cutoff frequency is high, then
effect of filtering is minimal so that the partition estimate
from the unfiltered signal is almost a generating partition
the filtered signal~in this case, the topological structure
the chaotic return map is hardly influenced by filtering!. For

FIG. 11. From the experimental Chua’s circuit, return maps obtained f
the filtered signal ofx(t). ~a!–~d! Cutoff frequencyf cut55, 4, 3, and 2 kHz,
respectively.
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example, forf cut54 kHz, the BER from the original parti-
tion is about 2.6% and that from an optimal partition is abo
1.5%, both are quite low. If, however, the cutoff frequency
very low, then the underlying dynamics for the filtered sign
is essentially high-dimensional and the return map is mu
branched. In this case, no partition can yield significan
lower values of BER than any others. When the cutoff f
quency is neither too large nor too small, we observe a
nificant improvement in BER when utilizing an optimal pa
tition. For instance, forf cut52.5 kHz, the BER from the
original partition is about 31%, but that from an optim
partition is about 2.4%—an improvement of more than o
order of magnitude. The overall message is that if the eff
of filtering is not too severe, then the reliability of the tran
mitted information can be guaranteed if the return map
mains single-branched and an optimal symbolic partition
utilized.

V. DISCUSSIONS

In summary, our investigation of the effect of filtering o
symbolic dynamics of chaotic signals indicates that, if t
degree of filtering is not severe, the symbolic dynamics c
be easily recovered in the sense that the value of the to
logical entropy is not reduced and the BER can be low.
give intuitive arguments suggesting the invariance of the
pological entropy under filtering. We choose to study lo
dimensional chaotic systems because they are feasible m
els that allow the issues concerning the symbolic dynam
to be addressed. Our results complement the existing one

FIG. 12. From the experimental Chua’s circuit.~a! The average first-return
time ^t& vs the cutoff frequency of the lowpass filterf cut . ~b! Topological
entropy vsf cut . ~c! BER vs f cut . The traces with circles are obtained wit
optimal partitions and the traces with stars are obtained with the genera
partition P* 0 of the unfiltered signal.
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the dimension aspect to give a relatively more complete
ture for the effects of filtering on chaotic signals in gener

In a broad sense, our study is relevant to sign
processing problems in biomedical engineering. Consi
for example, the analysis of electroencephalogram~EEG! of
a patient with epilepsy, obtained via electrodes attache
the scalp of the patient. The EEG signal comes from
electrical activities of networks of neurons inside the bra
Because of layers of physical barriers such as the scalp
tween the neurons and the electrodes, and because o
limitation of the recording instrument, the observed EEG s
nal can naturally be regarded as the filtered representatio
the internal electrical activities of the neurons. The quest
is then, to what extent does the EEG carry the informat
that reflects the normal or abnormal neural activities of
brain? Similar questions also arise in engineering signal p
cessing and in digital communication. We believe these
meaningful questions worthy of further exploration.
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24O. E. Rössler, Phys. Lett. A71, 155 ~1979!.
25A. V. Oppenheim, A. S. Willsky, and S. H. Nawab,Signals and Systems,

2nd ed.~Prentice–Hall, Englewood Cliffs, 1997!.
26E. M. Bollt, T. Stanford, Y.-C. Lai, and K. Z´yczkowski, Phys. Rev. Lett.

85, 3524~2000!.
27E. M. Bollt, T. Stanford, Y.-C. Lai, and K. Z´yczkowski, Physica D154,

259 ~2001!.
28A. J. Lichtenberg and M. A. Lieberman,Regular and Chaotic Dynamics,

2nd ed.~Spring, New York, 1992!.
29MAXIM Integrated Products, 1995.
30The concept of generating partition is often confused with the rela

‘‘Markov partition,’’ whose existence implies that, in the case of an int
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



rom

i-

m

ry

-

419Chaos, Vol. 13, No. 1, 2003 Filtering on chaotic symbolic dynamics
val map, end points of the partition map to end points~each partition
interval is a homeomorphism onto a connected union of intervals f
metric spaceM, i.e., intervals stretch exactly onto unions of intervals@P.
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cal Systems in One Dimension~Birkhäuser, Boston, 1997!#, and which can
be appropriately defined for other classes of maps, such as axio
Downloaded 04 Mar 2003 to 128.153.23.231. Redistribution subject to AI
A

@R. Bowen, Am. J. Math.92, 725 ~1970!; Equilibrium States and the
Ergodic Theory of Anosov Diffeomorphisms~Springer, Berlin, 1975!#.

31D. J. Rudolph,Fundamentals of Measurable Dynamics, Ergodic Theo
on Lebesgue Spaces~Clarendon, Oxford, 1990!.

32D. Lind and B. Marcus,An Introduction to Symbolic Dynamics and Cod
ing ~Cambridge University Press, New York, 1995!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp


