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Abstract

Dimensionality reduction, which can be applied to produce a low-dimensional

dynamical system that replicates either approximately, or topologically, the output of a

high-dimensional dynamical system, plays an important role in the study of dynamical

systems. In many cases, there exists a low-dimensional submanifold in a high-dimensional

system, even in in�nite dimensional systems in the case of a PDE with a low-dimensional

attractor.

In this dissertation, we present a new technique to model a low-dimensional

dynamical system embedded in a high-dimensional dynamical system. The technique

involves a method of discovering a low-dimensional nonlinear submanifold, known only

empirically through the data set from a high-dimensional system, and a method of globally

modeling the low-dimensional manifold to obtain an analytical form that reproduces

a data set approximating the one on the low-dimensional manifold. When a reliable

analytical form of the low-dimensional system is obtained, further work such as short-time

prediction, structure investigation, and control may be possible to accomplish.

In an example of the Lorenz attractor, we focus on how to perform the dimensionality

reduction on a computationally generated data set that is very large, and has an irregular

distribution. In examples of fast-slow systems, we apply the technique of modeling

systems embedded onto low-dimensional submanifolds on fast-slow systems constructed

by simple systems and slow manifolds. In these examples, we empirically show that the
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results of analytical forms are as good as expected. In examples of very high-dimensional

systems, image spaces and video sequences, we consider each image as a data point to

obtain major underlying subspace by the modeling technique.

The technique of modeling low-dimensional systems developed here does not

require analytical forms of the original systems, and also, the embedding low-dimensional

submanifolds can be highly nonlinear. Moreover, in some speci�ed systems, the analytical

forms generated by the modeling technique can give us some insight into the structure of

the system restricted on the low-dimensional submanifolds.
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Chapter 1
Introduction

In this dissertation, we will present a technique to explore a problem of how to model

a high-dimensional process by a low-dimensional process, when such a low-dimensional

process exists. The main concern of the technique will be to develop a method to

produce an analytical form to approximate the equations on a low-dimensional invariant

submanifold that is embedded in some high-dimensional dynamical system. Therefore,

there are two major aspects to focus on:

1. Discover a low-dimensional manifold in a given high-dimensional process. When a

dynamical system has a stable invariant submanifold, onto which a set of empirical

data is attracted, we will apply a method to discover the low-dimensional submanifold.

In this sense, the method to be applied can be described as dimensionality reduction.

2. Produce an analytical form that is able to reproduce a data set approximating

the low-dimensional data set. When a low-dimensional submanifold is obtained

empirically by some dimensionality reduction methods, we will perform a global

modeling technique to attempt to uncover the underlying form of the data set attracted

onto the submanifold.
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1.1 Discovery of low-dimensional manifolds

In many cases, such as dissipative dynamical systems and singularly perturbed

systems [12, 16] of the form
�
x= F(x;y)

�
�
y= G(x;y);

(1.1)

where x 2 <m, y 2 <n, F : <m � <n ! <m, and G : <m � <n ! <n, in some

domain D � <m � <n, � is a small parameter and 0 < � << 1, and variable x is

called slow variable and y is called fast variable since
�
x
�
y
can be of order �, there

exist low-dimensional invariant manifolds or attractors. Many techniques have been

developed in applied dynamical systems in order to discover a low-dimensional

invariant manifold by reducing the order or dimension of input empirical data, or

even an analytical model, which is given by a high-dimensional process.

Several methods, including singular perturbation theory [12, 16], the inertial

manifold theory [41], and the method of multiple scales [25], attempt to �nd a

low-dimensional equation, which is restricted to some stable invariant manifold, and

dynamics of which is same (conjugate) as the long term behavior of the original

system. These methods usually require an analytical form of the system to reduce

the system onto a stable invariant manifold analytically, however, they are not

always appropriate to apply when only a data set is known empirically.

There are also data-driven and empirical techniques developed to reduce

the order or dimension of a system when only measurement (data) of the system

is available. Galerkin's method and �nite element methods [18], which project
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dynamical systems onto a linear subspace spanned by some chosen basis functions,

are well developed, but these methods are essentially linear. Therefore, they have

to either make severe errors when the invariant manifold is intrinsically nonlinear,

or retain many basis functions in order to capture the original system. Moreover,

they also require an analytical form of the system. Amongst the empirically

driven linear methods is the very popular proper orthogonal decomposition (POD),

or Karhunen-Loeve analysis [18, 24, 31]. However, either of them are also

fundamentally a linear analysis. Therefore, this linear view may not be appropriate

for systems in which a nonlinear manifold is embedded.

The ISOMAP (isometric mapping), is a new nonlinear algorithm which was

developed recently by Tenenbaum [4, 47, 52] in the machine learning community

for the purpose of image processing. This is a method of modeling an embedding

manifold as a graph, known only empirically through a data set. On the assumption

that a given data set is a good representation of an unknown manifold, the ISOMAP

approximates the manifold by an undirected graph (generated by the given data set)

that preserves the geodesics1 of the true manifold. Generally, this method discovers

intrinsically low-dimensional structures embedded in high-dimensional data sets.

One of the essential advantages of this method is that it attempts to give a more

faithful representation of the global structure of data, especially when the structure

is nonlinear.

1 A geodesic is the shortest path between points along the manifold in the space.
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In this dissertation, we will focus on the nonlinear analysis, ISOMAP method,

to show how to discover a low-dimensional manifold when systems are known only

empirically through a data set.

1.2 Global modeling

Modeling time-series and multivariate time-series obtained from measurements

of a dynamical system has long been a fundamental problem presenting itself to

experimental scientists. If a reliable model of such a system is obtained, further

work such as short-time prediction and control may be possible. Predicting the

future evolution of dynamical systems has been a main goal of scienti�c modeling

for centuries. The classic approach has been to build a global model, based on

fundamental laws, yielding a differential equation, which describes the motion of

states. �This requires strong assumptions. A good �t of the data to the model

validates the assumptions," [57]. Weigenbend and Gershenfeld make a distinction

between weak modeling (data-rich and theory-poor) and strong modeling (data-poor

and theory-rich). This is related to, �...the distinction between memorization and

generalization....". In this framework, the current work should be cast as producing

a global but weak model.

With a time-series from a �chaotic" dynamical system, data-only local

analysis, using the methods of embedding and attractor reconstruction has become

routine [1, 57, 23, 14] based on the Taken's embedding theorem [51]. Local methods
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of constructing the model of systems have been developed by many authors,

including [14, 15, 10, 29, 6]. These methods are called local because a model is �tted

for each neighborhood of the phase space, making an atlas of models. They are

furthermore data-driven, or weak models.

On the other hand, many researchers have developed techniques to model

dynamical systems that are continuous in time and are naturally modeled by

global autonomous ordinary differential equations (ODEs), dX
dt
= F (X), where X

2 <n[10, 9, 19, 21]. Their goal is to build vector �elds F . They assume that the

vector �eld F (x) of the dynamical system can be modeled by a series expansion in

some basis,

F (X) = lim
N!1

NX
k=0

pk�k(X): (1.2)

where f�k(X)g is a set of basis functions and pks are parameters whose values

must be determined by the modeling procedure. An important question associated

with many of the modeling techniques used by previous researchers is how good

the modeling method is. Some researchers consider the question of truncating the

model [10, 39]. Interestingly, Brown, et. .al. [10] use a synchronization criterion as a

nontrivial method to validate their models, requiring that the model should be able

to synchronize identically to the experimental data.

These works, and the problem we study, fall into a class of problems called

parameter estimation, which is related to, but not the same as, the problem of

�ltering whereby data is incorporated recursively into an evolving model. The now



6

classic Kalman �ltering method is the best known �ltering method for optimally

estimating linear models, and the Kalman method can be readily extended to

�ltering models consisting of linear combinations of a general basis [45]. There

have also been works to analyze the convergence of the extended Kalman �lter,

including in a paper by Krener [27]. In that paper, the author demonstrates that if

the initial estimation error of the �lter is not too large, the error will tend to go to

zero exponentially as time goes to in�nity.

In this dissertation, we will present a global modeling technique, which is

based on explicit Euler integration and higher order schemes, to model a given

data set, or multivariate time series obtained from measurements of dynamical

systems, in order to obtain a modeling system in form of a set of ODEs, which

reproduces orbits whose evolution in time mimics the behavior of multivariate time

series, or data set properly. Moreover, the convergence theorems of the parameters

determined by the modeling procedure are proved for the purpose of comparing

the modeling parameters with the exact form of the original system in view of the

quality of the modeling technique.

We will furthermore introduce a new method, which is an application of

Kronecker product by adapting the work of Van Loan and Pitsianis [55], to uncover

underlying structure of the system by investigating the modeling parameters for

some speci�c systems, such as dynamical systems with coupled oscillators. In this

dissertation, an example of N -coupled Rössler oscillators is introduced to show a
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good structure that can be discovered by the Kronecker product representation of the

modeling parameters.

Once a modeling system is produced, the reproduced data is able to be

generated for the purpose of error evaluations. In this dissertation, the quality of

the modeling system is evaluated based on the theorem of dependence on initial

condition [37], which is based on Gromwall's inequality to give us a bound of the

error, and Lyapunov analysis [2, 37, 50], which is a global approach to investigating

the stability of a �xed point of the error system. Moreover, there is a useful

synchronization criterion [10] that can be applied as a nontrivial method to evaluate

error.

The technique of modeling a low-dimensional submanifold, which is to be

introduced in this dissertation, is based on two aspects aforementioned. Given

a data set empirically, which is assumed to be attracted onto a low-dimensional

invariant submanifold, we are able to perform the global modeling technique

on a low-dimensional data set, which can be produced by applying methods of

dimensionality reductions on the given data set, to obtain an analytical form of the

modeling system, which reproduces a data set approximating the given one.

The organization of this dissertation is outlined below.

Chapter 2 gives a review of one nonlinear dimensionality reduction

method, ISOMAP, for the purpose of obtaining a low-dimensional data set if

high-dimensional empirical data is given by dynamical systems.
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In Chapter 3, a global modeling technique is introduced by an example of

the Rössler oscillator. Proofs of convergence theorems of the parameters, which

are produced by modeling technique based on forward Euler integration and higher

order schemes, are given in Chapter 3.3.

In Chapter 4.1, an introduction of Kronecker product is given. An example of

N -coupled Rössler oscillators given in Chapter 4.2 reveals a good structure, which is

able to be discovered by Kronecker product representation of the parameter matrix.

In Chapter 4.3, the existence of Kronecker product representation is discussed.

Chapter 4 closes with an example of structure investigation of a system of reaction

diffusion equations.

In Chapter 5.1, errors between evolutions of the orbits generated by the exact

system and the modeling system are evaluated based on the theorem of dependence

on initial condition and Lyapunov analysis. Synchronization criterion is shown in

Chapter 5.2. Chapter 5 closes with an example on time delay embedding of the

Rössler system.

Chapter 6.1 shows an application of the modeling technique of the Lorenz

system. In this example, we focus on a problem of how to obtain a data set with

a good density for the purpose of performing the ISOMAP method. Chapter

6.2 shows three examples of fast-slow systems with low-dimensional embedding

slow-manifolds, the existence of which allow us to produce analytical forms of the

underlying structure of the systems by the modeling technique. Chapter 6 closes
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with high-dimensional examples of image spaces and video sequences.
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Chapter 2
Nonlinear Dimensionality Reduction:

ISOMAP Method

The dimensionality reduction of multivariate data is a fundamental problem in

dynamical systems. Its goal is to produce a low-dimensional dynamical system, which

roughly stated, maintains properties of the high-dimensional system either approximately,

or topologically [46]. In many dissipative cases, there exists a low-dimensional dynamical

system for some high-dimensional system due to a slow manifold, inertial manifold, or

center manifold, which can be found by several methods, including singular perturbation

theory [12, 16], the inertial manifold theory [41], and the method of multiple scales [25].

However, those methods focus on the analytical forms of the original systems, which

sometimes cannot be obtained.

Data-driven and empirical techniques are also applied to reduce the dimension.

These methods are developed to operate when there is a low-dimensional manifold

embedded linearly, or almost linearly in the given ambient space. Among those methods

is a very popular method, proper orthogonal decomposition (POD), which generates

an optimal basis for the model reduction of a set of functions, or a given empirical

data set [17]. POD, which is also called principal component analysis (PCA), or

KL (Karhun-Loeve) analysis [17, 31, 33, 48] in terms of time averaged optimal basis,

is fundamentally a linear analysis dealing with the time-averaged covariance matrix.
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Therefore, these methods are fundamentally �awed when the embedding manifold being

modeled is highly nonlinear.

In this chapter, a review of a nonlinear method, ISOMAP, will be given for the

purpose of discovering a nonlinear low-dimensional manifold.

2.1 ISOMAP Method

Recently, the ISOMAP method has been applied to model a low-dimensional

nonlinear manifold in dynamical systems [7]. We will adapt this algorithm here for

the purposes of modeling nonlinear manifolds in the context of dynamical systems.

This is a natural way to obtain a nonlinear invariant manifold, which is the goal of

the usual method, POD, or KL analysis, which however is an entirely linear analysis,

hence inherently limited.

2.1.1 ISOMAP Algorithm

For a description of the ISOMAP method, we assume a data set X consisting of N

points in n-dimensional Euclidean space X = fxigNi=1 � <n, which is assumed to

lie on a submanifoldMd � <d of lower dimension d << n. The algorithm attempts

to obtain a corresponding data set Y = fyigNi=1 � <d appropriately embedded in a

lower dimensional manifold. In the following, we will describe X as represented

in the variables of the ambient space2 <n, and Y as represented in the intrinsic

2 By ambient space, we mean an embedding sapce <n. That is, any point xi in the data set X is in
<n.



12

variables of the manifoldMd.

ISOMAP is a manifold learning algorithm that extends the MDS (multi-

dimensional scaling) by using approximations of geodesic distances with the shortest

paths on a discrete graph, which approximates the manifold, instead of directly

applying MDS to a matrix of Euclidean distances. Three main steps are involved to

develop the ISOMAP algorithm, which we will brie�y review hereunder.

1. Build a neighborhood graph G to approximate the manifold. Graph

G = (X;E) consists of each point xi in X = fxigNi=1, which can also be

considered as the set of vertices of the graph G, and edges E = fxi; xjg which

are ordered pairs of edges connecting pairs of points xi, xj in X . There are two

ways to construct neighbors, meaning connecting points, in G, �-neighborhoods

and neighborhoods of k-nearest neighbors. To build a �-neighborhoods graph,

we construct the graph G containing edges fxi; xjg iff the Euclidean distance

between points xi and xj , jj xi � xjjj < � for some �. To build a k-nearest

neighbors graph, we construct the graph G containing edges fxi; xjg iff xi

is one of the k nearest neighbors of xj (and vice versa), with respect to the

Euclidean distance. The discrete graph G is constructed to approximate the

intrinsic manifoldMd.

2. Compute geodesic distances (shortest paths) and construct the matrix DG.

Let DG be a matrix of graph distances corresponding to the graph G and DM be
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a matrix of geodesic distances3 for all pairs of data points in X . DG is going to

be de�ned to approximate the geodesic distance DM . For each pair of points

xi, and xj in X , if there is a direct connection, the existence of which means

that the edge fxi; xjg is in the graph G, we use the graph distance

DG(i; j) = jjxi � xjjj;

with respect to the Euclidean distance, to approximate the geodesic distance

DM(i; j). If the edge fxi; xjg is not in the graph G, the distance between two

points xi and xj is de�ned by the following function,

dG(i; j) = minP (jjxi � xi1jj+ � � �+ jjxin � xjjj)

where P = (xi1; : : : ; xin) varies over all paths along the edges of G connecting

xi and xj . Thus the graph distance matrix DG is obtained for all pairs of data

points in X to approximate the true geodesic distances DM of the manifold.

This approximation can be improved by increasing the number of the points in

X , or modifying the value of �, or k. If � or k is chosen too large, or the density

of the data set X is too low, some neighbors could be in separate parts of the

manifold, and the approximation is poor. If � or k is chosen too small, the graph

G might not have enough information about the manifold. There are popular

methods to compute shortest paths of the graph, including Floyd's algorithm for

small to medium sized data set or Dijtsra's algorithm for small to large data set.

3 The length of the shortest path between points along the manifold in the space.
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3. Apply MDS (multi-dimensional scaling) [13] to the resulting graph distance

matrix DG. MDS requires only the graph distance matrix DG as input, which

was generated in the step 2, to form intrinsic variables Y . A review of MDS

will be given below.

2.1.2 Review of MDS (Multi-dimensional scaling)

Multi-dimensional scaling (MDS) [13] is a method of searching for a low-

dimensional space by using a distance matrix of points. The distances between

points are also called the original dissimilarities. The identifying aspect of MDS

is that it uses only the dissimilarity matrix, which usually represents the Euclidean

distances between pair of points, whereas by contrast POD works directly with the

original set of points.

Let X be a set of N points in an n-dimensional Euclidean space

X = fxigNi=1 � <n, where xi = (xi1; xi2; :::; xin)
T . Assume that the only

information we have about the data set X is the Euclidean distance matrix D, each

element of which [D]ij is given by the equation involving the ith and jth points in

X ,

[D]ij = d
2
ij = (xi � xj)T (xi � xj).

In the process of MDS, the original Euclidean coordinates can be obtained from the

given derived Euclidean distance matrix D, and a matrix of projected d-dimensional

data set Y will also be formed. The description of MDS is given as following.
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1. Find matrix A = �1
2
D.

2. Find matrix B = HAH , where H is the centering matrix,

H = I � n�11 � 1T ;

where I is the N � N identity, and 1 is a N � 1 vector of ones,

1 = (1; 1; :::; 1)T1�N . The proof that the obtained matrix B is a product of the

matrix of the original data set X can be found in [62, 13].

B = XXT ; (2.1)

where X = [x1;x2; :::; xN ]
T is the N � n matrix of the original coordinates.

Hence the method of recovering of the original coordinates is given, however, to

obtain an explicit form of matrix X , the spectral decomposition of matrix B has

to be applied.

3. Find the spectral decomposition of matrix B. B is a N � N symmetric,

positive semi-de�nite matrix of rank n, and hence has n non-negative

eigenvalues and N � n zero eigenvalues. Therefore matrix B can be written in

terms of its spectral decomposition,

B = V �V T ;

where � = diag(�1; �2; :::; �N), the diagonal matrix of eigenvalues f�ig of B,

and V = [v1; v2; :::; vN ], the matrix of corresponding normalized eigenvectors,

as result vTi vi = 1. For convenience the eigenvalues of B are labelled in the
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way that �1 � �2 � ::: � �N � 0. Due to the N � n zero eigenvalues, B can

also be rewritten as

B = Vn�nV
T
n ;

where

�n = diag(�1; �2; :::; �n); Vn = [v1; v2; :::; vn]:

Therefore as B = XXT discussed in the Eq. (2.1), the explicit form of the

coordinates of the original points has been recovered by matrix X ,

X = Vn�
1
2
n ; (2.2)

where �
1
2
n = diag(

p
�1;
p
�2; :::;

p
�n), and Vn is the matrix of the

corresponding eigenvectors.

4. Choose an appropriate number d < n as the dimension of the intrinsic

variables Y . A possible value of d can be found by considering the ratio of
dP
i=1

�i

nP
i=1

�i

. The matrix of intrinsic variables Y is given by

Y = Vd�
1
2
d ; (2.3)

where Vd and �
1
2
d use the top d (signi�cant) eigenvalues and eigenvectors of V

and �, respectively. These �rst d signi�cant coordinates form intrinsic variables

Y , in which the dimension of each point is d < n. Moreover, MDS method
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minimizes the residual error,

E = trace(XXT � Y Y T )2 (2.4)

=
nP
k=1

(�k � ��k)2;

where

��k = max(�k;0) k = 1; :::; d

= 0 k = d+ 1; :::; n:

When we apply the MDS to the ISOMAP algorithm, a nonlinear analysis

occurs since the dissimilarity used in the application of MDS in the ISOMAP

is the graph distance matrix DG instead of the Euclidean matrix. To form a

lower dimensional intrinsic variables Y , we follow the general steps of the MDS.

However, the matrix X constructed in Eq. (2.2) is not the original coordinates of

the data set used in ISOMAP, in spite of the fact of which, the intrinsic variables Y

discussed in the ISOMAP method can still be formed by the MDS.

As discussed in step 2 of the ISOMAP algorithm, the choice of � or k is very

important to get a good graph G. To choose a proper � or k, we need to consider

the data set X . X is a �nite sampling subset of the true manifold M , therefore

whether the data set X represents the manifold properly will affect the results of the

ISOMAP. Tenenbaum discussed some of the theoretical claims for ISOMAP, and a

full proof of the asymptotic convergence theorem was given in [4]. The goal is that

the graph distance DG converges asymptotically to the geodesic distance DM , the
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fact of which can be guaranteed under the following conditions.

Asymptotic Convergence Theorem [4]: Given �1, �2, � > 0, then for �

suf�ciently large the inequalities

1� �1 �
graph distance(DG)

geodesic distance(DM)
� 1 + �2

hold with probability at least 1� �. Here � is the sampling condition of X , which

says that for every point m in the true manifold M there is a data point xi 2 X

for which dM(m;xi) = �. This condition is very important to guarantee that a

good approximation can be obtained by using the sampling data set X with a proper

sampling condition �. However, it is hard to check that if the sampling data set X

satis�es the sampling condition because we can not always have information about

the true manifold.

In order to operate the ISOMAP method to discover a low-dimensional

manifold, a good data set is required. Generally, we assume that data set is

generated experimentally while the knowledge of systems, such as the analytical

form of the model, is unknown. However, it is hard to verify whether the collected

data set is a good sample of the embedding manifold. If the given data set does

not meet the sampling condition required by the asymptotic convergence theorem,

a proper low-dimensional structure may not be obtained by the ISOMAP method.

This is when we ask: "For a given dynamical system, can we expect to produce a

good data set computationally?"

In practice, the data set of a dynamical system generated experimentally
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by using an arbitrary initial condition is able to be used to perform the ISOMAP

method for the purpose of discovering a lower dimensional process. However,

there still exist some �bad" initial conditions in the speci�c dynamical systems,

such as the �xed points, the periodic points, the eventually periodic points, and

the asymptotically periodic points, because the data sets generated by those initial

points cannot be a good representation of the system, the ISOMAP method will

fail to discover a good representation of the low-dimensional submanifold. In this

dissertation, we will give examples of some dynamical systems, the empirical data

of which is appropriate for the ISOMAP method, to reveal that the data set can be

generated to satisfy the sampling condition as expected, and the ISOMAP method is

capable to be performed in dynamical systems.

2.2 Conclusions

In this chapter, we have given a review of the ISOMAP method in order to discover

a nonlinear low-dimensional manifold. For the purpose of applying the ISOMAP

method to dynamical systems, a data set that satisfying the asymptotic convergence

theorem [4] is expected. In the Chapter 6, we will give an example of the Lorenz

system to present a resampling technique to obtain a data set that is appropriate

to apply the ISOMAP method. For the future work, a problem of relationships

between the initial distributions of ensemble of initial conditions of dynamical

systems, and the invariant measure on the invariant set, becomes interesting.
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Chapter 3
Global Modeling and Parameter Estimation

3.1 Introduction

In this chapter, we will address the question of global modeling, the de�nition of which

we will take is given as the following: Given multivariate time series, can we produce a set

of ordinary differential equations of minimal dimension, which is able to reproduce a data

set approximating the given time series? Consider for example a data set which comes

from a digital movie of a spatiotemporal, and perhaps chaotic, process such as a reaction

diffusion system in the plane. We focus here on producing a minimal set of ODEs to

"optimally" model such data during the duration of the movie. While it is known that the

solution of any dissipative system can be arbitrarily well approximated by the solution of a

three-dimensional system [40], we will take a constructive point of view.

We consider modeling unknown dynamical systems that are generally assumed to be

governed by global autonomous ordinary differential equations (ODEs),

dX=dt = F (X;P ); (3.1)

where X 2 <n, F : <n ! <n is a vector �eld, and P is the parameter �eld. We assume

the vector �eld F (X;P ) is described in terms of a series expansion in a well chosen basis
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set of functions,

F (X;P ) =

1X
k=0

Pk�k(X); (3.2)

where f�k(X)g is a set of basis functions and Pks are parameters whose values must

be determined by the global modeling technique.

3.2 Global Modeling Technique

Suppose multivariate time series, such as the solution of an evolution equation

ut = f(u);

sampled on a grid in x, and in time t,

fungn=0:M = fu(x; tn)gn=0:M (3.3)

is given. Assuming the system where the time series come from has an exact forms

of ODEs,

dX

dt
= F (X;P ); (3.4)

whereX 2 <n, F : <n ! <n, n >> 1 is the phase-space dimension, and P denotes

a set of system parameters. We model time series data with an expected form of

ODEs by using an explicit Euler integration approach, but we will also discuss

higher-ordered schemes in subsequent sections. The technique based on an explicit

Euler integration models the time-series data via

X(n+1) � X(n) + hF (X(n); P ); (3.5)

where h is a step size of time t, andX(n) is the value ofX at time t = nh. Given this
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equation, the modeling procedure can be described as a procedure to �nd a vector

�eld F (X;P ), which can be written as a series expansion in terms of appropriate

basis functions,

F (X;P ) =

1X
k=0

Pk�k(X); (3.6)

where f�k(X)g is a set of basis functions and the Pk are parameters that will be

determined by the modeling procedure. In this chapter, the basis functions used in

modeling procedure are polynomials. In order to present this technique explicitly,

we give a simple introductory example of the Rössler system.

Consider the system of Rössler oscillators [2] with periodic boundary

conditions:
dx=dt = �y � z
dy=dt = x+ ay
dz=dt = b+ z(x� c):

(3.7)

where a, b, and c are the parameters of the Rössler oscillator. We choose

a = 0:165; b = 0:2; and c = 10 so that the oscillator exhibits a chaotic attractor [2].

Rössler equations are particularly simple and have only one nonlinear component,

therefore providing us with a better opportunity to show the basic steps. Letting

X = [x; y; z]T ; (3.8)

we can obtain synthetic test data, a numerical multivariate time series fX(i)gi=1:M ,

which represents the Rössler oscillator, by integration of the system by a fourth-order

Runge-Kutta algorithm built in Matlab [34]. With an assumption that the numerical

time-series is all the information we have about the motion of the system, this time

series is to be modeled to �nd an expected form of ODE, which approximates
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the original system, in the form of Eq. (3.4). Before we perform the modeling

technique, we investigate the original system to get some a prior expectation about

the results of modeling procedure.

Rewriting the Rössler oscillator, we express the equations in the form of

Eq. (1.2),

_X = P0 + P1X + P2X
2; (3.9)

where _X is the derivative of X w.r.t. time t, and

P0 =

24 00
b

35 ; P1 =
24 0 �1 �1
1 a 0
0 0 �c

35 ; P2 =
24 0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0

35 ; X2 =

2666664
x2

xy
xz
y2

yz
z2

3777775 :
(3.10)

Hence, the basis functions of Eq. (3.9) are constant function, linear function, and

quadratic function.

�1(X) = 1; �2(X) = X; and �3(X) = X2: (3.11)

The parameters of this system are P0; P1 and P2. Combining the basis functions

into one vector, we have the parameter �eld P in Eq. (3.12).

_X = P

24 �1(X)�2(X)
�3(X)

35 ; P = [P0; P1; P2]: (3.12)

This is the exact system given in the view of the matrices. The parameter matrix P

is the unknown we try to determine in the modeling procedure.

Now suppose we are given a multivariate time series data set fu(n)gn=0:M in

the form of Eq. (3.3) from the system of Rössler oscillator and do not know the
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exact functions of this system. A modeling system, which is assumed in the form

of _u = F (u;A), is able to be obtained when an approximating parameter A is

determined by the modeling procedure with a proper choice of the basis functions.

Modeling procedure gives us an approximation A to the exact parameter �eld

P via some integration schemes. From Eq. (3.5), we know at time t, the value of _u

can be approximated by

_u � u(t+ h)� u(t)
h

; (3.13)

where h is a �xed time step and u(t) is the data value at time t. The modeling

equation for each time t is

u(t+ h)� u(t) � h � F (u(t); A); (3.14)

where the vector �eld F of this system can also be expressed as following

F (u;A) = A0�1(u) + A1�2(u) + A2�3(u) = A�(u);

where A = [A0; A1; A2], and �(u) = [�1(u); �2(u); �3(u)]
T is a vector of

polynomial functions of u given in Eq. (3.11), which contains constant 1 for the

constant terms, and all possible combinations of linear terms and quadratic terms of

u. The parameters P of the original system are now coded in the notation within

the matrix A that incorporates the various linear combinations of the assumed basis

functions. We consider the system as a continuous dynamical system. Therefore,

the equations for all time space are:

�
u(1) � u(0); � � � ; u(M) � u(M�1)� � h � A ��(u(0)); � � � ;�(u(M�1))

�
; (3.15)
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here u(n) = u(nh) is the value of u at time t = nh, and A is the expected

approximating parameter matrix. By the given data set fungn=0:M , the left matrix in

Eq. (3.15), and the matrix of polynomial functions �(u) are able to be constructed,

such that the parameter matrix A is able to be obtained in the modeling procedure.

In the following, the parameter matrix A is called modeling parameter.

We gave the technique of modeling the given data set into a desired equation

form in the above. For the system of Rössler oscillator, modeling by quadratic basis

functions can produce a result good enough. Generally, the assumption is that we

can obtain as accurate a parameter matrix for P as desired by increasing the order

of the polynomial. However, for some cases, it is not useful to have a polynomial

with a higher order in the modeling procedure. In a series of papers, a method of

choosing a proper set of basis functions, which is called as the minimum description

length principle, is introduced and applied [10, 39] for the purpose of truncating the

modeling system.

3.3 Parameter Estimation

In this section, we will not only thoroughly analyze convergence properties of the

explicit Euler method for our integration method, but also discuss and produce

numerical evidence for higher-ordered schemes. We will prove that when the

forward Euler integration is applied, the error between the modeling parameters is

in order of the sampling rate. Supporting this statement, we will prove here several
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useful lemmas followed by the convergence theorem of the parameters with respect

to the time step size.

Here we will focus on the modeling parameter A, which was introduced in

the previous section in Eq. (3.15). The use of the explicit Euler integration in the

introductory example gives us some insight into the properties of the parameter A.

It is well known that the truncated error between _u and u(t+h)�u(t)
h

originating from

the Euler integration approach is linearly dependent on the time step size h. In this

section, we will discuss the relationship among the modeling parameters obtained

by different time step sizes.

From Taylor's theorem [28], for any function u(t), which is in�nitely many

times differentiable on (t0 � R; t0 + R), we can �nd its Taylor's series around the

given center t0,

u(t) = u(t0)+u
0(t0)(t�t0)+

u00(t0)

2!
(t�t0)2+ � � �+

u(n)(t0)

n!
(t�t0)n+ � � � : (3.16)

Here we assume time t is in the convergence interval I = (t0 �R; t0 +R), where R

is the radius of convergence of the series. Denoting h as the difference t � t0, we

can have an expression of u0(t0):

u0(t0) =
u(t)� u(t0)

h
� h

2!
u00(t0)� � � � �

hn�1

n!
u(n)(t0) + � � � : (3.17)

From this equation we can see the error by the forward Euler integration is :����u0(t0)� u(t)� u(t0)h

���� = ���� h2!u00(t0) + � � �+ hn�1n! u(n)(t0) + � � �
���� : (3.18)

A better approximation can be obtained if we decrease the h, the sampling rate, and
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the error is in the order of h. We are thus motivated to discuss the error between

parameter matrices obtained by two different time step sizes.

3.3.1 Lemmas

We give some preliminary de�nitions and lemmas, which will be used in the later

proofs of the convergence theorem illustrating the nonlinear parameter estimation

technique converges with respect to the sampling rate h. First, two new matrices are

de�ned as following according to Eq. (3.15) for the rest of this chapter,

De�nition: Denote

Xn =
�
u(1) � u(0); u(2) � u(1); � � � ; u(n) � u(n�1)

�
(3.19)

and

Yn =
�
�(�!u (0));�(�!u (1)); � � � ;�(�!u (n�1))

�
: (3.20)

here n denotes the number of time grids, u(i) is the value of function u at time

t = ihn, where hn is the sampling rate w.r.t. n, and � is a vector of basis functions.

Therefore we have an equation for the �xed data sampling rate hn:

Xn � hnAnYn: (3.21)

In order to obtain the unknown parameters An, we use the following equation to �nd

an approximation of An,

An =
1

hn
XnY

T
n (YnY

T
n )

�1: (3.22)

Notice that this is a least square interpretation of the Eq. (3.21).
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We notice we can form different An w.r.t. different data sampling rate, hn.

In the modeling procedure, we choose different amount of the data from the time

series data set fung w.r.t. different data sampling rate, hn, to do the modeling steps.

If the chosen sampling rate hn is small, more information will be applied in the

modeling procedure. It means the sizes of the matrices Xn and Yn are large and the

parameters resulting are more accurate than if obtained by a larger sampling rate

hn0 . Therefore, to compare different parameter matrices, we need to investigate the

data matrices Xn and Yn with different n. However, it is impossible to compare two

matrices of different sizes directly. To meet this challenge, we can enlarge the size

of one of them so that the enlarged matrix is in the same size as the other one.

In the following lemmas, we will discuss two parameters An and An0 , which

are given by the Eq. (3.22) according to two sampling rates hn and hn0 , where

hn = k � hn0 , k > 1. The numbers of columns of the matrices Xn0 and Yn0 are k

times of those of columns of Xn and Yn. We can build two new matrices Xn;k and

Yn;k by repeating each column of Xn and Yn k times so that Xn;k and Yn;k are the

same size as Xn0 and Yn0 respectively. Before we compare Xn;k, Yn;k with Xn0 ,

Yn0 , we give a lemma to show that the parameters An;k obtained by column-repeated

matrices Xn;k and Yn;k are equal to the parameters An.

Lemma 1: The parameters An = 1
hn
XnY

T
n (YnY

T
n )

�1 are equivalent to the

parameters An;k = 1
hn
Xn;kY

T
n;k(Yn;kY

T
n;k)

�1.



29

Proof: The colunm-repeated matrices Xn;k and Yn;k are given below:

Xn;k =

24 Xn(:; 1); � � � ; Xn(:; 1)| {z }
k�columns

; Xn(:; 2); � � � ; Xn(:; 2)| {z }
k�columns

; � � � ; Xn(:; n); � � � ; Xn(:; n)| {z }
k�columns

35
=
�
u(1) � u(0); � � � ; u(2) � u(1); � � � ; u(2) � u(1); � � � ; u(n) � u(n�1)

�
:

(3.23)

Yn;k =

24Yn(:; 1); � � � ; Yn(:; 1)| {z }
k�columns

; Yn(:; 2); � � � ; Yn(:; 2)| {z }
k�columns

; � � � ; Yn(:; n); � � � ; Yn(:; n)| {z }
k�columns

35
=
�
�(u(0)); � � � ; �(u(1)); � � � ; �(u(1)); � � � ; �(u(n�1)); � � � ; �(u(n�1))

�
:
(3.24)

Choosing the jth columns of Xn;k and Yn;k arbitrarily, we know of the

existence of the corresponding columns of Xn and Yn with the same values of the

chosen columns, and the sampling rates used to �nd parameters An and An;k are

both hn. Therefore, the values of parameters An and An;k given by the following

equations are the same:

An =
1
hn
XnY

T
n (YnY

T
n )

�1

An;k =
1
hn
Xn;kY

T
n;k(Yn;kY

T
n;k)

�1:
(3.25)

This lemma tells us that it is suitable to �nd the relations between

An and An0 by comparing An;k with An0 , which is given by the equation

An0 =
1
hn0
Xn0Y

T
n0 (Yn0Y

T
n0 )

�1, and the properties of An are saved in An;k.

Now we investigate the errors between An and An0 w.r.t. the p-norm when

p = 1 [55]. From the discussion above, the error is given by:

E = jjAn0 � Anjj1 = jjAn0 � An;k + An;k � Anjj1;

here we obtain this equation by adding and subtracting An;k so that we can evaluate
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the error by splitting the right hand side function into two parts by triangle inequality:

E � jjAn0 � An;kjj1 + jjAn;k � Anjj1:

From lemma 1 we know the second term is zero. Expressing An0 and An;k by

Eq. (3.22), (3.25):

E � jj 1
hn0
Xn0Y

T
n0 (Yn0Y

T
n0 )

�1 � 1

hn
Xn;kY

T
n;k(Yn;kY

T
n;k)

�1jj1;

and factoring the constant 1
khn0

out, we have,

E � j 1
khn0

j � jjkXn0Y
T
n0 (Yn0Y

T
n0 )

�1 �Xn;kY
T
n;k(Yn;kY

T
n;k)

�1jj1;

subtracting and adding a term kXn0Y Tn0 (Yn;kY Tn;k)�1, we have an equivalent form,

E � j 1
khn0

j � jjkXn0Y
T
n0 (Yn0Y

T
n0 )

�1 � kXn0Y Tn0 (Yn;kY Tn;k)�1
+kXn0Y

T
n0 (Yn;kY

T
n;k)

�1 �Xn;kY
T
n;k(Yn;kY

T
n;k)

�1jj1;

combining the common terms and splitting into two parts by triangle inequality, we

have,
E � j 1

khn0
j � jkj � jjXn0Y

T
n0 jj1 � jj(Yn0Y Tn0 )�1 � (Yn;kY Tn;k)�1jj1

+ j 1
khn0

j � jjkXn0Y
T
n0 �Xn;kY

T
n;kjj1 � jj(Yn;kY Tn;k)�1jj1

adding and subtracting a term kXn0Y Tn;k to the second term, we have,

E � j 1
hn0
jjjXn0Y

T
n0 jj1 � jj(Yn0Y Tn0 )�1 � (Yn;kY Tn;k)�1jj1

+j 1
khn0

j � jjkXn0Y
T
n0 � kXn0Y

T
n;k + kXn0Y

T
n;k �Xn;kY

T
n;kjj1 � jj(Yn;kY Tn;k)�1jj1;

splitting the second term and simplifying the whole function, we have,
E � j 1

hn0
j � jjXn0jj1 � jjY Tn0 jj1 � jj(Yn0Y Tn0 )�1 � (Yn;kY Tn;k)�1jj1

+ j 1
hn0
j � jjXn0jj1 � jjY Tn0 � Y Tn;kjj1 � jj(Yn;kY Tn;k)�1jj1

+ j 1
khn0

j � jjkXn0 �Xn;kjj1 � jjY Tn;kjj1 � jj(Yn;kY Tn;k)�1jj1:
(3.26)

In order to estimate the error in the norm based on the columns in the matrices, terms

in the Eq. (3.26) are discussed in the following lemmas. To show those lemmas, the
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theories of Taylor's series, singular value decomposition, and spectral perturbation

theory of matrices [20] are applied.

Lemma 2: jjXnjj1 = O(hn).

Proof: The matrix Xn is given in Eq. (3.19), and from the Taylor's series

in Eq. (3.17), we know that the norm of each column in Xn is in the order of hn.

Therefore we can draw a conclusion that:

jjXnjj1 = C1 � hn +O(h2n); (3.27)

where C1 is a constant. Similarly, jjXn0jj1 converges with hn0 .

Lemma 3: jjEyjj1 = jjYn0 � Yn;kjj1 = O(hn0).

Proof: According to Yn =
�
�(�!u (0));�(�!u (1)); � � � ;�(�!u (n�1))

�
de�ned in Eq.

(3.20),The matrices Yn;k and Yn0 are given below:

Yn0 =
h
�(�!u (0));�(�!u (1)); � � � ;�(�!u (n0�1))

i
(3.28)

= [�(u(0));�(u(hn0)); � � � ;�(u(N � hn0))] : (3.29)

Yn;k =
�
�(u(0)); � � � ; �(u(1)); � � � ; �(u(1)); � � � ; �(u(n�1)); � � � ; �(u(n�1))

�
(3.30)

= [�(u(0)); � � � ;�(u(hn)); � � � ;�(u(hn)); � � � ;�(u(N � hn)); � � � ;�(u(N � hn))] ;(3.31)

here u(i) = u(ih), and we are talking about the time space [0; N ].

Consider the jth column in Yn0 and Yn;k:

Y
(j)
n0 = �(u(j � 1) � hn0): (3.32)

For any integer k there are k cases of jth column in Yn;k.
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1. j = km, (m is any positive integer):

Y
(j)
n;k = �(u(

j � k
k

� hn)); (3.33)

therefore, from the Taylor' series of Y (j)n0 at the center
j�k
k
� hn, the error

jjY (j)n0 � Y
(j)
n;k jj1 = jj(k � 1)hn0�0(u(j � k)hn0)) +O(h2n0)jj1: (3.34)

2. j = km+ 1:

Y
(j)
n;k = �(u(

j � 1
k

� hn)); (3.35)

therefore

jjY (j)n0 � Y
(j)
n;k jj1 = 0: (3.36)

Generally, when j = km+a, (m and a are positive integers and a = 1; � � � ; k)

Y
(j)
n;k = �(u(

j � a
k

� hn)); (3.37)

therefore the error between the jth columns of Yn0 and Yn;k is:

jjY (j)n0 � Y
(j)
n;k jj = jj(a� 1)hn0�0(u((j � a)hn0)) +O(h2n0)jj1: (3.38)

Hence, the error between matrices jjEyjj1 = C2 � hn0 +O(h2n0).

Lemma 4: jjExjj1 = jjk �Xn0 �Xn;kjj1 = O(h2n0).

Proof: Matrices Xn0 and Xn;k are given below:

Xn0 =
�
u(hn0)� u(0); u(2hn0)� u(hn0); � � � ; u(N)� u(N � hn0)

�
:

(3.39)



33

Xn;k =
�
u(hn)� u(0); � � � ; u(2hn)� u(hn); � � � ; u(N)� u(N � hn)

�
:

(3.40)

Consider the jth columns in Xn0 and Xn;k:

Xj
n0 = (u(jhn0)� u((j � 1)hn0)) : (3.41)

For any integer k, j = km + a, (m and a are positive integers and

a = 1; � � � ; k)

Xj
n;k =

�
u((
j � a
k

+ 1)hn)� u((
j � a
k
)hn)

�
: (3.42)

From Taylor's expansion we know

jjXj
n0jj1 = jjhn0u0((j � 1)hn0) +O(h2n0)jj1: (3.43)

jjXj
n;kjj1 = jjhnu0((j � a)hn0) +O(h2n)jj1: (3.44)

Therefore,

jjk �Xj
n0 �X

j
n;kjj1

= jjk � hn0u0((j � 1)hn0)� hnu0((j � a)hn0) +O(h2n0)jj1
� jk � hn0j � jju0((j � 1)hn0)� u0((j � a)hn0jj1 +O(h2n0)
� jk � hn0j � jj(a� 1)hn0u00((j � a)hn0) +O(h2n0)jj1 +O(h2n0)
= O(h2n0):

(3.45)

To get the last second step, we extend u0((j � 1)hn0) as a Taylor's series around the

center u0((j � a)hn0):.

Lemma 5: jjEyyjj1 = jj(Yn0Y Tn0 )�1 � (Yn;kY Tn;k)�1jj1 = O(hn0).

Proof: Since every matrix has a singular value decomposition (SVD), let us
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consider the SVDs ofm� n0 matrices Yn0 and Yn;k.

Yn0 = Un0Wn0V
T
n0 ; Yn;k = Un;kWn;kV

T
n;k

Therefore:
jj(Yn0Y Tn0 )�1 � (Yn;kY Tn;k)�1jj1
= jjUn0 1

W 2
n0
UTn0 � Un;k 1

W 2
n;k
UTn;kjj1;

add and subtract a term Un0 1
W 2
n;k
UTn;k, and split into two parts by triangle inequality:

� jjUn0 1
W 2
n0
UTn0 � Un0 1

W 2
n;k
UTn;kjj1 + jjUn0 1

W 2
n;k
UTn;k � Un;k 1

W 2
n;k
UTn;kjj1

� jjUn0jj1 � jj 1
W 2
n0
UTn0 � 1

W 2
n;k
UTn;kjj1 + jjUn0 � Un;kjj1 � jj 1

W 2
n;k
UTn;kjj1;

the 2-norm of any unitary matrix is 1, jjUn0jj2 = jjUTn;kjj2 = 1, and jjUn0jj1 �
p
mjjUn0jj2 =

p
m and jjUTn;kjj1 �

p
mjjUTn;kjjj2 =

p
m, therefore,:

jj(Yn0Y Tn0 )�1�(Yn;kY Tn;k)�1jj1 �
p
m�[jj 1

W 2
n0
UTn0�

1

W 2
n;k

UTn;kjj1+jjUn0�Un;kjj1�jj
1

W 2
n;k

jj1];

add and subtract a term
p
m 1
W 2
n;k
UTn0 to the �rst term and split into two parts by

triangle inequality:
�
p
mjj 1

W 2
n0
UTn0 � 1

W 2
n;k
UTn0jj1 +

p
mjj 1

W 2
n;k
UTn0 � 1

W 2
n;k
UTn;kjj1 +

p
mjjUn0 � Un;kjj1 � jj 1

W 2
n;k
jj1

= mjj 1
W 2
n0
� 1

W 2
n;k
jj1 + 2

p
mjj 1

W 2
n;k
jj1 � jjUn0 � Un;kjj1

= mjj (Wn;k+Wn0 )(Wn;k�Wn0 )

W 2
n0 �W

2
n;k

jj1 + 2
p
mjj 1

W 2
n;k
jj1 � jjUn0 � Un;kjj1:

(3.46)

From perturbation theory [20], we know:

jW i
n;k �W i

n0j � �(Ey) = jjEyjj2 �
p
njjEyjj1: (3.47)

Let

M =

�
0 Y Tn;k
Yn;k 0

�
; (3.48)
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and

M + hn0B =

�
0 Y Tn0
Yn0 0

�
; (3.49)

then
�

0
U in;k

�
and

�
V in;k
0

�
are eigenvectors of M . Similarly

�
0
U in0

�
and�

V in0
0

�
are eigenvectors ofM + hn0B. Let L1 =

�
0
U1n;k

�
and L01 =

�
0
U1n0

�
,

then we know the error between L1 and L01 is bounded [20].

jjL1 � L01jj1
= jjhn0Z1 + h2n0Z2 + � � � jj1
= jjhn0�nj=1tj1Lj + h2n0�nj=1tj2Lj + � � � jj1
= jhn0j � jj�nj=1tj1Lj + hn0�nj=1tj2Lj + � � � jj1:

(3.50)

Therefore jjUn0 � Un;kjj1 is bounded and in order of hn0 . And from Eq. (3.47) and

lemma 3, the �rst term in Eq. (3.46) is also in the order of hn0 . Hence jjEyyjj1 is in

the order of hn0 .

3.3.2 Convergence Theorems by Using Forward Euler Integration

In this part, we introduce the convergence theorem, which shows the parameter

estimation technique converges with respect to the sampling rate hn0 .

Convergence Theorem 1: The error jjEAjj1 = jjAn0 � Anjj1 = O( hn0) by

forward Euler integration.

Proof: As the discussion in the previous part, the error between An0 and An is

given below by using the triangle inequality:

jjEAjj1 = jjAn0 � Anjj1; (3.51)

adding and subtracting a term An;k so that An0 and An;k are in the same size:

= jjAn0 � An;k + An;k � Anjj1; (3.52)
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by triangle inequality and Eq. (3.22, 3.25):
� jjAn0 � An;kjj1 + jjAn;k � Anjj1
= jj 1

hn0
Xn0Y

T
n0 (Yn0Y

T
n0 )

�1 � 1
hn
Xn;kY

T
n;k(Yn;kY

T
n;k)

�1jj1
+jj 1

hn
Xn;kY

T
n;k(Yn;kY

T
n;k)

�1 � 1
hn
XnY

T
n (YnY

T
n )

�1jj1;
(3.53)

the second term is zero by lemma 1:

= jj 1
hn0
Xn0Y

T
n0 (Yn0Y

T
n0 )

�1 � 1
khn0

Xn;kY
T
n;k(Yn;kY

T
n;k)

�1jj1
= j 1

khn0
jjjkXn0Y Tn0 (Yn0Y Tn0 )�1 �Xn;kY

T
n;k(Yn;kY

T
n;k)

�1jj1;
(3.54)

adding and subtracting a term kXn0Y Tn0 (Yn;kY Tn;k)�1 to have two parts:

= j 1
khn0

jjjkXn0Y Tn0 (Yn0Y Tn0 )�1 � kXn0Y
T
n0 (Yn;kY

T
n;k)

�1

+kXn0Y
T
n0 (Yn;kY

T
n;k)

�1 �Xn;kY
T
n;k(Yn;kY

T
n;k)

�1jj1;

by triangle inequality:

� j 1
khn0

j[jkjjjXn0Y
T
n0 jj1 � jj(Yn0Y Tn0 )�1 � (Yn;kY Tn;k)�1jj1

+jjkXn0Y
T
n0 �Xn;kY

T
n;kjj1 � jj(Yn;kY Tn;k)�1jj1];

from singular value decomposition:
= j 1

hn0
jjjXn0Y

T
n0 jj1 � jjUn0 1

W 2
n0
UTn0 � Un;k 1

W 2
n;k
UTn;kjj1

+j 1
khn0

j � jjkXn0Y Tn0 � kXn0Y Tn;k + kXn0Y
T
n;k �Xn;kY

T
n;kjj1 � jjUn;k 1

W 2
n;k
UTn;kjj1

= j 1
hn0
jjjXn0jj1 � jjY Tn0 jj1 � jjUn0 1

W 2
n0
UTn0 � Un;k 1

W 2
n;k
UTn;kjj1

+j 1
hn0
j � jjXn0jj1 � jjY Tn0 � Y Tn;kjj1 � jjUn;k 1

W 2
n;k
UTn;kjj1

+ j 1
khn0

j � jjkXn0 �Xn;kjj1jjY Tn;kjj � jjUn;k 1
W 2
n;k
UTn;kjj1:

(3.55)

From Lemma 2 and 5, jjXn0jj1 and jj(Yn0Y Tn0 )�1 � (Yn;kY Tn;k)�1jj1 =

jjUn0 1
W 2
n0
UTn0 � Un;k 1

W 2
n;k
UTn;kjj1 are both in the order of hn0 so that the �rst term in

Eq. (3.55) is in the order of hn0 . From lemma 3 , jjY Tn0 � Y Tn;kjj1 is in the order of hn0

too so that the second term is in the order of hn0 . From lemma 4, jjkXn0 �Xn;kjj1 is

in the order of h2n0 so that the third term is in the order of hn0 . Therefore, the error

jjEAjj1 is in the order of hn0 , meaning the parameter matrix converges with hn0 .

Now we give a numerical example on the convergence of the modeling
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Figure 3.1: Example on Rössler System: The Errors between the Modeling Parame-
ters An Are in Order of hn. This is a loglog plot of the errors E = jjAn � An0jj1 vs.
different sampling rate hn. The slope of the curve(.-) is almost 1, the fact of which
implies the error is in order of hn.
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parameter An w.r.t. different sampling rate hn by applying a multivariate time series

data set fu(n)gn=0:M generated from the system of Rössler oscillator [2] by Matlab.

We present a graph to show and validate the convergence with hn0 . Figure (3.1)

shows the error between the modeling parameters An with hn. The red line(.-) is

log(error) vs log(hn). The lines (*-) and (o-) are log(hn) vs log(hn) and 2log(hn)

vs log(hn), respectively. From the graph, we see the red line is almost parallel to

the blue line, the trend of which means the error is in order of hn, not h2n.

From the proofs above, we know that not only the error of the parameter

matrix An is decreasing with hn, but also the size of the data matrices used to

calculate An is increasing, eventually beyond the possibility of direct computation

on the computer. If the given time series data is huge, can we skip some columns of

the original time-series to obtain a good matrix An by using the smaller data set?

Let Ans be the smaller data set obtained by choosing the multiplicity of sth

columns of An and extending this smaller data set into the original size by repeating

those columns s times. That is, Ans choose every sth column from An, and repeat

it s � 1 times. Now we discuss the error between these two matrices Ans and

An, since from lemma 1, we know that the parameter obtained by skip-only data

matrices is equal to Ans obtained by skip-repeated matrices.

Theorem: Let Ans = [An(:; 1); � � � ; An(:; 1); An(:; s + 1); � � � ; An(:

; (n� 1)s+ 1)], then jjAns � Anjj1 = O(h):

Proof: The proof is similar to the proof of convergence theorem in previous



39

part:

jjAns � Anjj1;

by de�nitions in Eq. (3.22):

= jj 1
hn
XnsY

T
ns(YnsY

T
ns)

�1 � 1
hn
XnY

T
n (YnY

T
n )

�1jj1
= j 1

hn
j � jjXnsY

T
ns(YnsY

T
ns)

�1 �XnY
T
n (YnY

T
n )

�1jj1;

adding and subtracting a term XnsY
T
ns(YnY

T
n )

�1:

= j 1
hn
j � jjXnsY

T
ns(YnsY

T
ns)

�1 �XnsY
T
ns(YnY

T
n )

�1

+XnsY
T
ns(YnY

T
n )

�1 �XnY
T
n (YnY

T
n )

�1jj1;

by triangle inequality:
� j 1

hn
j � [jjXnsY

T
ns(YnsY

T
ns)

�1 �XnsY
T
ns(YnY

T
n )

�1jj1
+ jjXnsY

T
ns(YnY

T
n )

�1 �XnY
T
n (YnY

T
n )

�1jj1]
= j 1

hn
j[jjXnsY

T
nsjj1 � jj(YnsY Tns)�1 � (YnY Tn )�1jj1

+ jjXnsY
T
ns �XnY

T
n jj1 � jj(YnY Tn )�1jj1];

by singular value decomposition:
= j 1

hn
j[jjXnsY

T
nsjj1 � jjUns 1

W 2
ns
UTns � Un 1

W 2
n
UTn jj1

+ jjXnsY
T
ns �XnsY

T
n +XnsY

T
n �XnY

T
n jj1 � jj(YnY Tn )�1jj1]

� j 1
hn
j[jjXnsY

T
nsjj1 � jjUns 1

W 2
ns
UTns � Un 1

W 2
n
UTn jj1

+ (jjXnsjj1 � jjY Tns � Y Tn jj1 + jjXns �Xnjj1 � jjY Tn jj1) � jj(YnY Tn )�1jj1]:
Since the terms in this proof are similar to those in the previous theorem, we have

shortened the explanation.

3.3.3 Higher Order Convergence Theorem

In fact, the order of convergence in convergence theorem 1 depends on the fact that

the scheme used in Eq. (3.14) is O(h). If instead, we use higher order schemes

to approximate _X in Eq. (3.4) then a comparable theorem can be proved that

convergence of An is in higher order of h.

We use a method based on Taylor's series to generate the higher order
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schemes. Since all data from the unknown system is obtained, the approximation to

_X(t) can be found by the values ofX at other time. Here we use a �ve-point stencil

to approximate _X at time t. The involved points used to �nd an approximation to

the value of _X(t) are X(t� 2), X(t� 1), X(t), X(t+ 1) and X(t+ 2). The linear

combination of these �ve points are:

L(X(t))5 = a1X(t+2)+a2X(t+1)+a3X(t)+a4X(t�1)+a5X(t�2); (3.56)

here ai(i = 1; 2; : : : ; 5) are coef�cients of this linear combination. By the Taylor's

series of X(t+ i), the linear combination can be extended as:

L(X(t))5 = a1(X(t) + 2hX
0(t) + (2h)2

2!
X 00(t) + (2h)3

3!
X 000(t) + : : : )

+ a2(X(t) + hX
0(t) + h2

2!
X 00(t) + h3

3!
X 000(t) + : : : )

+ a3X(t)

+ a4(X(t)� hX 0(t) + h2

2!
X 00(t)� h3

3!
X 000(t) + : : : )

+ a5(X(t)� 2hX 0(t) + (2h)2

2!
X 00(t)� (2h)3

3!
X 000(t) + : : : ):

(3.57)

In this section, we will use 2nd order, 3rd order and 4th order schemes for the

purpose of comparison with the Euler integration. The coef�cients in Eq. (3.57) for

the higher cases are given below.

1. First order scheme (forward Euler integration): a1 = a4 = a5 = 0; a2 = 1, and

a3 = �1.

X(t+ 1)�X(t) = hX 0(t) +O(h2);

therefore,

X 0(t) =
X(t+ 1)�X(t)

h
+O(h): (3.58)
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2. Second order scheme (central difference): a1 = a3 = a5 = 0; a2 = 1, and

a4 = �1.

X(t+ 1)�X(t� 1) = 2hX 0(t) +O(h3);

therefore,

X 0(t) =
X(t+ 1)�X(t� 1)

2h
+O(h2): (3.59)

3. Third order scheme: a1 = 1; a2 = �2; a3 = 9; a4 = �10, and a5 = 2.

X(t+ 2)� 2X(t+ 1) + 9X(t)� 10X(t� 1) + 2X(t� 2) = 6hX 0(t) +O(h4);

therefore,

X 0(t) =
X(t+ 2)� 2X(t+ 1) + 9X(t)� 10X(t� 1) + 2X(t� 2)

6h
+O(h3):

(3.60)

4. Forth order scheme: a1 = 1; a2 = �8; a3 = 0; a4 = 8, and a5 = �1.

X(t+ 2)� 8X(t+ 1) + 8X(t� 1)�X(t� 2) = �12hX 0(t) +O(h5);

therefore,

X 0(t) =
X(t+ 2)� 8X(t+ 1) + 8X(t� 1)�X(t� 2)

�12h +O(h4): (3.61)

These higher order schemes are not unique w.r.t. the coef�cients a1, a2, a3, a4,

and a5. From the Eqs. (3.58,3.59,3.60,3.61), we know that the error between X 0(t)

and the approximations are in higher order of h.

Figure (3.2) shows the convergence of the parameters by applying higher

order schemes to the time series data set fu(n)gn=0:M generated from the system of
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Figure 3.2: Example on Rössler System: The Errors between the Modeling Pa-
rameters An by Higher Order Schemes. This is a loglog plot of the errors
E = jjAn � An0jj1 vs. different sampling rate hn by different schemes. The slopes
of curves (o-), (�-), (.-), and (*-) are approximating 1, 2, 3 and 4, respectively, the
fact of which implies the convergence rates of the parameters depend on the schemes
used in the modeling procedure.
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Rössler oscillator [2] by Matlab. The slopes of the lines (o-), (�-), (.-), and (*-) are

approximating 1, 2, 3 and 4, respectively. We see that the slopes of these four lines

depend on the orders of the used schemes. Therefore, from these numerical results,

we strongly suspect that the convergence rates of the parameters depend on the order

of the scheme used, although our method of rigorous proof is only allowed for the

explicit Euler scheme.

3.4 Conclusions

In this chapter, we have introduced a global modeling technique, which is based

on forward Euler integration and high order schemes, and investigated the errors

among the parameter matrices given by the modeling technique, and also given

the convergence theorems of the parameters. To improve this global modeling

technique, we can try to use some other functions, such as trigonometric functions,

as the basis functions for a better �tting of the systems that have some periodic

properties. Once a good model, or speci�cally the parameters of the assumed

general model form, is obtained, we will furthermore show a new method to uncover

underlying structure of the system in next chapter.
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Chapter 4
Structure Investigation

A common situation in multivariate dynamical data sets is that there exists an

underlying structure, by which we mean that there is a repetition apparent in the

underlying equations, with coupling between the repeated elements. Evidently, the

�tted version of the equations with inherent modeling errors can make it dif�cult to �nd

underlying structure by naked-eye inspection. We will introduce here a new method to

uncover underlying structure, when it exists, in terms of an optimal Kronecker product

representation, by adapting the work of Van Loan and Pitsianis [55] to the dynamical

systems setting.

4.1 Kronecker Product and Its Properties

The de�nition of the Kronecker product and its properties will be given as the following,

De�nition: Let A be an n� p matrix and B anm� q matrix. Themn� pq matrix

C,

C = A
B =

2664
a1;1B
a2;1B
...

an;1B

a1;2B
a2;2B
...

an;2B

� � �
� � �
...
� � �

a1;pB
a2;pB
...

an;pB

3775 : (4.1)

is called the Kronecker product of A and B. It is also called the direct product or the

tensor product. [55]

Some properties of the Kronecker product:
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1. A
 (B 
 C) = (A
B)
 C.

2. A
 (B + C) = (A
B) + (A
 C); (A+B)
 C = (A
 C) + (B 
 C).

3. For scalar a, a
 A = A
 a = aA.

4. For conforming matrices, (A
B)(C 
D) = AC 
BD.

5. For partitioned matrices, [A1; A2]
B = [A1 
B;A2 
B].

6. (A
B)T = AT 
BT ; (A
B)H = AH 
BH .

The property we are interested in is that for any matrix A 2 Rm�n with

m = m1m2 and n = n1n2, there exists a decomposition of A such that

jjA�B 
 Cjj2F ; (4.2)

can be minimized, where jj � jj denotes the Frobenius norm, B 2 Rm1�n1 ,

C 2 Rm2�n2 . This problem is investigated intensively in [56], in which the problem

of �nding proper B and C is solved by computing the largest singular value and

associated singular vectors of a permuted version of A, and the properties of B and

C, which minimize the error given in Eq. (4.2).

4.2 N -Coupled Rössler Oscillators

To give a good example on discovery of the underlying structure of the unknown

system by investigating the parameters from the modeling procedure, we consider
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the system of N coupled Rössler oscillators [2] with periodic boundary conditions:
�
xi = �!iyi � zi + �(xi+1 + xi�1 � 2xi)
�
yi = !ixi + ayi
�
zi = b+ zi(xi � c);

(4.3)

where !i (i = 1; : : : ; N) is the mean frequency of the ith oscillator, � is the coupling

parameter, and a, b, and c are the parameters of the individual Rössler oscillator.

We choose a = 0:165; b = 0:2; c = 10 and !i = 1 so that each oscillator exhibits

a chaotic attractor when initial conditions are chosen from the basin of attraction

[2]. In this part, for the purpose of illustration, we choose the relatively small array,

N = 3. We construct a vector X as the following,

X = [x1; y1; z1; : : : ; x3; y3; z3]
T : (4.4)

Since the global modeling technique gives us an approximation parameter to the

exact parameter, we investigate the original system to get some a prior expectation

about the underlying structure of the system of coupled Rössler oscillators.

Rewriting this system of 3-coupled Rössler oscillators as the following,

�
X = P0 + P1X + P2

24 x1z1x2z2
x3z3

35 ; (4.5)

where

P0 =

2666666666664

0
0
b
0
0
b
0
0
b

3777777777775
; P1 =

2666666666664

�2� �1 �1 � 0 0 � 0 0
1 a 0 0 0 0 0 0 0
0 0 �c 0 0 0 0 0 0
� 0 0 �2� �1 �1 � 0 0
0 0 0 1 a 0 0 0 0
0 0 0 0 0 �c 0 0 0
� 0 0 � 0 0 �2� �1 �1
0 0 0 0 0 0 1 a 0
0 0 0 0 0 0 0 0 �c

3777777777775
; P2 =

2666666666664

0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1

3777777777775
:

(4.6)
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Hence, the basis functions of Eq. (4.5) are constant function, linear function and

quadratic function. The parameters of this system are P0; P1 and P2. Therefore for

this nonlinear system, the polynomials are suitable to be used as basis functions.

Combining the basis functions into one vector, we have the parameter �eld P in

Eq. (4.7).

_X = P

24 �1(X)�2(X)
�3(X)

35 ; (4.7)

where �1; �2 and �3 are constant, linear and quadratic functions of X , respectively.

�1(X) = 1; �2(X) =

2666666664

x1
y1
z1
...
x3
y3
z3

3777777775
; �3(X) =

24 x1z1x2z2
x3z3

35 :

The parameter matrix P = [P0; P1; P2] is the unknown we try to determine in the

modeling procedure.

Now suppose we are given a multivariate time series data set fu(n)gn=0:M

from the system of Rössler oscillators and do not know the exact functional form

of the vector �eld. Modeling procedure gives us an approximation A to the exact

parameter P via some integration schemes. According to the system of Rössler

oscillators, quadratic polynomials are proper to be chosen as the basis functions. In

the following sections we will focus on the exact parameter P instead, since we can

assume that the error between the modeling parameter A and the system parameter

P is small enough to ignore when discussing the underlying structure of the system.
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4.3 Kronecker Product Representation

From Eq. (4.1), we know Kronecker products copy the matrix B and multiply it

by a constant from the matrix A to produce a new matrix C. For one common

class of systems with coupled oscillators, the repeated blocks can be found in the

parameter �eld corresponding to a proper order of the ODEs. This fact gives us the

motivation to consider the Kronecker product representations of the parameter �elds

of dynamical systems. On one hand, the original parameters can be decomposed

into two small size matrices so that the storage room is saved. On the other hand,

for an unknown system, a good Kronecker product representation of the modeling

parameters gives us some information about the system, and particularly in the

aspect that this system is suspected to have coupled copies of nearly identical chaotic

oscillators.

In this section, we will analyze the structure of the parameters of the system of

N -coupled Rössler oscillators to show how Kronecker product representation works

for the system of coupled chaotic oscillators. Here we discuss the parameter matrix

of the linear term of the ODEs given in Eq. (4.5). For the parameters of the higher
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terms, we can use a similar method of analysis.

P1 =

2666666666664

�2� �1 �1 � 0 0 � 0 0
1 a 0 0 0 0 0 0 0
0 0 �c 0 0 0 0 0 0
� 0 0 �2� �1 �1 � 0 0
0 0 0 1 a 0 0 0 0
0 0 0 0 0 �c 0 0 0
� 0 0 � 0 0 �2� �1 �1
0 0 0 0 0 0 1 a 0
0 0 0 0 0 0 0 0 �c

3777777777775
: (4.8)

Here the parameter P1 is obtained by sorting the ODEs in the way of Eq. (4.4). Let

R =

24 �2� �1 �1
1 a 0
0 0 �c

35 : (4.9)

We notice there are repeating Rs in the parameter matrix P1. And when � = 0, a

good Kronecker product decomposition of P1 can be identi�ed, according to the

de�nition of Kronecker product.

P1j�=0 =

24 R 0 0
0 R 0
0 0 R

35 =
24 1 0 0
0 1 0
0 0 1

35
R = B 
R: (4.10)

Generally, for a small nonzero value of �, the left side matrix B in the Eq. (4.10)

is not the identity, but almost diagonal with constants close to 1 in the diagonal

position and the error jjP1 �B 
Rjj2F is not zero, but very small.

Here, we discuss how the order of the elements in the vector X effects the

error jjP1 � B 
 Rjj2F . In addition, we will give an method of permutation to �nd

a good order of the ODEs so that a good Kronecker product representation can be

identi�ed, when it exists.

As discussed in the previous part, the P1 is generated when we set up

X = [x1; y1; z1; : : : ; x3; y3; z3]
T . If we change the order of the elements in X in the
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following way:

X = [x1; x2; x3; y1; : : : ; z2; z3]
T ; (4.11)

the system can be written as:

�
X = P 00 + P

0
1X + P

0
2

24 x1z1x2z2
x3z3

35

=

2666666666664

0
0
0
0
0
0
b
b
b

3777777777775
+

2666666666664

�2� � � �1 0 0 �1 0 0
� �2� � 0 �1 0 0 �1 0
� � �2� 0 0 �1 0 0 �1
1 0 0 a 0 0 0 0 0
0 1 0 0 a 0 0 0 0
0 0 1 0 0 a 0 0 0
0 0 0 0 0 0 �c 0 0
0 0 0 0 0 0 0 �c 0
0 0 0 0 0 0 0 0 �c

3777777777775
X +

2666666666664

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

3777777777775

24 x1z1x2z2
x3z3

35

(4.12)

We notice there is no repeating block in the diagonal position of the linear parameter

matrix P 01. Thus, a good Kronecker product representation of P 01 cannot be obtained,

in this form and in this order. Thus, we know the error jjP1 � B 
 Rjj2F relies on

the order of the elements in the vector X . Therefore how to �nd a good order of the

ODEs becomes important to investigate the underlying structure of the system.

4.3.1 Investigation of Permutation

Assume we have a matrix A and a permuted matrix A0. LetM be the permutation

matrix such that

A0 =MAMT : (4.13)
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Suppose A, A0 andM all have the Kronecker product representations,

A = B 
 C; A0 = B0 
 C 0; M =M1 
M2: (4.14)

Then A0 can be expressed by the Kronecker product representations of A andM ,

B0 
 C 0 = A0 =MAMT =M(B 
 C)MT

= (M1 
M2)(B 
 C)(M1 
M2)
T ;

(4.15)

By the property 6 of Kronecker products, we have

= (M1 
M2)(B 
 C)(MT
1 
MT

2 );

By the property 4 of Kronecker products, the Eq. (4.15) is equivalent to

B0 
 C 0 = (M1B 
M2C)(M
T
1 
MT

2 ) = (M1BM
T
1 )
 (M2CM

T
2 ): (4.16)

If the sizes of B0 and C 0 are the same as those of M1BM
T
1 and M2CM

T
2 ,

B0 and C 0 are the same as M1BM
T
1 and M2CM

T
2 because of the uniqueness of

the Kronecker product decomposition in the same size. Therefore for a parameter

matrix from an unknown system, which has coupled oscillators, a good Kronecker

product representation of the parameter can be found by permuting the order of the

�tting vector. Thus summarize with the following proposition.

Proposition 1: IfA andA0 are similar by a permutation matrixM , as indicated

by Eq. (4.13), and A, A0, and M have Kronecker decompositions A = B 
 C,

A0 = B0 
 C 0, and M = M1 
M2 of appropriate dimension as indicated by

Eq. (4.14), then B0 = M1BM
T
1 and C 0 = M2CM

T
2 may also be permuted in the

Kronecker decomposition as shown in Eq. (4.16).

Furthermore, other permutations of A whereM does not have an appropriately
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sized Kronecker decomposition are not expected to give a zero error, or perhaps

even a small residual, Kronecker product approximation.

Now we will explicitly check the relationship between the errors and the

permutation, choosing a family of permutations with a prior expected Kronecker

structure. UseM as a permutation operator and assume we have a matrix Pm�n,

which can be split into two parts, PL and PR, denoting the left part and the right part

of P respectively. Here we assume that the matrix P has even columns without loss

of generality. Applying the permutation operatorM to the matrix P , a new matrix

is generated in the following way:

M(P )(2i�1) = P
(i)
L ; M(P )

(2i) = P
(i)
R ; i = 1 :

n

2
; n is even, (4.17)

whereM(P )(2i�1) is the (2i� 1)th column in the new matrixM(P ), P (i)L is the ith

column in PL, and P
(i)
R is the ith column in PR. We formM to P by inserting the

PL into PR so that the columns of PL become the odd number columns in the new

matrixM(P ) and the columns of PR become the even number columns inM(P ).

To �nd a best order of P , we can apply the operator M several times and

compare the errors from all permutations of P . In �gure (4.1), we show the

relationship between the number of times the permutation operatorM applied to the

matrix P1 given in Eq. (4.6), and the resulting errors among the Kronecker product

representations. We notice that the errors from iterations of the permutation are

periodic since, after several permutations, the matrix P1 goes back to the original

one.
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Figure 4.1: Permutations vs. Errors. This is plot of the errors between theMn(P1)
and its Kronecker product representations in the Frobenius norm. The x-axis is the
number of the iterations n, and the y-axis is the values of errors for the different n:
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4.3.2 Existence of Kronecker Product Representation

From the previous section, we know the permutations can be applied to �nd a good

Kronecker product representation. However, trying all possible permutations is

computationally expensive. Can we know if there exists a good Kronecker product

representation without trying to �t all possible permutations? Let us go back to the

properties of the Kronecker product to answer this question.

De�nition: The Kronecker product of two vectors: The Kronecker

product of two vectors u 2 Rp and v 2 Rr is a vector u 
 v 2 Rpr given by

u
 v = [uTv1; : : : ; uTvr]T .

The following theorem about eigenvalues and eigenvectors [55] is very helpful

to offer an insight into this problem.

Theorem of eigenvalues and eigenvectors [55]: Suppose that A 2 Rr;r and

B 2 Rs;s and

Aui = �iui; i = 1; : : : ; r; Bvj = �jvj; j = 1; : : : ; s; (4.18)

then for i = 1; : : : ; r; j = 1; : : : ; s

(A
B)(ui 
 vj) = �i�j(ui 
 vj);
(A
 Is + Ir 
B)(ui 
 vj) = (�i + �j)(ui 
 vj):

Thus the eigenvalues of a Kronecker product (sum) are the products (sums) of

the eigenvalues of the factors (decompositions). The eigenvectors of a Kronecker

product (sum) are the products of the eigenvectors of the factors.

Consider the following typical situation, which helps to interpret the
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implications of the above theorem to indicate existence of a structured Kronecker

decomposition.

If one of A and B is the identity, supposing it is A = I without loss of

generality, then there are repeating blocks in the diagonal position of C = A 
 B.

Furthermore, the eigenvalues of C = A 
 B are structured in the following way:

The eigenvalues of C consist of each of the r eigenvalues of B appearing with

multiplicity such that it is repeated p-times. Therefore, whenever we look at

the spectrum (eigenvalues) of a matrix C, and we see repeated eigenvalues, we

should suspect that there exists a structured Kronecker decomposition whose size is

indicated by the multiplicity of the repetition. In general, noise, �tting numerics

and other corruptions would prevent the observed matrix C from exactly having

repeating elements in its spectrum. Continuity theorems of the spectrum of a matrix

with respect to small perturbations of the matrix allow us to state the following

principle:

Remark: If C has approximately repeating elements in its spectrum, then

a Kronecker decomposition of structured size indicated by the repetition length is

indicated.

In Eq. (4.8), we notice there are repeating blocks R in the diagonal position,

and remaining elements in the matrix P1 are almost zero. If the value of � is zero,

the matrix P1 can be decomposed as the Kronecker product of the identity and the

repeating block R. Hence, from the remark above, the spectrum of the matrix P1 is
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Figure 4.2: Spectrum of the Parameter Matrix P1 of the 3-Coupled Rössler System.
There are three groups of the close by values in this plot.

three groups of the repeated eigenvalues of the matrix R. However, the value of �

is generally nonzero, the fact of which means the Kronecker product representation

matrix B in Eq. (4.10) is almost the identity. Moreover, the eigenvalues of the

matrix B are not the same constants, but some values close by. Therefore, the

spectrum of the matrix P1 is three groups of the close by values.

Figure (4.2) shows the spectrum of the �tted parameter of the 3 coupled

Rössler system. In Fig. (4.2), three groups of the values of the spectrum can be

seen. From this fact, we can suspect that there exists a good Kronecker product
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representation of the matrix P1. Therefore, with modeling parameter of the system,

we are able to uncover the underlying structure of the system.

4.4 Reaction Diffusion Equations

While the theory of modeling given in Chapter 3 is developed for ODEs which

reproduce a given data set, we discuss here how evolving spatiotemporal patterns,

which should in principle require a PDE, can be approximately reproduced by

estimating a set of ODEs which describe time evolving Fourier coef�cients with a

well chosen set of basis functions. First we give an example data set from a simple

PDE.

Consider the reaction diffusion equations of two species and one spatial

variable, u(x; t); v(x; t) 2 <, x 2 [0; L] [54]:

@u
@t
= D @2u

@x2
+ 1

�
[v � f(u)]

@v
@t
= D @2v

@x2
� u+ � ; (4.19)

with initial conditions [-2,-4] and boundary conditions,

u(0; t) = �2; u(L; t) = �2; and v(0; t) = �4; v(L; t) = �4: (4.20)

Here, the parameters � and � are assumed to be positive and �xed. We choose the

nonlinear term f(u) to be given by,

f(u) = u2 + u3; (4.21)

and D = 0:032249, � = 0:01, � = 0:01. We obtain an empirical data set

fu(xi; tj); v(xi; tj)gi=1:M;j=1:N by a �nite element solver [34].



58

Assuming this multivariate time-series data set is the only information we

know about this unknown system, we estimate the modeling parameters by using a

system of nonlinear equations,

_� u
v

�
= A

2664
u
v

Q(u; v)
C(u; v)

3775 ; (4.22)

where we assume Q(u; v) and C(u; v) are all possible combinations of quadratic

and cubic terms. Figure (4.3, 4.4) shows the u and v data sets vs. the reproduced

data sets u0 and v0 generated by modeling system with the modeling parameter A in

Eq. 4.22.

The left graphs are the original data of u, v and the right graphs are the

reproduced data u0, v0. From the �gures we know, the �tting data procedure works

well and the error jju� u0jj1 is 4:3121� 10�12. Therefore we know that parameter

estimation is achieved for this nonlinear reaction diffusion equation. Moreover, if

we use u data alone to do the data �tting, we will still get a nice graph.Figure. (4.5)

shows the original data u and reproduced u0 obtained by original u only. Although

the graph looks good, the error jju� u0jj1 = 4:1836 is much larger. An explanation

of this surprisingly good �t using only u(x; t) data is that the v equation is linear

and changes much slower than the u2 and u3 terms in the u equation. Therefore,

ignoring the v can still give us a good �t in this case.

Now let us consider whether a good Kronecker product representation of the

�tted parameter A exists or not. We can use the equation of the system to examine
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Figure 4.3: The Original Data u(x; t) from the Reaction Equation and the Repro-
duced Data u0(x; t) from the Modeling System of Best Cubic Fitting.
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Figure 4.4: The Original Data v(x; t) from the Reaction Equation and the Repro-
duced Data v0(x; t) from the Modeling System of Best Cubic Fitting.
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Figure 4.5: The Original Data u(x; t) and the Reproduced Data of the Reaction Dif-
fusion Equation by Fitting Only the u(x; t) Data.
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the structure of the parameter matrix A. Using ht and hx to denote time step size

and space step size, respectively, we have an equation for each time jht when N = 3

for convenience.

1

ht
�

2666664
u(x1; tj+1)� u(x1; tj)
v(x1; tj+1)� v(x1; tj)
u(x2; tj+1)� u(x2; tj)
v(x2; tj+1)� v(x2; tj)
u(x3; tj+1)� u(x3; tj)
v(x3; tj+1)� v(x3; tj)

3777775 = A �

26666666664

u(x1; tj)
v(x1; tj)
u(x2; tj)
v(x2; tj)
u(x3; tj)
v(x3; tj)
Q(u; v)
C(u; v)

37777777775
; (4.23)

here A is :

A =

266666664

�2a 1=� a a
�1 �2a a a
a �2a 1=� a A01

a �1 �2a a
a a �2a 1=�

a a �1 �2a

377777775
; (4.24)

where A01 is the parameter of the nonlinear terms Q(u; v) and C(u; v),

Q(u; v) =

26666664

u(x1; tj) � u(x1; tj)
u(x1; tj) � u(x2; tj)
u(x1; tj) � u(x3; tj)

...
v(x2; tj) � v(x3; tj)
v(x3; tj) � v(x3; tj)

37777775 , C(u; v) =
26666664

u3(x1; tj)
u2(x1; tj)u(x2; tj)
u(x1; tj)u

2(x2; tj)
...

v2(x2; tj) � v(x3; tj)
v3(x3; tj)

37777775
and

a = D=h2x; (4.25)

since we use the centered difference approximation to model the data set,

@2u(xi; t)

@x2
� u(xi�1; t)� 2u(xi; t) + u(xi+1;t)

h2x
: (4.26)

Here we only discuss the parameter of the linear term, which is given explicitly in



63

Eq. (4.24). Two repeating blocks in the matrix A can be noticed :

B1 =

�
�2a 1=�
�1 �2a

�
; B2 =

�
a
a

�
(4.27)

When a is very small, implying the D in Eq. (4.25) is much smaller than h2x,

we notice there are repeating blocks B1 in the diagonal position, and remaining

elements are all approaching zero, so that a good representation of the linear

parameter can be found. However, generally, D is always larger than hx, meaning

we can not ignore either of the repeating blocks, so that there exist more than

one repeating block in the parameter matrix. Therefore, we can not �nd a good

Kronecker product decomposition, meaning there is no obvious oscillator in the

reaction diffusion system as expected for a large value of D.

If we resort the data, A0, another form of A could be found according to a new

order,

1

ht
�

26666666664

u(x1; tj+1)� u(x1; tj)
u(x2; tj+1)� u(x2; tj)

...
u(xm; tj+1)� u(xm; tj)
v(x1; tj+1)� v(x1; tj)

...
v(xm; tj+1)� v(xm; tj)

37777777775
= A0 �

266666666666664

u(x1; tj)
u(x2; tj)

...
u(xm; tj)
v(x1; tj)

...
v(xm; tj)
Q(u; v)
C(u; v)

377777777777775
; (4.28)
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here A0 can be written as :

A0 =

2666666666664

�2a a a 1=�
a �2a a 1=�
...

...
...

a a �2a 1=�
�1 �2a a a A01

�1 a �2a a
...

...
�1 a a �2a

3777777777775
;

(4.29)

Investigating the A0 given in Eq. (4.29), we could not �nd repeating blocks in

A0. We predict that there is no good Kronecker product representation for A0 when

we sort the data of u and v as Eq. (4.28).

4.5 Summary

In this chapter, we have given an example of the system of coupled Rössler

oscillators to answer the question: how can we know if there are coupled oscillators

in an unknown system by investigating the modeling parameters? Based on a recent

matrix approximation theory by Van Loan [56], we have introduced an optimal

estimation within the classes of systems, which can be written in terms of the

Kronecker product [55], the representation of which uncovers subsystem structure in

a large system consisting of many coupled simpler elements.
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Chapter 5
Data Reproduction by Modeling Systems

In this chapter, we will discuss the important issue of model quality: How should

we evaluate the error between the original unknown system and the modeling system?

Consequently, the question of how well the model reproduces the data has to be addressed.

In this regard, we will discuss how an exact system is expected to compare to a slightly

perturbed system. The perturbation parameters can be added into the ODEs of the exact

system and the initial conditions. After adding the perturbation parameter, we compare

the time-series of two systems to see how the error between those two systems is bounded.

Since we know that even if we had estimated the model exceedingly closely to the original

system, that sensitive dependence to initial conditions will cause exponential divergence

of a prediction from a true solution. Thus, we will incorporate this notion into evaluations

of quality.

5.1 Error Evaluation

Once a parameter matrix is found, we can approximately reproduce the data, which is

expected to approximate the original data set. There are at least two reasonable ways to

describe the quality of the �t.

1. Residual error of the data reproduced by the modeling ODE system as compared to

the given data.
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2. How close is the right hand side of the modeling ODE to the original ODE?

The �rst type of error is reasonable in the sense that the �tting criteria are

based on least squares minimum residual. The second type of error is what we

really want to reduce, however, it is not possible to directly compute it since we

do not have the function that produces the original data set. The theorems from

the previous chapters concern convergence of the modeling ODE with respect to

decreasing the sampling rate, but we cannot directly compare f , the true ODE and
�
f ,

the modeling ODE.

5.1.1 Even Good Fits Can Produce Large Errors

In this section we wish to point out that even if we have done an excellent job of

�tting
�
f to be very close to the true f which produces the data set, if the ODE is for

example autonomous and chaotic, the sensitive dependence can cause the outputs of

_x = f(x) and _x =
�
f (x) to produce very different solutions.

Consider for example, the Lorenz system [2],

_x = �(y � x)
_y = �xz + x� y
_z = xy � bz:

(5.1)

Now suppose we have a data set from the Lorenz system, and with that data set we

have done an exceedingly good job of modeling the equations of motion. Suppose

we get the modeling equations in the following form,

_x = (� + �)(y � x)
_y = �xz + x� y
_z = xy � bz:

(5.2)
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By any standard, this should be considered to be a good result, but now we point out

that even so, the residual error might point out a large error.

Consider the relationship between the perturbations and the errors that occur

in the original and reproduced systems, which we model as a non-autonomous ODE

of the form

_x = f(x) + �g(x; t; �); x 2 Rn; (5.3)

where f and g are of class Cr, r � 1. � is the perturbation parameter. Denoting

x(x0; t) as the solution of the unperturbed autonomous system _x = f(x); with the

initial condition x0 and x�(x00; t) as the solution of the perturbed system (Eq. (5.3))

with the initial condition x00, we will be mainly interested in the following question:

In comparison with the unperturbed system, how the perturbed initial condition and

perturbation parameter � effect the solution of the perturbed system?

From the theorem of dependence on initial condition [37], based on Gromwall's

inequality, we know that,

jjx(x0; t)� x(x00; t)jj � jjx0 � x0jjKt; (5.4)

where K is the Lipschitz constant of f(x) in Rn. From Corollary 3.1.7 of [3], we

know that if jjgjj is uniformly bounded byM and the initial conditions of two sys-

tems are the same, then,

jjx�(x0; t)� x(x0; t)jj �
�M

K
[eKt � 1]; (5.5)

which is another form of Gronwall's inequality. Therefore, the reproduced data set
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can be considered as the data obtained by the perturbed system with a perturbed

initial condition. From the two inequalities above, we can compare the data set of

the perturbed system with the data set of the original system,

jjx�(x00; t)� x(x0; t)jj (5.6)

� jjx�(x00; t)� x(x00; t)jj+ jjx(x00; t)� x(x0; t)jj

� �M

K
[eKt � 1] + jjx0 � x00jjKt

Consider the Lorenz system [2], and the �very-well-�tted" version of that

system as above in Eqs. (5.1, 5.2). We choose the values of the constants �; ; b as

� = 10; b = 8
3
;  = 28 and � is the perturbation parameter for the x oscillator. When

� is zero, the system is unperturbed and is the exact Lorenz system. We choose the

� = 0:01, and the difference between the initial conditions x00 � x0 = 0:01. The

Lipschitz constant K for the x oscillator is found analytically to be,

K = j�j: (5.7)

Figure 5.1 shows the time series of two systems with the chosen perturbations. In

�gure 5.1, we see time-series produced by the two systems Eq. (5.1) and Eq. (5.2)

respectively. The dashed curve is the time-series data from the unperturbed system

and the solid curve is from the perturbed system. From the �gure, we can see

there is an overlap of each oscillator for early times, meaning the error between two

systems is initially very small. Eventually, the two curves diverge from each other.

Fig. 5.2 shows a loglog plot of the error between the x oscillators of two systems
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Figure 5.1: Time Series of the Lorenz System and the Perturbed Lorenz System.
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and the upper bound given by Eq. (5.6).

The point here is that even with such a well �tted equation Eq. (5.2) to

estimate Eq. (5.1), estimated residual error could grow exponentially. In fact, the

Gromwall's inequality based analysis serves well to bound these errors analytically,

but a Lyapunov exponent analysis [2, 50] would accurately describe the growth rate

of the errors. Instead, it would be more useful to be a way to consider whether a

good model has been found.

5.1.2 Lyapunov Analysis

The theory of Lyapunov functions, a generalization of potential energy functions,

is a global approach to investigating whether a nonhyperbolic equilibrium 4 point

is stable, asymptotically stable or unstable. As we know, local linear stability

analysis tells us that in the neighborhood of an equilibrium, solution trajectories are

attracted to the equilibrium if the eigenvalues of the linear part of the equation have

negative real parts, while Lyapunov functions can tell us that the initial values from

a large region converge to an equilibrium. Moreover, they can sometimes be used to

determine stability of equilibria where the eigenvalues of Df have real parts zero.

Let x(t) = (x1(t); x2(t); :::; xn(t))
T be a solution of the n-dimensional

4 A point x0 2 <n is called an equilibrium point of
:
x = f(x) if f(x0) = 0. An equilibrium point

x0 is called a hyperbolic equilibrium point of
:
x = f(x) if none of the eigenvalues of the matrix

Df(x0) have zero real part. An equilibrium is a nonhyperbolic equilibrium point if it is not a
hyperbolic equilibrium point.
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Figure 5.2: Error Between the Lorenz System and Perturbed Lorenz System In x.
The solid curve is the error is x between two systems, and the dashed curve is the
bound of the error given in Eq. (5.6)
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system

�
x = f(x) (5.8)

of differential equations. Suppose we can construct a function V (x), which can be

considered as the energy function of the system given in Eq. (5.8). To measure the

rate of change of V (x) along a solution trajectory of the system �
x = f(x), we can

obtain the derivative of V with respect to t. By the chain rule and the ODEs, the

derivative of V (x) along the solution x(t) = (x1(t); x2(t); :::; xn(t))T is able to be

found,

�
V (x) =

�
V (x1(t); x2(t); :::; xn(t)) =

@V

@x1

dx1
dt
+ :::+

@V

@xn

dxn
dt

=
@V

@x1
f1(x) + :::+

@V

@xn
fn(x):

The energy function V (x) can be used to investigate the stability of equilibria

in the sense of the theory of Lyapunov functions. A function V satisfying the

following hypotheses is called a Lyapunov function [2, 37, 50].

De�nition: Let x0 be an equilibrium of the system of ODEs given in Eq. (5.8).

A function V : <n �! < is called a Lyapunov function for x0 if for some

neighborhood N of x0, the following conditions are satis�ed:

1. V (x0) = 0, and V (x) > 0 for all x 6= x0 in N .

2.
�
V (x) � 0 for all x in N .

In addition, the proof of the theorem of Lyapunov functions given in [37]

shows the stability of equilibria by using the derivative of Lyapunov functions. If
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�
V (x) � 0 for all x in N , x0 is stable. If

�
V (x) < 0 for all x in Nnfx0g, x0 is

asymptotically stable5.

Consider the Lorenz system (Eq. (5.1)) as an example. We will show that

every trajectory approaches the origin as t ! 1 when  < 1, meaning the origin

is globally stable, by using the theory of Lyapunov functions. The origin is an

equilibrium point for this system and

Df(0) =

24 �� � 0
 �1 0
0 0 �b

35 :
Thus Df(0) has eigenvalues �1 = �1

2
� �

2
+

p
1�2�+�2+4�

2
, �2 = �1

2
� �

2
�

p
1�2�+�2+4�

2
, and �3 = �b; i.e., x0= 0 is a nonhyperbolic equilibrium point. So

we consider a Lyapunov function [50] of the form

V (x; y; z) =
1

�
x2 + y2 + z2: (5.9)

The function V (x; y; z) satis�es the two conditions:

1. V (0; 0; 0) = 0, and V (x) > 0 for all x 6= 0.

2.
�
V = 2

�
x
�
x+ 2y

�
y + 2z

�
z = 2

�
x(�y � �x) + 2y(�xz + x� y) + 2z(xy � bz)

= 2(xy � x2) + 2(xy � xyz � y2) + 2(xyz � bz2)

= 2( + 1)xy � 2(x2 + y2 + bz2)

= �2(x� +1
2
y)2 � 2[1� (+1

2
)2]y2 � 2bz2.

Here
�
V is strictly negative if  < 1 and (x; y; z) 6= (0; 0; 0). Moreover,

�
V = 0

5 x0 is asympototically stable if it is stable and if there exists a � > 0 such that for all x 2 N�(x0);
the limt!1 �t(x) = x0; here �t(x) is the �ow of the ODEs.
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implies (x; y; z) = (0; 0; 0). Hence the claim that the origin is globally stable for

 < 1 is established.

Now consider the original Lorenz system and the perturbed Lorenz system

given in the following forms, respectively,

_x1 = �(y1 � x1)
_y1 = �x1z1 + x1 � y1
_z1 = x1y1 � bz1;

(5.10)

and
_x2 = (� + �)(y2 � x2)
_y2 = �x2z2 + x2 � y2
_z2 = x2y2 � bz2:

(5.11)

We can construct a system of error E between oscillators by taking the difference

between those two systems. The system of error is given in form of
�
Ex = �(y1 � x1)� (� + �)(y2 � x2) = �(Ey � Ex)� �(y2 � x2)
�
Ey = �x1z1 + x1 � y1 � (�x2z2 + x2 � y2) = Ex � Ey � x1z1 + x2z2
�
Ez = x1y1 � bz1 � (x2y2 � bz2) = �bEz + x1y1 � x2y2;

(5.12)

where Ex = x1 � x2, Ey = y1 � y2, and Ez = z1 � z2. Considering the

local stability of the origin of this system, we can obtain the linearization at

(Ex; Ey; Ez) = (0; 0; 0), which means when x1 = x2, y1 = y2, and z1 = z2,
�
Ex = �(Ey � Ex)
�
Ey = Ex � Ey
�
Ez = �bEz;

(5.13)

by omitting the nonlinearities in Eq. (5.12). The differential equation for Ez is

decoupled and shows that Ez(t) approaches 0 exponentially fast. The other two
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oscillators are governed by the system� �
Ex
�
Ey

�
=

�
�� �
 �1

� �
Ex
Ey

�
;

with trace � = �� � 1 < 0 and determinant � = �(1 � ). If  > 1, the point

(Ex; Ey; Ez) = (0; 0; 0) is a saddle point [50] because� < 0. Including the decaying

Ez direction, the saddle point has one outgoing and two incoming directions. If

 < 1, all directions are incoming and the point (Ex; Ey; Ez) = (0; 0; 0) is a sink.

Speci�cally, since � 2 � 4� > 0, the point (0; 0; 0) is a stable node [50]. In order

to investigate the global stability of the point (Ex; Ey; Ez) = (0; 0; 0), a Lyapunov

function of the system of error can be considered, however, the system of error given

in the Eq. (5.12) is too complicated to give us a hint as to how to construct a proper

Lyapunov function. Therefore the Lyapunov exponent [2, 50] of the system of error

can be used to evaluate the change of the error E for a short period of time.

The local behavior of the system of error varies among the three directions.

For a given initial point, which can be obtained by a small value of perturbation of

the initial condition of the Lorenz system, we consider a sphere of the initial point

of in�nitesimal radius evolving into an ellipse as the map is iterated. The average

growth rate of the longest orthogonal direction of the ellipse can be considered as the

�rst Lyapunov number of the orbit, and its natural logarithm is called the Lyapunov

exponent. In the numerical study of the error system given in the Eq. (5.12), we are

trying to �nd howE grows. By plotting the natural logarithm of the error, ln jjE(t)jj;

versus t, we �nd curves that are close to straight lines with positive slopes, the fact
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of which implies that the error E increases exponentially fast. Numerically, the

growth rates of three oscillators Ex, Ey, and Ez are �x = 0:2639, �y = 0:2539, and

�z = 0:2676. Therefore E(t) could be approximated by the following form,

jjE(t)jj � jjE(t0)jje�t; (5.14)

where � is the largest growth rate of three oscillators of the error system, and

� =�z = 0:2676. The number � can be also considered as the Lyapunov exponent.

By the Eq. (5.14), we can predict the growth of the error E(t), which generally

shows the quality of the �tting ODEs in the sense of error evaluation.

Figure (5.3) shows the growth rate of the Ez-oscillator of the error system.

The approximation of the growth rate �z = 0:2676 is obtained by the linear function

�tting of the trajectory Ez(t). The measurement is not perfect since there is always

some error when the linear function �tting is applied and we should average over

many different points on the same trajectory of Ez to get the true value of �z.

5.2 Synchronization Criterion

In the work of Brown, et. al. [10], they suggest a useful synchronization criterion that

can be applied as a nontrivial method to evaluate whether the �tted ODE is likely to

be close to the true ODE, which produces the data. Their idea is as following: If the

�tted ODE _y =
�
f (y; A) are exactly the same as _x = f(x; P ), that is kf �

�
f k = 0,
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Figure 5.3: The Natural Logarithm of the Error between the z-Oscillators of the
Lorenz System and Perturbed Lorenz System.
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then we should hope that there exists a coupling scheme

_x = f(x; P ) (5.15)

_y =
�
f (y; A) + �C(x; y); (5.16)

such that there will be identical synchronization between the two systems;

y(t)! x(t) as t!1. Here � is a coupling parameter and C is a coupling matrix.

The idea then is that if
�
f is not necessarily exactly the same as f , but only close to

f , then the same coupling scheme will still produce some form of synchronization,

probably nearly identical synchronization. That is, the generalized synchronization

manifold will likely be of the form,

y = �(x); (5.17)

where � is nearly the identity function. This criterion offers a positive test to validate

a good �t, however, it is not always obvious how to �nd a good � and coupling

matrix C. Even if such pairs exist, it is not obvious how much
�
f and f may differ

and still produce a positive result. Nonetheless, when it does work, and it does

tend to work well, this is a useful way to validate that the �tted model
�
f is likely

to be close to f without actually knowing f , since only the data from Eq. (5.15) is

required.

To validate the Brown method with our previous example, let f be as Eq. (5.1)

and suppose the �tted
�
f is as in Eq. (5.2). Figure (5.4) shows an application of the
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Figure 5.4: Time Series of Synchronization of the Lorenz System.

Brown method for the Lorenz system. We choose � = 1 and 2 to be the perturbation

of the initial conditions.

Figure (5.4) shows the x-coordinates plotted from Eq. (5.1, 5.2). The

difference of the initial conditions between two x-coordinates is 2. The dashed

trajectory is from the unperturbed Lorenz system, and the solid trajectory is from

the perturbed Lorenz system. The synchronization is observed. Figure (5.5) is

a simultaneous plot of one trajectory from the time series from Fig. (5.4). The

x-axis is the x-coordinate of the unperturbed Lorenz system, and the y-axis is the

x-coordinate of the perturbed Lorenz system. We can see that the plot lines up along
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Figure 5.5: Simultaneous Plot of the x-Coordinates of Lorenz System and the Per-
turbed Lorenz System.
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the diagonal since the two trajectories are synchronized.

5.3 Time Delay Embedding and Alternate Coordinate

In this section, we will give an example on time delay embedding with application

of global modeling method. Consider �tting data from the Rössler system [2].

Proceeding naively to �t the best general quadratic model to the data set shown in

�gure (5.6), produced by the following equations,
�
x = �y � z
�
y = x+ ay
�
z = b+ z(x� c):

(5.18)

For the Rössler system, �x = f(x; P ) in Eq. (5.18), we can make the delay plot by

the vector of delay coordinates [57, 1, 23]. Here we assume that the data from the

Rössler system, (x(t); y(t); z(t)) 2 X . The delay embedding data can be obtained

by the time series of the x-oscillator of the system according to the following form

of the vector,

w(t) = [x(t); x(t� T ); x(t� 2T )]; (5.19)

for each time t in the time series. We assume w(t) 2 W . Instead of �tting the

original data from the Rössler system, we do the global modeling method to the

delay embedding data from this system to see whether a good �t can be found.

Figure (5.6) shows the original data of the Rössler system in exact x; y; z.

Figure (5.7) shows the delay plot in delay variable

[w1(t); w2(t); w3(t)] = [x(t); x(t� T ); x(t� 2T )]:
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Figure 5.6: The Original Data of Rössler System.
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Figure 5.7: Time Delay Plot of Rössler System.
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The dotted curve, which is for a short period of time, in the Figure (5.7) will be

used in the modeling procedure since the error generated in the modeling procedure

grows exponentially fast, thus only data of a short period of time is necessarily used

to get a good �t with a small error.

The delay plot has the shape similar to the original data because of the

embedding theory. We guess there exists a homeomorphismH between the original

data and the delay embedding data. We denote the original space as X and the delay

space asW .
� : X ! X

H # #
� : W ! W

(5.20)

From Eq. (3.1), we know �
x = f(x; P ), which generates a �ow on X . Now we ask

if in general we should expect if the original equations have a particular (quadratic)

form, and the same simple form should carry over to governing equations of the

conjugate variables. Assume there is an equation for the w variable such that,

�
w = g(w; P 0); (5.21)

which generates a �ow onW . Suppose there is a homeomorphism H between x

and w and also f generates a �ow on X . Then, the ODE given in Eq. (5.21) can be

expressed in the terms of the homeomorphism H in the following form,

�
w =

�
H(x) =

dH

dx
� �x = dH

dx
(x) � f(x; P ) = dH

dx
(H�1(w)) � f(H�1(w); P ): (5.22)

Therefore the equation obtained by the delay embedding data is a composition

function of f and H�1. If H is linear, the equation obtained by delay embedding



85

Figure 5.8: Delay Plot of Original Data and the Reproduced Data by 1st and 4th
Order Schemes.

data may be in the same degree as f . In general, H may be a very complicated

function, the fact of which cannot guarantee there is a new function g, which is

similar to f , obtained by data �tting procedure.

Nonetheless, in the case of the simple Rössler example, we do �nd excellent

�tted models. Figure (5.8) shows the data of delay variables and the reproduced

data of the modeling system obtained by using quadratic �tting procedure with the
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Figure 5.9: Time Series of Delay Data and Reproduced Data.

1st and 4th order schemes. In Figure (5.8), the solid curve is the delay data used in

the modeling procedure, and dotted curve(.�) is the reproduced data by the forward

Euler integration as the dashed green one by the 4th order scheme. Fig. (5.9) shows

the time-series of each coordinate. The solid curve is the delay data, the dots and the

dashed curve are reproduced data by the modeling system using 1st and 4th order

schemes, respectively.
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5.4 Summary

In this chapter, we have introduced several methods to estimate the quality of

modeling in the view of the reproduced data of the modeling system. If the

reproduced data approximates the low-dimensional data well, the analytical form

given by the modeling technique can be considered as a closed form of the equations

of the system that is embedded on the low-dimensional submanifold. To evaluate

the error between the reproduced data and the given data numerically, we have

shown that the Lyapunov analysis is capable of producing the growth rate of error,

by which the local behavior of the error is able to be predicted.
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Chapter 6
Modeling the Low-Dimensional Submanifolds

A major problem we will focus on in this chapter is how to globally model a

low-dimensional manifold, which is expected to be embedded in some high-dimensional

dynamical system, by using the ISOMAP method and the modeling techniques introduced

in Chapter 2 and 3. As discussed in the Chapter 2, the ISOMAP method is a nonlinear

analysis developed to deal with a discrete data set, and the output of the ISOMAP algorithm

is also a data set. Therefore, a new problem arises: Given a set of high-dimensional

randomly distributed empirical data points by some dynamical system, which are assumed

to lie on a low-dimensional nonlinear manifold, can we �nd a low-dimensional analytical

form of the equation that can reproduce the data set.

A common form of a system with a stable invariant manifold is well described in the

context of a singularly perturbed system [12, 16], or fast-slow system. Consider a m + n

dimensional dynamical system of differential equations in form of,
�
x= F(x;y);

�
�
y= G(x;y):

(6.1)

where x 2 <m, y 2 <n, F : <m � <n ! <m, and G : <m � <n ! <n. It is obvious

that for 0 < � << 1, the y-equation runs fast, in relative to the slow dynamics of the

x-equation. Such systems are called singularly perturbed, since if � = 0, we obtain a

differential-algebraic equation,
�
x= F(x;y);
G(x;y) =0:

(6.2)
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The second differential equation becomes an algebraic constraint. Under suf�cient

smoothness assumptions on the functions F and G, the implicit function theorem can be

applied in form of the Tokhonov theorem [53], there is a function, or � = 0 slow-manifold,

y = H�(x)j�=0;

such that

G(x;H�(x)j�=0) =0:

The singular perturbation theory concerns itself with continuation, and persistence

of stability of this manifold H�(x) within O(�) of H�(x)j�=0, for 0 < � << 1 and

even for larger �. In this chapter, we will refer to a stable invariant manifold H

embedded in <m+n as an expression,

H : <m �! <n
x 7�! y =H(x)

; (6.3)

if it exists. In such a case, the degenerated system becomes,

�
x= F(x;H(x));

which is equivalent to Eq. (6.1), with the constraint given in Eq. (6.3). Therefore,

the manifold equation is obtained in form of,

�
dH

dx
� F(x;y) = G(x;H(x)): (6.4)

For the purpose of this chapter, given a dynamical system, we presume

that we cannot approach the dimensionality reduction in an analytical form of

equations because we only know the system through a data set. The goal of this

chapter is to �nd an analytical form of the stable manifold y =H(x) through the
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data set, meaning to model the low-dimensional invariant manifold embedded in a

high-dimensional dynamical system.

In order to perform the modeling technique, a low-dimensional invariant

manifold should be obtained �rst. As we know from Chapter 2, if the stable

manifold is approximately �at, the linear method, such as POD, will be able to

discover a �at, nearly invariant and stable subspace. However, if the data lies on a

highly curved low-dimensional manifold, the linear method will overly simplify the

topology of the system. Moreover, for some typical fast-slow systems discussed

in [8], the POD method may be overlooked when a change of units or parameter

occurs. Therefore, the ISOMAP method will be applied in the following examples

to avoid the shortcomings of the POD method.

6.1 Lorenz System

We consider a three dimensional dynamical system, the Lorenz system [2, 32], as an

example,

_x = ��x+ �y

_y = rx� y � xz

_z = xy � bz; (6.5)

where we choose � = 10, r = 28, b = 8
3
. There is no apparent invariant manifold

for this system, but there is a famous Lorenz butter�y, which is an attractor of the
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Lorenz systems with speci�c values of parameters �, r, and b. This attractor has a

fractal dimension slightly larger than 2. In fact, it is known that the Lorenz attractor

is better described as a branched manifold [5, 59]. Therefore, this system makes a

good data set to perform dimensionality reduction methods that insist on treating

the data set as if there was a manifold. Firstly, we will apply the ISOMAP method

to ascertain the structure of the low-dimensional attractor. Secondly, we will try

to model the ISOMAP projections, which are expected on a lower dimensional

submanifold, to see if a good analytical form can be obtained.

6.1.1 Application of the ISOMAP Method

In Chapter 2, the Tenenbaum �lling condition [4] was introduced to ensure that

the given data set can be used in ISOMAP method to discover an embedded

low-dimensional submanifold, if there exists one. For the study of how to apply the

ISOMAP method to dynamical systems such as those with some low-dimensional

global attractors, we will hereafter display some successful applications of the

ISOMAP in the Lorenz system.

Computationally, we will require that the modeling of any embedding

submanifold in the ambient space by ISOMAP use only �nite set of data. Ideally,

sampling data on a submanifold would be uniform with respect to the intrinsic

variables. However, dynamical systems tend to sample their attracting invariant

manifolds according to highly irregular, and even fractal, invariant measures. In
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[4], an asymptotic convergence theorem is presented to address the data sampling

convergence to manifold model issue. However, it is hard to show that the invariant

density, if it exists, of the Lorenz system satis�es the properties required in the

asymptotic convergence theorem, aforementioned, implying that the data set,

even generated by a long period of time, is not constantly uniform. Therefore, a

preprocessing of resampling the data set to collect a uniformly distributed subset is

needed before the application of the ISOMAP.

In the typical scenario when the invariant density is not uniform, we will

present a resampling algorithm to preprocess the data set in a way that produces

data sets, which are appropriate for the hypothesis of the ISOMAP asymptotic

convergence theorem. Moreover, we will explore a method involving the linear

combinations of the edges on a graph, which consists of the points in the resampling

data set and the ordered pairs of edges connecting the points, to allow us to discover

the underlying relationship between the ISOMAP projections of the resampling data

set, and points which are released in the preprocessing step of resampling.

Meshing Method

In Fig. 6.1, the Lorenz attractor is shown. There are two ubiquitous holes

on the attractor, one on each wing. From the graph, we can see that the points

generated computationally close to the hole are much denser than those far away.

Therefore, a better data set with a uniform distribution is needed to suf�ciently

guarantee success of application of the ISOMAP method in order to understand the
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Figure 6.1: A Solution from Lorenz System Given in Eq. (5.5).

structure of the attractor.

In order to obtain a uniformly distributed data set, we need to generate a large

data set experimentally, which consists of approximately 100,000 data points, so

that the density of the points far away is not extremely less than that of the points

close to the hole, even the data set is not uniformly distributed yet. In principle,

it is possible to perform ISOMAP directly on this big data set, however, it is too

computationally expensive to apply ISOMAP on such a large data set. In practice,



94

Figure 6.2: Uniformly Distributed Resampling Data Set Generated by the Meshing
Method.
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we can generate a resampling of the data set, which is almost uniformly distributed

based on the aforementioned large data set, to diminish the size of the original data

set without losing the good density. To do so, we mesh the three dimensional space

where the attractor is located, into small cubes, inside each of which, the �rst point

generated experimentally will be maintained, and afterwards we will then release the

individual cube. Noticeably as the sizes of cubes become smaller, the resampling

data set is apt to be more uniformly distributed. Consequentially, we are able to use

a proper size of the cube to obtain a predicted uniformly distributed data set.

Fig. 6.2 reveals a uniformly distributed data set generated by the meshing

method. The attractor contains approximately 12,500 data points, the size of which

still remains too large to perform the ISOMAP. The reason that the size of the

resampling data set is still large is that the points far away from the hole are not

dense enough to build a good neighborhood graph, meaning that the properties

required in the asymptotic convergence theorem can not be satis�ed, when the

ISOMAP is applied. Therefore, it is indispensable that a subsampling of such a

uniformly distributed resampling data set will be employed on condition that the

said subsampling must have similar statistics as the resampling data set.

We choose 5,000 points uniformly from 12,500 data points shown in Fig. 6.2

to make an illustration of Fig. 6.3 depicting a subsampling of data points, among

which dark dots are the subsampling data. The set of blue points is suf�ciently

dense so that the approximations of the attractor by the discrete graph structure is
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Figure 6.3: Uniformly Distributed Subsampling Data Set Generated by the Resam-
pling Data Set.
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Figure 6.4: ISOMAP Projections of the Subsampling Data Set. The plot shows
a two-dimensional nonlinear embedding of the subsampling data set given in Fig.
(6.3).



98

Figure 6.5: Dimensionality Found by the ISOMAP Method.

good. The outcome of applying the ISOMAP method on the set of blue points is

presented in Fig. 6.4 . Fig. 6.5 shows the dimensionality found by the ISOMAP

method applied to the subsampling data set given in Fig. 6.3. The x-axis is the

test dimension and the y-axis is residual error in Eq. (2.4). It is rational that a

2-D manifold represents the 3-D attractor vividly. For the rest of this section, the

outcome of ISOMAP is called as ISOMAP projection. In order to perform modeling

globally on the lower dimensional data set, the ISOMAP projections of all data
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points generated computationally have to be obtained. Therefore, another problem

is raised thereafter whether we can �nd the ISOMAP projections of the red data set

without performing the ISOMAP itself. We will introduce a technique involving

linear combinations of edges on the neighborhood graph to explore this problem.

Method of Linear Combinations

The problem we will address in this part is how to �nd the ISOMAP

projections of those points that are not part of the subsampling data set without

applying the ISOMAP method directly. It is meant that the ISOMAP method is a

one-to-one mapping, implying that the ISOMAP method gives the image of each

point x, which is generated computationally by the Lorenz system in this case, by

projecting points in high-dimensional coordinates into points in low-dimensional

coordinates, and also preserves the geodesic distances, the fact of which means

that the nearby points on the manifold keep nearby, and the far away points keep

far away. Therefore, considering linear combinations of edges connecting near

neighbors is a useful way to explore the ISOMAP projections of the points, which

are not in the subsampling data set. For any point in the red data set, if it is also in

the subsampling data set (blue data set), we will keep the ISOMAP projection of

this point, which can be obtained in Fig. 6.4. If it is not in the blue data set, this

point r can be represented by a linear combination of edges connecting blue points,

which are closest to it. The ISOMAP method preserves the coef�cients of the linear

combination. Therefore, the ISOMAP projection of the point r is able to be found
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Figure 6.6: Example on Linear Combinations of Edges.

by the linear combination of the ISOMAP projections of blue points nearby with the

same coef�cients.

In Fig. 6.6, an example is shown. Here b1, b2, and b3 are blue points in the

subsampling data set. They are in 3-dimensional space and the ISOMAP method

produces their ISOMAP projections b01, b02, and b03, which are in 2-dimensional space.

The red point r does not have a projection directly given by the ISOMAP method

because it is not in the subsampling data set (blue). In Fig. 6.6(Left), we know there

is a linear combination involving b1, b2, and b3,

a1 � (r � b1) + a2 � (b2 � b1) + a3 � (b3 � b1) = 0;

where, a1, a2, and a3 are the coef�cients of the linear combination, and can not all

be 0. With the same value of the coef�cients, we can derive an equation of the



101

Figure 6.7: ISOMAP Projections of Uniformly Distributed Dataset.

ISOMAP projection of r,

a1 � (r0 � b01) + a2 � (b02 � b01) + a3 � (b03 � b01) = 0; (6.6)

where b01, b02, and b03 are the ISOMAP projections of b1, b2, and b3. r0 is the ISOMAP

projection of r, which can be solved from Eq. (6.6). Therefore, for all points not

in the subsampling data set, we can use the method of linear combinations to �nd

their ISOMAP projections of those. In Fig. 6.7, the light points are the ISOMAP
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projections of the light points in Fig. 6.3, which are not in the subsampling data set.

Good results are given by the method of linear combinations.

The meshing method gives a way to �nd a data set with a speci�c density. In

this case, we use a uniformly distributed data set. It is also possible to re�ne the

mesh �ner at particular locations of interest. By the method of linear combinations,

the ISOMAP projections can be found without applying the ISOMAP directly to the

whole data set, so that computations are saved.

6.1.2 Modeling the ISOMAP Projections

In this section, we will show an example on modeling the ISOMAP projections of a

data set of the Lorenz system. As introduced in the previous part, for the purpose

of saving computations, the meshing method and the method of linear combinations

can be employed to obtain the ISOMAP projections when we deal with a very

large data set, or a data set that does not satisfy the requirements of the asymptotic

convergence theorem [4], for instance, the data set that is not uniformly distributed.

Given a set of data points, which are from laboratory experiments or generated

from computations by the Lorenz system, it is known that a 2-dimensional manifold

�ts the attractor well. In the application of the ISOMAP method, assuming that the

size of this data set is too large to apply ISOMAP directly, we can obtain a uniformly

distributed subsampling data set, of which the ISOMAP projections are easy to be

obtained. The ISOMAP projections of the original large data set are then able to be
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Figure 6.8: Example on Modelling a Low-Dimensional Submanifold of Lorenz Sys-
tem.

found by the method of the linear combinations. In fact, the ISOMAP projections

of the data points of some particular period of time of interest will be needed in the

following modeling procedure.

To investigate the problem of whether there exists an analytical form of some

differential equations governing the ISOMAP projections, we perform the modeling

technique on the 2-dimensional set of the ISOMAP projections.
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Figure (6.8) reveals the numerical results of modeling the 2-dimensional

submanifold of the Lorenz system by the ISOMAP method. Part (a) shows the

original data set generated computationally by the Lorenz system. There are

approximately 10,000 points on the attractor. In practice, it is computationally too

expensive to perform the ISOMAP method directly. Moreover, the discrete graph

constructed for the application of the ISOMAP is poor since the data set shown is not

uniformly distributed. Hence, the subsampling data set is used in this case. Part (b)

in Fig. (6.8) shows the ISOMAP projections of the data points given in part (a). In

order to obtain this set of ISOMAP projections, the method of linear combinations

of the ISOMAP projections of the subsampling data set, which is generated by the

meshing method, is applied.

Part (c) in Fig. (6.8) shows the ISOMAP projections that are used in the

modeling procedure. The reason why this particular period of time is focused on is

that the initial point of the trajectory is not on either of two wings, and the trajectory

of the 2-dimensional data points is moving from one wing to the other. Therefore, it

might be interesting to investigate the underlying form of this part of the ISOMAP

projections. To model the data set shown in part (c), we apply the second order

scheme and the cubic �tting form, that is

_X(t) =
X(t+ 1)�X(t� 1)

2h
= P0 + P1X(t) + P2X(t)

2 + P3X(t)
3;

where the set of X is the 2-dimensional ISOMAP projections and [P0; P1; P2; P3] is

the parameter to be solved in the modeling procedure. Part (d) shows the reproduced
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data by using the modeling system. As we see in the graph, the trajectory of the

reproduced data is moving towards a spiral and attracted to the center. Therefore,

the reproduced trajectory cannot describe the motion of the original trajectory for a

long period of time. However, for a short period of time, the modeling system �ts

the original data set. The numerical results are shown in Table (6.1).

Table 6.1: Numerical results of the ISOMAP projections and the reproduced data by
the modelling system

N The ISOMAP projections used in modeling Reproduced data by the modeling system
(Y1; Y2) (X1; X2)

1 (�0:6713; 8:9065) (�0:6713; 8:9065)
2 (0:7453; 7:7378) (0:2745; 7:1483)
3 (0:0860; 5:9368) (1:1391; 6:1661)
4 (1:3110; 5:5719) (1:8581; 5:5153)
5 (2:1638; 5:0355) (2:4499; 5:0342)
6 (2:9918; 4:6221) (2:9407; 4:6522)
7 (3:5774; 4:3693) (3:3530; 4:3340)
8 (4:0875; 4:0503) (3:7038; 4:0597)

In the above example of the Lorenz system, we focus on the problem of how

to obtain the ISOMAP projections of a very large data set, or a data set having a

poor distribution. We also show some numerical results of the modeling procedure.

In the following examples, we will focus on the set of the ISOMAP projections

(intrinsic variables) and the modeling systems.

6.2 Fast-Slow Systems

In this section, we will consider a special case of fast-slow systems with one
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coupling equation in form of,
�
x = f(x)

�
�
y = y � �g(x)

: (6.7)

For systems in this form, it is discussed in [8] that with a proper value of the coupling

parameter �, there exists a slow-manifold,

y = �g(x);

in a lower dimensional subspace when � = 0. The existence of the slow-manifold

allows us to investigate the underlying structure of the system by modeling the

low-dimensional invariant submanifold.

6.2.1 3-Dimensional Example on modeling ISOMAP Projections

First, we consider a problem, consisting of a simple 2nd order differential equation,

��
x+ kx = 0; (6.8)

contracting onto a stable nonlinear slow-manifold speci�ed as a parabola in the

w-variables. The form of this system can be written as a system of two 1st order

differential equations by letting �
x = y with a slow-manifold in the w-variables,
�
x = y
�
y = �kx
�
�
w = w � �(x2 + y2)

: (6.9)

This is a 3-dimensional system embedded on a 2-dimensional nonlinear

slow-manifold,

w = �(x2 + y2):
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If we choose, k = 0:5, � = 0:5, and � = 0:001, we get the data set shown wrapped

onto a paraboloid, as in Fig. (6.9).

As an example of application of the ISOMAP method, we take the data

(x(t); y(t); w(t)), which is a 3 � n matrix, shown as the blue curve in <3. Also

shown on the xy-plane in black, is the data of the x, and y components, which

are solutions of the 2nd order differential equation given in Eq. (6.8). The

ISOMAP method produces the ISOMAP projections of the data set. The green

curve shown in the Fig. 6.9 is the set of the 2-dimensional ISOMAP projections,

which well approximates the discrete graph constructed by the 3-dimensional

data. Geometrically, the ISOMAP projections are able to be obtained by stretching

the curve, which is the data set on the paraboloid in <3, onto a �at plane. The

geometrical explanation of the ISOMAP projections gives us some insight into the

reason that the circle of the ISOMAP projections is bigger than the one of the x and

y components.

modeling the ISOMAP projections, an analytical form of linear equations

is expected since the system of two 1st order differential equations, which are

embedded on the 2-dimensional submanifold, is in linear form. The small circles in

red shown in Fig. (6.9) are reproduced data of the modeling system by �tting the

ISOMAP projections into a linear form with the 2nd order scheme. The modeling

system is given analytically in the following form,
��
xm
ym

�
=

�
�0:024
0:0564

�
+

�
0:0273 0:762
0:6568 �0:033

�
�
�
xm
ym

�
; (6.10)
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Figure 6.9: Example on a 3-D System.
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where xm and ym are variables of the modeling system. In Fig. (6.9), it is shown

that the modeling system �ts the ISOMAP projections well, indicating that the

modeling method analytically gives a good approximation of the system governing

the ISOMAP projections. Comparing the modeling system given in Eq. (6.10) to

the system of two 1st order differential equations, the form of which can be rewritten

as
��
x

y

�
=

�
0 1
�k 0

�
�
�
xm
ym

�
; (6.11)

we observe a difference between parameters of those two systems. The coef�cient

of the constant term in Eq. (6.10) is nonzero and the coef�cient of the linear term

is not the same as, or even close to the one in Eq. (6.11). In fact, as discussed in

the geometrical interpretation of the ISOMAP projections, the ISOMAP method

deals with the geodesic distances between points along the manifold. Thus, the

system governing the ISOMAP projections, which we will refer to as the projected

system for the rest of this chapter, cannot be the same as, but related to, the original

system. In the following example, we will focus on the projected system, where the

ISOMAP projections come from, to reveal the relationship between the projected

system and the original system.

6.2.2 2-Dimensional Example on Projected System

General Form

In order to investigate the relationship between the projected system and the
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Figure 6.10: Example on the Projected System.

original system, we consider a benchmark example of 2-dimensional fast-slow

system in form of Eq. (6.7),
�
x = f(x)

�
�
y = y � �g(x)

:

where a 1-dimensional slow manifold exists. Figure (6.10) shows the slow manifold

y = �g(x) in black. The corresponding points on the manifold y1 and y2 are derived

from the two data points x1 and x2. ISOMAP method generates a set of projections
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by approximating the geodesic distances between points in the original data set.

Therefore, it is necessary to concentrate on the geodesic distances when we are

trying to investigate the projected system that is expected to govern the ISOMAP

projections.

Geodesic Distance and Projected System

In this 2-dimensional case, the geodesic distance between points y1 and y2, is

the arc length of the curve y = �g(x) when x1 � x � x2. The arc length function

based on the applications of integration from the calculus [49] is given in form of,

L(x) =

Z x

a

p
1 + [�g0(u)]2du: (6.12)

We can use Part 1 of the fundamental theorem of calculus to differentiate Eq. (6.12)

to obtain the rate of change of arc length L with respect to x,

dL

dx
=
p
1 + [�g0(x)]2:

Considering the rate of change of the arc length L w.r.t. time t, we are able to obtain

a differential equation by chain rule,

dL

dt
=
dL

dx
� dx
dt
=
p
1 + [�g0(x)]2 � f(x); (6.13)

which describes the motion of the data points along the slow manifold. Hence,

the system given in Eq. (6.13) is the expected projected system, which governs the

ISOMAP projections.
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Figure 6.11: Example of 2-Dimensional Fast-Slow System on the ISOMAP Projec-
tions and the Projected System.
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Linear Problem

Consider an explicit example of fast-slow system given in form of
�
x = ax

�
�
y = y � �x2:

(6.14)

The analytical solution of the x variables in Eq. (6.14) is x = x0eat, where x0 is the

initial condition. The slow manifold exists and is in form of y = �x2. We choose

a = 0:1, the coupling parameter � = 1, � = 0:001, and the initial condition x0 = 1.

The numerical solutions of x and y used to perform the ISOMAP method are

shown in Fig. (6.11) as the red curve and the blue curve, respectively. The green

curve shows the ISOMAP projections of the 2-dimensional system. The small black

circles shown in Fig. (6.11) are the numerical solutions of the projected system

constructed by Eq. (6.13). We see in Fig. (6.11) a clear match of the ISOMAP

projections and the data of the projected system,

dL

dt
=
p
1 + 4�2x4 � ax;

the fact of which justi�es that the ISOMAP projections come from an expected

projected system related to the original system in sense of arc length.

6.2.3 Rössler Oscillator on Paraboloid Fast-Slow System

In this section, we will consider a 4-dimensional fast-slow system, consisting of a

Rössler oscillator [2] contracting onto a slow-manifold speci�ed as a paraboloid in
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the w-variables,
�
x = �y � z
�
y = x+ ay
�
z = b+ z(x� c)
�
�
w = w � �(x2 + y2 + z2):

If we choose, a = 0:1, b = 0:1, c = 18, � = 0:001 and � = 0:002, we get the chaotic

data set shown in Fig. (6.12). The left graph shows a typical trajectory of x, y, and

z components, which are the Rössler oscillator. The right is the trajectory shown

in x, y,and w variables. Clearly, the data set fxi; yi; zig of the trajectory lies on a

3-dimensional nonlinear submanifold, w = �(x2 + y2 + z2). It is not a surprise that

the ISOMAP method can approximately reveal structure of the true 3-dimensional

submanifold. There are approximately 100,000 data points, which are not uniformly

distributed in the space, shown in Fig. (6.12). As discussed in the example of the

Lorenz system, therefore, a data set with a proper density has to be generated for the

purpose of the application of the ISOMAP method.

The left graph in Fig. (6.13) shows a uniformly distributed resampling data set

fx : ui; y : ui; z : uig generated by the meshing method. The resampling data set

has a suf�cient data density to perform the ISOMAP method. The right graph in

Fig. (6.13) is the set of the ISOMAP projections fx : isoi; y : isoi; z : isoig of the

resampling data set. The 3-dimensional projections serve suf�ciently for revealing

the underlying structure of the Rössler oscillator embedded on the slow-manifold.

However, in this particular case, the density of ISOMAP projections at

some speci�ed location, where a big hole is observed, is sparse. Therefore, a
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Figure 6.12: A Fast-Slow Rössler Oscillator on a Paraboloid Submanifold.
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Figure 6.13: ISOMAP Projections of the Uniformly Distributed Resampling Data
Set.
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Figure 6.14: The ISOMAP Projections Regridded by the Smoothing Spline.

further operation of regridding to reduce the number of data points where they are

particularly dense, and to increase data density where it is sparse, is needed, so that a

uniformly distributed data set in time t can be generated for the purpose of modeling

the ISOMAP projections. A traditional method of regridding uses multivariate

splines. In this case, we use the smoothing spline to �t the ISOMAP projections.

The smoothing spline minimizes the functional,

p
P
i

[x : isoi � s(ti)]2 + (1� p)
Z
(
d2s

dt2
)2dt; (6.15)
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Figure 6.15: x-Component of the ISOMAP Projections Generated by the Smoothing
Spline and the Data from the Modelling and the Projected Systems.

where 0 � p � 1, x : isoi are the ISOMAP projections, and s(t) is the smoothing

function given by the smoothing spline. Notice that this functional is a balance

between least squares straight line �t while p = 0, and a cubic spline interpolant

while p = 1. We use the Matlab Spline Toolbox [34] of the smoothing spline to

obtain the results shown in Fig. (6.14). The continuous curves, which are evaluated

at a uniformly distributed time grids ti, shown in blue are the functions given by the
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smoothing spline. To use the 3-dimensional data set generated by the smoothing

spline, fx : iso_spline; y : iso_spline; z : iso_splineg, we can model the ISOMAP

projections continuously in time t.

The 4th order scheme and the quadratic �tting form are applied when we

perform the modeling procedure. The reproduced data of the fx : iso_splineg

component from the modeling system is shown in Fig. (6.15). Also shown as (-)

is the data from the projected system of this 4-dimensional fast-slow system for

the purpose of comparison. The projected system of this 4-dimensional fast-slow

system is generated by the arc length of the vector function r, which represents a

point (x; y; z; w) in the fast-slow system.

r < x1; x2; x3 >= x1e1 + x2e2 + x3e3 + �(x
2
1 + x

2
2 + x

2
3)e4;

where ei is a unit vector in <4 that has 1 in the ith position. The vector r represents

a point (x; y; z; w) in the fast-slow system. The form of the 3-dimensional projected

system is provided by the arc length function in each direction and the analytical

form of the Rössler system,
�
Lx1 = j drdx1 j � f1 =

p
1 + 4�2x4 � (�y � z)

�
Lx2 = j drdx2 j � f2 =

p
1 + 4�2y4 � (x+ ay)

�
Lx3 = j drdx3 j � f3 =

p
1 + 4�2z4 � [b+ z(x� c)]

; (6.16)

where fi is the ith function of the Rössler system.

In this case, we extend the application of the ISOMAP method for some data

set having spares density by applying the meshing method and the smoothing spline,

and also show the relationship between the original system and the projected system



120

Figure 6.16: Example of ISOMAP Projections on an Image Space.

explicitly.

6.3 high-dimensional Example: Image Spaces and Video
Sequences

In this section, we will explore the application of the ISOMAP method and the

modeling technique in high-dimensional systems involving image spaces and

video sequences. ISOMAP algorithm was developed initially for the purpose of

discovering a low-dimensional representation of the space of possible images in

image processing [4, 47, 52], the approach of which gives a new tool for the video

analysis.
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A collection of related images de�nes an image space, which is formed by

video sequences in the examples shown in this section. Given an image having

m� n pixels, we can consider it as an element in the mn-dimensional image space

where each dimension is the intensity at a particular pixel. Therefore, a set of

images can be used as a set of points in the mn-dimensional space to perform the

ISOMAP method to seek lower dimensional projections of themn-dimensional data

points.

As discussed in [52], the ISOMAP projections of images, which describe the

motions of hand shown in Fig. (6.16), reveal good results of the dimensionality

reduction of this image space, particularly when there exists a two dimensional

underlying subspace. The two major motions of the hand are wrist rotation

considered as the x-direction in Fig. (6.16), and �nger extension considered as the

y-direction. The circled points are the ISOMAP projections of the shown hand

images. As shown in the Fig. (6.16), the ISOMAP projections of those images,

on which the hand is rotating while the �ngers of the hand keep unstretched, are

almost horizontal, and the ISOMAP projections of images, on which the �ngers

are stretching while the hand is unrotated, are almost vertical. Those are the

2 degrees of freedom apparently. ISOMAP is capable of discovering this fact

from high-dimensional image sequences. Those properties of the 2-dimensional

ISOMAP projections reveal the relationship among the images according to the two

major axes.
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Given a video,which can be considered as a collections of an ordering

images establishing a trajectory, which is a low-dimension description of the video

sequences, we are able to seek the relationship among the ISOMAP projections

of images from the video to reveal the motion of the trajectory by the modeling

procedure. In many cases, the form of the trajectory highlights important transitions

in the scene or deviations from the normal scene appearance.

6.3.1 Example: Video Ball

First, we show a video of a ball generated by releasing it along a declining bench.

In Fig. (6.17), the blue dots show the 2-dimensional ISOMAP projections of images

recorded by the video. In practice, the ball is moving horizontally, the fact of which

is illustrated by the relationship among the ISOMAP projections. As shown in Fig.

(6.17), there are two major motions of the ball. One is along the declining bench,

which is shown horizontally in x-direction; and the other is the rotation of the ball

itself, which is shown as the small perturbations in y-direction. The reproduced data

from the modeling system shown as small circles capture the major motion of the

ball.

6.3.2 Example: Video Chicken

The second example we show in Fig. (6.18) is an application of ISOMAP method

on a video generated by replacing the ball by a wooden chicken. As discussed

in the �rst example, the chicken is moving along the declining bench while it
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Figure 6.17: 2-D ISOMAP Projections of a Video of a Ball and the Reproduced Data.
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Figure 6.18: 2-D ISOMAP Projections of Video of Chicken and the Reproduced
Data.
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Figure 6.19: 2-D ISOMAP Projections of Video of a Clock vs. Reproduced Data.

oscillates vertically. The x-direction describes the motions along the bench, while

the y-direction describes the oscillations of the chicken itself. The modeling system

captures the major motion of the chicken.

6.3.3 Example: Video Clock

In the third example shown in Fig. (6.19), a video generated by recording a clock

for thirty seconds is used to perform the ISOMAP method. The 2-dimensional
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Figure 6.20: Time Series of ISOMAP Projections and Reproduced Data.

ISOMAP projections of images of this video reveal the trajectory of this set of

images, which describe the movement of the second arm during the period of time.

As shown in Fig. (6.20), the modeling system generating the reproduced data, the

analytical form of which is given in the form of,
��
x

y

�
=

�
�0:5686
�0:1628

�
+

�
0:7323 11:4365
�8:5219 �0:1833

�
�
�
x

y

�
;

�ts the ISOMAP projections well.
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6.4 Summary

In this chapter, we have performed the technique of modeling low-dimensional

submanifolds in some examples, in which the projected systems, which can be

constructed by arc length functions and analytical forms of original systems, and

the modeling systems given by the modeling technique, have been shown for the

purpose of investigating the underlying structures of the equations of the systems on

the low-dimensional submanifolds, which are embedded in some high-dimensional

dynamical systems, and even image spaces. In the examples of image spaces,

we have shown some simple videos to give some insight into applications of the

modeling technique in more complicated cases, such as video sequences generated

by more complicated motions.
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Chapter 7
Summary

Modeling high-dimensional process by a low-dimensional process is a fundamental

problem in dynamical systems. In this dissertation, we presented a new modeling

technique, in which an analytical form of equations on a low-dimensional invariant

manifold, known only through a data set, is able to be obtained.

Given a data set generated from some unknown high-dimensional dynamical system,

of which the asymptotic behavior may be restricted to a nonlinear submanifold, we

performed the ISOMAP method, in which the meshing method and the method of linear

combinations can be applied for the purpose of satisfying the suf�cient conditions required

by the asymptotic convergence theorem, to obtain a set of low-dimensional points, which

is an approximation of embedding low-dimensional submanifold. In order to obtain an

analytical form that dominates the empirical data on a low-dimensional submanifold,

if there exists one, the global modeling technique was applied. As discussed in this

dissertation, depending on the used �tting schemes, the analytical form developed by the

modeling technique converges as the sampling rate, which was considered as the time

step size h, approaches zero. Hence, the obtained analytical form can be considered as

a closed-form representation of the system on the low-dimensional submanifold. With

the analytical form, several useful processes in applied dynamical systems theory, such as

prediction of the time series for a short period of time, investigations of the structure of the
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low-dimensional submanifold, and even the relationship between the analytical form and

the original high-dimensional system are able to be addressed.

Certain merits of this technique based on the ISOMAP method and the global

modeling are highlighted below in comparison with what have been developed for

the purpose of dimensionality reduction.

1. This technique requires only a data set to discover a low-dimensional

submanifold, while some other methods, such as the theory of global attractors

approaches, and singular perturbation theory, require an analytical form of the

system.

2. This technique can deal with an invariant space that is intrinsically a highly

nonlinear manifold, while the popular POD method is essentially linear in

nature.

3. This technique produces an analytical form of the system on the

low-dimensional submanifold, by which the properties of the system are able to

be discovered. Moreover, for some cases in the fast-slow systems, the produced

analytical form is related to the original system in the sense of the arc length.

4. This technique can be applied in various �elds, such as the image processing.

7.1 Future Work

There are several directions in which we may move the work of this dissertation in
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the future. Some of them are described as follows:

1. Extend the modeling technique to more dynamical systems. The examples

discussed were systems with global attractors, or the fast-slow systems with a

slow manifold. It is likely that there are other interesting dynamical systems

with embedding low-dimensional manifold.

2. Explore the relationship between the initial distributions of the initial conditions

of dynamical systems and the invariant measure on the invariant set.

3. Improve the global modeling technique by using more complicated basis

functions, such as periodic functions, instead of polynomials. Moreover, the

modeling technique can also be improved by using higher order �tting schemes.

4. Apply the modeling technique in some other �elds. In this dissertation, simple

examples of the image spaces were shown. We believe that the modeling

technique can be used as a new tool for video analysis and manipulation in the

�eld of image processing.
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